Introduction Cohomology Operations from Flow Graphs (after R. Cohen et al.) Flow Graphs and TCFT TCFTs and A_∞ -Algebras

Morse Homotopy and Topological Conformal Field Theory

Viktor Fromm

Humboldt University Berlin

July 22, 2013

/□ ▶ < 글 ▶ < 글

Flow Graphs Origins of the Idea

Two main goals:

- Present a new construction which uses flow graphs to recover interesting information about a manifold.
- Give theorems explaining in algebraic language what is recovered.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Here flow graphs are the graph analogues of flow trajectories.

Fix a graph G and a for every edge e of G, a flow $\Phi_e(t, \cdot)$ on M. Want to study the space \mathcal{M}_G of all continuous maps $\gamma : G \to M$ such that

$$\gamma_e(t_0+t)=\Phi_e(t,\gamma_e(t_0)).$$

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Cohomology Operations from Flow Graphs (after R. Cohen et al.)}\\ \mbox{Flow Graphs and TCFT}\\ \mbox{TCFTs and } \mathcal{A}_{\infty}\mbox{-Algebras} \end{array}$

Flow Graphs Origins of the Idea

Classical Morse Theory

Gradient flow of a Morse function *f*

Spaces of Flow Trajectories

The Morse Complex $C^*(f)$

The Graph Approach

 $\{\Phi_e\}_{e \in E(G)}$ -different flows on M, chosen 'in general position'

Spaces $\mathcal{M}_{\textit{G}}$ of Flow Graphs

Field-theoretic structures

Spaces of flow graphs were studied by Ralph Cohen and his collaborators (Betz&Cohen (1994), Cohen&Godin (2004), Cohen&Norbury (2012)).

An alternative approach was pursued by K. Fukaya (1993, 1996).

Given a graph (i. e. one-dimensional CW-complex), partition the univalent vertices into n_+ inputs and n_- outputs.

Idea: Want to study the spaces \mathcal{M}_G in order to associate to G an operation (i. e. a linear map)

 $(H_*(M))^{\otimes n_+} \to (H_*(M))^{\otimes n_-}.$

In fact, to obtain more interesting structure, also take into account graph automorphisms.

(日)

Theorem (R. Cohen, P. Norbury)

For each graph G there is a corresponding linear map

$$q_G: H^{Aut(G)}_*(M^{\times n_+}) \to H^{Aut(G)}_{*+\chi(G)d-n_+d}(M^{\times n_-})$$

and these maps are compatible with gluing graphs at their ends and with respect to morphisms $G_1 \rightarrow G_2$.

On $Aut_0(G) \subset Aut(G)$ - subgroup of automorphisms which fix the univalent vertices, this reduces to

$$q_G^0:H_*(BAut_0(G))\otimes H_*(M^{ imes n_+})
ightarrow H_*(M^{ imes n_-}).$$

(日)

In several simple cases, the operation q_G can be identified explicitly.

- The Y-graph with $n_+ = 2$, $n_- = 1$. Then q_G^0 is the cup product.
- The Y-graph with $n_+ = 1$, $n_- = 2$. Here $Aut(G) = \mathbb{Z}/2$ and $q_G : H_*(B\mathbb{Z}/2) \otimes H_*(M) \to H_*^{\mathbb{Z}/2}(M \times M)$ is the equivariant diagonal.

Introduction	
Cohomology Operations from Flow Graphs (after R. Cohen et al.)	The Operations
Flow Graphs and TCFT	Examples
TCFTs and A_∞ -Algebras	Key Properties

Dually, $q_G^* : H^*_{\mathbb{Z}/2}(M \times M; \mathbb{Z}/2) \to H^*(B\mathbb{Z}/2; \mathbb{Z}/2) \otimes H^*(M; \mathbb{Z}/2)$ defines the Steenrod squares:

$$q_G^*(x\otimes x) = \sum_{0\leq j\leq n} a^j \otimes Sq^{n-j}(x),$$

where $x \in H^n(M; \mathbb{Z}/2)$ and $a \in H^1(B\mathbb{Z}/2; \mathbb{Z}/2)$ is the generator.

