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Abstract: An abstract property (H) is the key to a complete a priori error analysis in the (discrete) energy norm
for several nonstandard finite element methods in the recent work [Lowest-order equivalent nonstandard fi-
nite element methods for biharmonic plates, Carstensen and Nataraj, M2AN, 2022]. This paper investigates the
impact of (H) to the a posteriori error analysis and establishes known and novel explicit residual-based a pos-
teriori error estimates. The abstract framework applies to Morley, two versions of discontinuous Galerkin, C0

interior penalty, as well as weakly over-penalized symmetric interior penalty schemes for the biharmonic equa-
tion with a general source term in H−2 (Ω).

Keywords: a posteriori, residual-based, biharmonic problem, smoother, best-approximation, companion oper-
ator, C0 interior penalty, discontinuous Galerkin, WOPSIP, Morley

Classification: 65N30, 65N12, 65N50

1 Introduction

The concept of a quasi-optimal smoother and the key assumption (H) from [24] allow for an abstract a posteriori
error analysis for five lowest-order schemes for the biharmonic problem. This paper unifies and completes
[2, 4, 5, 34, 36, 40] and provides novel reliable and efficient a posteriori error estimators for a right-hand side
F ∈ H−2 (Ω).

1.1 Overview

The traditional view on a posteriori error control is that the well-posedness of the linear problem on the con-
tinuous level directly leads from the error to residuals and their dual norms. In the simplest setting of a Hilbert
space (V , a) with induced norm ||| · ||| B a(·, ·)1/2, the weak solution u ∈ V is the Riesz representation of a given
source F ∈ V*: u ∈ V solves

a(u, v) = F (v) ∀ v ∈ V . (1.1)

Given any conforming companion Jhuh ∈ V to some discrete approximation uh ∈ Vh , where Vh ⊈ V is typically
not a subset of V and Jhuh ∈ V is a postprocessing of uh , the norm of the error e B u − Jhuh ∈ V is the norm
of the residual F − a(Jhuh , ·) ∈ V*: The Riesz isometry between the residual and its Riesz representation e ∈ V
reads

|||e ||| = |||F − a(Jhuh , ·) |||* B sup
v∈V \{0}

|F (v) − a(Jhuh , v) |
|||v ||| . (1.2)
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Tab. 1: Five discretizations.

Morley C0IP dG I dG II WOPSIP Reference

Vh M(T) S20 (T) P2 (T) P2 (T) P2 (T) (4.1)
I = Ih IM : V → Vh id IC IM IM IM IM IM in Def. 4.1, IC in (4.6)
Jh = JIM : Vh → V J JIM JIM JIM JIM J in Lemma 4.1

The a posteriori error control is left with the task of deriving computable upper and lower bounds of the dual
norm |||F − a(Jhuh , ·) |||*. The known data are F ∈ V* and Jhuh ∈ V and the techniques to derive bounds are very
different from those of an a priori error analysis.

The paradigm change in this paper employs a recent tool (H) (stated in Section 2.2 below) from the a priori
error analysis [24] to arrive at an a posteriori error bound

|||e |||2 ⩽ C
(
∥uh − Jhuh ∥2h + Res((1 − Jh I)e) + data approximation error

)
(1.3)

with some operator I ∈ L(V ; Vh) and a norm ∥ · ∥h on V + Vh . The main advantage of the master estimate (1.3)
over the error identity (1.2) is the known structure (1 − Jh I)e ∈ V of the test function. The a posteriori error
analysis based on (1.3) then only requires to study the properties of the operators (1 − Jh I) ∈ L(V ; V). This
allows explicit estimates of the error term Res((1 − Jh I)e) with universal arguments for generic uh ∈ Vh and,
most importantly, independent of the discrete system that defines uh ∈ Vh .

The application to the biharmonic equation (1.1) provides novel simultaneous insight in the residuals and
estimators for the piecewise quadratic discrete solution uh ∈ P2 (T) to the Morley, two variants of discontin-
uous Galerkin (dG), the C0 interior penalty (C0IP), and the weakly over-penalized symmetric interior penalty
(WOPSIP) method. Table 1 below displays the discrete spaces Vh and operators I , Jh introduced in Section 4. The
multiplicative constant C in (1.3) exclusively depends on the shape regularity of the underlying triangulation.

The discussion includes the standard and modified schemes that come with and without a smoother Jh
on the right-hand side. This paper completes the a posteriori error analysis for these lowest-order discretisa-
tions and provides novel reliable and efficient a posteriori error estimators for a rather general class of general
sources F ∈ V*.

1.2 Outline

Section 2 introduces the abstract discretisation scheme with the key assumption (H) for the a priori analysis
in [24]. Section 3 discusses a known abstract error identity and its application in the a posteriori error analysis.
This is followed by the concept of a quasi-optimal smoother and the a priori key property (H) that lead to an
explicit a posteriori error bound with a particular structure of the test function as in (1.3). Section 4 provides
examples for the abstract setting in terms of five lowest-order schemes for the biharmonic equation. Section 5
establishes explicit estimates for the error contributions of the a posteriori error bound from Section 3. Section 6
presents a unified a posteriori error control for five lowest-order schemes for the biharmonic equation in a
simplified setting with a right-hand side F ∈ L2 (Ω) and recovers [2, 4, 5, 34, 36, 40]. The restriction to sources in
L2 underlines the state of the art before this paper and therebyhighlights thenewparadigm through comparison
with known results. The emphasis in Section 7 is on a class of general sources F ∈ V* with a novel a posteriori
error estimator of the residual that is reliable and efficient up to data-oscillations. Appendix A shades a different
light on the discussion in Section 7 and provides lower and upper bounds for the dual norm of functionals
F ∈ V*.

The presentation is laid out in two dimensions with shape-regular triangulations into triangles and second-
order discretizations for simplicity; but the arguments apply to 3D aswell, cf. [26] for a companion operator Jh in
3D. The abstract results of this paperwill be applied to an a posteriori error analysis of semilinear problems [18],
where a linearisation enforces (piecewise polynomial) F ∈ H−2 (Ω) \ L2 (Ω) in future research.
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1.3 General notation

Standard notation on Lebesgue and Sobolev spaces, their norms, and L2 scalar products applies throughout the
paper such as the abbreviation ∥ · ∥ for ∥ · ∥L2 (Ω) . Recall that the energy norm ||| · ||| := ∥D2 · ∥ is a norm on H2

0 (Ω).
Throughout this paper, T denotes a shape-regular triangulation of a polygonal and bounded (possibly multiply-
connected) Lipschitz domain Ω ⊂ R2 into triangles. Let V(Ω) and E(Ω) denote the set of interior vertices and
edges in the triangulation T and let V(∂Ω) and E(∂Ω) denote the boundary vertices and edges. The gradient
and Hessian operators ∇pw B Dpw and D2pw act piecewise on the space Hm (T) B ∏

T∈T Hm (T) of piecewise
Sobolev functions for m = 1, 2 with the abbreviation Hm (K) B Hm (int K) for a triangle or edge K ∈ T ∪ E

with relative interior int(K). The space Pk (K) of polynomials of total degree at most k ∈ N0 on K ∈ T ∪ E with
diameter hK defines the space of piecewise polynomials

Pk (T) B {p ∈ L∞ (Ω) : p |T ∈ Pk (T) ∀T ∈ T}.

The mesh-size hT ∈ P0 (T) is the piecewise constant function with hT |T ≡ hT B diam(T) for all T ∈ T.
Throughout this paper, let Hk (Ω; X) , Hk (T; X), resp. Pk (T; X) denote the space of (piecewise) Sobolev functions
resp. polynomials with values in X = R2 ,R2×2 , S for k ∈ N0; S ⊂ R2×2 is the set of symmetric 2 × 2 matrices.
The spaces H−k (Ω) B (Hk

0 (Ω))* are the dual spaces of H
k
0 (Ω) for k ∈ N. Given any function v ∈ L2 (E) on an

edge E ∈ E, define the integral mean
⨏
E v dx := h−1E

∫
E v dx. The notation A ≲ B abbreviates A ⩽ CB for some

positive generic constant C, which exclusively depends on the shape-regularity of the underlying triangulation
T; A ≈ B abbreviates A ≲ B ≲ A.

2 Unified a priori error analysis

Nonstandard schemes compute discontinuous approximations in general and require a smoother to map the
discrete functions into the continuous space V .

2.1 Discretisation

Given the Hilbert space (V , a) from the continuous problem (1.1), consider some bigger Hilbert space (V̂ , â)
that contains V ⊂ V̂ as well as the discrete spaces Vh , Vnc ⊂ V̂ . Let â B apw + jh be the sum of the semi-scalar
products apw , jh : V̂ × V̂ → R where, apw extends a = apw |V×V and is a scalar product with induced norm
||| · |||pw B apw (·, ·)1/2 in V + Vnc. The semi-scalar product jh : V̂ × V̂ → R represents jumps that vanish in V + Vnc,
i.e., jh (v, ·) = 0 for any v ∈ V + Vnc. The induced norm on V̂ reads

∥ · ∥h B
(
||| · |||2pw + jh (·, ·)

)1/2 and satisfies ||| · |||pw = ∥ · ∥h in V + Vnc . (2.1)

The discretisation consists of a finite-dimensional trial and test space Vh with respect to a shape-regular trian-
gulation T of Ω and the (possibly unsymmetric) bilinear form

ah : (V + Vh + Vnc) × (V + Vh + Vnc) → R.

We assume that ah is Vh-elliptic and bounded on Vh with respect to ∥ · ∥h in the sense that some universal
constants 0 < α ⩽ M < ∞ satisfy, for all vh , wh ∈ Vh , that

α∥vh ∥2h ⩽ ah (vh , vh) , ah (vh , wh) ⩽ M∥vh ∥h ∥wh ∥h . (2.2)

Since Vh ⊊ V is not a subset of V , the evaluation F (vh) at vh ∈ Vh is not well-defined for general F ∈ V*.
Therefore many of the earlier contributions, in particular to the a posteriori error control, merely consider
F ∈ L2 (Ω) whenever V̂ ⊂ L2 (Ω). The series of papers [42–44] advertise a smoother Q ∈ L(Vh; V) to evaluate
the modified source F (Qvh) on the discrete level. This paper complements those contributions on the a priori
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error analysis by reliable and efficient a posteriori error estimates. This is itself highly relevant in scientific
computing and a first step towards adaptive mesh-refining.

To be more general, this paper considers a rather general class of sources that allow an extension F̂ ∈ V̂*

of F = F̂ |V . The Lax–Milgram lemma ensures the existence of a unique discrete solution uh ∈ Vh to

ah (uh , vh) = F̂ (Qvh) ∀ vh ∈ Vh (2.3)

for the two cases Q = id (no smoother, but depending on F̂) and Q = Jh for a smoother Jh ∈ L(Vh; V). The history
of Jh is related to averaging techniques and dates back to the analysis of the Crouzeix–Raviartmethod [16, 25, 44]
for the reliable error control [22]. An earlier motivation was the construction of intergrid transfer operators in
the convergence analysis of multigrid methods for nonconforming schemes [9].

The first results will be derived for F̂ ≡ f ∈ L2 (Ω) to recover known results in a unified framework, while
Section 7 specifies a large class of extended sources F̂ and provides novel a posteriori error estimates with and
without smoother.

2.2 Quasi-best approximation

The abstract framework from [24] provides a tool for the a priori analysis therein.

Definition 2.1 (quasi-optimal smoother). An operator Jh ∈ L(Vh; V) is called a quasi-optimal smoother if there
exists a constant CJ ⩾ 0 such that

∥vh − Jhvh ∥h ⩽ CJminv∈V
∥v − vh ∥h ∀ vh ∈ Vh . (2.4)

All the examples in [42–44] discuss Jh ∈ L(Vh; V) with Jh = id in Vh ∩ V . The framework in [24] introduces a
smoother that satisfies (2.4) and is quasi-optimal with a constant CJ ≈ 1. The interpretation is that Jhvh ∈ V is a
good approximation of vh ∈ Vh and provides a bridge between the discrete objects in Vh and V .

The key assumption (H) connects the bilinear forms a from (1.1) and ah from (2.3) and requires the existence
of ΛH ⩾ 0 with

ah (wh , vh) − a(Jhwh , Jhvh) ⩽ ΛH∥wh − Jhwh ∥h ∥vh ∥h ∀wh , vh ∈ Vh . (H)

This assumption leads to quasi-optimality of uh in the discrete norm ∥ · ∥h and holds for a class of problems
including the examples in [24] except WOPSIP. A key step is therefore the design of a quasi-optimal smoother,
e.g., Jh = J ◦ Inc with the conforming companion J and a generalised interpolation operator Inc.

Theorem 2.1 (quasi-best approximation). Given an operator Jh ∈ L(Vh; V) with (2.4) and (H), there exists a con-
stant Cqo > 0 (that exclusively depends on α,M , CJ ,ΛH, and ∥Jh ∥) such that the exact solution u ∈ V to (1.1) and
the discrete solution uh to (2.3) satisfy

∥u − uh ∥h ⩽ Cqo minvh∈Vh
∥u − vh ∥h . (QO)

Proof. This is proven in [24, Thm. 2.3] inspired by the seminal work [42]. □

A stronger version (Ĥ) of (H) in [24, Sect. 6] even leads to a priori error bounds in weaker (piecewise) Sobolev
norms.

2.3 Transfer operators

The error analysis requires transfer operators with certain approximation properties between the three sub-
spaces V , Vh , Vnc of V̂ . Throughout this paper, assume there are three linear operators Ih ∈ L(Vnc; Vh) , Inc ∈
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Inc ∈ L (V + Vnc + Vh ; Vnc )
Ih ∈ L (Vnc; Vh )
J ∈ L (Vnc; V )
Jh ∈ L (V + Vnc + Vh ; V )

Tab. 2: Operators.

V + Vnc + Vh V

Vnc

Jh = J ◦ Inc

Inc
J

Fig. 1: Definition of Jh .

L(V + Vh + Vnc; Vnc), and the conforming companion operator J ∈ L(Vnc; V) and constantsΛh ,Λnc ,ΛJ ⩾ 0 such
that

∥vnc − Ihvnc∥h ⩽ Λh min
v∈V

|||v − vnc |||pw ∀ vnc ∈ Vnc (2.5)

∥vh − Incvh ∥h ⩽ Λnc min
v∈V

∥v − vh ∥h ∀ vh ∈ Vh (2.6)

|||vnc − Jvnc |||pw ⩽ ΛJ min
v∈V

|||v − vnc |||pw ∀ vnc ∈ Vnc . (2.7)

Two immediate consequences on the abstract level at hand shall be utilized below.

Lemma 2.1 (intermediate bound). Given any v ∈ V and vnc ∈ Vnc, (2.5)–(2.7) imply

|||v − JIncIhvnc ||| ⩽ (1 + ΛJ) (1 + Λnc) (1 + Λh) |||v − vnc |||pw . (2.8)

Proof. Let wnc B IncIhvnc and wh B Ihvnc. The triangle inequality and (2.7) show

|||v − Jwnc ||| ⩽ |||v − wnc |||pw + ||| (1 − J)wnc |||pw ⩽ (1 + ΛJ) |||v − wnc |||pw .

