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Degradation Model

z = Kû + n

• K ∈ L(L2(Ω)) is a
blurring operator

• n represents white
Gaussian noise with
mean 0 and variance
σ2

Problem

• Restore û from z with
n unknown

• Ill-posed problem
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Degradation Model

z = Kû + n

• K ∈ L(L2(Ω)) is a
blurring operator

• n represents white
Gaussian noise with
mean 0 and variance
σ2

Problem

• Restore û from z with
n unknown

• Ill-posed problem
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Rudin-Osher-Fatemi (ROF) Model (1992)

min
u∈BV (Ω)

∫
Ω
|Du|

subject to

∫
Ω
|Ku − z |2dx ≤ σ2|Ω|

• BV (Ω) denotes the space of functions of bounded
variation

•
∫

Ω |Du| = sup
{ ∫

Ω u div~vdx : ~v ∈ (C∞0 (Ω))2, ‖~v‖∞ ≤ 1
}
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Rudin-Osher-Fatemi (ROF) Model (1992)

min
u∈BV (Ω)

∫
Ω
|Du|

subject to

∫
Ω
|Ku − z |2dx ≤ σ2|Ω|

• Equivalent to unconstrained minimization problem
(Chambolle and Lions, 1997)

min
u∈BV (Ω)

∫
Ω
|Du|+ λ

2

∫
Ω
|Ku − z |2dx

• λ > 0
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Results with Different λ

Original Image Noisy Image

λ = 20 λ = 10
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Multiscale Total Variation Model (Rudin, 1995)

min
u∈BV (Ω)

∫
Ω
|Du|+ 1

2

∫
Ω
λ(x)|Ku − z |2dx

• 0 < λ ≤ λ(x) ≤ λ̄ a.e. in Ω

• In multiscale total variation model, λ is spatially varying
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Result with Multiscale Total Variation Method

λ = 20 λ = 10

λ Restored Image
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Primal-Dual Algorithm for ROF Model (Hintermüller and
Stadler, 2006)

min
u∈H1

0 (Ω)

µ

2

∫
Ω
|∇u|22dx +

λ

2

∫
Ω
|Ku − z |2dx +

∫
Ω
|∇u|2dx

• It is a close approximation of ROF model

• µ is helpful for function space analysis

• This algorithm uses Fenchel dual technique and
semismooth Newton method

• This algorithm converges locally at a superlinear rate
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Problem

min
u∈H1

0 (Ω)

µ

2

∫
Ω
|∇u|22dx +

1

2

∫
Ω
λ(x)|Ku − z |2dx +

∫
Ω
|∇u|2dx

Dual Problem

sup
~p ∈ L2(Ω)

|~p(x)|2 ≤ 1 a.e. in Ω

−1

2
|||K ∗z − div~p|||2H−1 +

1

2
‖z‖2

L2

• Definition of Fenchel conjugate:
F∗(v∗) = sup

v∈V
{〈v , v∗〉V ,V ∗ −F(v)}

• inf
v∈V
{F(v) + G(∧v)} = sup

q∈Y ∗
{−F∗(∧∗q)− G∗(−q)}
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Problem

min
u∈H1

0 (Ω)

µ

2

∫
Ω
|∇u|22dx +

1

2

∫
Ω
λ(x)|Ku − z |2dx +

∫
Ω
|∇u|2dx

Dual Problem

sup
~p ∈ L2(Ω)

|~p(x)|2 ≤ 1 a.e. in Ω

−1

2
|||K ∗z − div~p|||2H−1 +

1

2
‖z‖2

L2

• K ∗ is adjoint operator of K

• |||v |||2H−1 =
〈
(K ∗λK − µ4)−1v , v

〉
H1

0 ,H
−1 with λ as

function

• The solution of the dual problem is not unique
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Dual Problem

sup
~p ∈ L2(Ω)

|~p(x)|2 ≤ 1 a.e. in Ω

−1

2
|||K ∗z − div~p|||2H−1 +

1

2
‖z‖2

L2−
γ

2

∫
Ω
‖~p‖2

L2

Problem

min
u∈H1

0 (Ω)

µ

2

∫
Ω
|∇u|22dx +

1

2

∫
Ω
λ(x)|Ku − z |2dx +

∫
Ω

Φγ(∇u)dx

• Φγ(~v)(x) =

{
|~v(x)|2 − γ

2 , if |~v(x)|2 ≥ γ
1

2γ |~v(x)|22, if |~v(x)|2 < γ
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Optimality Condition

div~̄p ∈ ∂
(
µ

2

∫
Ω
|∇ū|22dx +

1

2

∫
Ω
λ(x)|Kū − z |2dx

)
~̄p ∈ ∂

(∫
Ω

Φγ(∇ū)dx

)

