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Abstract. We establish several properties of the integrated density of states
for random quantum graphs: Under appropriate ergodicity and amenability as-
sumptions, the integrated density of states can be defined using an exhaustion
procedure by compact subgraphs. A trace per unit volume formula holds, simi-
larly as in the Euclidean case. Our setting includes periodic graphs. For a model
where the edge lengths are random and vary independently in a smooth way we
prove a Wegner estimate and related regularity results for the integrated density
of states.

These results are illustrated for an example based on the Kagome lattice. In
the periodic case we characterise all compactly supported eigenfunctions and
calculate the position and size of discontinuities of the integrated density of
states.

1. Introduction

Quantum graphs are Laplace or Schrödinger operators on metric graphs. As
structures intermediate between discrete and continuum objects they have received
quite some attention in recent years in mathematics, physics and material sciences,
see e.g. the recent proceeding volume [EKK+08] for an overview.

Here, we study periodic and random quantum graphs. Our results concern spec-
tral properties which are related to the integrated density of states (IDS), some-
times called spectral distribution function. As in the case of random Schrödinger
operators in Euclidean space, disorder may enter the operator via the potential.
Moreover, and this is specific to quantum graphs, randomness may also influence
the characteristic geometric ingredients determining the operator, viz.

• the lengths of the edges of the metric graph and
• the vertex conditions at each junction between the edges.

In the present paper we pay special attention to randomness in these geometric
data. Our results may be summarised as follows. For quite wide classes of quantum
graphs we establish

• the existence, respectively the convergence in the macroscopic limit, of
the integrated density of states under suitable ergodicity and amenability
conditions (see Theorem 2.6),

• a trace per unit volume formula for the IDS (see equation (2.9)),
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• a Wegner estimate for random edge length models (assuming independence
and smoothness for the disorder) (Theorem 2.9). This implies quantitative
continuity estimates for the IDS (Corollary 2.10).

These abstract results are illustrated by the thorough discussion of an example
concerning a combinatorial and a metric graph based on the Kagome lattice. In
this case we calculate positions and sizes of all jumps of the IDS. Our results show
the smoothing of the IDS via randomness.

Of course, there are various previous results dealing with related topics. They
include results on spectral localisation/delocalisation properties of random quan-
tum graphs with tree structure [ASW06, HP06] and spectral localisation of metric
graphs with Zd structure [EHS07, Hel07, KP08]. Concerning our specific results
we may mention the following: Our construction of the IDS is related to the con-
struction of the IDS for abstract random operators done in [Len99, LPV07]. Our
Wegner estimates are closely related to works for Schrödinger operators on met-
ric graphs with random potential [HV07, GV08, GHV08]. Discontinuities of the
integrated density of states and compactly supported eigenfunctions have been
studied for discrete and quantum graphs in quite a few publications of which we
mention [Kuc91, MY02, KLS03, MSY03, KS04, Ves05, Kuc05, KLPS06, GLV07,
LMV08, LV08]. Continuity properties of the IDS for models where randomness
enters via the geometry or in a non-monotone way have been obtained earlier
in [LPV04, LPPV08] and [Klo95, Ves02, HK02] respectively. It goes without say-
ing that our proofs rely on many ideas developed for random Schrödinger operators
in Euclidean space. For an overview on this topic see [Ves07].

The article is organised as follows: In the next section, we introduce the random
length model and state the main results. In Section 3 we present the Kagome lat-
tice example. In Section 4 we prove Theorem 2.6 concerning the approximability
of the IDS. Finally, in Section 5 we prove the Wegner estimate Theorem 2.9.

Note added: When we were completing this work, the preprint [KP08b] ap-
peared on arXiv.org, which includes a proof of a Wegner estimate for a model with
Zd-structure related to ours, albeit using different methods.

Acknowledgements. The second author is grateful for the kind invitation to the
Humboldt University of Berlin which was supported by the SFB 647. NP and OP
also acknowledge the financial support of the Technical University Chemnitz.