Note |||v − wnc |||pw = ∥v − wnc∥h from (2.1). The triangle inequality and (2.5)–(2.6) show

∥v − wnc∥h ⩽ ∥v − wh ∥h + ∥(1 − Inc)wh ∥h ⩽ (1 + Λnc)∥v − wh ∥h
∥v − wh ∥h ⩽ ∥v − vnc∥h + ∥(1 − Ih)vnc∥h ⩽ (1 + Λh) |||v − vnc |||pw .

The combination of those estimates establishes (2.8). □

The above transfer operators (see Fig. 1 and Table 2) lead to a quasi-optimal smoother Jh B J ◦ Inc ∈ L(Vh; V).
Although Jh maps V + Vnc + Vh → V , its restriction to Vh plays a central role in the sequel.

Lemma 2.2 (quasi-optimal smoother). Given any vh ∈ Vh , and Jh B J ◦ Inc ∈ L(Vh; V), (2.6)–(2.7) show (2.4)with
CJ B Λnc + ΛJ + ΛJΛnc.

Proof. A triangle inequality with vnc B Incvh , and (2.7) verify

∥vh − Jvnc∥h ⩽ ∥vh − vnc∥h + ΛJ (∥v − vh ∥h + ∥vh − vnc∥h)

for an arbitrary v ∈ V . This and (2.6) conclude the proof. □

Lemma 2.2 shows that Jh is a quasi-optimal smoother with the following property.

Theorem 2.2 (quasi-best approximation [24]). Let u ∈ V resp. uh ∈ Vh solve (1.1) resp. (2.3). Suppose (H), (2.1)–
(2.2), and (2.5)–(2.7). Then

|||u − Jhuh ||| + ∥u − uh ∥h ≲ min
vnc∈Vnc

|||u − vnc |||pw .
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Proof. Lemma 2.2 and Theorem 2.1 verify (QO) for Jh . A triangle inequality, (2.5), and ||| · |||pw = ∥ · ∥h in V + Vnc
verify

∥u − uh ∥h ⩽ Cqo∥u − Ihvnc∥h ⩽ Cqo (1 + Λh) |||u − vnc |||pw

for arbitrary vnc ∈ Vnc. The proof of Lemma 2.1 shows |||v − Jhwh ||| ⩽ (1+ΛJ) (1+Λnc)∥v −wh ∥h for an arbitrary
v ∈ V , wh ∈ Vh . The combination with the previously displayed inequality concludes the proof. □

3 Abstract a posteriori error analysis

The abstract error identity in Subsection 3.1 reveals that |||Res|||* is a contribution to the error. Subsection 3.2
revisits the Crouzeix–Raviart and Morley FEM and recalls known bounds thereof. Subsection 3.3 explains a
paradigm shift towards a universal error analysis that is explicit in the structure of the test function through a
quasi-optimal smoother and the property (H).

3.1 Abstract error identity for F ∈ V*

Given the exact solution u ∈ V to (1.1) and the discrete solution uh ∈ Vh to (2.3), the natural error u − uh ∈
V + Vh ⊂ V̂ can be measured in the norm ∥ · ∥h from Subsection 2.1. This allows a well-known split with the
residual Res B F − apw (uh , ·) ∈ V* [19].

Theorem 3.1 (error identity). The exact solution u ∈ V to (1.1) and the discrete solution uh ∈ Vh to (2.3) satisfy

∥u − uh ∥2h = |||Res|||2* +minv∈V
∥v − uh ∥2h . (3.1)

Proof. Letw ∈ V be the Riesz representation of the linear and bounded functional apw (uh , ·) ∈ V* in the Hilbert
space (V , apw), so that apw (uh − w, ·) = 0 in V . This orthogonality shows that w ∈ V is the best-approximation
of uh ∈ Vh ⊂ V̂ in the complete subspace V , i.e.,

δ B |||w − uh |||pw = min
v∈V

|||v − uh |||pw (3.2)

and allows for the Pythagoras identity

|||u − uh |||2pw = |||u − w |||2 + |||w − uh |||2pw . (3.3)

The orthogonality also shows, for all v ∈ V , that

a(u − w, v) = a(u, v) − apw (uh , v) = Res(v)

with a(u, ·) = F in V in the last step. In other words, u − w is the Riesz representation of Res ∈ V* in the Hilbert
space (V , a) and the Riesz isomorphism reveals

|||u − w ||| = |||Res|||* B sup
v∈V \{0}

Res(v)
|||v ||| . (3.4)

The summary of (3.2)–(3.4) reads |||u − uh |||2pw = |||Res|||2* + δ
2. Since jh (·, v) = jh (v, ·) = 0, the proof concludes

with ∥v − uh ∥2h = |||v − uh |||2pw + jh (uh , uh) for any v ∈ V . □

Remark 3.1 (explicit a posteriori bounds). The proof of Theorem 3.1 is nothing but a Pythagoras identity and
serves as an idealisation: While jh (uh , uh) comes for free, the computation of |||Res|||* or of δ = minv∈V ∥v−uh ∥2h−
jh (uh , uh) is far too costly. Instead, the error identity rather serves as a guide to design individual upper bounds
of δ and |||Res|||*. The a priori error analysis of Section 2.1 provides a quasi-optimal smoother Jh ∈ L(Vh; V).
Then (2.4) shows

min
v∈V

∥v − uh ∥h ⩽ ∥uh − Jhuh ∥h ⩽ CJminv∈V
∥v − uh ∥h . (3.5)
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νE

E
T+

T−

P+

P−

A

B

Fig. 2: The interior edge patch ω (E) and normal νE = ±νT±
of E = ∂T+ ∩ ∂T−.

In the language of a posteriori error control, (3.5) asserts the reliability and efficiency of the a posteriori esti-
mator ∥uh − Jhuh ∥h of the errorminv∈V ∥v − uh ∥h . This ends the discussion of ∥uh − Jhuh ∥h and motivates the
focus on bounds of Res below.

In order to understand the difference between the classical and the current treatment, the two simplest non-
conforming schemes will be discussed in the subsequent subsection.

3.2 Crouzeix–Raviart and Morley FEM

This subsection motivates the abstract a posteriori error analysis by a recollection [10, 11, 14, 19, 20, 29, 41]
for m = 1 and [2, 13, 35, 36] for m = 2 of the simplest nonconforming schemes for the m-harmonic equation
(−Δ)mu = f for m = 1, 2 with right-hand function f ∈ L2 (Ω). The weak solution seeks u ∈ V B Hm

0 (Ω) ⊂ V̂ B
Hm (T) to

a(u, v) = (f , v)L2 (Ω) ∀ v ∈ V (3.6)

with the energy scalar product a B apw |V×V and apw (·, ·) B (Dm ·, Dm ·)L2 (Ω) in V̂ .

3.2.1 Crouzeix–Raviart FEM

Let u ∈ V B H1
0 (Ω) be the weak solution to the Poisson model problem, i.e., u solves (3.6) for m = 1. The

Crouzeix–Raviart finite element space requires the definition of jumps across an edge E ∈ E in the triangulation
T. Let νT be the unit outer normal of T ∈ T and fix the orientation of the unit normal νE on every edge E ∈ E

with midpoint mid(T). Every interior edge E = ∂T+ ∩ ∂T− ∈ E(Ω) has exactly two neighbouring triangles
T+ , T− ∈ T as in Fig. 2, labelled such that νE = ±νT± |E , and the jump of a piecewise Sobolev function v ∈ H1 (T)
across E reads [v]E B v |T+ − v |T− ∈ H1 (E). On a boundary edge E ∈ E(∂Ω), the jump [v]E B v is the unique
trace of the function v ∈ H1 (T). Define the space

CR10 (T) B
{
p ∈ P1 (T)

�� [p]E (mid E) = 0 vanishes for every edge E ∈ E
}

of piecewise affine polynomials over a given shape-regular triangulation T with continuity at the midpoints
of the edges. This space Vnc B CR10 (T) comes with the natural interpolation operator ICR : V + Vnc → Vnc
that maps v ∈ V + Vnc to the unique function ICRv ∈ Vnc with

∫
E (v − ICRv) ds = 0 for every edge E ∈ E.

The classical formulation of the lowest-order nonconforming Crouzeix–Raviart FEM approximates the weak
solution u ∈ H1

0 (Ω) of (3.6) with the discrete solution uCR ∈ CR10 (T) ≡ Vnc to

apw (uCR , vCR) ≡
∫
Ω

∇pwuCR · ∇pwvCR dx = (f , vCR)L2 (Ω) ∀ vCR ∈ CR10 (T) . (3.7)
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This is exactly (2.3) for the natural choice F̂ B F ≡ f ∈ L2 (Ω) and without smoother Q B id. The semi-scalar
product apw induces the piecewise energy norm ||| · |||pw B ∥∇pw · ∥ in V + Vnc ≡ H1

0 (Ω) + CR
1
0 (T) [23]. In this

particular example, the residual from Section 3.1 reads

Res B (f , ·)L2 (Ω) − apw (uCR , ·) ∈ V* .

3.2.2 Classical residual-based explicit error estimator

This approach follows [19] and is closely related to the analysis of conforming schemes. Let IC : H1
0 (Ω)+CR

1
0 (T) →

S10 (T) denote a quasi-interpolation operator onto the continuous piecewise affine polynomials S10 (T) B P1 (T) ∩
H1
0 (Ω)with homogeneous boundary conditions. Since (3.7) holds, the definition of the residual showsRes(wC) =

0 for any wC ∈ S10 (T) ⊂ CR10 (T), i.e., S10 (T) ⊂ ker Res lies in the kernel of Res ∈ V*, and an integration by parts
with the test function w B v − ICv shows, for f ∈ L2 (Ω), that

Res(v) = Res(w) = (f , w)L2 (Ω) −
∑︁
T∈T

∑︁
E∈E(T )

∫
E
∇pwuCR · νEw ds

= (f , w)L2 (Ω) −
∑︁

E∈E(Ω)

∫
E
[∇pwuCR]E · νEw ds.

The last step is a careful resummation over the edges: Each interior edge E ∈ E(Ω) has two contributions (from
T+ and T− as in Fig. 2) with opposite signs from νT+ = −νT− on E. No contributions arise from the boundary edges
E ∈ E(∂Ω) because of w |∂Ω = 0. Cauchy inequalities show

Res(v) ⩽ ∥hT f ∥∥h−1T w∥ +
∑︁

E∈E(Ω)
h1/2E ∥ [∇pwuCR]E · νE ∥L2 (E)h

−1/2
E ∥w∥L2 (E) . (3.8)

The quasi-interpolation operator IC from [28, 39] satisfies the stability estimates

h−1T ∥v − ICv∥L2 (T ) ⩽ Capx ∥∇v∥L2 (ω (T ) ) in T ∈ T

with a constant Capx > 0 that exclusively depends on the shape regularity of T. Here ω(T) denotes the layer-1
patch around T ∈ T. The trace inequality [30, Eq. (12.17)]:

h−1/2E ∥v∥L2 (E) ⩽ Ctr
(
h−1T ∥v∥L2 (T (E) ) + ∥∇v∥L2 (T (E) )

)
∀ v ∈ V

bounds the norms on the edge E ⊂ ∂T (E) by norms of some adjacent triangle T (E) ∈ T with a constant Ctr > 0
that exclusively depends on the shape-regularity ofT. This and a final Cauchy inequality in ℓ2 for the sum in (3.8)
show

|||Res|||* B sup
v∈V \{0}

Res(v)
|||v ||| ≲ ∥hT f ∥ +

√︄ ∑︁
E∈E(Ω)

hE ∥ [∇uCR]E · νE ∥2L2 (E) . (3.9)

The jump term in (3.9) can be bounded by ∥hT f ∥ and the simpler

|||Res|||* ≲ ∥hT f ∥ (3.10)

estimate without normal jumps is possible. For any interior edge E ∈ E(Ω), the edge-patch ω(E) B int(T+∪T−)
depicted in Fig. 2 is the union of the two neighboring triangles T+ , T− ∈ T.

Lemma 3.1 (bound without jumps). The normal jumps from (3.9) satisfy

h1/2E ∥ [∇uCR]E · νE ∥L2 (E) ≲ ∥hT f ∥L2 (ω (E) ) ∀E ∈ E(Ω) .

Proof. Recall the edge-oriented basis function ψE ∈ CR10 (T) as the unique function in CR
1
0 (T) with ψE (mid E) =

1 and ψE (mid F) = 0 for every other edge F ∈ E \{E}. Since ψE ∈ CR10 (T) is piecewise affine, its support ω(E) is
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the edge-patch ω(E) with ψE ≡ 1 on E = ∂T+ ∩ ∂T−. This, an integration by parts for the interior edge E ∈ E(Ω),
and (3.7) prove for β B [∇uCR]E · νE ∈ R,

∥ [∇uCR]E · νE ∥2L2 (E) = β
∫
E
[∇uCR]E ·νE ψE ds = β

∫
ω (E)

∇uCR · ∇ψE dx = β (f , ψE)L2 (ω (E) ) .

The midpoint quadrature rule shows ∥ψE ∥2L2 (T ) = |T |/3 ≈ h2T ≈ h
2
E in 2D by shape-regularity. Since ∥ψE ∥2L2 (E) =

|E | = hE , the previous displayed identity, a Cauchy inequality, and the definition of β verify

∥ [∇uCR]E · νE ∥2L2 (E) ≲ ∥hT f ∥L2 (ω (E) )h
−1/2
E ∥ [∇uCR]E · νE ∥L2 (E) .

This concludes the proof of (3.10). □

3.2.3 Bound from Crouzeix–Raviart interpolation

The integration by parts formula on T ∈ T and the definition of the natural interpolation ICR : V + Vnc → Vnc
reveal ∫

T
∇(v − ICRv) · ∇p1 dx =

∑︁
E∈E(T )

[∇pwp1]E · νE
∫
E
(v − ICRv) ds = 0

for any v ∈ V + Vnc , p1 ∈ P1 (T) and (v − ICRv) ⊥ P1 (T) is apw-orthogonal to P1 (T) ⊃ CR10 (T). This, (3.7), and the
interpolation error estimate ∥h−1

T
(v − ICRv)∥ ⩽ 𝜘CR |||v ||| from [12, Sect. 4] with 𝜘CR = (1/48 + j21,1)

1/2 ⩽ 0.2983 for
the first positive root j1,1 of the Bessel function of the first kind shows

|||Res|||* B sup
v∈V \{0}

Res(v)
|||v ||| = sup

v∈V \{0}

(f , v − ICRv)L2 (Ω)
|||v ||| ⩽ 𝜘CR∥hT f ∥ . (3.11)

The difference to the bound in Lemma 3.1 is not only the explicit control in terms of the smaller constant 𝜘CR,
but above all, that themethodology directly controls |||Res|||* as in [13, p. 317] without jump terms. The latter also
follows from (3.9) and Lemma 3.1.

The key observation is that this technique does not need any conforming subspace S10 (T) ⊂ CR10 (T) and this
is a relevant advance for the application to the Morley FEM.

3.2.4 Morley FEM

Let u ∈ V B H2
0 (Ω) be the weak solution to the biharmonic equation Δ2u = f ∈ L2 (Ω), i.e., u solves (3.6) for

m = 2. Define the normal jump [∂v/∂νE]E B [∇v · νE]E of a function v ∈ H2 (T) along an edge E ∈ E. The
Morley function space

M(T) B
{
p ∈ P2 (T)

����� p(z) is continuous at every z ∈ V(Ω) and p |V(∂Ω) = 0
[∇pwp · νE]E (mid E) = 0 vanishes for every edge E ∈ E

}
(3.12)

comes with a natural interpolation operator IM : H2
0 (Ω) +M(T) → M(T).