Introduction	
Cohomology Operations from Flow Graphs (after R. Cohen et al.)	The Operations
Flow Graphs and TCFT	Examples
TCFTs and A_∞ -Algebras	Key Properties

• G = Q-graph with $n_+ = 1$. Here $Aut(G) = \mathbb{Z}/2$, $q_G : H_*(B\mathbb{Z}/2; \mathbb{Z}/2) \otimes H_{d-*}(M; \mathbb{Z}/2) \to \mathbb{Z}/2$ or dually, $q_G^* \in H^*(B\mathbb{Z}/2; \mathbb{Z}/2) \otimes H^{d-*}(M; \mathbb{Z}/2)$. This turns out to compute the Stiefel-Whitney classes:

$$q_G^* = \sum_{0 \le j \le d} a^j \otimes w_{n-j}(M).$$

- 4 E b 4 E b

Introduction	
Cohomology Operations from Flow Graphs (after R. Cohen et al.)	The Operations
Flow Graphs and TCFT	
TCFTs and A_{∞} -Algebras	Key Properties

Two key properties: compatibility with momorphisms $G_1 \rightarrow G_2$ and with gluing of graphs. Ralph Cohen et al. showed that e. g. the Cartan formula can be viewed as a consequence of these properties.

There is also a theorem which explains how to compute the operations q_G from the knowledge of certain equivariant diagonal maps in homology.

A *ribbon structure* on a graph is a cyclic ordering of the half-edges at every vertex.

▲ □ ▶ ▲ □ ▶ ▲

- Γ = graph *G* together with a ribbon structure.
- Σ the oriented surface associated to Γ .
- Univalent vertices of $\Gamma \Leftrightarrow$ marked points on $\partial \Sigma$.
- $Met_0(\Gamma)$ -space of metric structures on Γ .
- \mathcal{M}_{Σ} -space of complex structures on Σ .
- From here on k is a field of characteristic zero.

 $\begin{array}{c} \mbox{Introduction} & \mbox{The Ribbon Graph Decomposition} \\ \mbox{Cohomology Operations from Flow Graphs (after R. Cohen et al.)} & \mbox{Flow Graphs and TCFT} & \mbox{Brow Graphs and TCFT} & \mbox{Brow Graphs and TCFT} & \mbox{Brow Graphs and Ac_Algebras} & \mbox{The Operations } F_{\Sigma}^{M} \end{array}$

Theorem (J. L. Harer, R. C. Penner, K. Strebel, K. Igusa,...)

There is a homeomorphism

 $\mathcal{M}_{\Sigma}\simeq \cup_{\Gamma} \textit{Met}_0(\Gamma)/\sim,$

where the union is over all ribbon graphs Γ whose associated surface is Σ . The equivalence relation is generated by:

- Collapsing edges of length zero.
- Aut(Γ)-action.

- 4 同 6 4 日 6 4 日 6

Fix a Morse function f on M and $(\mathbf{p}_+, \mathbf{p}_-) \in Crit^{n_++n_-}(f)$.

Associate to each edge e of Γ a (one-parameter-family) of vector fields x_e on M, so that $x_e = \nabla f$ in a neighbourhood of the univalent vertices. We refer to $\mathbf{x} := (x_e)_{e \in E(\Gamma)}$ as the vector field data.

$$\mathcal{M}_{\Gamma,\mathbf{x}}(\mathbf{p}_{+},\mathbf{p}_{-}) := \{(\ell,\gamma) : \ell \in Met(\Gamma), \gamma : \Gamma \to M \text{ is continuous}, \\ \dot{\gamma}|_{e}(t) = x_{e}(t,\gamma|_{e}(t)) \text{ and convergence} \\ \text{to } (\mathbf{p}_{+},\mathbf{p}_{-}) \text{ along external edges} \}.$$