Equations for the solutions

−µ4ū + K ∗λKū − div~̄p = K ∗λz in H−1(Ω)

γ~̄p −∇ū = 0 if |~̄p|2 < 1

|∇ū|2~̄p −∇ū = 0 if |~̄p|2 = 1

}
in L2(Ω)
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Optimality Condition

div~̄p ∈ ∂
(
µ

2

∫
Ω
|∇ū|22dx +

1

2

∫
Ω
λ(x)|Kū − z |2dx

)
~̄p ∈ ∂

(∫
Ω

Φγ(∇ū)dx

)

Equations for the solutions

−µ4ū + K ∗λKū − div~̄p = K ∗λz in H−1(Ω)

max (γ, |∇ū|2)~̄p −∇ū = 0 in L2(Ω)
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ROF Model (1992)

min
u∈BV (Ω)

∫
Ω
|Du|

subject to

∫
Ω
|Ku − z |2dx ≤ σ2|Ω|

Locally Constrained Model

min
u∈BV (Ω)

∫
Ω
|Du|

subject to Su(x) ≤ σ2, a.e. x ∈ Ω



Multiscale
Total

Variation with
Automated

Regularization
Parameter

Selection for
Image

Restoration

Yiqiu Dong

Outline

Background

Degradation
Model

ROF Model

MTV Method

MTV Model

Algorithm for
MTV

λ Selection

Local Constraint

Detail Detector

λ Selection

SA-TV
Algorithm

Numerical
Results

MVTV Model

Conclusion

Locally Constrained Model

min
u∈BV (Ω)

∫
Ω
|Du|

subject to Su(x) ≤ σ2, a.e. x ∈ Ω

Local Smoothness

Su(x) = w ? |Ku − z |2(x) =

∫
Ω

w(x − y)|Ku − z |2(y)dy

• w ∈ L∞(Ω) is a normalized smoothing filter
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Locally Constrained Model

min
u∈BV (Ω)

∫
Ω
|Du|

subject to Su(x) ≤ σ2, a.e. x ∈ Ω

• Consider the unconstrained minimization problem

min
u∈BV (Ω)

∫
Ω
|Du|+ γ

2

∫
Ω

max(Su(x)− σ2, 0)2dx
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Unconstrained Version of Locally Constrained Model

min
u∈BV (Ω)

∫
Ω
|Du|+ γ

2

∫
Ω

max(Su(x)− σ2, 0)2dx

Multiscale Total Variation Model

min
u∈BV (Ω)

∫
Ω
|Du|+ 1

2

∫
Ω
λ(x)|Ku − z |2dx ,

• λ̂(y) = γmax(Su(y)− σ2, 0)
λ(x) = w ? λ̂(x) =

∫
Ω w(x , y)λ̂(y)dy

• λ > 0
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Locally Smoothing Filter

w(x , y) =

{
1

w2
ε
, ‖x − y‖∞ ≤ ω

2

ε, otherwise

• 0 < ε� 1

• wε such that
∫

Ω

∫
Ω w(x , y)dydx = 1
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Locally Smoothing Filter

w(x , y) =

{
1
ω2 , |x − y | ∈ [−ω

2 ,
ω
2 ]× [−ω

2 ,
ω
2 ]

0, otherwise

Local Constraint

Su(x) = w ? |Ku − z |2(x) =
1

ω2

∫
Ωωx

|Ku − z |2dy

• Ωω
x =

{
y ∈ Ω : |x − y | ∈ [−ω

2 ,
ω
2 ]× [−ω

2 ,
ω
2 ]
}
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Locally Smoothing Filter

w(x , y) =

{
1
ω2 , |x − y | ∈ [−ω

2 ,
ω
2 ]× [−ω

2 ,
ω
2 ]

0, otherwise

Local Constraint

1

ω2

∫
Ωωx

|Ku − z |2dy ≤ σ2, a.e. x ∈ Ω

• Ωω
x =

{
y ∈ Ω : |x − y | ∈ [−ω

2 ,
ω
2 ]× [−ω

2 ,
ω
2 ]
}
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Local Variance Estimator