Definition 3.1 (classical Morley interpolation [8, 12]). Given any function v ∈ H2
0 (Ω) +M(T), the Morley interpo-

lation operator IM : H2
0 (Ω) +M(T) → M(T) defines IMv ∈ M(T) by

(v − IMv) (z) = 0 for z ∈ V(Ω) and
⨏
E

∂(v − IMv)
∂νE

ds = 0 for E ∈ E(Ω) .

This interpolation operator possesses the apw-orthogonality property v − IMv ⊥apw P2 (T) for any v ∈ H2
0 (Ω) +

M(T). The nonconforming Morley FEM approximates u ∈ H2
0 (Ω) with the unique discrete solution uM ∈

M(T) =: Vnc to

apw (uM , vM) B
∫
Ω

D2pwuM : D2pwvM dx = (f , vM)L2 (Ω) ∀ vM ∈ M(T) . (3.13)
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This represents (2.3) for F̂ B F ≡ f ∈ L2 (Ω) and Q = id while Section 6.2 considers Q = id and Q = Jh
simultaneously in a new a posteriori analysis and Section 7 discusses general sources F ∈ V*. Note that apw is a
scalar-product in V+Vnc ≡ H2

0 (Ω)+M(T) [23]. The residual fromSection 3.1 readsRes B (f , ·)L2 (Ω)−apw (uM , ·) ∈
V*.

3.2.5 Bounds fromMorley interpolation

An approach similar to Subsection 3.2.2 for the Crouzeix–Raviart FEM fails immediately because S20 (T) ∩H
2
0 (Ω)

is not rich enough: Formany triangulations S20 (T) ∩H
2
0 (Ω) = {0} is trivial, however not in general [38, Sect. 3.3].

However, the apw-orthogonality v − IMv ⊥apw P2 (T) for all v ∈ V with the Morley interpolation IM allows
the arguments from Subsection 3.2.3 that lead in [2, 36] to

|||Res|||* B sup
v∈V

Res(v)
|||v ||| = sup

v∈V

(f , v − IMv)L2 (Ω)
|||v ||| ⩽ 𝜘M∥h2T f ∥ . (3.14)

The interpolation error estimate ∥h−2
T
(v − IMv)∥ ⩽ 𝜘M |||v ||| holds with constant 𝜘M ⩽ 0.2575 [12, Sect. 4].

3.3 Paradigm of unified a posteriori error analysis

The discussion in this subsection departs from the error identity of Theorem 3.1 that includes the dual norm
|||Res|||* of the residual Res ∈ V*. Recall that u ∈ V solves (1.1) in V and uh ∈ Vh solves (2.3).

Subsection 3.1 discussed the error identity (3.1)with the dual normof the residual given as a supremumover
all continuous test functions. Since uh ∉ V in general, the computable (conforming) post-processing Jhuh ∈ V
serves as its approximation and motivates the error definition e := u − Jhuh ∈ V on the continuous level and
Ih Incu − uh ∈ Vh on the discrete level. The efficient error estimator ∥uh − Jhuh ∥h from (3.5) is computable and
a triangle inequality in the norm ∥ · ∥h and (2.1) lead to

∥u − uh ∥h ⩽ |||e ||| + ∥uh − Jhuh ∥h , |||e ||| ⩽ ∥u − uh ∥h + ∥uh − Jhuh ∥h . (3.15)

Recall F̂ |V = F from (2.3). The first argument to establish an alternative abstract error bound applies the
continuous (resp. discrete) equation (1.1) (resp. (2.3)) to the test function Jheh ∈ V (resp. eh B Ih Ince ∈ Vh),
namely,

ah (uh , eh) = F̂ (Qeh) = a(u, Jheh) − F̂ (Jheh − Qeh) . (3.16)

For Q = Jh , the last term vanishes and (3.16) becomes the key identity ah (uh , eh) = a(u, Jheh). The second
argument is the link of ah (uh , eh) to a(Jhuh , Jheh) by (H),

ah (uh , eh) − a(Jhuh , Jheh) ⩽ ΛH∥uh − Jhuh ∥h ∥eh ∥h . (3.17)

The (generalized) key identity (3.16) shows that the left-hand side of (3.17) is equal to a(e, Jheh) − F̂ (Jheh −Qeh).
This and the abbreviation w B e − Jheh show

|||e |||2 = a(e, w) + a(e, Jheh) ⩽ F (w) − a(Jhuh , w) + F̂ ((Jh − Q)eh) + ΛH∥uh − Jhuh ∥h ∥eh ∥h

with a(u, w) = F (w) in the last step. This, the Cauchy inequality apw (uh − Jhuh , w) ⩽ ∥uh − Jhuh ∥h |||w ||| us-
ing (2.1), and the residual Res B F − apw (uh , ·) ∈ V* reveal

|||e |||2 ⩽ ( |||w ||| + ΛH∥eh ∥h) ∥uh − Jhuh ∥h + Res(w) + F̂ (Jheh − Qeh) . (3.18)

Theorem 3.2 (alternative abstract error bound). Let Jh ∈ L(Vh; V) be a quasi-optimal smoother and suppose
(2.5)–(2.7) and (H). Then there exists a constant C1 > 0 such that the error e B u − Jhuh ∈ V for the solution
u ∈ V to (1.1) and uh ∈ Vh to (2.3) satisfies

∥u − uh ∥2h + |||e |||2 ⩽ C21
(
∥uh − Jhuh ∥2h + Res(e − Jh Ih Ince) + F̂ (Jheh − Qeh)

)
. (3.19)
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Proof. Abbreviate w B e − Jheh ∈ V with eh B Ih Ince ∈ Vh . Lemma 2.1 leads to C−12 |||w ||| ⩽ |||e − Ince |||pw ⩽
(1 + ∥Inc∥) |||e ||| for C2 := (1 +ΛJ) (1 +Λnc) (1 +Λh) and the operator norms control ∥eh ∥h ⩽ ∥Inc∥∥Ih ∥|||e |||. This,
a Young inequality, and (3.18) show

1
2
|||e |||2 ⩽ 1

2
C23∥uh − Jhuh ∥

2
h + Res(w) + F̂ (Jheh − Qeh)

with C3 B C2 (1+∥Inc∥)+ΛH∥Inc∥∥Ih ∥. This and (3.15) conclude the proof of (3.19) for C21 B max{2+3C23 , 6}. □

The equivalence ∥uh − Jhuh ∥h ≈ minv∈V ∥v − uh ∥h from (2.4) provides

∥u − uh ∥2h + |||e |||2 ≲ Res(e − Jh Ih Ince) + F̂ (Jheh − Qeh) +minv∈V
∥v − uh ∥2h

as an equivalent formulation of (3.19). The remaining parts of this paper discuss explicit bounds of the right-
hand side of (3.19) for a simultaneous a posteriori analysis of five nonstandard FEMs for the biharmonic equa-
tion.

4 Examples of lowest-order finite element schemes

This section introduces the spaces and transfer operators for five lowest-order methods for the biharmonic
equation.

4.1 Three second-order finite element spaces

Recall the space of piecewise polynomials Pk (T) of total degree at most k ∈ N from Subsection 1.3. Let Sk (T) B
Pk (T) ∩C0 (Ω) and Sk0 (T) B {p ∈ Sk (T) | p |∂Ω = 0} = Pk (T) ∩H1

0 (Ω). The associated L
2 projectionΠk : L2 (Ω) →

Pk (T) is defined by the L2 orthogonality (1 −Πk)v ⊥ Pk (T) for all v ∈ L2 (Ω). Recall the nonconforming Morley
space M(T) from (3.12). Throughout the remaining parts of this paper on the biharmonic equation, specify
Vnc B M(T) , V B H2

0 (Ω) ⊂ V̂ B H2 (T), and

Vh B


M(T) for Morley
P2 (T) for dG or WOPSIP
S20 (T) for C0IP.

(4.1)

4.2 Hilbert space of piecewise H2 functions

The semi-scalar product apw B (D2pw·, D2pw·)L2 (Ω) in V̂ B H2 (T) extends the energy scalar product a B apw |V×V
and the subspace (M(T) , apw) is a Hilbert space. Recall the jump [v]E resp. normal jump [∂v/∂νE]E across an
edge E ∈ E of a piecewise function v ∈ H1 (T) resp. v ∈ H2 (T) from Subsections 3.2.3 and 3.2.4. Let V(E) denote
the vertices of the edge E ∈ E. Define the semi-scalar product jh : V̂ × V̂ , for any v, w ∈ V̂ , by

jh (v, w) B
∑︁
E∈E

©«
∑︁

z∈V(E)

[v]E (z)
hE

[w]E (z)
hE

+
⨏
E

[
∂v
∂νE

]
E
ds

⨏
E

[
∂w
∂νE

]
E
dsª®¬ . (4.2)

Since jh (v, ·) = 0 vanishes for any v ∈ V + M(T), (H2 (T) , apw + jh) is a Hilbert space with the induced norm
∥ · ∥h from (2.1).

Remark 4.1 (completeness of (V̂ , apw + jh)). It is clear [24, Sect. 4.1] that (V̂ , ∥ ·∥h) is a normed linear space. Recall
that (H2 (T) , ∥ · ∥H2 (T) ) equipped with the piecewise H2 norm ∥ · ∥2H2 (T) B

∑
T∈T ∥ · ∥2H2 (T ) is a Banach space.
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T T mid(T)

Fig. 3: The Lagrange P2, the Morley, and the HCT finite element (left to right).

Let Q : H2 (T) → P1 (T) denote the H2 orthogonal projection onto the finite dimensional space P1 (T) ⊂ H2 (T)
and set X B (1 − Q)H2 (T). The Bramble–Hilbert lemma (see [30, Lem. 11.9]) asserts that ||| · |||pw is a norm on
X stronger than the piecewise H2 norm ∥ · ∥H2 (T) ≲ ∥ · ∥h . Since [24, Thm. 4.1] shows that ∥ · ∥h ≲ ∥ · ∥H2 (T) is
also weaker than the piecewise H2 norm, both norms are equivalent on X and X is complete. The direct sum
V̂ = X ⊕ P1 (T) of two complete spaces is complete.

4.3 Classical and averaged Morley interpolation

The classical Morley interpolant from Subsection 3.2.4 is defined for functions in V +M(T) and has an extension
to piecewise H2 functions. Define the average ⟨φ⟩E B 1

2
(
φ |T+ + φ |T−

)
of φ ∈ H1 (T) across an interior edge

E = ∂T+ ∩ ∂T− ∈ E(Ω) of the adjacent triangles T+ and T− ∈ T as in Fig. 2 and ⟨φ⟩E := φ |E along a boundary
edge E ∈ E(∂Ω). Let T(z) B {T ∈ T | z ∈ T} denote the |T(z) | ∈ Nmany neighbouring triangles of z ∈ T ∈ T.

Definition 4.1 (Morley interpolation [24]). Given any piecewise function vpw ∈ V̂ , the Morley interpolation op-
erator IM : V̂ → Vnc sets the degrees of freedom of the Morley finite element function IMvpw ∈ Vnc B M(T)
by

IMvpw (z) B |T(z) |−1
∑︁

T∈T (z)
(vpw |T ) (z) for z ∈ V(Ω)⨏

E

∂IMvpw
∂νE

ds B
⨏
E

〈 ∂vpw
∂νE

〉
E
ds for E ∈ E(Ω) .

It is well known that there is a unique quadratic polynomial IMvpw |T ∈ P2 (T) that assumes the above values
(IMvpw) (z) and

⨏
E ∂IMvpw/∂νE ds at z ∈ V(T) and for all E ∈ E(T). Explicit formulas for the basis functions

can be found in [14]. This definition extends the classical Morley interpolation from Definition 3.1 to piecewise
H2 functions in V̂ ≡ H2 (T). For any v ∈ H2

0 (Ω) +M(T), the apw-orthogonality

apw (v − IMv, w2) = 0 ∀w2 ∈ P2 (T) (4.3)

verifies the best-approximation property

|||v − IMv |||pw = min
v2∈P2 (T)

|||v − v2 |||pw . (4.4)

This does not extend to discontinuous functions vh ∈ H2 (T) in general. Recall ∥ · ∥h from (2.1).
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Theorem 4.1 (interpolation error [24, Thm. 4.3]). Any piecewise smooth function vpw ∈ H2 (T) and its Morley in-
terpolation IMvpw ∈ M(T) from Definition 4.1 satisfy

(a) ∥vpw − IMvpw∥h ≲ ∥(1 − Π0)D2pwvpw∥ + jh (vpw , vpw)1/2

(b)
2∑︁

m=0
hm−2T |vpw − IMvpw |Hm (T) ≈ min

wM∈M(T)
∥vpw − wM∥h ≈ ∥vpw − IMvpw∥h .

Since IM ∈ L(V̂ ; M(T)) is a bounded operator, the Cauchy inequality and the best-approximation property (4.4)
verify (2.6) for Inc := IM with Λnc B ΛM B 2 + ∥IM∥h . Indeed, for arbitrary v2 ∈ P2 (T) and v ∈ V ,

∥v2 − IMv2∥h ⩽ ∥v2 − v∥h + |||v − IMv |||pw + ∥IM (v − v2)∥h ⩽ ΛM∥v − v2∥h . (4.5)

4.4 Transfer operator Ih

The abstract setting from Section 2.1 requires a transfer operator Ih with (2.5) from Vnc B M(T) into Vh defined
in (4.1) for the different schemes. The natural choice Ih B id for the Morley, dG, and WOPSIP method with
Vnc ⊆ Vh fulfils (2.5) with Λh = 0. The situation is different for the C0IP method with Vnc ⊈ Vh B S20 (T) and
requires the Lagrange interpolation Ih B IC : M(T) → S20 (T) defined, for all vM ∈ M(T), by

(ICvM) (z) =


vM (z) ∀ z ∈ V

⟨vM⟩E (z) for z = mid(E) , E ∈ E(Ω)
0 for z = mid(E) , E ∈ E(∂Ω) .

(4.6)

(It is well known that there exists a unique ICvM |T ∈ P2 (T) with prescribed values at the vertices and edge
midpoints from the unisolvence of the P2 Lagrange finite element.) Lemma 3.2 in [15] establishes (2.5) for the
operator Ih = IC with Λh ≈ 1.

4.5 Companion operator J

A conforming finite-dimensional subspace of H2
0 (Ω) is the Hsieh–Clough–Tocher (HCT) [27, Ch. 6] space

HCT(T) B {v ∈ H2
0 (Ω) : v |T ∈ P3 (K(T)) for all T ∈ T} with the subtriangulationK(T) := {conv{E,mid(T)} :

E ∈ E(T)} of T ∈ T obtained by joining the vertices of T with mid(T). Figure 3 shows the degrees of freedom
of the HCT finite element that extend those of the Morley element and facilitate the design of a right-inverse to
IM : V̂ → M(T).

Lemma 4.1 (right-inverse [25, 33, 42]). There exists a linear right-inverse J : M(T) → HCT (T) + P8 (T) ∩ H2
0 (Ω)

for IM : V → M(T) and a constant ΛJ, that exclusively depends on the shape regularity, such that any vM ∈ M(T)
satisfies

|||vM − JvM |||pw ⩽ ΛJmin
v∈V

|||vM − v |||pw .