(日)

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Cohomology Operations from Flow Graphs (after R. Cohen et al.)} \\ \mbox{Flow Graphs and TCFT} \\ \mbox{TCFTs and } A_{\infty} - \mbox{Algebras} \end{array} \begin{array}{c} \mbox{The Ribbon Graph Decomposition} \\ \mbox{Flow Graphs and TCFT} \\ \mbox{The Ribbon Structures} \\ \mbox{The Ribbon Structures}$

 $\mathcal{M}_{\Gamma,x}(p_+,p_-)$ is not compact because of the following:

- 1) Breaking along external edges,
- 2) Collapsing of internal edges,
- 3) Breaking along internal edges.

 $\overline{\mathcal{M}}_{\Gamma,\mathbf{x}}(\mathbf{p}_+,\mathbf{p}_-) :=$ partial compactification obtained by adding strata of type 1) and 2) (but not 3)). Formally,

 $\overline{\mathcal{M}}_{\Gamma, \textbf{x}}(\textbf{p}_{+}, \textbf{p}_{-}) =$

$$\bigcup_{q_+,q_-,\widetilde{\Gamma}\prec \Gamma}\overline{\mathcal{M}}(p_+,q_+)\times \mathcal{M}_{\widetilde{\Gamma},x}(q_+,q_-)\times \overline{\mathcal{M}}(q_-,p_-),$$

where $\widetilde{\Gamma}\prec\Gamma$ means that $\widetilde{\Gamma}$ is obtained from Γ by collapsing edges.

 $\pi_{\Gamma}: \overline{\mathcal{M}}_{\Gamma, \mathbf{x}}(\mathbf{p}_{+}, \mathbf{p}_{-}) \to \mathcal{M}_{\Sigma} \text{ defined by forgetting } \gamma.$

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Cohomology Operations from Flow Graphs (after R. Cohen et al.) } \\ \mbox{Flow Graphs and TCFT} \\ \mbox{TCFTs and } A_{\infty}\mbox{-Algebras} \end{array} \begin{array}{c} \mbox{The Ribbon Structures} \\ \mbox{Flow Graphs and TCFT} \\ \mbox{TCFTs and } A_{\infty}\mbox{-Algebras} \end{array}$

Proposition

There exists vector field data x so that M
_{Γ,x}(p₊, p₋) is a manifold with corners of dimension

$$|\mathbf{p}_{-}| - |\mathbf{p}_{+}| + \chi(\Sigma)d - n_{-}d + |E(\Gamma)|$$

2 The map $\pi_{\Gamma} : \overline{\mathcal{M}}_{\Gamma, \mathbf{x}}(\mathbf{p}_{+}, \mathbf{p}_{-}) \to \mathcal{M}_{\Sigma}$ is proper.

- 4 同 6 4 日 6 4 日 6

 $C^{BM}_*(\mathcal{M}_{\Sigma}) :=$ chain complex generated by pairs (P, π) , where P is an oriented manifold with corners and $\pi : P \to \mathcal{M}_{\Sigma}$ a proper continuous map; $\partial(P, \pi) = (\partial P, \pi|_{\partial P})$.

The homology of $(C^{BM}_*(\mathcal{M}_{\Sigma}), \partial)$ is the Borel-Moore homology $H^{BM}_*(\mathcal{M}_{\Sigma})$. i. e. the homology of 'locally finite chains'.

Over a field of characteristic zero, $H^{BM}_*(\mathcal{M}_{\Sigma}) \simeq H^{\dim \mathcal{M}_{\Sigma}-*}(\mathcal{M}_{\Sigma})$.

