Multiscale
Total
Variation with
Automated
Regularization
Parameter
Selection for
Image
Restoration

Yiqiu Dong

Outline

Background

Degradation
Model

ROF Model
MTV Method

MTV Model
Algorithm for
MTV

A Selection
Local Constraint
Detail Detector
A Selection

SA-TV
Algorithm

Numerical
Results

MVTV Model

Conclusion

Multiscale Total Variation with Automated
Regularization Parameter Selection for Image
Restoration

Yiqiu Dong

START Project, University of Graz
Cooperators: M. Hintermiiller, M. Rincon

November 3, 2010

WF B

GRAZ Der haftsfonds.




Multiscale
Total
Variation with
Automated
Regularization
Parameter
Selection for
Image
Restoration

Yiqiu Dong
Outline

Degradation
Model

ROF Model

MTV Model
Algorithm for
MTV

Local Constraint
Detail Detector
A Selection

@ Background
Degradation Model
Rudin-Osher-Fatemi Model

@® Multiscale Total Variation Method
Multiscale Total Variation Model
Algorithm for Multiscale Total Variation Model

© Spatially Adapted Parameter Selection
Locally Constrained Problem
Recognition of Detail Regions
Update of the Parameter A

@ SA-TV Algorithm

@ Numerical Results

@ Extend to Color Image Restoration
@ Conclusion



Multiscale
Total
Variation with
Automated
Regularization
Parameter
Selection for
Image
Restoration

Yiqiu Dong

Outline

Background

Degradation
Model

ROF Model
MTV Method

MTV Model
Algorithm for
MTV

A Selection
Local Constraint
Detail Detector
A Selection

SA-TV
Algorithm

Numerical
Results

MVTV Model

Conclusion

Degradation Model
z=Ki+n
e K€ L(L*(Q))isa
blurring operator

e n represents white
Gaussian noise with
mean 0 and variance

o2

Problem
e Restore o from z with
n unknown

e lll-posed problem
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min |Dul|
ueBV(Q) Jo
M " subject to / |Ku — z|?dx < 02|Q
ROF Model Q
MTV Model

Algorithm for
MTV

e BV/(Q) denotes the space of functions of bounded
Local Constraint variation

X Selon o Jo|Du| =sup{ [udividx: V€ (C(Q))? |Vl < 1}
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Yiqiu Dong UGBV(Q) Q

subject to / |Ku — z|?dx < 02|Q
Degradation Q
Model
ROF Model
T Mo e Equivalent to unconstrained minimization problem
e (Chambolle and Lions, 1997)
Local Constraint )\
- 2

S min [ 1Dul+ 5 [ |Ku—2Pax
o ueBV(Q) Jo 2 Jo

e \A>0
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Multiscale Total Variation Model (Rudin, 1995)

1
min /]Du\+/x\(x)|Ku—z|2dx
ueBV(Q) Ja 2 Ja

0<A<A(X)<)ae inQ

In multiscale total variation model, XA is spatially varying
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. A
min N/ \Vuladx + = | |Ku—z]Pdx+ [ |Vu|adx
ueH () 2 Jo 2 Ja Q
Degradation
Model
ROF Model
VY Mol e |t is a close approximation of ROF model

Algorithm for
MTV

1 is helpful for function space analysis

Local Constraint

This algorithm uses Fenchel dual technique and
Detail Detector .
X Selection semismooth Newton method

This algorithm converges locally at a superlinear rate
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Problem

1
min ,u/ |Vu|§dx+//\(x)|Ku—z|2dx—l—/ |V ul2dx
ueHi(Q) 2 Jo 2 Ja Q

Dual Problem

1 N . 1

swp  —S|IK"z — divBllf + 5zl
p € L%(Q)

P(x)2 <1 ae. inQ

e Definition of Fenchel conjugate:
F*(v*) = sue (v, v)v,v= — F(v)}
ve
e inf {F(v) +G(Av)} = sup {—F"(A\"q) — G"(—q)}
veV geY*
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1
min ,u/ |Vu|§dx+//\(x)|Ku—z|2dx—l—/ |V ul2dx
ueHi(@) 2 Ja 2 Jg Q