See [25, Sect. 5] for the definition of J ∈ L(Vnc; V). Note that Lemma 4.1 verifies (2.7) for the conforming com-
panion J. Recall from the previous subsections that Inc B IM ∈ L(V̂ ; Vnc) and Ih ∈ L(Vnc; Vh) verify (2.6)–(2.5).
An immediate consequence of Lemma 2.2 is that Jh B JIM ∈ L(V̂ ; V) is a quasi-optimal smoother. We refer
to [25] for a 3D version.
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5 Building blocks for explicit residual-based a posteriori error
estimators

This section establishes bounds on the error contributions in the right-hand side of (3.19). Recall the residual
Res B F − apw (uh , ·) ∈ V* from Section 3 and set Vnc B M(T) with interpolation operator Inc ≡ IM and
quasi-optimal smoother Jh ≡ JIM throughout the remaining parts of this paper.

5.1 Estimates for 1 – JhIhIM and (1 – Jh)IhIM

The linear operators 1 − Jh Ih IM : V → V and Ih IM − Jh Ih IM : V → V̂ are stable in the energy norm.

Lemma 5.1 (stability). Any v ∈ V = H2
0 (Ω) with ŵ = (1 − Jh Ih IM)v ∈ V or ŵ = (1 − Jh)Ih IMv ∈ V̂ satisfies

2∑︁
m=0

|hm−2T ŵ |2Hm (Ω) +
∑︁

E∈E(Ω)

(
∥h−3/2E ŵ∥2L2 (E) + ∥h−1/2E ∇ŵ∥2L2 (E)

)
⩽ C24 |||v |||

2 .

Proof. Since J is a right-inverse of IM, the functions v, vM B IMv, vh B IhvM , IMvh and Jhvh in H2 (T) are
continuous at any vertex z ∈ V and coincide at z ∈ V. Hence, ŵ |T ∈ H2 (T) vanishes at the three vertices of the
triangle T ∈ T. It is textbook analysis [3, 6, 27, 30] to derive the bounds

2∑︁
m=0

|hm−2T ŵ |2Hm (T ) ⩽ C
2
BH |ŵ |2H2 (T ) (5.1)

from an application of the Bramble–Hilbert lemma with a constant CBH > 0 and we refer to [17, Sect. 3] for
explicit constants in terms of the maximal angles in the triangle T ∈ T. The sum of all those estimates (5.1)
results in

2∑︁
m=0

|hm−2T ŵ |2Hm (Ω) ⩽ C
2
BH |||ŵ |||2pw .

The previous estimate, |||ŵ |||pw ⩽ ∥ŵ∥h ⩽ C5 |||v |||with C5 B max{1, CJ}(1+ΛJ) (1+Λnc) (1+Λh) fromLemma2.1–
2.2 and (4.4) conclude the proof of

2∑︁
m=0

|hm−2T ŵ |2Hm (Ω) ⩽ C
2
BHC

2
5 |||v |||

2 . (5.2)

Given any interior edge E ∈ E(Ω) with adjacent triangle T (E) ∈ T, the trace inequality [30, Eq. (12.17)] provides
a constant Ctr > 0 exclusively depending on the shape-regularity with

h−3/2E ∥ŵ∥L2 (E) + h
−1/2
E ∥∇ŵ∥L2 (E) ⩽ Ctr

(
h−2T ∥ŵ∥L2 (T (E) ) + h−1T |ŵ |H1 (T (E) ) + |ŵ |H2 (T (E) )

)
.

This and the sum over the interior edges E ∈ E(Ω) result in∑︁
E∈E(Ω)

(
h−3/2E ∥ŵ∥L2 (E) + h

−1/2
E ∥∇ŵ∥L2 (E)

)2
⩽ 3C2tr

2∑︁
m=0

∑︁
E∈E(Ω)

|hm−2T ŵ |2Hm (T (E) ) .

Since every triangle T (E) ∈ T is counted at most 3 times (once for every edge E ∈ E(T (E))) in the last sum, the
claim follows with C4 B (3Ctr + 1)CBHC5. □

Corollary 5.1 (bound for F ∈ L2 (Ω)). Any F = f ∈ L2 (Ω) and v ∈ V = H2
0 (Ω) with ŵ B (1 − Jh Ih IM)v ∈ V or

ŵ B (1 − Jh)Ih IMv ∈ V̂ satisfy ∫
Ω

f ŵ dx ⩽ C6∥h2T f ∥ |||v ||| . (5.3)
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Proof. This follows from Lemma 5.1 and a Cauchy inequality in L2 (Ω) in∫
Ω

f ŵ dx ⩽ ∥h2T f ∥∥h
−2
T ŵ∥ ⩽ C6∥h2T f ∥ |||v ||| . □

Define the oscillations of f ∈ L2 (Ω) by osc2 (f , T) B ∥h2
T
(f − Π2f )∥L2 (T ) and abbreviate

osc2 (f , S) B
√︄∑︁

T∈S
osc22 (f , T)

for a subset S ⊆ T of triangles in T. The efficiency of the term ∥h2
T
f ∥L2 (T ) is known, e.g., from [5, Lem. 4.2,

Rem. 4.4]; Section 7 treats a more general source F ∈ V*.

Lemma 5.2 (efficiency up to oscillations [5]). Let u ∈ V be the weak solution to (1.1) for a right-hand side F = f ∈
L2 (Ω). Then ∥h2

T
f ∥L2 (T ) ≲ |u − IMu |H2 (T ) + osc2 (f , T).

5.2 Error estimates for apw(vh , w)

Recall the abbreviation w B v − Jh Ih IMv for v ∈ V . Since J from Subsection 4.5 is a right-inverse of the Morley
interpolation IM from Subsection 4.3, the key observation for the situation Ih = id is

IMw = IMv − IMJh Ih IMv = IM (v − Ih IMv) = 0. (5.4)

This is the case for the Morley, dG, andWOPSIP methods and, hence, the a-orthogonality of the Morley interpo-
lation of w ∈ V and IMw = 0 imply apw (uh , w) = 0. For the C0IP method with Vh = S20 (T) and Ih = IC /= id from
Subsection 4.4 the situation differs and is the content of the remaining part of this subsection.

Lemma 5.3 (bound for apw (vh , w)). Any vh ∈ Vh and v ∈ V with w B v − Jh Ih IMv satisfies

|apw (vh , w) | ⩽

0 if Ih = id
C4

√︃∑
E∈E(Ω) hE ∥ [∂2ννvh]E ∥2L2 (E) |||v ||| if Ih = IC .

Proof. With the remark succeeding (5.4), the claim holds for Ih = id and it remains the case Ih = IC. Since the
piecewise Hessian D2pwvh of vh ∈ S20 (T) is piecewise constant, no volume contributions arise in a piecewise
integration by parts with the conforming test function w ∈ V . A careful re-arrangement of the contributions
along the boundary ∂T of T ∈ T reveals

apw (vh , w) =
∑︁

E∈E(Ω)

∫
E
∇w · [D2pwvh]EνE ds. (5.5)

Recall from the proof of Lemma 5.1 that w(z) = 0 vanishes at any vertex, whence
∫
E ∂w/∂s ds = 0 on any edge

E ∈ E. Since the matrix [D2pwvh]E ∈ P0 (E;S) is constant, the split ∇w = (∂w/∂s)τE + (∂w/∂νE)νE along E ∈ E

and the Cauchy inequality show∫
E
∇w · [D2pwvh]EνE ds =

∫
E

∂w
∂νE

[∂2ννvh]E ds ⩽ h
−1/2
E

 ∂w∂νE

L2 (E)

h1/2E
[∂2ννvh]EL2 (E) .

Notice that the trace of ∇w · νE along E is continuous for w ∈ V . This, a Cauchy inequality in ℓ2, and
∥∂w/∂νE ∥L2 (E) ⩽ ∥∇w∥L2 (E) verify

apw (vh , w) ⩽
√︄ ∑︁

E∈E(Ω)
hE ∥ [∂2ννvh]E ∥2L2 (E)

√︄ ∑︁
E∈E(Ω)

h−1E ∥∇w∥2L2 (E) .

This and Lemma 5.1 conclude the proof. □
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The efficiency estimate of the jump contributions in Lemma 5.3 is known, e.g., from the C0IP method [4]. For
any edge E ∈ E, the sub-triangulation T(ω(E)) B {T ∈ T | E ⊂ ∂T} in the edge-patch ω(E) B int(T+ ∪ T−)
consists of one or two triangles.

Lemma 5.4 (see [4, Lem. 4.3]). Let u ∈ V solve (1.1) for F = f ∈ L2 (Ω). Any vh ∈ P2 (T) and any edge E ∈ E satisfy

h1/2E ∥ [∂2ννvh]E ∥L2 (E) ≲ |u − vh |H2 (T (ω (E) ) ) + osc2 (f , T(ω(E))) .

Proof. The proof of [4, Lem. 4.3] for the jump [∂2ννvh]E of any vh ∈ P2 (T) shows that

h1/2E ∥ [∂2ννvh]E ∥L2 (E) ≲ |u − vh |H2 (T (ω (E) ) ) + ∥h2T f ∥L2 (ω (E) ) .

Lemma 5.2 and |u − IMu |H2 (T ) = minvh∈P2 (T ) |u − vh |H2 (T ) as in (4.4) conclude the proof. □

5.3 Estimate of ∥vh − Jhvh∥h

This subsection discusses reliable and efficient bounds of ∥vh − Jhvh ∥h in terms of two different jump terms that
appear in the a posteriori analysis, e.g., in [2, 4, 5, 36].

Theorem 5.1 (reliability and efficiency of ∥vh − Jhvh ∥h). Any vh ∈ Vh satisfies

min
v∈V

∥v − vh ∥2h ≈ ∥vh − Jhvh ∥2h ≈
∑︁
E∈E

hE ∥ [D2pwvh]EτE ∥2L2 (E) + jh (vh , vh)

≈
∑︁
E∈E

(
h−3E ∥ [vh]E ∥2L2 (E) + h

−1
E

[ ∂vh∂νE

]
E

2
L2 (E)

)
.

The remaining parts of this subsection are devoted to the proof and depart with the following generalization
of [36, Thm. 2.1].

Lemma 5.5 (bound for ∥vh − Jhvh ∥h). Any vh ∈ Vh satisfies

C−14 ∥vh − Jhvh ∥2h ⩽
∑︁
E∈E

hE ∥ [D2pwvh]EτE ∥2L2 (E) + jh (vh , vh) .

Proof. Given any vh ∈ Vh , set vM B IMvh ∈ M(T). A triangle inequality and (2.1) verify ∥vh − Jhvh ∥h ⩽
∥vh − vM∥h + |||vM − JvM |||pw. It follows from [25, Lem. 5.1] that

|||vM − JvM |||2pw ≲
∑︁
E∈E

hE ∥ [D2pwvM]EτE ∥2L2 (E) .

This, a triangle inequality, and the discrete trace inequality h1/2E ∥D2pw (vh − vM)∥L2 (E) ≲ ∥D2 (vh − vM)∥L2 (T )
from [30, Lem. 12.8] result in

|||vM − JvM |||2pw ≲
∑︁
E∈E

hE ∥ [D2pwvh]EτE ∥2L2 (E) + |||vh − vM |||2pw .

This and |||vh − vM |||pw ⩽ ∥vh − vM∥h ≲ jh (vh , vh)1/2 from (2.1) and Theorem 4.1.a with D2pwvh ∈ P0 (T) conclude
the proof. □

The inverse inequality leads to an alternative upper bound in Lemma 5.5.

Lemma 5.6 (alternative bound). Any vh ∈ Vh and any edge E ∈ E satisfy

hE ∥ [D2pwvh]EτE ∥2L2 (E)+
∑︁

z∈V(E)

| [vh]E (z) |2

h2E
+

����⨏
E

[
∂vh
∂νE

]
E
ds

����2
⩽ C7

(
h−3E ∥ [vh]E ∥2L2 (E) + h

−1
E ∥ [∂vh/∂νE]E ∥2L2 (E)

)
.
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Proof. The split D2vh · τE = (∂2vh/∂s∂s)τE + (∂2vh/∂s∂νE)νE , the Cauchy inequality, and the linearity of the
jump show

∥ [D2pwvh]E · τE ∥L2 (E) ⩽
 ∂2

∂s∂s
[vh]E


L2 (E)

+
 ∂∂s [

∂vh
∂νE

]
E


L2 (E)

.

The inverse inequality [30, Lem. 12.1] states the existence of a constant Cinv > 0with |p |Hm (E) ⩽ Cinvh−mE ∥p∥L2 (E)
and ∥p∥Lp (E) ⩽ Cinvh1/p−1/qE ∥p∥Lq (E) for any p ∈ P2 (E) and m ∈ N0 , 1 ⩽ p, q ⩽ ∞. Since [vh]E and [∂vh/∂νE]E
are quadratic polynomials on E, this shows

h1/2E ∥ [D2pwvh]E · τE ∥L2 (E) ⩽ Cinv
(
h−3/2E ∥ [vh]E ∥L2 (E) + h

−1/2
E ∥ [∂vh/∂νE]E ∥L2 (E)

)
∑︁

z∈V(E)

| [vh]E (z) |
hE

⩽ 2h−1E ∥ [vh]E ∥L∞ (E) ⩽ 2Cinvh−3/2E ∥ [vh]E ∥L2 (E)����⨏
E

[
∂vh
∂νE

]
E
ds

���� ⩽ h−1E ∥ [∂vh/∂νE]E ∥L1 (E) ⩽ Cinvh
−1/2
E ∥ [∂vh/∂νE]E ∥L2 (E) .

The sum of these terms squared and the Cauchy inequality (A+B)2 ⩽ 2A2 +2B2 for A, B ∈ R conclude the proof
with C7 B 6C2inv. □

Proof of Theorem 5.1. The reliability of the first estimator follows from Lemma 5.5. This and Lemma 5.6 provide

∥vh − Jhvh ∥2h ≲
∑︁
E∈E

hE ∥ [D2pwvh]EτE ∥2L2 (E) + jh (vh , vh)

≲
∑︁
E∈E

(
h−3E ∥ [vh]E ∥2L2 (E) + h

−1
E

[ ∂vh∂νE

]
E

2
L2 (E)

)
.

Since the jumps [Jhvh]E and [∂Jhvh/∂νE]E vanish for a conforming function Jhvh ∈ V on any edge E ∈ E and
|||vh − Jhvh |||pw ⩾ 0, the last term is bounded by

|||vh − Jhvh |||2pw +
∑︁
E∈E

(
h−3E

[vh − Jhvh]E2L2 (E) + h−1E [ ∂(vh − Jhvh)∂νE

]
E

2
L2 (E)

)
≈ ∥vh − Jhvh ∥2h

with the equivalence of norms in V + P2 (T) from [15, Thm. 4.1] in the last step. This proves the equivalence of
both estimators to ∥vh − Jhvh ∥h ⩽ CJminv∈V ∥v − vh ∥h by the quasi-optimality (2.4) of Jh . The trivial estimate
minv∈V ∥v − vh ∥h ⩽ ∥vh − Jhvh ∥h concludes the proof. □

6 Unified a posteriori error control

This section reconsiders the biharmonic equation (3.6) with weak solution u ∈ V B H2
0 (Ω) and the discrete

solution uh ∈ Vh of the Morley, dG, C0IP, andWOPSIP schemes defined in Subsections 6.2–6.6. The presentation
unifies the a posteriori error analysis of thewell-known discretization schemeswith orignal andmodified right-
hand side.