イロト イポト イヨト イヨト 二日

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Cohomology Operations from Flow Graphs (after R. Cohen et al.)} \\ \mbox{Flow Graphs and TCFT} \\ \mbox{TCFTs and } A_{\infty} - \mbox{Algebras} \end{array} \begin{array}{c} \mbox{The Ribbon Graph Decomposition} \\ \mbox{Flow Graphs and TCFT} \\ \mbox{The Operations } F_{\Sigma}^{M} \end{array}$

We can now complete the construction. Denote

$$Z^f_{\Gamma, \mathbf{x}}(\mathbf{p}_+, \mathbf{p}_-) = (\overline{\mathcal{M}}_{\Gamma, \mathbf{x}}(\mathbf{p}_+, \mathbf{p}_-), \pi_{\Gamma})$$

and

$$Z^{f}(\mathbf{p}_{+},\mathbf{p}_{-}) := \sum_{\Gamma} Z^{f}_{\Gamma,\mathbf{x}}(\mathbf{p}_{+},\mathbf{p}_{-}),$$

where the sum is over all $\Gamma,$ so that each internal vertex of Γ has valency three. Define

$$egin{aligned} \mathcal{F}^{f}_{\Sigma} &: (C^{*}(f))^{\otimes n_{+}}
ightarrow C^{BM}_{*}(\mathcal{M}_{\Sigma}; \mathit{det}^{d}) \otimes (C^{*}(f))^{\otimes n_{-}}, \ & \mathbf{p}_{+} \mapsto \sum_{\mathbf{p}_{-}} Z^{f}(\mathbf{p}_{+}, \mathbf{p}_{-}) \otimes \mathbf{p}_{-}. \end{aligned}$$

(日) (同) (三) (三)

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Cohomology Operations from Flow Graphs (after R. Cohen et al.)} \\ \mbox{Flow Graphs and TCFT} \\ \mbox{Flow Graphs and A}_{\infty}-Algebras \\ \mbox{TcFTs and } A_{\infty}-Algebras \\ \mbox{Tepression} F_{\Sigma}^{M} \end{array} \ \ \begin{array}{c} \mbox{The Ribbon Graph Decomposition} \\ \mbox{Flow Graphs and Ribbon Structures} \\ \mbox{Tepression} \\ \mbox{Tepressio$

Here det^d is a certain local system on \mathcal{M}_{Σ} .

Theorem

- **1** F_{Σ}^{f} is a cochain map.
- Oifferent choices of the Morse function or of the vector field data lead to chain homotopic maps.
- 1) implies that there are induced maps

$$HF^f_{\Sigma}: (H^*(M))^{\otimes n_+} \to H^*(\mathcal{M}_{\Sigma}; det^d) \otimes (H^*(M))^{\otimes n_-}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ribbon Graph Decomposition
Moore Homology
Dperations F_{Σ}^{M}

Sketch of Proof

Consider $\partial(Z^f(\mathbf{p}_+,\mathbf{p}_-))$. This is a sum, where the summands correspond to boundary components of types 1) and 2).

Components of type 1) yield

$$Z^{f}(d\mathbf{p}_{+},\mathbf{p}_{-})\pm Z^{f}(\mathbf{p}_{+},d\mathbf{p}_{-}).$$

We have to show that the summands corresponding to boundary components of type 2) cancel.

Introduction	The Ribbon Graph Decomposition
Cohomology Operations from Flow Graphs (after R. Cohen et al.)	
Flow Graphs and TCFT	Borel-Moore Homology
TCFTs and A_{∞} -Algebras	The Operations F_{Σ}^{M}

These summands are of the form $Z^f_{\widetilde{\Gamma},\mathbf{x}}$, where $\widetilde{\Gamma}$ is obtained from a graph whose internal edges are trivalent by collapsing a single internal edge.

For each such $\widetilde{\Gamma}$, there are exactly two pairs (Γ_1, e_1) and (Γ_2, e_2) with $\Gamma_i/e_i \simeq \widetilde{\Gamma}$, i = 1, 2.

Introduction	The Ribbon Graph Decomposition
Cohomology Operations from Flow Graphs (after R. Cohen et al.)	
Flow Graphs and TCFT	Borel-Moore Homology
TCFTs and A_∞ -Algebras	The Operations F_{Σ}^{M}

One checks that the boundary components from $Z_{\Gamma_1,\mathbf{x}}^f$ and $Z_{\Gamma_2,\mathbf{x}}^f$ enter the sum with the opposite sign.