Sωi ,j =
1

ω2

∑
(s,t)∈Ωωi,j

(
(Kũ)s,t − zs,t

)2

• ũ is the restored image by solving the classical ROF model
with a relatively small λ

• Ωω
i ,j =

{
(s + i , t + j) : −

⌊
ω
2

⌋
≤ s, t ≤

⌊
ω
2

⌋}
is the set of

coordinates in a ω-by-ω window centered at (i , j)
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Example 1

Original Image Noisy Image Restored Image

Residual S5 S7
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Example 2

Original Image Noisy Image Restored Image

Residual S5 S7
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Tω
i ,j =

1

σ2

∑
(s,t)∈Ωωi,j

(ns,t)2

• Tω
i ,j has the χ2-distribution with ω2 degrees of freedom;

i.e., Tω
i ,j ∼ χ2

ω2

• If u = û satisfies n = z − Kû, then

Sωi ,j =
1

ω2

∑
(s,t)∈Ωωi,j

(zs,t − (Kû)s,t)2 =
σ2

ω2
Tω

i ,j

• If the residual image z − Kũ contains details, we expect

Sωi ,j =
1

ω2

∑
(s,t)∈Ωωi,j

(zs,t − (Kũ)s,t)2 >
σ2

ω2
Tω

i ,j



Multiscale
Total

Variation with
Automated

Regularization
Parameter

Selection for
Image

Restoration

Yiqiu Dong

Outline

Background

Degradation
Model

ROF Model

MTV Method

MTV Model

Algorithm for
MTV

λ Selection

Local Constraint

Detail Detector

λ Selection

SA-TV
Algorithm

Numerical
Results

MVTV Model

Conclusion

What is a suitable bound B such that Sωi ,j > B implies that
in the residual there are some details left in Ωω

i ,j?

The bound should relate to the maximum of the m2 random
variables σ2

ω2 T
ω
k , k = 1, . . . ,m2. We propose the following

bound

Bω,m :=
σ2

ω2

(
E( max

k=1,...,m2
Tω

k ) + d( max
k=1,...,m2

Tω
k )

)

• m ×m is the image size

• E represents the expected value of a random variable

• d represents the variance of a random variable
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Improved Local Variance Estimator

S̃ωi ,j :=


1
ω2

∑
(s,t)∈Ωωi,j

(zs,t − (Kũ)s,t)2 if Sωi ,j ≥ Bω,m,

σ2 otherwise .
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Example 1

Original Image S7 S̃7



Multiscale
Total

Variation with
Automated

Regularization
Parameter

Selection for
Image

Restoration

Yiqiu Dong

Outline

Background

Degradation
Model

ROF Model

MTV Method

MTV Model

Algorithm for
MTV

λ Selection

Local Constraint

Detail Detector

λ Selection

SA-TV
Algorithm

Numerical
Results

MVTV Model

Conclusion

Example 2

Original Image S7 S̃7
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Selection of the Parameter λ

(λ̂k+1)i ,j = (λ̂k)i ,j + ρ
(
(S̃ωk )i ,j − σ2

)
(λk+1)i ,j =

1

ω2

∑
(s,t)∈Ωωi,j

(λ̂k+1)s,t

• ρ = ‖λ̂k‖∞/σ in order to keep the new λ̂k+1 at the same
scale as λ̂k
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Basic MTV Algorithm

1: Initialize u0 = 0 ∈ Rm×m, p0 = 0 ∈ (R(m×m))2, λ0 = λ̂0 ∈ Rm×m
+ and

k = 0.

2: Solve the discrete version

uk = arg min
u∈BV (Ω)

Z
Ω
|Du|+

1

2

Z
Ω
λk (Ku − z)2dx .

3: Based on uk , update λk+1 as

(λ̂k+1)i,j = (λ̂k )i,j + ρ
`
(S̃ωk )i,j − σ2

´
,

(λk+1)i,j =
1

ω2

X
(s,t)∈Ωωi,j

(λ̂k+1)s,t .

4: Stop, or set k := k + 1 and return to step 2.
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Tadmor-Nezzar-Vese(TNV) Algorithm (2004, 2008)

1: Initialize u0 = 0 ∈ Rm×m, p0 = 0 ∈ (Rm×m)2, λ0 ∈ R+ and k = 0.

2: Calculate vk = z − Kuk . Then, solve the minimization problem

min
u∈BV (Ω)

Z
Ω
|Du|+

λk

2

Z
Ω
|Ku − vk |2dx ,

and get ũ.