6.1 Discretisation of the biharmonic equation

Recall that V̂ ≡ H2 (T) is a Hilbert space with scalar product apw + jh . Recall the discrete spaces Vnc B M(T)
and Vh from Section 4. The weak solution u ∈ V B H2

0 (Ω) to the biharmonic equation Δ
2u = F ∈ V* solves (1.1)

with the energy scalar product a B apw |V×V on V and apw : V̂ × V̂ → R given in Subsection 4.2.
Recall Jh B JIM ∈ L(V̂ ; V) from Section 4. Each method defines its particular discrete bilinear form ah :

(Vh +M(T)) × (Vh +M(T)) → R in the subsequent subsections. The discrete solution uh ∈ Vh solves

ah (uh , vh) = (f , Qvh)L2 (Ω) ∀ vh ∈ Vh (6.1)
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with f ∈ L2 (Ω) and Q ∈ {id, Jh} in this section. The discrete problem (6.1) is a rewriting of (2.3) for F̂ B F ≡ f ∈
L2 (Ω) without smoother Q B id orwith the quasi-optimal (by Lemma 2.2) smoother Q B Jh . Section 7 discusses
more general right-hand sides F ∈ V* with a natural extension F̂ ∈ H2 (T)*. The key assumption (H) from [24]
holds for the Morley, dG, and C0IP discretisations. Hence, the a priori estimate from Theorem 2.2 holds for these
methods and leads to the quasi-best approximation property

∥u − uh ∥h ≲ |||u − IMu |||pw = min
v2∈P2 (T)

|||u − v2 |||pw . (6.2)

In particular, this shows equivalence of these methods from an a priori point of view.

6.2 Morley FEM

The Morley FEM for the biharmonic equation (6.1) comes with ah B apw. The subsequent result recovers the
equivalent a posteriori estimates from [36, Thm. 2.2] and [2, Eq. (3.2)].

Theorem 6.1 (a posteriori estimate). The discrete Morley solution uh ∈ Vh to (6.1) and the exact solution u ∈ V
to (1.1) with source f ∈ L2 (Ω) satisfy

|||u − uh |||2pw + osc22 (f ) ≈ ∥h2T f ∥
2 +

∑︁
E∈E

hE ∥ [D2pwuh]EτE ∥2L2 (E)

≈ ∥h2T f ∥
2 +

∑︁
E∈E

(
h−3E ∥ [uh]E ∥2L2 (E) + h

−1
E

[ ∂uh∂νE

]
E

2
L2 (E)

)
.

The equivalence constants exclusively depend on the shape-regularity of T.

Proof. Setw B e− Jheh ∈ V , eh B IMe ∈ M(T) and ŵ B (1− Jh)eh ∈ V+M(T) for e B u− Jhuh and recall Ih = id
from Subsection 4.4. Since apw (uh , w) = 0 from Lemma 5.3, the definition of the residual and F (w) ≲ ∥h2

T
f ∥|||e |||

from Corollary 5.1 show

Res(w) B F (w) − apw (uh , w) = F (w) ≲ ∥h2T f ∥|||e ||| .

Since (f , Jheh − Qeh)L2 (Ω) = 0 vanishes for Q = Jh , Corollary 5.1 provides∫
Ω

f (Jheh − Qeh) dx ≲ ∥h2T f ∥|||e ||| (6.3)

for Q = id and Q = Jh . The two previously displayed estimates and (3.15) verify

Res(w) +
∫
Ω

f (Jheh − Qeh) dx ≲ ∥h2T f ∥(|||u − uh |||pw + ∥uh − Jhuh ∥h) .

The stability of the L2 projection shows osc2 (f ) ⩽ ∥h2
T
f ∥. Hence, Theorem 3.2 plus a weighted Young inequality

result in

|||u − uh |||2pw + osc22 (f ) ≲ ∥h2T f ∥
2 + ∥uh − Jhuh ∥2h . (6.4)

Since jh (uh , uh) = 0 for uh ∈ M(T), Theorem 5.1 bounds ∥uh − Jhuh ∥2h in (6.4) by either of the jump terms. This
proves the reliability for both estimators. The efficiency of ∥h2

T
f ∥ follows from Lemma 5.2 while Theorem 5.1

verifies the efficiency for all jump terms. □

6.3 Discontinuous Galerkin 1

Recall the definition of the jump [·]E and average ⟨·⟩E (applied componentwise tomatrix-valued functions) along
an edge E ∈ E from Subsection 3.2 and 4.3.
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The bilinear form

ah (·, ·) = apw (·, ·) + bh (·, ·) + cdG (·, ·) (6.5)

for the discontinuous Galerkinmethod (dG) [1, 32] depends on −1 ⩽ Θ ⩽ 1 and parameters σ1 , σ2 > 0. For every
v2 , w2 ∈ P2 (T) ⊃ Vnc + Vh ,

bh (v2 , w2) B −ΘJ(v2 , w2) − J(w2 , v2) (6.6a)

J(v2 , w2) B
∑︁
E∈E

∫
E

[
∇pwv2

]
E ·

〈
D2pww2

〉
E
νE ds (6.6b)

cdG (v2 , w2) B
∑︁
E∈E

(
σ1
h3E

∫
E
[v2]E [w2]E ds +

σ2
hE

∫
E

[
∂v2
∂νE

]
E

[
∂w2
∂νE

]
E
ds

)
. (6.6c)

This is the symmetric (resp. non symmetric) interior penalty Galerkin formulation for Θ = 1 (resp. Θ = −1). An
appropriate choice [32, 40] of the parameters σ1 , σ2 guarantees Vh-ellipticity (2.2). Throughout this paper, (2.2)
is assumed for σ1 = σ2 ≈ 1. The following theorem recovers the known a posteriori error estimator from [21]
for the linear part.

Theorem 6.2 (a posteriori estimate). The discrete dG solution uh ∈ Vh to (6.1) with ah from (6.5) and the exact
solution u ∈ V to (1.1) with f ∈ L2 (Ω) satisfy

∥u − uh ∥2h + osc
2
2 (f ) ≈ ∥h2T f ∥

2 +
∑︁
E∈E

hE ∥ [D2pwuh]EτE ∥2L2 (E) + jh (uh , uh)

≈ ∥h2T f ∥
2 +

∑︁
E∈E

(
h−3E ∥ [uh]E ∥2L2 (E) + h

−1
E

[ ∂uh∂νE

]
E

2
L2 (E)

)
.

The equivalence constants exclusively depend on the shape-regularity of T.

Proof. Recall Ih = id from Subsection 4.4 and, thus, the proof of the reliability and efficiency follows the proof
of Theorem 6.1 verbatim except for jh (uh , uh) /= 0 in general. The additional term jh (uh , uh) from the reliability
estimate of ∥uh − Jhuh ∥h in Lemma 5.5 enters the right-hand side of the first estimator. Since ∥u − uh ∥2h bounds
the efficient jump terms jh (uh , uh) = jh (u − uh , u − uh) by definition in (2.1), this concludes the proof. □

Corollary 6.1. The discrete dG solution uh ∈ Vh to (6.1) with ah from (6.5) and the exact solution u ∈ V to (1.1)
and f ∈ L2 (Ω) satisfy

|||u − uh |||2pw + cdG (uh , uh) + osc22 (f ) ≈ ∥h2T f ∥
2 + cdG (uh , uh) .

Proof. Since σ1 = σ2 ≈ 1, the jump contributions in the second estimator in Theorem 6.2 are equivalent to
cdG (uh , uh). Because cdG (v, ·) = 0 vanishes for any v ∈ V , the statement followswith the equivalence ∥u−uh ∥2h ≈
|||u − uh |||2pw + cdG (uh , uh) from [15, Thm. 4.1]. □

6.4 Discontinuous Galerkin 2

The identity a(v, w) = (Δv, Δw)L2 (Ω) for v, w ∈ V motivates the alternative discontinuous Galerkin method
from [34, 40] with discrete bilinear form

ah = (Δpw·, Δpw·)L2 (Ω) + bh + cdG . (6.7)

The semi-scalar product cdG is (6.6c) and bh reads, for any v2 , w2 ∈ P2 (T) ⊃ Vnc + Vh ,

bh (v2 , w2) B − ΘJ(v2 , w2) − J(w2 , v2) (6.8a)

J(v2 , w2) B
∑︁
E∈E

∫
E

[
∂v2
∂νE

]
E

〈
Δpww2

〉
E ds (6.8b)

for −1 ⩽ Θ ⩽ 1. Appropriate parameters σ1 , σ2 in cdG guarantee Vh-ellipticity (2.2) of ah [40]. The bilinear
form (6.7) allows for (H).



96  C. Carstensen, B. Gräßle, and N. Nataraj, Piecewise quadratic discretisations for the biharmonic equation

Lemma 6.1 (quasi-best approximation). The discontinuous Galerkin method with ah from (6.7) satisfies (H) and
the quasi-best approximation property (6.2).

Proof. Given vh , wh ∈ Vh , abbreviate v B Jhvh , w B Jhwh ∈ V and vM B IMvh , wM B IMwh ∈ M(T).
Algebraic manipulations as in [24, Eq. (6.15)] reveal

ah (vh , wh) − a(v, w) = (Δpw (vh − vM) , Δpwwh)L2 (Ω) + bh (vh − vM , wh) (6.9)
+ (ΔpwvM , Δpw (wh − wM))L2 (Ω) + bh (vM , wh − wM)
+ cdG (vh , wh) + (ΔpwvM , ΔpwwM)L2 (Ω) − a(v, w) .

Cauchy inequalities, ∥Δpw · ∥ ⩽
√
2||| · |||pw, the boundedness of bh , and (4.5) provide

(Δpw (vh − vM) , Δpwwh)L2 (Ω) + bh (vh − vM , wh) ⩽ (2 + ∥bh ∥)ΛM∥v − vh ∥h ∥wh ∥h . (6.10)

Recall the definition of the jump [·]E and average ⟨·⟩E along an edge E ∈ E from Subsection 3.2 and 4.3 and the
product rule for jump terms [ab]E = ⟨a⟩E [b]E + [a]E ⟨b⟩E for any a, b ∈ H1 (T). This and an integration by
parts verify

(ΔpwvM , Δpw (wh − wM))L2 (Ω) + bh (vM , wh − wM) (6.11)

=
∑︁
E∈E

∫
E

( [
ΔpwvM

]
E

〈
∂(wh − wM)

∂νE

〉
E
− Θ

[
∂vM
∂νE

]
E

〈
Δpw (wh − wM)

〉
E

)
ds = 0

with
∫
E ⟨∂(w2 − IMw2)/∂νE⟩E ds =

∫
E [∂vM/∂νE]E ds = 0 for any edge E ∈ E from the definition of IM in the

last step. Since the Morley interpolation IM exactly interpolates the integral mean over an edge E ∈ E of the
normal derivative of w ≡ JwM ∈ V (from IMJ = 1), an integration by parts for any p2 ∈ P2 (T) shows the
orthogonality

(Δpwp2 , Δpw (w − wM))L2 (Ω) =
∑︁
E∈E

〈
Δpwp2

〉
E

∫
E
∂((1 − IM)JwM)/∂νE ds = 0.

Since a(v, w) = (Δv, Δw)L2 (Ω) , this, a Cauchy inequality, and ∥Δpw · ∥ ⩽
√
2||| · |||pw imply

(ΔpwvM , ΔpwwM)L2 (Ω) − a(v, w) = (Δpw (1 − J)vM , ΔpwJwM)L2 (Ω)

⩽ 2(1 + ΛM)∥J∥h ∥IM∥h ∥v − vh ∥h ∥wh ∥h .

This, the combination of (6.9) with (6.10)–(6.11), and cdG (vh , wh) ⩽ Λc∥v − vh ∥h ∥wh ∥h for Λc ≲ 1 from
[24, Sect. 7] conclude the proof of (H). The quasi-best approximation property (6.2) is a consequence of (H) and
Theorem 2.2. □

Since the dG formulations from Subsections 6.3–6.4 allow for (H) and utilize the same space Vh = P2 (T), the a
posteriori results from Subsection 6.3 follow verbatim for the alternative dG formulation in this subsection.

Theorem 6.3 (a posteriori estimate). The discrete dG solution uh ∈ Vh to (6.1) with ah from (6.7) and the exact
solution u ∈ V to (1.1) with f ∈ L2 (Ω) satisfy

∥u − uh ∥2h + osc
2
2 (f ) ≈ ∥h2T f ∥

2 +
∑︁
E∈E

hE ∥ [D2pwuh]EτE ∥2L2 (E) + jh (uh , uh)

≈ ∥h2T f ∥
2 +

∑︁
E∈E

(
h−3E ∥ [uh]E ∥2L2 (E) + h

−1
E

[ ∂uh∂νE

]
E

2
L2 (E)

)
.

The equivalence constants exclusively depend on the shape-regularity of T.

The following corollary provides an improvement to the a posteriori error estimator that comes without the
jump term ∥ [Δpwuh]E ∥L2 (E) over an interior edge E ∈ E(Ω) and so refines the a posteriori result in [34].

Corollary 6.2 (see [34]). The discrete dG solution uh ∈ Vh to (6.1) with ah from (6.7) and the exact solution u ∈ V
to (1.1) with f ∈ L2 (Ω) satisfy

|||u − uh |||2pw + cdG (uh , uh) + osc22 (f ) ≈ ∥h2T f ∥
2 + cdG (uh , uh) .
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6.5 C0 interior penalty (C0IP)

The bilinear form ah = apw + bh + cIP for C0IP [7, 21] utilizes bh from (6.6a) and depends on the parameter
σIP > 0 in

cIP (v2 , w2) :=
∑︁
E∈E

σIP
hE

∫
E

[
∂v2
∂νE

]
E

[
∂w2
∂νE

]
E
ds (6.12a)

for v2 , w2 ∈ Vh B P2 (T). The scheme is a modification of the dG method in Section 6.3 with trial and test func-
tions restricted to the continuous piecewise polynomials Vh B S20 (T). For σIP ≈ 1 sufficiently large but bounded,
the bilinear form is coercive. The abstract framework applies the transfer operator Ih = IC ∈ L(Vnc; Vh) from
Subsection 4.4.

Theorem 6.4 (a posteriori estimate). The discrete solution uh ∈ Vh of the C0IP method to (6.1) and the exact solu-
tion u ∈ V to (1.1) with f ∈ L2 (Ω) satisfy

∥u − uh ∥2h + osc
2
2 (f )

≈ ∥h2T f ∥
2 +

∑︁
E∈E

hE ∥ [D2pwuh]EτE ∥2L2 (E) +
∑︁

E∈E(Ω)
hE ∥ [∂2ννuh]E ∥2L2 (E) + jh (uh , uh)

≈ ∥h2T f ∥
2 +

∑︁
E∈E

h−1E

[ ∂uh∂νE

]
E

2
L2 (E)

+
∑︁

E∈E(Ω)
hE ∥ [∂2ννuh]E ∥2L2 (E) .

The equivalence constants exclusively depend on the shape-regularity of T.