Dual Problem

1 N . 1
swp  —S|IK"z — Bl + 5zl
B e L3(Q)
P(x)2 <1 ae. inQ

e K* is adjoint operator of K
o [[[vI[[Z=2 = ((KAK = p) Py, v)
function

HL with X\ as

e The solution of the dual problem is not unique
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L ivp 1 RA
sup 3 lIK°z = vl + 5zl [ Bl
BeL?(Q) 9
[B(x)]2 <1 ae inQ

Problem

1
min “/ ]Vu\%dx—k/)\(x)]Ku—z|2dx+/¢y(Vu)dx
2 Jg 2 Ja Q

ueH}(Q)

O (79 I N i 769 | P
e O (V)(x) = { % V(X)@’z if [V(x)]2 <7
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Optimality Condition

- 1
div,sea<“/ \vmgdx+/ A(x)\Ku—dex)
2 Jg 2 Ja

peo </Q ¢«,(Vﬂ)dx>

Equations for the solutions

—pAT+ KTAKD — divp = K"Az in H=Y(Q)
YVB-Vi=0 if[Ba<1 . 2
Vahp—Vi—=0 if =1 "5 )
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2 Q 2 Q

Degradation I:j\ e 8 (/S‘2 (Dﬁ/(vu)dX)

ROF Model

MTV Model

Algoithm for Equations for the solutions

Local Constraint
Detail Detector
A Selection

—uAT + K*AKT — divg = K*Az in H"}(Q)
max (7, |V@|2)p — Vi =0 in L3(Q)
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Yiqiu Dong UEBV(Q) Q

subject to S,(x) < 02, ae. x €Q

Degradation
Model

ROF Model

Local Smoothness

MTV Model
Algorithm for
MTV

Sl = wlKu— 2P0 = [ wlx - )l 2 (y)dy
Local Constraint Q

Detail Detector
A Selection

e w € L*(Q) is a normalized smoothing filter
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Locally Constrained Model

min /|Du|
ueBV(Q)

subject to S,(x) < o2, ae x€Q

e Consider the unconstrained minimization problem

min
ueBV(Q)

/|Du|+7/ max(S,(x) — o2, 0)2dx
Q 2 Jo
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Yiqiu Dong UEB\I/(Q)/Q‘ U‘ + 2 /Q X( U(X) g ) X
QOutline

Background

. Multiscale Total Variation Model
Model
ROF Model

min [ 10ul+ 5 [ A(lKu— 2P

Algorithm for ueBv(Q
MTV

A Selection

Local Constraint

Detail D.e(ector ° j\(y) ’-y maX(S (y) - 0- O)
S A(x) = wx A(x = [qw(x Y)A(y)dy
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Locally Smoothing Filter

Lok -yle <%

wix,y) = €, otherwise
0<exl
we such that [, [ w(x,y)dydx =1
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Locally Smoothing Filter

1 w w w w
_ | o Ix—ylel=%2.51x[-%.5]
w(x.y) { 0, otherwise

Local Constraint

Su(x) = wx |Ku — z|*(x) = L / |Ku — z|?dy

® Q?Z{yEQ:‘X—yIE _%7%]X[_§7%}]}
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Locally Smoothing Filter
wixy) =1 ¢’

Local Constraint

1
(4)29

e Qv ={yeQ:|x—yle[-

W o w
272

w

%a ’X_y’ € [_57%}] X [_%7%]
otherwise

|Ku — z|?dy < 0%, ae. x€Q

I x[-3.51}
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Local Variance Estimator

1 -
= 2 (Kse—z0)”

(s,t)€Qy;

e ii is the restored image by solving the classical ROF model
with a relatively small A

o QY = {(s+it+)):—[%] <s,t <[%]} is the set of
coordinates in a w-by-w window centered at (/,)
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1
Tii=— > (nse)?

(s,1)€Q;

e T} has the x>2-distribution with w? degrees of freedom;

e |f u = 0 satisfies n = z — K1, then

1 ) 02
S = 02 Z (2ot — (K0)st)* = ET;U,JJ‘
(s,1)eQy;

e If the residual image z — KT contains details, we expect

1 ~ 2 o
St = 2 Z (zs,e — (Kii)s,t)” > ETifi
(s,t)GQj"’j
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What is a suitable bound B such that 5¢’; > B implies that
in the residual there are some details Ieft in Qw

The bound should relate to the maximum of the m? random

variables Z; Tk ,k=1,...,m?. We propose the following
bound

w? =1,..,m

3ty [ARRS]

