HUMBOLDT-UNIVERSITÄT ZU BERLIN

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT II INSTITUT FÜR MATHEMATIK

Prof. Dr. U. Kühn

Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin

Ausgewählte Übungsaufgaben zur Vorlesung Algebra 1 Serie 1.-11.

Aufgabe I.2:

- (a) Man gebe jeweils eine Gruppentafel für eine Gruppe mit 2, 3 bzw. 5 Elementen an.
- (b) Man gebe mindestens zwei verschiedene Gruppentafeln für eine Gruppe mit 4 bzw. 6 Elementen an.
- (c) Bestimme die Anzahl der Gruppen mit 1, 2, ..., 6 Elementen bis auf Isomorphie.

Aufgabe II.1:

- (a) Bestimme das Zentrum der Gruppe $Gl_n(\mathbb{R})$.
- (b) Bestimme das Zentrum von S_4 .

Aufgabe III.4: Sei G eine Gruppe. Für $a, b \in G$ heisst $[a, b] = aba^{-1}b^{-1}$ der Kommutator von a, b. Die von allen Kommutatoren [a, b] mit $a, b \in G$ erzeugte Untergruppe wird mit [G, G] bezeichnet und heisst die Kommutatorgruppe von G.

- (a) Man zeige: [G, G] ist ein Normalteiler und G/[G, G] ist eine abelsche Gruppe.
- (b) Sei $\pi:G\to G/[G,G]$ der kanonische Epimorphismus. Ist $\varphi:G\to H$ ein Homomorphismus in eine abelsche Gruppe H, so existiert genau ein Gruppenhomomorphismus $h:G/[G,G]\to H$.

Aufgabe V.1: Es sei $\varphi: R \to R'$ ein Homomorphismus von Ringen.

- (a) Man zeige, dass sein Bild $\operatorname{im}(\varphi) = \varphi(R)$ ein Unterring von R' ist.
- (b) Man zeige, dass sein Kern $\ker(\varphi) = \varphi^{-1}(0)$ ein Ideal in R ist.

Aufgabe V.2:

- (a) Man zeige, dass $\mathbb{Z}/n\mathbb{Z}$ genau dann ein Körper ist, wenn n eine Primzahl ist
- (b) Man zeige, dass das Ideal $(x^2 + x + 1) \subset \mathbb{Z}[x]$ ein Primideal ist.
- (c) Man zeige, dass für alle Primzahlen p das Ideal $(p) \subset \mathbb{Z}[x]$ ein Primideal ist.
- (d) Man zeige, dass das Ideal $(5, x^2 + x + 1) \subset \mathbb{Z}[x]$ ein maximales Ideal ist.

Aufgabe VI.1:

- (a) Finde die kleinste Zahl $x \in \mathbb{N}$ mit $x \equiv 3 \mod 4$, $x \equiv 1 \mod 9$ und $x \equiv 4 \mod 5$.
- (b) Man berechne den größten gemeinsamen Teiler und das kleinste gemeinsame Vielfache von 17201 und 13861.
- (c) Man berechne mit Hilfe des euklidischen Algorithmus den größten gemeinsamen Teiler der folgenden Polynome aus $\mathbb{Q}[x]$:

$$f = x^3 + x^2 + x - 3$$
, $g = x^6 - x^5 + 6x^2 - 13x + 7$.

Aufgabe VI.2:

- (a) Man zeige, dass $\mathbb{Z}[i] = \{x + iy \in \mathbb{C} \mid x, y \in \mathbb{Z}\} \subset \mathbb{C}$ versehen mit der Normabbildung $\delta : \mathbb{Z}[i] \to \mathbb{N}$ gegeben durch $\delta(x + iy) = x^2 + y^2$ ein euklidischer Ring ist.
- (b) Man berechne den größten gemeinsamen Teiler und das kleinste gemeinsame Vielfache von 1+7i und 6+17i.

Aufgabe VI.3: Gegeben sei der Unterring $R = \mathbb{Z} + \sqrt{-5}\mathbb{Z} \subset \mathbb{C}$.

- (a) Man zeige, das Ideal $(2, 1 + \sqrt{-5}) \subset R$ ist ein Primideal das nicht von einem Element erzeugt werden kann.
- (b) Man beweise, dass R ist nicht faktoriell ist. Tip: Betrachte die Faktorisierungen $6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 \sqrt{-5})$ und zeige, dass die Elemente 2, 3, $1 + \sqrt{-5}$ und $1 \sqrt{-5}$ jeweils irreduzibel und paarweise nicht assoziert sind.

