Prof. Klaus Mohnke Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 306

Übungsblatt 10

Analysis I WS 2012/2013

(Abgabe: 08.01.2013)

Aufgabe 1

Bestimmen Sie den Konvergenzradius der untenstehenden Potenzreihen. Begründen Sie!

(i)
$$\sum_{n=1}^{\infty} {2n \choose n} x^n$$
.

(ii)
$$\sum_{n=1}^{\infty} a^{n^2} x^n, a \in \mathbb{R}.$$

Aufgabe 2

(i) Sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius R und sei $k \in \mathbb{N}$, k > 0. Berechnen Sie den Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} a_n x^{kn}$. (ii) Es seien $\sum_{n=0}^{\infty} a_n x^n$ und $\sum_{n=0}^{\infty} b_n x^n$ Potenzreihen mit Konvergenzradien R_A bzw. R_B . Beweisen Sie, dass der Konvergenzradius R der Potenzreihe $\sum_{n=0}^{\infty} a_n b_n x^n$ die Ungleichung $R \geq R_A R_B$ erfüllt.

Aufgabe 3

(i) Beweisen Sie mit vollständiger Induktion nach n für alle $k, n \in \mathbb{N}$:

$$\sum_{m=0}^{n} \binom{k+m}{k} = \binom{n+k+1}{k+1}.$$

(ii) Zeigen Sie, dass für jedes $k \in \mathbb{N}$ und alle $x \in \mathbb{R}$ mit |x| < 1 die Formel

$$\sum_{n=0}^{\infty} \binom{k+n}{k} x^n = \frac{1}{(1-x)^{k+1}}$$

gilt.

Aufgabe 4

(i) Zeigen Sie mithilfe des Identitätssatzes: Ist $A(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius R > 0 und gilt A(-x) = A(x) (bzw. A(-x) = -A(x)) für alle $x \in (-R, R)$, dann ist

 $a_n=0$ für jeden ungeraden (bzw. für jeden geraden) Index n. (ii) Zeigen Sie, dass es keine Potenzreihe $\sum_{n=0}^{\infty} a_n x^n$ mit positivem Konvergenzradius R gibt, so dass $\sum_{n=0}^{\infty} a_n x^n = |x|$ gilt für alle $x \in (-R, R)$.

Folgende Beispielaufgaben können in den Übungen vom 18.12-20.12 besprochen werden:

- Berechnen Sie den Konvergenzradius der Potenzreihe $\sum_{n=1}^{\infty} \left(\frac{n!}{3\cdot 5\cdots (2n+1)}\right)^2 x^n$. Hinweis: Was ist $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ für $a_n = \left(\frac{n!}{3\cdot 5\cdots (2n+1)}\right)^2$?
- Bestimmen Sie den Konvergenzradius der Potenzreihe $\sum_{n=1}^{\infty} \frac{2^n + n^2}{n} x^n$. Hinweis: Was ist $\lim_{n \to \infty} \sqrt[n]{a_n}$ für $a_n = \frac{2^n + n^2}{n}$?
- Zeigen Sie: Sind $\sum_{n=0}^{\infty} a_n x^n$ und $\sum_{n=0}^{\infty} b_n x^n$ Potenzreihen mit Konvergenzradien R_A bzw. R_B , dann hat die Potenzreihe $\sum_{n=0}^{\infty} (a_n + b_n) x^n$ Konvergenzradius $R_C \ge \min(R_A, R_B)$.
- Zeigen Sie, dass die Reihe $\sum_{n=1}^{\infty} a_n$ mit $a_n = \frac{(-1)^n}{\sqrt{n}}$ konvergent ist, aber ihr Cauchy-Produkt $\sum_{n=2}^{\infty} (\sum_{k=1}^{n-1} a_k a_{n-k})$ mit sich selbst divergiert. *Hinweis:* Zeigen Sie, dass $|\sum_{k=1}^{n-1} a_k a_{n-k}| \ge 1$ gilt für jedes n.
- Es sei $A(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit positivem Konvergenzradius R und $a_0 = 1$. Zeigen Sie: Gilt $a_{2k-1} = \frac{1}{(2k-1)!}$ für alle $k \ge 1$ und ist

$$A(x)A(-x) = 1$$

für alle $x \in (-R, R)$, dann ist $a_n = \frac{1}{n!}$ für alle n (d. h. A(x) ist die Exponentialreihe).

Hinweis: Benutzen Sie den Identitätssatz, um aus der Bedingung A(x)A(-x)=1 Gleichungen für die Koeffizienten $a_{2k}, k \in \mathbb{N}$ zu finden. Zeigen Sie dann mithilfe vollständiger Induktion und der Formel

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0,$$

dass $a_{2k} = \frac{1}{(2k)!}$ die eindeutige Lösung ist.