2. Basic notions, model and results

In the following subsections, we fix basic notions (metric graphs, Laplacians
and Schrödinger operators with vertex conditions), introduce the random length
model and state our main results. For general treatments and further references
on metric graphs, we refer to [EKK+08].

2.1. Metric graphs. Since our random model concerns a perturbation of the
metric structure of a graph, we carefully distinguish between combinatorial, topo-
logical and metric graphs. A combinatorial graph G = (V,E, ∂) is given by a
countable vertex set V , a countable set E of edge labels and a map ∂(e) = {v1, v2}
from the edge labels to (unordered) pairs of vertices. If v1 = v2, we call e a loop.
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Note that this definition allows multiple edges, but we only consider locally finite
combinatorial graphs, i.e., every vertex has only finitely many adjacent edges. A
topological graph X is a topological model of a combinatorial graph together with
a choice of directions on the edges:

Definition 2.1. A (directed) topological graph is a CW-complex X containing only
(countably many) 0- and 1-cells. The set V = V (X) ⊂ X of 0-cells is called the set
of vertices. The 1-cells of X are called (topological) edges and are labeled by the
elements of E = E(X) (the (combinatorial) edges), i.e., for every edge e ∈ E, there
is a continuous map Φe : [0, 1] −→ X whose image is the corresponding (closed)
1-cell, and Φe : (0, 1) −→ Φe((0, 1)) ⊂ X is a homeomorphism. A 1-cell is called a
loop if Φe(0) = Φe(1). The map ∂ = (∂−, ∂+) : E −→ V ×V describes the direction
of the edges and is defined by

∂−e := Φe(0) ∈ V, ∂+e := Φe(1) ∈ V.

For v ∈ V we define

E±
v = E±

v (X) := { e ∈ E | ∂±e = v }.
The set of all adjacent edges is defined as the disjoint union1

Ev = Ev(X) := E+
v (X) ·∪ E−

v (X).

The degree of a vertex v ∈ V in X is defined as

deg v = degX(v) := |Ev| = |E+
v | + |E−

v |.
A topological subgraph Λ is a CW-subcomplex of X, and therefore Λ is itself a
topological graph with (possible empty) boundary ∂Λ := Λ ∩ Λc ⊂ V (X).

Since a topological graph is a topological space, we can introduce the space
C(X) of C-valued continuous functions and the associated notion of measurability.
A metric graph is a topological graph where we assign a length to every edge.

Definition 2.2. A (directed) metric graph (X, ℓ) is a topological graph X to-
gether with a length function ℓ : E(X) −→ (0,∞). The length function induces
an identification of the interval Ie := [0, ℓ(e)] with the edge Φe([0, 1]) (up to the
end-points of the corresponding 1-cell, which may be identified in X if e is a loop)
via the map

Ψe : Ie −→ X, Ψe(x) = Φe

( x

ℓ(e)

)
.

Note that every topological graph X can be canonically regarded as a metric
graph where all edges have length one. The corresponding length function 1E(X)

is denoted by ℓ0. In our random model, we will consider a fixed topological graph
X with a random perturbation ℓω of this length function ℓ0.

To simplify matters, we canonically identify a metric graph (X, ℓ) with the dis-
joint union Xℓ of the intervals Ie for all e ∈ E subject to appropriate identifications
of the end-points of these intervals (according to the combinatorial structure of
the graph), namely

Xℓ :=
·⋃

e∈E

Ie/∼.

1The disjoint union is necessary in order to obtain two different labels in Ev(X) for a loop.
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The coordinate maps {Ψe}e can be glued together to a map

Ψℓ : Xℓ −→ X. (2.1)

Remark 2.3. A metric graph is canonnically equpped with a metric and a measure.
Given the information about the lenght of edges, each path in Xℓ has a well defined
lenght. The distance between two arbitrary points x, y ∈ Xℓ is defined as the
infimum of the lenghts of paths joining the two points. The measure on Xℓ is
defined in the following way. For each measurable Λ ⊂ X the sets Λ ∩ ψe(Ie)
are measurable as well, and are assigned the Lebesgue measure of the preimage
ψ−1

e (Λ ∩ ψe(Ie)). Consequently, we define the volume of Λ by

vol(Λ, ℓ) :=
∑

e∈E

ψ−1
e (Λ ∩ ψe(Ie)) (2.2)