Aufgabe VII.2:

- (a) Sei R ein Integritätsbereich und $\mathfrak{a} \subset R$ ein Ideal. Man zeige: \mathfrak{a} ist ein freier R-Modul genau dann wenn $\mathfrak{a} = (a)$ für ein $a \in R$.
- (b) Finde einen Unterring $R \subset \mathbb{C}$ und $\mathfrak{a} \subset R$, sodass \mathfrak{a} kein freier R-Modul ist.

Aufgabe VII.3: Bestimme die Elemtarteiler folgender ganzzahliger Matri-

zen:

$$\begin{pmatrix} 2 & 6 & 8 \\ 3 & 1 & 2 \\ 9 & 5 & 4 \end{pmatrix}, \quad \begin{pmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{pmatrix}.$$

Aufgabe VIII.2:

Zeigen Sie:

- (a) In $\mathbb{F}_2[X]$ ist $X^2 + X + 1$ das einzige irreduzible Polynom vom Grade 2.
- (b) Das Polynom $f(X) = X^4 + 3X^3 + 144X^2 6X + 3$ ist irreduzibel in $\mathbb{Z}[X]$.
- (c) $X^m + 1 \in \mathbb{Q}[X]$ ist für für jedes $m = 2^n$ irreduzibel.
- (d) Das Polynom $f(X) = (X+17)^2(X+5)^2 + 1$ ist irreduzibel in $\mathbb{Q}[X]$.

Aufgabe VIII.3:

Sei R ein faktorieller Ring, und es gebe ein Primelement q von R, sodaß keine Einheit $e \neq 1$ von R die Kongruenz $e \equiv 1 \pmod{q}$ erfüllt. Man zeige, daß dann R unendlich viele prime Hauptideale (p) besitzt. Insbesondere gilt dies für $R = \mathbb{Z}$ oder R = K[X] mit einem Körper K. (Hinweis: Erinnern Sie sich an Euklids Beweis für die Existenz von unendlich vielen Primzahlen.)

Aufgabe IX.1:

- a) Welchen Grad besitzt $\mathbb{Q}(\sqrt{2}, \sqrt{-23})$ über \mathbb{Q} ?
- b) Bestimme das Minimalpolynom von $\sqrt{2} + \sqrt{-23}$.

Aufgabe IX.4:

Welche der folgenden algebraischen Zahlen ist ganz

$$\sqrt{3-\sqrt{5}}+3^{2/9}, \quad \frac{1}{\sqrt{23}}, \quad \frac{23-\sqrt[5]{11}}{9+4\sqrt{5}}, \quad \cos(\frac{5}{7}\pi)?$$

Aufgabe X.1: Bestimme den Zerfällungskörper des Polynoms X^4-2 über \mathbb{Q}, \mathbb{F}_3 und über \mathbb{F}_5 .

Aufgabe X.2:

Sei K der Körper $\mathbb{F}_3(t)$. Man zeige, dass das Polynom $f(X) = X^3 - t \in K[X]$ irreduzibel ist und bestimme die Nullstellen von f(X).

Aufgabe X.3:

- a) Bestimme ein primitives Element α für den Körper $\mathbb{Q}(\sqrt[3]{2}, \sqrt{2})$.
- b) Gebe eine Darstellung von $\sqrt[3]{2}$ und eine von $\sqrt{2}$ als Element von $\mathbb{Q}(\alpha)$ an.

Aufgabe XI.3:

Man zeige, dass das Polynom $f(X) = X^3 + 2X + 2 \in \mathbb{Q}[X]$ irreduzibel ist und nur eine reelle Nullstelle besitzt. Welche Galoisgruppe besitzt der Zerfällungskörper von f?

Aufgabe XI.4: Man zeige der Körper $K=\mathbb{Q}(i+\sqrt{2})$ ist galoisch und bestimme die Galoisgruppe $G(K|\mathbb{Q})$.

Literatur zur Vorlesung:

Vieweg Mathematik Lexikon, Vieweg Verlag; M. Artin: Algebra, Birkhäuser Verlag; S. Bosch: Algebra, Springer Verlag; E. Kunz: Algebra, Vieweg Verlag; S. Lang: Algebra, Springer Verlag; G. Wüstholz: Algebra, Vieweg Verlag.