Proof. Set w B (1 − Jh ICIM)e ∈ V and ŵ B (Q − Jh)ICIMe ∈ V + S20 (T) for e B u − Jhuh ∈ V . The definition of
the residual, Corollary 5.1, and Lemma 5.3 with Ih = IC show

Res(w) B F (w) − apw (uh , w) ≲
©«∥h2T f ∥ +

√︄ ∑︁
E∈E(Ω)

hE ∥ [∂2ννuh]E ∥2L2 (E)
ª®¬ |||e ||| .

Theorem 3.2 and the definition of the residual result in ∥u − uh ∥2h ≲ ∥uh − Jhuh ∥2 + Res(w) − F̂ (ŵ). Since
the stability of the L2 projection shows osc2 (f ) ⩽ ∥h2

T
f ∥, this, the bound F̂ (ŵ) ≲ ∥h2

T
f ∥|||e ||| from (6.3), and a

weighted Young inequality reveal

∥u − uh ∥2h + osc
2
2 (f ) ≲ ∥h2T f ∥

2 + ∥uh − Jhuh ∥2h +
∑︁

E∈E(Ω)
hE ∥ [∂2ννuh]E ∥2L2 (E) .

Theorem 5.1 bounds ∥uh − Jhuh ∥2 either in terms of
∑
E∈E hE ∥ [D2pwuh]EτE ∥2L2 (E) plus jh (uh , uh) or in terms of∑

E∈E h
−1
E ∥ [∂uh/∂νE]E ∥2L2 (E) (because [uh]E ≡ 0 for uh ∈ S20 (T)). This concludes the proof of the reliability.

Lemma 5.4 provides the efficiency of the normal-normal jumps. The efficiency of the remaining terms follows
verbatim as in the proof of Theorem 6.2. □

The following corollary recovers the a posteriori result from [4, Sects. 3 and 4].

Corollary 6.3 (see [4]). The discrete C0IP solution uh ∈ Vh to (6.1) and the exact solution u ∈ V to (1.1) with
f ∈ L2 (Ω) satisfy

|||u − uh |||2pw + cIP (uh , uh) + osc22 (f ) ≈ ∥h2T f ∥
2 + cIP (uh , uh) +

∑︁
E∈E(Ω)

hE ∥ [∂2ννuh]E ∥2L2 (E) .

Proof. Since [vh]E = 0 for any vh ∈ S20 (T), cIP = cdG coincide in S20 (T) × S
2
0 (T) and the proof follows verbatim

that of Corollary 6.1; further details are omitted. □
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6.6 WOPSIP

The weakly over-penalized symmetric interior penalty (WOPSIP) scheme [5] is a penalty method with the sta-
bilisation term

cP (v, w) B
∑︁
E∈E

h−2E
©«

∑︁
z∈V(E)

[v]E (z)
hE

[w]E (z)
hE

+
⨏
E

[
∂v
∂νE

]
E
ds

⨏
E

[
∂w
∂νE

]
E
dsª®¬ (6.13)

for piecewise smooth functions v, w ∈ H2 (T). The difference of cP in (6.13) to jh from (4.2) is the over-
pernalisation by an additional negative power of the mesh size hE . This and hmax B maxT∈ThT establish

jh (v, v) ⩽ h2maxcP (v, v) ∀ v ∈ V̂ B H2 (T) . (6.14)

Hence ∥ · ∥P B
(
||| · |||2pw+cP (·, ·)

)1/2 is a norm in V̂ stronger than ∥ · ∥h . TheWOPSIPmethod computes the discrete
solution uh ∈ Vh B P2 (T) to (6.1) with the bilinear form ah B apw + cP and fits into the abstract setting with
Vnc B M(T).

The main difference to the methods under consideration above is the missing quasi-best approximation
property due to the penalisation. Instead of this, the following a priori estimate for the energy norm

|||u − uh |||2pw + cP (uh , uh) ≲ |||u − IMu |||2pw + |||hT IMu |||2pw

holds with the extra term |||hT IMu |||2pw (see [24, Thm. 9.1]). This suggests that (H) does not hold, but themethodol-
ogy of the a posteriori analysis of Subsection 3.3 is still applicable. Indeed, the key assumption only enters in the
error bound from Theorem 3.2 and a careful analysis with Ih = id leads to (3.19). This allows the application of
the developed tool chain and leads to a new a posteriori estimate without the WOPSIP stabilisation term (6.13)
but still with the weaker stabilization jh .

Theorem 6.5 (a posteriori estimate). TheWOPSIP solution uh ∈ P2 (T) to (6.1) and the exact solution u ∈ V to (1.1)
with f ∈ L2 (Ω) satisfy

∥u − uh ∥2h + osc
2
2 (f ) ≈ ∥h2T f ∥

2 +
∑︁
E∈E

hE ∥ [D2pwuh]EτE ∥2L2 (E) + jh (uh , uh)

≈ ∥h2T f ∥
2 +

∑︁
E∈E

(
h−3E ∥ [uh]E ∥2L2 (E) + h

−1
E

[ ∂uh∂νE

]
E

2
L2 (E)

)
.

The equivalence constants exclusively depend on the shape-regularity of T.

Proof. Let e B u − Jhuh ∈ V and recall Jh B JIM as well as IMJ = id on Vnc. The key assumption (H) enters
the proof of Theorem 3.2 with (3.17). This proof exploits that the transfer operator Ih B id : Vnc → Vh is the
identity and deduces (3.17) directly (and so circumvents (H)). Indeed, since cP (·, vnc) = 0 for any v ∈ Vnc and
apw (uh , eh − Jheh) = 0 by the orthogonality (4.3) for eh B Ih IMe = IMJheh ∈ Vnc,

ah (uh , eh) = apw (uh , eh) = apw (uh , Jheh)

ah (uh , eh) − a(Jhuh , Jheh) = apw (uh − Jhuh , Jheh) ⩽ ∥Jh ∥|||uh − Jhuh |||pw |||eh |||pw

follow with a Cauchy inequality in the last step. Hence (3.17) even holds with the weaker norm ||| · |||pw ⩽ ∥ · ∥h .
The remaining parts of the proof for Theorem 3.2 apply analogously and verify

∥u − uh ∥2h ≲ ∥uh − Jhuh ∥2h + Res(w) −
∫
Ω

f ŵ dx = ∥uh − Jhuh ∥2h +
∫
Ω

f (w − ŵ) dx

with apw (uh , w) = 0 from Lemma 5.3 for w B e − Jh Ih IMe and ŵ B Qeh − Jheh ∈ V + Vh . The remaining
arguments follow the proofs of Theorem 6.2 and Theorem 6.1 verbatim. □

The inclusion of the stabilisation term cP on both sides of the error estimate in Theorem 6.5 recovers the a
posteriori estimate from [5, Sect. 6].
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Corollary 6.4 (see [5]). The discrete WOPSIP solution uh ∈ Vh to (6.1) and the exact solution u ∈ V to (1.1) with
f ∈ L2 (Ω) satisfy

|||u − uh |||2pw + cP (uh , uh) + osc22 (f )

≈ ∥h2T f ∥
2 +

∑︁
E∈E

(
h−3E ∥ [uh]E ∥2L2 (E) + h

−1
E

[ ∂uh∂νE

]
E

2
L2 (E)

)
+ cP (uh , uh) .

The equivalence constants exclusively depend on the shape-regularity of T. □

Proof. This follows from Corollary 6.1 with cP (·, v) = 0 for all v ∈ V and jh (uh , uh) ≲ cP (uh , uh) from (6.14);
further details are omitted. □

7 More general sources

This section considers a class of rather general right-hand sides F ∈ V* and introduces an estimator for the
residual that is reliable and efficient up to a data approximation error.

7.1 A general class of source terms

Every functional in F ∈ V* ≡ H−2 (Ω) has (non-unique) representations by volume loads fα ∈ L2 (Ω) for all 6
multi-indices α = (α1 , α2) ∈ N20 of order |α | B α1 + α2 ⩽ 2, written (fα) |α |⩽2 ∈ L2 (Ω)6, with

F (φ) ≡ ⟨F , φ⟩ =
∑︁
|α |⩽2

(fα , ∂αφ)L2 (Ω) ∀φ ∈ H2
0 (Ω) . (7.1)

Theorem 7.1 (characterization). Given any F ∈ H−2 (Ω) there exist (fα) |α |⩽2 ∈ L2 (Ω)6 such that (7.1) holds. The
norm of F in H−2 (Ω) (the dual of H2

0 (Ω) endowed with the full Sobolev norm of H2 (Ω)) is the minimum

∥F∥H−2 (Ω) = min
{√︂∑︁

|α |⩽2
∥fα ∥2L2 (Ω) : (fα) |α |⩽2 ∈ L2 (Ω)6 satisfies (7.1)

}
.

Proof. This is a natural generalization of the corresponding result for functionals in H−1 (Ω), e.g., [31, Sect. 5.9,
Thm. 1]; hence further details are omitted. □

Remark 7.1 (characterization for semi-norm ||| · |||). The norm representation of Theorem 7.1 is given in the (full)
norm ∥ · ∥H2 (Ω) of H2 (Ω). A corresponding assertion

|||F |||* B sup
v∈V

F (v)/|||v ||| = min
σ∈L2 (Ω;S)

{∥σ∥L2 (Ω) : F = (σ , D2·)L2 (Ω) } (7.2)

follows from the Riesz representation theorem for the H2 seminorm ||| · ||| ≡ | · |H2 (Ω) as well. The minimizer
σ = D2u ∈ L2 (Ω;S) in (7.2) is the Hessian of the weak solution u ∈ V to (1.1).

A more general source term may include point forces δz ∈ V* at finitely many points z ∈ A ⊂ Ω and line loads
(g0 , ·)L2 (Γ0 ) , (g1 , ∂ν ·)L2 (Γ1 ) along the hypersurfaces Γ0 , Γ1 ⊂ Ω in addition to (7.1). The Dirac delta distribution
δz (f ) = f (z) evaluates f ∈ V ⊂ C(Ω) at the atom z and we suppose for simplicity that the mesh is adapted in
that A ⊂ V(Ω) consists of interior vertices. Recall the set T(z) B {T ∈ T : z ∈ T} of neighbouring triangles
from Subsection 4.3 and suppose that the mesh resolves Γj =

⋃
E(Γj) with E(Γj) B {E ∈ E : int(E) ⊂ Γj} for

j = 0, 1.
This section considers sources F B F̂ |V ∈ V* in terms of an extended source F̂ ∈ V̂* ≡ H2 (T)*, defined, for

v̂ ∈ H2 (T), by

F̂ (v̂) B
∑︁
|α |⩽2

(fα , ∂αpw v̂)L2 (Ω) +
∑︁
j=0,1

(gj , ⟨∂jν v̂⟩Γj )L2 (Γj ) +
∑︁
z∈A

∑︁
T∈T (z)

βT ,z v̂ |T (z) . (7.3)
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The given data in (7.3) are Lebesgue functions (fα) |α |⩽2 ∈ L2 (Ω)6, line loads gj ∈ L2 (Γj) along the hypersurface
Γj ⊂

⋃
E(Ω) for j = 0, 1, and point forces of intensity βz =

∑
T∈T (z) βT ,z ∈ R at z ∈ A ⊂ V(Ω).

Remark 7.2 (influence of F̂). Since F̂ ◦ Jh = F ◦ Jh holds (for the five schemes from Section 6) with the smoother
Q = Jh , the discrete solution uh ∈ Vh to (2.3) depends on F but is independent of its representation (7.3). The
classical scheme without smoother Q = id, however, depends on the chosen data for the representation F̂.

Throughout this section,we suppose thatwehave piecewise smooth approximationsGj ∈ L2 (Γj) of gj for j = 0, 1
and Fα ∈ H |α | (T) of fα in (7.3) for |α | ⩽ 2 to define an approximation F̂apx of F̂ with piecewise smooth data. The
reason for this approximation is that we shall integrate by parts with piecewise smooth functions to reveal an
efficient a posteriori upper error bound in the subsequent subsection.

Definition 7.1 (data approximation error). The approximated source term reads

F̂apx (v̂) B
∑︁
|α |⩽2

(Fα , ∂αpw v̂)L2 (Ω) +
∑︁
j=0,1

∑︁
E∈E(Γj )

(Gj , ⟨∂jν v̂⟩E)L2 (E) (7.4)

for all v̂ ∈ H2 (T). The data approximation error apx(F , T) B
( ∑

T∈T apx
2 (F , T)

)1/2 has, on the triangle T ∈ T,
the contribution

apx2 (F , T) B
∑︁
|α |⩽2

∥h2− |α |T (fα − Fα)∥2L2 (T ) +
∑︁
j=0,1

∑︁
E∈E(Γj )∩E(T )

∥h3/2−jE (gj − Gj)∥2L2 (E) .

The data approximation error generalizes data oscillations. Let ΠE,k : L2 (E) → Pk (E) denote the L2 projection
onto Pk (E) on the edge E ∈ E.

Example 7.1 (data oscillations). The natural candidates for (Fα) |α |⩽2 and G0 , G1 in (7.4) are L2 projections onto
polynomials of degree at most k ∈ N0. Then the data approximation error apx2 (F , T) becomes an oscillation
term

osc2 (F , T) B
∑︁
|α |⩽2

∥h2− |α |
T

(1 − Πk)fα ∥2L2 (Ω) +
∑︁
j=0,1

∑︁
E∈E(Γj )

∥h3/2−jE (1 − ΠE,k)gj ∥2L2 (E) .

Lemma 7.1 (data approximation error). With the linear operators J , IM , Ih from Table 2,

max
{
||| (F − F̂apx) (1 − Jh Ih IM) |||* , ||| (F̂ − F̂apx) (1 − Jh)Ih IM |||*

}
⩽ C4 apx(F , T) .

Proof. Recall that w B (1 − Jh Ih IM)v vanishes at the vertices for all v ∈ V and for all five schemes under
consideration. This shows

(F − F̂apx) (w) =
∑︁
|α |⩽2

(fα − Fα , ∂αw)L2 (Ω) +
∑︁
j=0,1

(gj − Gj , ∂jνw)L2 (Γj ) ⩽ C4 apx(F , T) |||v |||

with a Cauchy inequality and the constant C4 from Lemma 5.1 in the last step. Analog arguments provide the
asserted bound of ||| (F̂ − F̂apx) ◦ (1 − Jh)Ih IM |||*. □

7.2 Estimator for the residual

The paradigm shift in this paper is that Theorem 3.2 provides an upper error bound with a specific structure of
the test function as an element in (1− Jh Ih IM)V for the residual part. This subsection designs an estimator μ(T)
for the dual norm |||Res◦ (1− Jh Ih IM) |||* of the residual that is reliable and efficient up to the data approximation
error apx(F , T)

|||Res ◦ (1 − Jh Ih IM) |||* ≲ μ(T) + apx(F , T) ≲ |||u − uh |||pw + apx(F , T) . (7.5)

The residual Res B F − apw (uh , ·) ∈ V* includes the discrete solution uh ∈ Vh to (2.3) with or without smoother
Q ∈ {id, Jh}. The analysis in this section for an upper bound of the dual norm |||Res ◦ (1 − Jh Ih IM) |||* allows for
a general discrete object uh ∈ Vh; said differently, uh ∈ Vh is arbitrary in (7.5).
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To define the estimator contributions in μ(T), abbreviate F0 B F (0,0) ∈ L2 (Ω),

F1 B
(
F (1,0)
F (0,1)

)
∈ H1 (T;R2) , F2 B

(
F (2,0) 1

2F (1,1)
1
2F (1,1) F (0,2)

)
∈ H2 (T;S) . (7.6)

The extra factor 1/2 in the definition of F2 allows the simplification (Fj , Djpw·)L2 (Ω) =
∑

|α |=j (Fα , ∂αpw·)L2 (Ω) for
j = 0, 1, 2. Let the divergence

divpwF2 B
(
divpw (F2)1
divpw (F2)2

)
∈ H1 (T;R2)

of the matrix-valued function F2 ≡ ((F2)1; (F2)2) ∈ H2 (T;S) apply row-wise. Recall J , IM , Ih from Section 4 and
the special treatment of Ih = id in Subsection 5.2. Define

μ21 (T) B ∥h2T (F0 − divpwF1 + div
2
pwF2)∥2

μ22 (T) B
∑︁

E∈E(Ω)
h3E ∥G0 + [F1 − divpwF2 − ∂(F2τE)/∂s]E · νE ∥2L2 (E)

μ23 (T) B
∑︁

E∈E(Ω)


hE ∥(1 − ΠE,0) (G1 + [F2νE]E · νE)∥2L2 (E) if Ih = id

hE ∥G1 + [(F2 − D2pwuh)νE]E · νE ∥2L2 (E) if Ih = IC

μ2 (T) B μ21 (T) + μ
2
2 (T) + μ

2
3 (T) .