Using the identification (2.1), we define the function space L2(X, ℓ) as

L2(X, ℓ) :=
⊕

e∈E

L2(Ie), f = {fe}e with fe ∈ L2(Ie) and

‖f‖2
L
2
(X,ℓ) =

∑

e∈E

∫

Ie

|fe(x)|2 dx.

2.2. Operators and vertex conditions. For a given metric graph (X, ℓ), we
introduce the operator

(Df)e(x) = (Dℓf)e(x) =
dfe

dx
(x),

where the derivative is taken in the interval Ie = [0, ℓ(e)]. Note that both the
norm in L2(X, ℓ) and D = Dℓ depend on the length function. This observation
is particularly important in our random length model below, where we perturb
the canonical length function ℓ0 = 1E(X) and therefore have (a priori) different
spaces on which a function f lives. Our point of view is that f is a function on the
fixed underlying topological graph X, and that the metric spaces are canonically
identified via the maps Ψ−1

ℓ0
◦ Ψℓ : (X, ℓ) −→ (X, ℓ0). One easily checks that

‖f‖2
L
2
(X,ℓ) =

∑

e∈E

ℓ(e)

∫

(0,1)

|fe(x)|2 dx, (2.3a)

(Dℓf)e(x) =
1

ℓ(e)
(Dℓ0f)e

( 1

ℓ(e)
x
)
, (2.3b)

where fe and Dℓ0f on the right side are considered as functions on [0, 1] via the
identification Ψ−1

ℓ0
◦ Ψℓ.

Next we introduce general vertex conditions for Laplacians ∆(X,ℓ) = −Dℓ
2 and

Schrödinger operators H(X,ℓ) = ∆(X,ℓ) + q with real-valued potentials q ∈ L∞(X).

The maximal or decoupled Sobolev space of order k on (X, ℓ) is defined by

H
k
max(X, ℓ) :=

⊕

e∈E

H
k(Ie)

‖f‖2
Hk

max(X,ℓ) :=
∑

e∈E

‖fe‖2
Hk(Ie).
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Note that Dℓ : Hk+1
max(X, ℓ) −→ Hk

max(X, ℓ) is a bounded operator. We introduce
the following two different evaluation maps H1

max(X, ℓ) −→
⊕

v∈V CEv :

f
e
(v) :=

{
fe(0), if v = ∂−e,

fe(ℓ(e)), if v = ∂+e,
and f−→e(v) :=

{
−fe(0), if v = ∂−e,

fe(ℓ(e)), if v = ∂+e,

and f(v) = {f
e
(v)}e∈Ev

∈ CEv , f−→(v) = { f−→e
(v)}e∈Ev

∈ CEv . It follows from

standard Sobolev estimates (see e.g. [Kuc04, Lem. 8]) that these evaluation maps
are bounded by max{(2/ℓmin)

1/2, 1}, provided the minimal edge length

0 < ℓmin := inf
e∈E

ℓ(e) (2.4)

is strictly positive. The second evaluation map is used in connection with the
derivative Df of a function f ∈ H2

max(X, ℓ). Note that Df−→ is independent of the

orientation of the edge.
A single-vertex condition at v ∈ V is given by a Lagrangian subspace L(v) of

the Hermitian symplectic vector space (CEv ⊕CEv , ηv) with canonical two-form ηv

defined by

ηv((x, x
′), (y, y′)) := 〈x′, y〉 − 〈x, y′〉,

where 〈·, ·〉 denotes the standard unitary inner product in CEv . The set of all
Lagrangian subspaces of (CEv ⊕ CEv , ηv) is denoted by Lv and has a natural
manifold structure (see, e.g., [Har00, KS99] for more details on these notions).
A Lagrangian subspace L(v) can uniquely be described by the pair (Q(v), R(v))
where Q(v) is an orthogonal projection in CEv with range G (v) := ranQ(v) and
R(v) is a symmetric operator on G (v) such that

L(v) :=
{

(x, x′)
∣∣ (1 −Q(v))x = 0, Q(v)x′ = R(v)x

}
(2.5)

(see e.g. [Kuc04]).
A field of single-vertex conditions L := {L(v)}v∈V is called a vertex condition.

