Prof. Klaus Mohnke Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 306

Übungsblatt 5

Analysis II SS 2013

(Abgabe: 14.05.2013)

Aufgabe 1

(i) Bezeichne mit $H: \mathbb{R} \to \mathbb{R}$ die Funktion mit H(x) = x - |x| - 1/2 (falls $x \notin \mathbb{Z}$) und H(x) = 0für $x \in \mathbb{Z}$. Zeigen Sie die folgende alternative Formulierung der Eulerschen Summenformel (vgl. Aufgabe 4.1): Ist $f: [1, n] \to \mathbb{R}$ stetig differenzierbar, dann gilt

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(x) \, dx + \frac{1}{2} (f(1) + f(n)) + \int_{1}^{n} H(x) f'(x) \, dx.$$

Zeigen Sie in dem Spezialfall $f(x) = \ln x$, dass das uneigentliche Integral $\int_1^\infty H(x) f'(x) dx$ konvergent ist.

(ii) Aus (i) folgt die Konvergenz der Folge $s_n = \ln n! - (n+1/2) \ln n + n$. Zeigen Sie, dass $\lim_{n\to\infty} s_n = \ln \sqrt{2\pi}$ gilt und schlussfolgern Sie die Stirlingsche Formel:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp(R_n), \lim_{n \to \infty} R_n = 0.$$

Hinweis: Betrachten Sie den Quotienten $\frac{\exp(2s_n)}{\exp(s_{2n})}$ und benutzen Sie das Ergebnis von Aufgabe 1(ii) auf Blatt 3.

Aufgabe 2

(i) Es besitze die Funktion f eine Potenzreihenentwicklung $f(x) = \sum_{n=0}^{\infty} a_n x^n$ mit $a_0 = 0$. Es sei (i) Es besitze die Funktion f eine Fotenzreinenentwicklung $f(x) = \sum_{n=0}^{\infty} a_n x^n$ mit $a_0 = 0$. Es sei $1/(1+f(x)) = \sum_{n=0}^{\infty} b_n x^n$. Geben Sie (unter der Annahme der gleichmäßigen Konvergenz beider Potenzreihen) ein Rekursionsverfahren zur Berechnung der Koeffizienten b_n an. (ii) Es sei allgemeiner $(1+f(x))^s = \sum_{n=0}^{\infty} c_n x^n$, $s \in \mathbb{R}$. Finden Sie (wieder unter der Voraussetzung der gleichmäßigen Konvergenz) ein Rekursionsverfahren zur Berechnung der Koeffizienten c_n .

Hinweis: Betrachten Sie die Funktion $\frac{d}{dx}((1+f(x))^s)$.

Aufgabe 3

Beziechne für $n \geq 0$ mit S_n bzw. C_n das n-te Taylorpolynom der Funktion $\sin x$ bzw. $\cos x$ in $x_0 = 0$. Benutzen Sie die Ihnen aus der Vorlesung bekannten Restgliedabschätzungen, um zu zeigen:

- (i) $S_{4n+3}(x) < \sin x < S_{4n+1}, n \ge 0, x > 0.$
- (ii) $C_{4n+2}(x) < \cos x < C_{4n}(x), n > 0, x \neq 0.$

Aufgabe 4

Berechnen Sie für $0 \le x \le 2\pi$:

(i) $f(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$ und (ii) $g(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3}$. Hinweis: Die Rückseite von Blatt 3 kann hilfreich sein. Was ist die Beziehung zwischen f und g? Begründen Sie!

Folgende Beispielaufgaben können in den Übungen vom 07.05-09.05 besprochen werden:

- Sei $(s_n)_{n\in\mathbb{S}}$ eine gegen $s\in\mathbb{R}$ konvergente Folge. Was ist $\lim_{n\to\infty} \frac{\exp(2s_n)}{\exp(s_{2n})}$?
- Es seien $f(x) = \sum_{n=0}^{\infty} a_n x^n$ und $g(x) = \sum_{n=0}^{\infty} b_n x^n$ Potenzreihenentwicklungen, wobei die beiden Potenzreihen Konvergenzradien $R_f > 0$ bzw. $R_g > 0$ besitzen und $|a_0| < R_g$ gelte.

Finden Sie eine Potenzreihenentwicklung für die Komposition $g\circ f$ und zeigen Sie, dass der Konvergenzradius R dieser Entwicklung die Abschätzung R>r erfüllt für jedes $r\in\mathbb{R}$ mit

$$\sum_{n=0}^{\infty} |a_n| r^n < R_g.$$

- Wiederholen Sie die aus der Vorlesung bekannten Taylor- und Lagrange-Restglieder für die Taylor-Reihe. Bezeichne mit E_n , $n \ge 0$ n—te Taylorpolynom der Funktion $\exp(x)$ in $x_0 = 0$. Benutzen Sie das Lagrange-Restglied, um zu beweisen, dass $E_{2n+1}(x) < \exp(x)$ gilt für $n \ge 0$ und $x \ne 0$.
- Zeigen Sie: Ist a > 0 und ist $f: [0, a] \to \mathbb{R}$ eine stetige streng monoton fallende Funktion mit $f \ge 0$, dann gilt $\int_0^a f(x) \sin x \, dx > 0$. Hinweis: Zerlegen Sie das Intervall [0, a] als

$$[0, a] = [0, 2\pi] \cup [2\pi, 4\pi] \cup \cdots \cup [2(k-1)\pi, 2k\pi] \cup [2k\pi, a]$$

mit $k = \lfloor \frac{a}{2\pi} \rfloor$.

• Auf der Rückseite von Blatt 3 ist gezeigt worden, dass die Reihe $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k}$ gegen $\frac{\pi-x}{2}$ konvergiert. Begründen Sie, dass diese Konvergenz gleichmäßig ist auf jedem Intervall $[\delta, \pi - \delta]$, $0 < \delta < \pi$.