Introduction	The Ribbon Graph Decomposition
Cohomology Operations from Flow Graphs (after R. Cohen et al.)	Flow Graphs and Ribbon Structures
Flow Graphs and TCFT	Borel-Moore Homology
TCFTs and A_{∞} -Algebras	The Operations F_{Σ}^{M}

One can show that the operations F_{Σ}^{f} are compatible with gluing together Riemann surfaces. This means that they fit together into what is called an (open) topological conformal field theory.

TCFTs have previously been studied from a more algebraic perspective by G. Segal, E. Getzler, M. Kontsevich and more recently, K. Costello.

 A_{∞} -algebra=vector space equipped with linear maps

$$m_k: A^{\otimes k} \to A, \ k = 1, 2, 3, \ldots$$

of degree 2 - k which satisfy for all $n \ge 1$

$$\sum (-1)^{u} m_{i+1+j}(a_1, \ldots, a_i, m_k(a_{i+1}, \ldots, a_{i+k}), a_{i+k+1}, \ldots, a_n) = 0$$

where the sum is over $i, j \ge 0, k \ge 1, i + k + j = n$ and where $u = i + jk + k(|a_1| + \cdots + |a_i|)$.

Combinatorial interpretation: Ways of putting two parentheses in a word on n letters:

•
$$n = 1$$
: $((a_1))$
 $m_1^2 = 0$
• $n = 2$: $((a_1a_2)), ((a_1)a_2), (a_1(a_2))$
 $m_1(m_2(a_1, a_2)) \pm m_2(m_1(a_1), a_2) \pm m_2(a_1, m_1(a_2)) = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$n = 3$$
:
 $m_2(m_2(a_1, a_2), a_3) - m_2(a_1, m_2(a_2, a_3))$
 $\pm m_1(m_3(a_1, a_2, a_3)) \pm m_3(m_1(a_1), a_2, a_3)$
 $\pm m_3(a_1, m_1(a_2), a_3) \pm m_3(a_1, a_2, m_1(a_3)) = 0$

There is also a corresponding notion of A_{∞} -morphisms.

A cyclic structure on A is a non-degenerate inner product which is compatible with the operations m_k . A is called *minimal* if $m_1 = 0$.

伺 ト イ ヨ ト イ ヨ ト

Examples

1) For a Morse function f on a manifold M, one defines $m_k : (C^*(f))^{\otimes k} \to C^*(f)$ by counting the zero-dimensional components of spaces of flows over ribbon *trees*. Cyclic structure: $\langle p, q \rangle = \pm \delta_{pq}$.

Here $m_1 = 0$ means that f is perfect.

2)
$$\Omega^*(M)$$
, $m_1 = d$, $m_2(\alpha, \beta) = \alpha \land \beta$, $m_k \ge 0$ for $k > 2$ and $\langle \alpha, \beta \rangle = \int_M \alpha \land \beta$.

We can 'destill' from $\Omega^*(M)$ a finite-dimensional A_{∞} -algebra A_{dR} with $m_1 = 0$ using classical Hodge theory and the so-called homological perturbation lemma.

- 4 同 6 4 日 6 4 日 6

Kontsevich (1994):

 $\begin{array}{ccc} A & \longrightarrow & F_{\Sigma}^{A} \\ \hline \mbox{Finite-dimensional} & \mbox{Operations analogous} \\ minimal cyclic & to the ones \\ A_{\infty}\mbox{-algebra} & \mbox{constructed above} \end{array}$

- 4 同 6 4 日 6 4 日 6

The *ribbon graph complex* \mathcal{G}_{Σ}^{*} is the vector space generated by the ribbon graphs Γ whose associated surface is Σ , graded by the number of edges. The differential $d : \mathcal{G}_{\Sigma}^{*} \to \mathcal{G}_{\Sigma}^{*+1}$ is defined by expanding vertices.