We say that L is bounded, if

CR := sup
v∈V

‖R(v)‖ <∞, (2.6)

where the norm is the operator norm on G (v). For any such bounded vertex
condition L, a bounded potential q and a metric graph (X, ℓ) with ℓmin > 0, we
obtain a self-adjoint Schrödinger operator H(X,ℓ),L = ∆(X,ℓ),L + q, by choosing the
domain

domH(X,ℓ),L := { f ∈ H
2
max(X, ℓ) | (f(v), Df−→(v)) ∈ L(v) for all v ∈ V }.

Of particular interest are the following vertex conditions with vanishing vertex
operator R(v) = 0 for all v ∈ V : Dirichlet vertex conditions (where L(v) =
{0}⊕CEv or G (v) = {0}), Kirchhoff (also known as free) vertex conditions (where
(x, x′) ∈ L(v) if all components of x are equal and the sum of all components
of x′ add up to zero, or equivalently G (v) = C(1, . . . , 1)) and Neumann vertex
conditions (where L(v) = CEv ⊕ {0} or equivalently G (v) = CEv).
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2.3. Random length model. The underlying geometric structure of a random
length model is a random length metric graph. A random length metric graph is
based on a fixed topological graph X with V and E the sets of vertices and edges
of X, a probability space (Ω,P), and a measurable map ℓ : Ω×E −→ (0,∞), which
describes the random dependence of the edge lengths. We also assume that there
are ω-independent constants ℓmin, ℓmax > 0 such that ℓmin ≤ ℓω(e) ≤ ℓmax for all
ω ∈ Ω and e ∈ E. We will use the notation ℓω(e) := ℓ(ω, e).

A random length model associates to such a geometric structure (X,Ω,P, ℓ) a
random family of Schrödinger operators Hω, by additionally introducing measur-
able maps L(v) : Ω −→ Lv for all v ∈ V , and q : Ω × X −→ R, describing the
random dependence of the vertex conditions and the potentials of these operators.
We will use the notation Lω := {Lω(v)}v∈V and qω(x) = q(ω, x). We assume that
we have constants CR, Cpot > 0 such that

‖qω‖∞ ≤ Cpot and ‖Rω(v)‖ ≤ CR (2.7)

for almost all ω ∈ Ω and all v ∈ V , where Rω(v) is the vertex operator associated to
Lω(v). From (2.7) and the lower length bound (2.4) it follows that the Schrödinger
operatorsHω := ∆ω+qω are self-adjoint and bounded from below by some constant
λ0 ∈ R uniformly in ω ∈ Ω (see Lemma 4.1). We call the tuple (X,Ω,P, ℓ, L, q)
a random length model with associated Laplacians and Schrödinger operators ∆ω

and Hω and underlying random metric graphs (X, ℓω).

2.4. Approximation of the IDS via exhaustions. Let us describe the setting,
for which our first main result holds.

Assumption 2.4. Let (X,Ω,P, ℓ, L, q) be a random length model with the fol-
lowing properties:

(i) The topological graph X is non-compact and connected with underlying
(undirected) combinatorial graph G = (V,E, ∂). There is a subgroup
Γ ⊂ Aut(G), acting freely on V with only finitely many orbits. Then Γ
acts also canonically onX (but does not necessarily respect the directions)
by

γΦe(x) =

{
Φγe(x) if ∂±(γe) = γ(∂±e),

Φγe(1 − x) if ∂±(γe) = γ(∂∓e).