Here Gj ∈ L2 (Γj) ⊂ L2 (⋃E) is extended by zero to the entire skeleton for j = 0, 1.

Proposition 7.1 (reliability). The estimator μ(T) ≡ μ2 (T)1/2 of the residual is reliable

C−14 |||Res ◦ (1 − Jh Ih IM) |||* ⩽ μ(T) + apx(F , T) .

Proof. Given any v ∈ V , the function w B v − Jh Ih IMv ∈ V vanishes at the vertices z ∈ V. The split ∇w =

(∂w/∂νE)νE + (∂w/∂s)τE along an edge E = conv{A, B} ∈ E and an integration by parts with w(A) = w(B) = 0
verify

( [F2νE]E , ∇w)L2 (E) = ( [F2νE]E , νE∂w/∂νE)L2 (E) + ([F2νE]E , τE∂w/∂s)L2 (E)
= ( [F2νE]E , νE∂w/∂νE)L2 (E) − (∂[F2τE]E/∂s, νEw)L2 (E) (7.7)

with τE · F2νE = νE · F2τE for all symmetric matrix-valued F2 ∈ H2 (T;S) in the last step. An integration by parts
and (7.7) lead to

F̂apx (w) = (F0 − divpwF1 + div2pwF2 , w)L2 (Ω) +
∑︁

E∈E(Ω)
(G1 + [F2νE]EνE , ∂w/∂νE)L2 (E)

+
∑︁

E∈E(Ω)
(G0 + [F1 − divpwF2 − ∂(F2τE)/∂s]E · νE , w)L2 (E) . (7.8)

Since IMw = 0 for Ih = id, the integral mean ΠE,0 (∂w/∂νE) ≡ 0 vanishes along any edge E ∈ E. Hence,
(p0 , ∂w/∂νE)L2 (E) = 0 is zero for any constant p0 ∈ P0 (E). An integration by parts with (5.5) for the piecewise
constant Hessian D2pwuh ∈ P0 (T;S), q0 B ΠE,0 (G2 + [F2νE]E · νE) ∈ P0 (E), and the split of ∇w as in (7.7) result
in

apw (uh , w) = (D2pwuh , D2w)L2 (Ω) =
∑︁

E∈E(Ω)

{
(q0 , ∂w/∂νE)L2 (E) if Ih = id
( [D2pwuhνE]E · νE , ∂w/∂νE)L2 (E) otherwise.

This and the Cauchy inequality reveal

F̂apx (w) − apw (uh , w) ⩽ μ(T)

√︄
∥h−2

T
w∥2 +

∑︁
E∈E(Ω)

(
∥h−3/2E w∥2L2 (E) +

h−1/2E
∂w
∂νE

2
L2 (E)

)
⩽ C4μ(T) |||v |||
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with the constant C4 from Lemma 5.1 in the last step. This and Lemma 7.1 provide Res(w) = (F − F̂apx) (w) +
F̂apx (w) − apw (uh , w) ≲ μ(T) + apx(F , T). □

Proposition 7.2 (efficiency up to data approximation). Let u ∈ V solve (1.1) with the right-hand side F ≡ F̂ |V ∈ V*

given by (7.3). If G0 , G1 ∈ Pk (E) and (Fα) |α |⩽2 ∈ Pk (T)6 are piecewise polynomials of degree at most k ∈ N0,
then the estimator μ(T) of the residual is efficient up to the data approximation error

C−18 μ(T) ⩽ |||u − uh |||pw + apx(F , T) .

The constant C8 exclusively depends on the shape-regularity of T and on k ∈ N0.

Before the technical proof of Proposition 7.2 follows in Subsection 7.4, the extension of the a posteriori analysis
from Section 6 to F ∈ V* is in order.

7.3 Application to lowest-order schemes

This subsection extends the a posteriori error control from Section 6 for the right-hand side F ∈ L2 (Ω) to a
general source F ≡ F̂ |V ∈ V* from (7.3). In fact, the efficient bounds of ∥uh − Jhuh ∥h from Theorem 5.1 imply
the following novel result generalizing [23, Thm. 6.2] for Q = Jh . Let (Fα) |α |⩽2 ∈ Pk (T)6 , (G0 , G1) ∈ Pk (E)2
be piecewise polynomials of degree at most k ∈ N0 that enter Definition 7.1 for the data approximation error
apx(F , T).

Theorem 7.2 (a posteriori for Q = Jh). Let uh ∈ Vh solve (2.3)with Q = Jh for any of the five discrete schemes from
Section 6 and let u ∈ V solve (1.1). Then

∥u − uh ∥2h + apx
2 (F , T) ≈ μ2 (T) +

∑︁
E∈E

hE ∥ [D2pwuh]EτE ∥2L2 (E) + jh (uh , uh) + apx
2 (F , T)

≈ μ2 (T) +
∑︁
E∈E

(
h−3E ∥ [uh]E ∥2L2 (E) + h

−1
E

[ ∂uh∂νE

]
E

2
L2 (E)

)
+ apx2 (F , T) .

The hidden equivalence constants exclusively depend on the shape-regularity of T and on k ∈ N0.

Proof. Theorem 3.2 provides ∥u−uh ∥h ≲ Res(w) + ∥uh − Jhuh ∥h for w = v− Jh Ih IMv and some v ∈ V for Morley,
dG, and C0IP. Recall from the proof of Theorem 6.5 that this error bound also holds for theWOPSIP scheme even
without the validity of (H) in full generality. The efficient bound Res(w) ≲ μ(T) ≲ |||u − uh |||pw +apx(F , T) of the
residual by the estimator μ(T) from Proposition 7.1–7.2 and the efficient a posteriori control of ∥uh − Jhuh ∥h
from Theorem 5.1 conclude the proof. □

The original formulation (2.3) without a smoother, Q = id, leads to an additional term

F̂ (eh − Jheh) = (F̂ − F̂apx) (eh − Jheh) + F̂apx (eh − Jheh)

in the a posteriori error bound from Theorem 3.2 and reflects the particular choice of the extended data F̂ in
the definition (7.3). While the difference F̂ − F̂apx is bounded by the data approximation error apx(F , T), the
non-conforming test function eh − Jheh ⊄ V prevents an efficient control of the higher-order volume sources
in (7.4) by residual terms through an integration by parts.

For Morley, dG, and WOPSIP, the critical terms are the intermediate sources fα for |α | = 1 and the proof
below explains why those are omitted in the (reduced) model class of right-hand sides in [23]. The following
theorem generalizes [23, Thm. 6.1] for Q = id.

Theorem 7.3 (a posteriori for Q = id). Suppose

Fα B 0 ∀ |α | = 1, Fα ∈ P0 (T) ∀ |α | = 2 (7.9)

for Morley, dG, WOPSIP, and

Fα B 0 ∀ |α | = 2, G1 B 0 (7.10)



C. Carstensen, B. Gräßle, and N. Nataraj, Piecewise quadratic discretisations for the biharmonic equation  103

for C0IP. Let uh ∈ Vh solve (2.3)without smoother, Q = id, for any of the five discrete schemes from Section 6 and
let u ∈ V solve (1.1). Then

∥u − uh ∥2h + apx
2 (F , T) ≈ μ2 (T) +

∑︁
E∈E

hE ∥ [D2pwuh]EτE ∥2L2 (E) + jh (uh , uh) + apx
2 (F , T)

≈ μ2 (T) +
∑︁
E∈E

(
h−3E ∥ [uh]E ∥2L2 (E) + h

−1
E

[ ∂uh∂νE

]
E

2
L2 (E)

)
+ apx2 (F , T) .

The hidden equivalence constants exclusively depend on the shape-regularity of T and on k ∈ N0.

Proof. ForMorley, dG, and C0IP, Theorem3.2with e B u−Jhuh ∈ V and the split F̂ (vh) = F̂apx (vh)+(F̂−F̂apx) (vh)
for vh B (1 − Jh)Ih IMe ∈ Vh provide

∥u − uh ∥2h ≲ ∥uh − Jhuh ∥2h + Res(e − Jh Ih IMe) − (F̂ − F̂apx) (vh) − F̂apx (vh) (7.11)

≲ ∥uh − Jhuh ∥2h + (μ(T) + apx(F , T)) |||u − Jhuh ||| − F̂apx (vh) (7.12)

with Lemma 7.1 and Proposition 7.1 in the last step. The discussion in the proof of Theorem 6.5 implies (7.11)–
(7.12) also for the WOPSIP method. The triangle inequality |||u − Jhuh ||| ⩽ ∥u − uh ∥h + ∥uh − Jhuh ∥h , (7.12), and a
Young inequality verify

∥u − uh ∥2h ≲ ∥uh − Jhuh ∥2h + μ
2 (T) + apx2 (F , T) − F̂apx (vh) . (7.13)

It remains to bound the extra term F̂apx (vh). Recall the abbreviations F0 , F1 , F2 from (7.6).
The key step towards an efficient control of F̂apx (vh) is an integration by parts in (7.8) that collects the

volume loads F0 , F1 , F2 in the single residual term μ1 (T) (resp. the jumps in μ2 (T) , μ3 (T)). A similar approach
for the efficient bound of F̂apx (vh) with the non-conforming test function vh ∉ V leads to additional terms from
the product rule for jumps on the edge E ∈ E, namely,

[F1 · νEvh]E = ⟨F1 · νE⟩E [vh]E + [F1 · νE]E ⟨vh⟩E
[F2νE · ∇vh]E = ⟨F2νE⟩E [∇vh]E + [F2νE]E ⟨∇vh⟩E .

However, the average terms ⟨F1 · νE⟩E and ⟨F2νE⟩E over the edges E ∈ E are no residuals and their efficiency
is open; cf. the partial efficiency result (excluding the average terms) in [37, Thm. 7.2] or the omission of the
efficiency analysis in [21]. Instead, the assumptions (7.9)–(7.10) and the additional information on the structure
of the test function vh ∈ (1 − Jh)Ih IMV allows the efficient control of F̂apx (vh).

Case Ih = id: Since F2 ∈ P0 (T;S) = D2pwP2 (T) is piecewise constant, IMvh = 0 from IMJh = IM and (4.3) verify
the L2 orthogonality vh ⊥ F2. This and (7.9) lead to

F̂apx (vh) = (F0 , vh)L2 (Ω) + (G0 , vh)L2 (Γ0 ) +
∑︁

E∈E(Γ1 )
((1 − ΠE,0)G1 , ∂νvh)L2 (E) (7.14)

with ΠE,0∂νvh ds = 0 for any E ∈ E from IMvh = 0.

Case Ih = IC : Since the test function vh ∈ V + S20 (T) is H
1 conforming, (7.10) and an integration by parts show

F̂apx (vh) = (F0 − divpwF1 , vh)L2 (Ω) + (G0 + [F1]E · νE , vh)L2 (Γj ) . (7.15)

Cauchy inequalities, Lemma 5.1, and (7.14) for Morley, dG, WOPSIP and (7.15) for C0IP result in |F̂apx (vh) | ≲
μ(T) |||e |||. This, (7.13), and a Young inequality provides

∥u − uh ∥2h ≲ ∥uh − Jhuh ∥2h + μ
2 (T) + apx2 (F , T) .

Theorem 5.1 and the efficiency of μ(T) from Proposition 7.2 conclude the proof. □
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Remark 7.3 (apx(F , T) in Theorem 7.3). Since Theorem 7.3 requires (Fα) |α |=1 ≡ 0 to vanish for the Morley, dG,
andWOPSIPmethods, the data approximation error apx(F , T) includes the term

√︃∑
|α |=1 ∥hT fα ∥2L2 (Ω) . This term

is linear in the mesh-size and converges with the expected rate for lowest-order schemes. This term may even
be of higher order if the triangulation is quasi-uniform and Ω is non-convex with a reduced convergence rate
∥u − uh ∥h = O(hσmax) of the schemes. However, it is not a classical (higher-oder) data oscillation term if fα /= 0
does not vanish for all |α | = 1. The assumption (7.10) for C0IP leads to the term

√︃∑
|α |=2 ∥fα ∥2L2 (Ω) independent of

the mesh-size in the data approximation error apx(F , T). Hence a meaningful interpretation of the a posteriori
estimate in Theorem 7.3 for C0IP requires ∥fα ∥L2 (Ω) to be small for all |α | = 2.

Remark 7.4 (smoother vs. no smoother). Since Theorem 7.2 for the smoother Q = Jh applies to any choice of
data approximations, Remark 7.1 shows that the data approximation error apx(F , T) can be replaced by data
oscillations osc(F , T) of arbitrary order. This provides a novel reliable and efficient a posteriori error bound for
any right-hand side F ∈ V* of the form (7.3) up to data oscillations.

For no smoother Q = id, additional requirements on the data approximations (7.9) for Morley, dG, and
WOPSIP (resp. (7.10) for C0IP) in Theorem 7.3 seemnecessary for an efficient error control. However, Remark 7.3
explains that this either restricts the admissible data in (7.3) or leads to terms in the data approximation error
apx(F , T) that are no oscillations.

Remark 7.5 (F ∈ L2 (Ω)). Theorems 7.2–7.3 for source terms F ≡ f ∈ L2 (Ω) with F0 B Π2f ∈ P2 (T) (and
Fα = fα ≡ 0 for all |α | = 1, 2 as well as G0 = G1 ≡ 0) imply the a posteriori results of Theorems 6.1–6.5. Indeed,
the Pythagoras theorem ∥f ∥2L2 (T ) = ∥f − Π2f ∥2L2 (T ) + ∥Π2f ∥2L2 (T ) for the triangle T ∈ T verifies

μ(T)2 + apx2 (F , T) = ∥h2T f ∥
2 +

∑︁
E∈E(Ω)


0 if Ih = id
hE ∥ [D2pwuhνE]E · νE ∥2L2 (E) otherwise.

Since jh (uh , uh) = 0 vanishes for all Morley solutions uh ∈ M(T) and every C0IP solution uh ∈ S20 (T) has zero
jump [uh]E ≡ 0 along an edge E ∈ E, Theorems 7.2–7.3 recover the corresponding results from Section 6.