2
pom .= <e(k max  TY) +0( max T,i”))

e m X m is the image size
e (& represents the expected value of a random variable

e 0 represents the variance of a random variable
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Outline (S\k-‘rl)l,_[ - (j\k)l,j + p((gf)’d - 0-2)
1

Background

T Mer)ij =5 O (Mesa)se

ROF Model w

s5,t)eQY.
MTV Method (s,t)€Q2?;
MTV Model
Algorithm for
MTV

X Selection e p= ||5\k||oo/0 in order to keep the new S\kﬂ at the same

Local Constraint

Detail Detector Scale as )\k

A Selection
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Algorithm

Numerical
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Basic MTV Algorithm
1: Initialize up = 0 € R™*™, pg = 0 € (R(™M*M)2, \g = g € RT*" and
k =0.
2: Solve the discrete version

1
= i Dul+ = | M (Ku — z)%dx.
U, = arg uerlrg‘l‘l/n(m/f;\ u| + 2/Q «(Ku — z)%dx

3: Based on uy, update \y41 as

(t1)ii = ()i + 2((58)ij — 02,
1 ~
(Aet1)ij = el E (Akt1)s,t-

(s,t)GQ‘,.‘jj

4: Stop, or set k := k+ 1 and return to step 2.
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Tadmor-Nezzar-Vese(TNV) Algorithm (2004, 2008)

Initialize up = 0 € R™XM, py =0 € (R™M)2 X\ € Ry and k = 0.

2: Calculate vy = z — Kug. Then, solve the minimization problem

A
min /|Du|+—k/|Ku—vk|2dx,
ueBV(Q) Jq 2 Ja

and get 0.
3: Update ugqq = ug + 0.
Based on wuy1, update Mgy =2 Ak,
5: Stop; or set k := k + 1 and go to step 2.
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Selection of the Parameter A\

(Ms1)ij =2+ min ((S\k)i,j +p <\/@— U) ’L>

1 N
(>\k+1)u=; Z (Akt1)st

(s,)eQy;

e L is a large positive value to ensure A\, € L(Q)
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SA-TV Algorithm

1: Initialize up = 0 € R™*™, py = 0 € (R(™M*M)2, Ng = Ko € RT*™ and
k=0.
2: Calculate vy = z — Kug. Then, solve the minimization problem

min /|Vu|2dx+ /)\k(x)\Kuka|2dx+/|Vu|2dx
ueH}(Q) 2 Q Q

by primal-dual algorithm, and get & and pj;.
3: Update ug41 = ug + 0.
Based on wuy1, update

(Mkt1)ij =2 min ((:\k)i,j +p (M - U) ; L)

(A1) ,J—* Z >\k+1)s,t

(s,t)€Q

5: Stop; or set k := k + 1 and go to step 2.
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Restoration of Noisy Images

/ff///
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PSNR of Restored Images by Our Method for Different w

29

—&— Carmeraman
85 —+—Barbara
kS ,’___e_———e—__f
75
x
4
g5 7
a
BE ﬁ
%
%5
5 -
7 9 11 13 15 17 19 21 Ee]

e Since the confidence interval technique from statistics is
introduced in the local variance estimator, A can be
adjusted automatically based on the size of the windows
QY. This yields a parameter-free method.
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Restoration of MR Images with Non-Uniform Noise
min / | Dul|
ueBV(Q)
subject to S,(x) < 0?(x), a.e. x €Q

e 02 is not a scalar but related to the position in the image

e Selection of A becomes
(j\k-i-l)id' = 2-min <(3\k)i,j +p < (glf)u - Ui,j> al-)
1 a
(Mk+1)ij = e Z (Akt1)s,t

(s,1)€Qy;
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Degradation Model for Color
Images

z=Kiu-+n

e 0,2:Q — RM are
vector-valued functions

o K< L(L2(Q;RM))is a
cross-channel blurring
operator

e M is the number of

channels in the color
model
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Multiscale Vectorial TV Model

1
min /|Du|+/)\(x)]Ku—z|§dx
Q 2 Ja

ueBV(Q)

* Jq|Dul=
sup { [qu-divV dx : v € C}(Q,RM*?) V| < 1in Q}

o A€ L[®(Q) with 0 < A < A\(x) < X for almost all x € Q
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