This action carries over to Γ-actions on the metric graphs (X, ℓ0) and
(X, ℓω) via the identification (2.1). Note that Γ acts even isometrically on
the equilateral graph (X, ℓ0) with ℓ0 = 1E . We can think of (X, ℓ0) as a
covering of the compact topological graph (X/Γ, ℓ0).

(ii) We also assume that Γ acts ergodically on (Ω,P) by measure preserving
transformations with the following consistencies between the two Γ-actions
on X and Ω:

Metric consistency: We assume that

ℓγω(e) = ℓω(γe) (2.8a)

for all γ ∈ Γ, ω ∈ Ω and e ∈ E. This implies that for every γ ∈ Γ,
the map

γ : (X, ℓω) −→ (X, ℓγω)
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is an isometry between two (different) metric graphs. Moreover, the
induced operators

U(ω,γ) : L2(X, ℓγ−1ω)) −→ L2(X, ℓω)

are unitary.
Operator consistency: The transformation behaviour of qω and Lω

is such that we have for all ω ∈ Ω, γ ∈ Γ,

Hω = U(ω.γ)Hγ−1ωU
∗
(ω,γ). (2.8b)

Such a random length model (X,Ω,P, ℓ, L, q) is called a random length
covering model with associated operators Hω and covering group Γ.

Remark 2.5. The simplest random length covering model is given when the proba-
bility space Ω consists of only one element with probability 1. In this case, we have
only one length function ℓ = ℓω, one vertex condition L = Lω, and one potential
q = qω. The corresponding family of operators consists then of a single operator
H = Hω. Moreover, the metric consistency means that Γ acts isometrically on
(X, ℓ), and the operator consistency is nothing but the periodicity of H , i.e., the
property that H commutes with the induced unitary Γ-action on L2(X, ℓ).

Next, we introduce some more notation. Let F0 be a relatively compact topolog-
ical fundamental domain of the Γ-action on (X, ℓ0) such that its closure F = F 0

is a topological subgraph. (An example of such a topological fundamental domain
is given in Figure 2(a) below.) There is a canonical spectral distribution function
N(λ), associated to the family Hω, given by the trace formula

N(λ) :=
1

E(vol(F , ℓ•))
E(tr•[1FP•((−∞, λ])]), (2.9)

where E(·) denotes the expectation in (Ω,P), trω is the trace on the Hilbert space
L2(X, ℓω), and Pω(I) denotes the spectral projection associated to Hω and the
interval I ⊂ R. Moreover, the volume vol(F , ℓ•) is defined in (2.2). The function
N is called the (abstract) integrated density of states with abbreviation IDS.

In the case of an amenable group Γ the abstract IDS can also be obtained via
appropriate exhaustions. This is the statement of Theorem 2.6 below. A discrete
group Γ is called amenable, if there exist a sequence In ⊂ Γ of finite, non-empty
subsets with

lim
n→∞

|In ∆ Inγ|
|In|

= 0, for all γ ∈ Γ. (2.10)

A sequence In satisfying (2.10) is called a Følner sequence.
For every non-empty finite subset I ⊂ Γ, we define Λ(I) :=

⋃
γ∈I γF . A

sequence In ⊂ Γ of finite subsets is Følner if and only if the associated sequence
Λn = Λ(In) of topological subgraphs satisfies the van Hove condition

lim
n→∞

|∂Λ(In)|
vol(Λ(In), ℓ0)

= 0. (2.11)

The proof of this fact is analogous to the proof of [PV02, Lemma 2.4] in the
Riemannian manifold case. Note that (2.11) still holds if we replace ∂Λ(In) by
∂rΛ(In) for any r ≥ 1, where ∂rΛ denotes the thickened combinatorial boundary
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{ v ∈ V | d(v, ∂Λ) ≤ r } and d denotes the combinatorial distance which agrees
(on the set of vertices) with the distance function of the unilateral metric graph
(X, ℓ0).