Proposition (M. Kontsevich, K. Igusa,...)

The cohomology of $(\mathcal{G}_{\Sigma}^*, d)$ is isomorphic to $H^*(\mathcal{M}_{\Sigma})$.

イロト イポト イヨト イヨト

Kontsevich used the structure constants of A to associate to each generator Γ of \mathcal{G}^*_{Σ} a number r_{Γ}^A .

Roughly, one assigns to each half-edge an element of a basis of A; for each vertex of valency k + 1 one takes the expression $\langle m_k(\cdot, \ldots, \cdot), \cdot \rangle$ and for each edge the expression $\langle \cdot, \cdot \rangle$. One multiplies all these expressions and sums up over all basis elements.

Introduction Cohomology Operations from Flow Graphs (after R. Cohen et al.) Flow Graphs and TCFT TCFT and A_{∞} -Algebras

Cyclic A_{∞} -Algebras Kontsevich's Construction Comparing the Geometric and the Algebraic Approach

Theorem (M. Kontsevich '94)

Suppose that A is minimal, i. e. $m_1 = 0$. Then the map

$$\Gamma \mapsto r_{\Gamma}^{A}$$

defines a cocycle in $Hom(\mathcal{G}^*_{\Sigma}, k)$.

For $n_+ + n_- > 0$ we get cochain maps

$$\begin{split} F_{\Sigma}^{A} : A^{\otimes n_{+}} &\to \textit{Hom}(\mathcal{G}_{\Sigma}^{*}, k) \otimes A^{\otimes n_{-}}, \\ \mathbf{a}_{+} &\mapsto \sum_{\mathbf{a}_{-}} \left(\Gamma \mapsto r_{\Gamma}^{A}(\mathbf{a}_{+}, \mathbf{a}_{-}) \right) \mathbf{a}_{-}. \end{split}$$

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Recall that we have a Morse- A_{∞} -algebra A_f . If f is perfect, then we can apply to it Kontsevich's construction. The next Theorem states that the result is equivalent to the more direct construction via flow graphs given above.

Recall that $Z^{f}(\mathbf{p}_{+}, \mathbf{p}_{-}) := \sum_{\Gamma} Z^{f}_{\Gamma, \mathbf{x}}(\mathbf{p}_{+}, \mathbf{p}_{-})$ denotes the sum of geometric chains corresponding to flows of all the trivalent ribbon graphs Γ .

Introduction Cohomology Operations from Flow Graphs (after R. Cohen et al.) Flow Graphs and TCFT **TCFTs and A_∞-Algebras**

Cyclic A_{∞} -Algebras Kontsevich's Construction Comparing the Geometric and the Algebraic Approach

Theorem

Assume that f is perfect. There is a subcomplex of the complex $C_*(\mathcal{M}_{\Sigma})$ of singular chains in \mathcal{M}_{Σ} , which is isomorphic to \mathcal{G}_{Σ}^* , and so that the intersection product of $Z^f(\mathbf{p}_+, \mathbf{p}_-)$ with the chain C_{Γ} corresponding to a generator Γ is given by

$$C_{\Gamma} \cdot Z^{f}(\mathbf{p}_{+},\mathbf{p}_{-}) = r_{\Gamma}^{\mathcal{A}_{f}}(\mathbf{p}_{+},\mathbf{p}_{-}).$$

(日)

Finally, we can compare with A_{dR} .

Kontsevich's construction is compatible with A_{∞} -morphisms: If there is a quasi-isomorphism $A \rightarrow B$, then the associated homological operations HF_{Σ}^{A} and HF_{Σ}^{B} coincide (A. Hamilton, A. Lazarev '06)

Theorem

There is a quasi-isomorphism $A_{dR} \rightarrow A_f$ as cyclic A_{∞} -algebras.

This extends a result of V. K. A. M. Guggenheim from the 70s.

イロン 不同 とくほう イロン