3: Update uk+1 = uk + ũ.

4: Based on uk+1, update λk+1 = 2 · λk .

5: Stop; or set k := k + 1 and go to step 2.
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Selection of the Parameter λ

(λ̂k+1)i ,j = 2 ·min

(
(λ̂k)i ,j + ρ

(√
(S̃ωk )i ,j − σ

)
, L

)
(λk+1)i ,j =

1

ω2

∑
(s,t)∈Ωωi,j

(λ̂k+1)s,t

• L is a large positive value to ensure λ̂k ∈ L∞(Ω)
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SA-TV Algorithm

1: Initialize u0 = 0 ∈ Rm×m, p0 = 0 ∈ (R(m×m))2, λ0 = λ̂0 ∈ Rm×m
+ and

k = 0.

2: Calculate vk = z − Kuk . Then, solve the minimization problem

min
u∈H1

0 (Ω)

µ

2

Z
Ω
|∇u|22dx +

1

2

Z
Ω
λk (x)|Ku − vk |2dx +

Z
Ω
|∇u|2dx

by primal-dual algorithm, and get ũ and pk+1.

3: Update uk+1 = uk + ũ.

4: Based on uk+1, update

(λ̂k+1)i,j = 2 ·min

„
(λ̂k )i,j + ρ

„q
(S̃ωk )i,j − σ

«
, L

«
(λk+1)i,j =

1

ω2

X
(s,t)∈Ωωi,j

(λ̂k+1)s,t

5: Stop; or set k := k + 1 and go to step 2.
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Restoration of Noisy Images

Original Image Noisy Image ROF (λ=11)

Bregman (λ0=2.5) TNV (λ0=2.5) SA-TV (λ0=2.5)
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Restoration of Noisy Images
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Restoration of Noisy Images

Original Image Noisy Image ROF (λ0=14)

Bregman (λ0=2.5) TNV (λ0=2.5) SA-TV (λ0=2.5)
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PSNR of Restored Images by Our Method for Different ω

• Since the confidence interval technique from statistics is
introduced in the local variance estimator, λ can be
adjusted automatically based on the size of the windows
Ωω. This yields a parameter-free method.
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Restoration of MRI

Noisy images Restored images λ
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Restoration of MR Images with Non-Uniform Noise

min
u∈BV (Ω)

∫
Ω
|Du|

subject to Su(x) ≤ σ2(x), a.e. x ∈ Ω

• σ2 is not a scalar but related to the position in the image

• Selection of λ becomes

(λ̂k+1)i ,j = 2 ·min

(
(λ̂k)i ,j + ρ

(√
(S̃ωk )i ,j − σi ,j

)
, L

)
(λk+1)i ,j =

1

ω2

∑
(s,t)∈Ωωi,j

(λ̂k+1)s,t
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Restoration of MR Images with Non-Uniform Noise

Noisy images Noise ratios Restored images
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Restoration of MR Images with Non-Uniform Noise
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Degradation Model for Color
Images

z = K û + n

• û, z : Ω→ RM are
vector-valued functions

• K ∈ L(L2(Ω; RM)) is a
cross-channel blurring
operator

• M is the number of
channels in the color
model
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Degradation Model for Color
Images

z = K û + n

• û, z : Ω→ RM are
vector-valued functions

• K ∈ L(L2(Ω; RM)) is a
cross-channel blurring
operator

• M is the number of
channels in the color
model
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Multiscale Vectorial TV Model

min
u∈BV(Ω)

∫
Ω
|Du|+ 1

2

∫
Ω
λ(x)|Ku− z|22dx

•
∫

Ω |Du| =
sup

{∫
Ω u · div~v dx : ~v ∈ C 1

c (Ω,RM×2), |~v|F ≤ 1 in Ω
}

• λ ∈ L∞(Ω) with 0 < λ ≤ λ(x) ≤ λ̄ for almost all x ∈ Ω
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Original Image
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Restoration of Noisy Images

Noisy Images VTV method SA-TV method
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Restoration of Blurred Noisy Images

Noisy Images VTV method SA-TV method
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Conclusion

• Based on spatially dependent parameter selection, our
method is able to preserve the details during noise
removal.

• With confidence interval technique from statistics, our
method is parameter-free.

• In our method, a superlinearly convergent algorithm based
on Fenchel-duality and inexact semismooth Newton
techniques is used to solve the multiscale total variation
model.
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Thank you!
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