7.4 Proof of Proposition 7.2

This proof applies the bubble-function methodology [45]. Recall

∥D2 (u − IMu)∥L2 (T ) = min
vh∈P2 (T)

∥D2 (u − vh)∥L2 (T ) ⩽ ∥D2 (u − uh)∥L2 (T ) (7.16)

for any T ∈ T from the best-approximation property (4.4).

Step 1 (efficiency of the volume contribution). Let ϖ B F0 − divpwF1 + div2pwF2 ∈ Pk (T) abbreviate the vol-
ume contribution of μ(T) for some T ∈ T. The element bubble-function bT = 27φ1φ2φ3 ∈ P3 (T) ∩ H1

0 (T)
with ∥bT ∥L∞ (T ) = 1 is given in terms of the three barycentric coordinates φj ∈ P1 (T) for j = 1, 2, 3. Since
apw (IMu, b2Tϖ) = 0 from (4.3) and IM (b2Tϖ) ≡ 0, the equivalence of the weighted norm ∥bTϖ∥L2 (T ) ≈ ∥ϖ∥L2 (T )
and an integration by parts without boundary terms from b2Tϖ ∈ H2

0 (T) show

∥ϖ∥2L2 (T ) ≈ (F0 − divpwF1 + div2pwF2 , b2Tϖ)L2 (T )
= F̂apx (b2Tϖ) = apw (u − IMu, b2Tϖ) + (F̂apx (b2Tϖ) − F (b2Tϖ))

≲
(
∥D2 (u − IMu)∥L2 (T ) + apx(F , T)

)
∥D2 (b2Tϖ)∥L2 (T )

with (F − F̂apx) (v) = (F − F̂apx) (v− Jh Ih IMv) ≲ apx(F , T)∥D2v∥L2 (T ) for v ∈ H2
0 (T) from IMv ≡ 0 plus Lemma 7.1

and a Cauchy inequality in the last step. This and the inverse inequality h2T ∥D
2 (b2Tϖ)∥L2 (T ) ≲ ∥b2Tϖ∥L2 (T ) ⩽

∥ϖ∥L2 (T ) from [30, Lem. 12.1] conclude the proof of the local efficiency of the volume contributions, namely,

h2T ∥F0 − divpwF1 + div
2
pwF2∥L2 (T ) ≲ ∥D2 (u − IMu)∥L2 (T ) + apx(F , T) . (7.17)
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Step 2 (set-up for an interior edge). For any interior edge E = conv{A, B} = T+ ∩ T− ∈ E(Ω), let φP+ , φA,+ , φB,+ ∈
P1 (R2) (resp. φP− , φA,− , φB,− ∈ P1 (R2)) denote the barycentric coordinates of T+ = conv{P+ , A, B} (resp. T− B
conv{P− , A, B}) seen as globally defined affine functions. The edge bubble-function reads bE B 16φA,+φA,−φB,+
×φB,− ∈ P4 (R2) ∩ H1

0 (ω(E)) and bT± B 27φA,±φB,±φP± ∈ P3 (R2) ∩ H1
0 (T±) denotes the element bubble-function

in T± ∈ T with νT± |E = ±νE . Let ∂ν B ∂/∂νE abbreviate the normal derivative and recall that the gradient
∇φP+ = −ϱ−1E νE of the barycentric coordinate φP+ scales like h

−1
E with the height ϱE B 2|T+ |/|E | ≈ hE from

shape-regularity. The function b2E has been utilised in the literature before, e.g., in [4, p. 788] with its scaling
properties; the usage of b2T± is standard. The product rule and φT+ |E ≡ 0 verify

∂ν (φT+b2E) = −ϱ−1E b
2
E on E. (7.18)

Given p ∈ N0, any polynomial q ∈ Pp (E) on the edge E defines a unique polynomial on the straight line L that
extends E ⊂ L. The extension of q from L to R2 by constant values along the normal νE defines a polynomial
q̂ ∈ Pp (R2) on R2 of the same degree. Let ΠLP± ∈ L denote the projection of the vertex P± ∈ T± opposite to
E onto L along the normal direction νE . The maximal value ∥ q̂∥L∞ (ω (E) ) is attained on the line segment L̂ B
conv{E,ΠLP±} ⊂ L and the shape-regularity controls the ratio |L̂ |/|E | ⩾ 1. Hence

∥ q̂∥L∞ (w (E) ) = ∥q∥L∞ (L̂) ⩽ C∥q∥L∞ (E) (7.19)

follows with some constant C ≈ 1 that exclusively depends on the shape-regularity of the triangulation T and
on p.

Step 3 (efficiency of the first jump contribution). This step establishes the local efficiency of the term ϑE B G1 +
[F1 − divpwF2 − ∂F2τE/∂s]E · νE ∈ Pk (E) in the form

h3/2E ∥ϑE ∥L2 (E) ≲ ∥D2pw (u − IMu)∥L2 (ω (E) ) + apx(F , T+) + apx(F , T−) . (7.20)

Let ξE ∈ P2k (E) denote the (unique) Riesz representation of the functional ϱE (∂νb2E , ·)L2 (E) in the vector space
P2k (E) with respect to the weighted scalar product

(
b2E ·, ·

)
L2 (E) , i.e.,(

b2EξE , p2k
)
L2 (E) = ϱE

(
∂νb2E , p2k

)
L2 (E) ∀ p2k ∈ P2k (E) . (7.21)

This, the equivalence of the weighted norm ∥bEξE ∥L2 (E) ≈ ∥bE ∥L2 (E) , and hE ≈ ϱE show

∥ξE ∥2L2 (E) ≈ ∥bEξE ∥2L2 (E) = hE (∂νb
2
E , ξE)L2 (E) ≲ hE ∥∂νb

2
E ∥L2 (E) ∥ξE ∥L2 (E)

with a Cauchy inequality in the last step. Hölder’s inequality and an inverse estimate [30, Lem. 12.1] lead to

∥∂νb2E ∥L2 (E) ⩽ h
1/2
E ∥∂νb2E ∥L∞ (E) ⩽ h

1/2
E ∥∇b2E ∥L∞ (E) ≲ h

−1/2
E ∥b2E ∥L∞ (T ) ⩽ h

−1/2
E .

This proves ∥ξE ∥L2 (E) ≲ h1/2E and another inverse inequality provides ∥ξE ∥L∞ (E) ≲ h−1/2E ∥ξE ∥L2 (E) ≲ 1. Let
ϑ̂E ∈ Pk (R2) and ξ̂E ∈ P2k (R2) denote the extension of ϑE ∈ Pk (E) and ξE ∈ P2k (E) toR2 as in Step 2. This, (7.18),
and (7.21) verify the L2 orthogonality

∂ν ((b2E + φT+b
2
E ξ̂E)ϑ̂E) = (∂ν (b2E) − ϱ

−1
E b

2
E ξ̂E)ϑ̂E ⊥ Pk (E) in L2 (E) .

Let ξT± ∈ P2k (T±) be the unique solution to

(b2T± ξT± , p2k)L2 (T± ) = (b2E + φT+b
2
E ξ̂E , p2k)L2 (T± ) ∀ p2k ∈ P2k (T±) .

An inverse inequality and (7.19) show ∥ξT± ∥L∞ (T± ) ≲ 1. The definition of ξT± verifies that the function ψE B
(b2E + φT+b2E ξ̂E − b

2
T+χT+ ξ̂T+ − b

2
T−χT− ξ̂T− )ϑ̂E ∈ H2

0 (ω(E)) is L
2 (T±) orthogonal to Pk (T±). Since b2T± ∈ H2

0 (T±)
vanishes on E, the normal derivative ∂νψE |E ≡ ∂ν ((b2E + φT+b

2
E ξ̂E)ϑ̂E) |E ⊥ Pk (E) is L2 (E) orthogonal to Pk (E).

This, (7.7), and an integration by parts show

0 = (F0 − divpwF1 + div2pwF2 , ψE)L2 (ω (E) ) + (G2 − [F2νE]E · νE , ∂νψE)L2 (E)
= (F0 , ψE)L2 (ω (E) ) + (F1 − divpwF2 , ∇ψE)L2 (ω (E) )

− ( [F1 − divpwF2]E · νE , ψE)L2 (E) + (G2 − [F2νE]E · νE , ∂νψE)L2 (E)
= F̂apx (ψE) − (ϑE , ψE)L2 (E) .
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The Morley interpolation IMψE ≡ 0 of ψE ∈ H2
0 (ω(E)) vanishes from ΠE,0∂νψE = 0 and apw (IMu, ψE) = 0

follows from (4.3). Since (ψE − b2EϑE) |E ≡ 0 is zero on E, the equivalence ∥ϑE ∥L2 (E) ≈ ∥bEϑE ∥L2 (E) results in

∥ϑE ∥2L2 (E) ≈ (ϑE , b2EϑE)L2 (E) = (ϑE , ψE)L2 (E) = F̂apx (ψE) .

With a(u, ψE) = F (ψE) from (1.1), this shows

∥ϑE ∥2L2 (E) = apw (u − IMu, ψE) + (F̂apx (ψE) − F (ψE))

⩽
(
∥D2pw (u − IMu)∥L2 (ω (E) ) + apx(F , T−) + apx(F , T+)

)
∥D2ψE ∥L2 (ω (E) ) .

The inverse inequality, ∥ψE ∥L2 (ω (E) ) ≲ ∥ϑ̂E ∥L2 (ω (E) ) , and (7.19) provide

h2E ∥D
2ψE ∥L2 (ω (E) ) ≲ ∥ψE ∥L2 (ω (E) ) ≲ ∥ϑ̂E ∥L2 (ω (E) ) ≲ h

1/2
E ∥ϑE ∥L2 (E) . (7.22)

This verifies the efficiency (7.20) of the jump contributions ϑE .

Step 4 (efficiency of the second jump contribution). The local efficiency of the remaining term followswith similar
arguments. Since theHessian D2pwuh of uh ∈ P2 (T) is piecewise constant, the stability of the L2 projection results
in

∥(1 − ΠE,0) (G1 + [F2νE]E · νE)∥L2 (E) ⩽ ∥G1 + [(F2 − D2pwuh)νE]E · νE ∥L2 (E) .

It is therefore sufficient to prove the local efficiency of the term ζE B G1 + [(F2 − D2pwuh)νE]E · νE ∈ Pk (E),
namely,

h1/2E ∥ζE ∥L2 (E) ≲ ∥D2pw (u − uh)∥L2 (ω (E) ) + apx(F , T+) + apx(F , T−) . (7.23)

Indeed, let ϱT± ∈ P2k (T±) be the unique solution to

(b2T±ϱT± , p2k)L2 (T± ) = (φT+b2E , p2k)L2 (T± ) ∀ p2k ∈ P2k (T±) .

Observe that ψ2 B −(φT+b2E − b
2
T+χT+ϱT+ − b

2
T−χT−ϱT− ) ζ̂E ∈ H2

0 (ω(E)) is L
2 perpendicular to Pk (T±) with zero

trace ψ2 |E ≡ 0 on E. This and an integration by parts show

0 = (F0 − divpwF1 + div2pwF2 , ψ2)L2 (ω (E) ) + (ϑE , ψ2)L2 (E)
= F̂apx (ψ2) − (G1 + [F2νE]E · νE , ∂νψ2)L2 (E) = F̂apx (ψ2) − apw (uh , ψ2) − (ζE , ∂νψ2)L2 (E)

with ( [D2pwuhνE]E · νE , ∂νψ2)L2 (E) = apw (uh , ψ2) in the last step. The equivalences ∥ζE ∥L2 (E) ≈ ∥bEζE ∥L2 (E) and
hE ≈ ϱE , (7.18), and ∂ν (ψ2 + φT+b2E ζ̂E) |E ≡ 0 provide

h−1E ∥ζE ∥2L2 (E) ≈ ϱ
−1
E (ζE , b2EζE)L2 (E) = −(ζE , ∂ν (φT+b2E ζ̂E))L2 (E) = (ζE , ∂νψ2)L2 (E)

= F̂apx (ψ2) − apw (uh , ψ2) = apw (u − uh , ψ2) + (F̂apx (ψ2) − F (ψ2))

with a(u, ψ2) = F (ψ2) from (1.1) in the last step. The remaining steps follow Step 3 and utilize ∥D2ψ2∥L2 (ω (E) ) ≲

h−3/2E ∥ζE ∥L2 (E) from an inverse inequality as in (7.22); further details are omitted. The combination of the local
efficiency results (7.17), (7.20), and (7.23) with (7.16) concludes the proof. □
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A A posteriori error control of a piecewise polynomial source in
H–2(Ω)

This appendix provides an alternative view on the reliable and efficient estimator from Section 7 as lower and
upper bounds for the dual normof a piecewise polynomial source inH−2 (Ω). Suppose the piecewise polynomials
Λ0 ∈ Pk (T) ,Λ1 ∈ Pk (T;R2), and Λ2 ∈ Pk (T;S) define the linear functional Λ ∈ H−2 (Ω) by

Λ(v) B
∫
Ω

(Λ0v + Λ1 · ∇v + Λ2 : D2v) dx ∀ v ∈ H2
0 (Ω) . (A.1)

Recall the transfer operators IM , Ih , Jh for the five quadratic discretization schemes of Section 4 listed in Table 1.
A reliable and efficient estimator μ2 (T) B μ21 (T) + μ

2
2 (T) + μ

2
3 (T) of the functional Λ is given by

μ21 (T) B ∥h2T (Λ0 − divpwΛ1 + div2pwΛ2)∥2

μ22 (T) B
∑︁

E∈E(Ω)
h3E ∥ [Λ1 − divpwΛ2 − ∂(Λ2τE)/∂s]E · νE ∥2L2 (E)

μ23 (T) B
∑︁

E∈E(Ω)


hE ∥(1 − ΠE,0) [Λ2νE]E · νE ∥2L2 (E) if Ih = id

hE ∥ [Λ2νE]E · νE ∥2L2 (E) if Ih = IC .

Theorem A.1 (reliability and efficiency). There exist positive constants Crel , Ceff > 0 that exclusively depend on the
shape regularity of T and on the polynomial degree k ∈ N0 such that

C−1rel |||Λ ◦ (1 − Jh Ih IM) |||* ⩽ μ(T) ⩽ Ceff |||Λ|||* .

Proof. The discussion in Subsection 7.2 applies to Res B F B Λ and uh B 0 with apx(F , T) = 0. In this
particular case, Proposition 7.1 provides the first inequality

|||Λ ◦ (1 − Jh Ih IM) |||* ⩽ Crelμ(T)
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with Crel = C4. Let u ∈ H2
0 (Ω) denote the Riesz representation of a(u, ·) = Λ ∈ H−2 (Ω) with the isometry

|||Λ|||* = |||u ||| in the Hilbert space (H2
0 (Ω) , a) and ||| · ||| ≡ a(·, ·)1/2. Then the efficiency estimate

μ(T) ⩽ Ceff |||Λ|||*

follows from Proposition 7.2 with Ceff = C8. □

Theorem A.1 allows for a direct application to the linearization of semilinear problems in [18]. It can be further
generalized in various directions, e.g., in the spirit of Section 7 that considers the a posteriori error analysis of
the linear biharmonic problem for a more general class of functionals in H−2 (Ω) including line and point loads.
The reliability requires only piecewise smoothness of Λ0 ,Λ1 ,Λ2 so that the traces and derivatives in μ1 , μ2 , μ3
exist, while the efficiency may require extra oscillation terms (as in (7.5)).
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