A Følner sequence In is called tempered, if we additionally have

sup
n∈N

|⋃k≤n In+1I
−1
k |

|In+1|
<∞. (2.12)

Tempered Følner sequences are needed for an ergodic theorem of Lindenstrauss
[Lin01]. This ergodic theorem plays a crucial role in the proof of Theorem 2.6
presented below. However, the additional property (2.12) is not very restrictive
since it was also shown in [Lin01] that every Følner sequence In has a tempered
subsequence Inj

.
For any compact topological subgraph Λ of X, we denote the operator with

Dirichlet vertex conditions on the boundary vertices ∂Λ and with the original ver-
tex conditions Lω(v) on all inner vertices v ∈ V (Λ) \ ∂Λ by HΛ,D

ω . The label D
refers to the Dirichlet conditions on ∂Λ. For a precise definition of the Dirich-
let operator via quadratic forms, we refer to Section 4. The spectral projection
corresponding to HΛ,D

ω is denoted by PΛ,D
ω . It is well-known that compactness of

Λ implies that the operator HΛ,D
ω has purely discrete spectrum. The normalised

eigenvalue counting function associated to the operator HΛ,D
ω is defined as

NΛ
ω (λ) =

1

vol(Λ, ℓω)
trω[PΛ,D

ω ((−∞, λ])].

The function NΛ
ω is the distribution function of a (unique) pure point measure

which we denote by µΛ
ω .

If Λ = Λ(In) is associated to a Følner sequence In ⊂ Γ, we use the abbreviations

Hn,D
ω := H

Λ(In),D
ω for the Schrödinger operator with Dirichlet conditions on ∂Λ(In),

Nn
ω := N

Λ(In)
ω for the normalised eigenvalue counting function and µn

ω := µ
Λ(In)
ω for

the corresponding pure point measure on Λ(In). We can now state our first main
result:

Theorem 2.6. Let (X,Ω,P, ℓ, L, q) be a random length covering model as described
in Assumption 2.4 with amenable covering group Γ. Let N be the IDS of the
operator family Hω. Then there exist a subset Ω0 ⊂ Ω of full P-measure such that
we have, for every tempered Følner sequence In ⊂ Γ,

lim
n→∞

Nn
ω (λ) = N(λ)

for all ω ∈ Ω0 and all points λ ∈ R at which N is continuous.

The proof is given in Section 4.

Remark 2.7. The proof of Theorem 2.6 yields even more. Let µ denote the measure
associated to the distribution function N . Then we have

lim
j→∞

µn
ω(f) = µ(f) (2.13)

for all ω ∈ Ω0 and all functions f of the form f(x) = g(x)(x+1)−1 with a function
g continuous on [0,∞) and with limit at infinity. (The behaviour of g(x) for x < 0
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is of no importance since the spectral measures of all operators under consideration
are supported on R+ = [0,∞).)

2.5. Wegner estimate. In this subsection, we state a linear Wegner estimate for
Laplace operators of a random length model with independently distributed edge
lengths and fixed Kirchhoff vertex conditions. This Wegner estimate is linear both
in the number of edges and in the length of the considered energy interval. As
mentioned in the introduction, a similar result for the case Zd was proved recently
by different methods in [KP08b]. In contrast to the previous subsection, we do not
require periodicity of the graph X associated to a group action. More precisely,
we assume the following:

Assumption 2.8. Let (X,Ω,P, ℓ, L, q) be a random length model with the fol-
lowing properties:

(i) We have q ≡ 0, i.e., the random family of operators are just the Laplacians
(Hω = ∆ω) and we have no randomness in the vertex condition by fixing
L to be Kirchhoff in all vertices. Thus it suffices to look at the tuple
(X,Ω,P, ℓ).

(ii) We have a uniform upper bound dmax < ∞ on the vertex degrees deg v,
v ∈ V (X).

(iii) Since the only randomness occurs in the edge lengths satisfying

0 < ℓmin ≤ ℓω(e) ≤ ℓmax for all ω ∈ Ω and e ∈ E(X),

we think of the probability space Ω as a Cartesian product
∏

e∈E [ℓmin, ℓmax]
with projections Ω ∋ ω 7→ ωe = ℓω(e) ∈ [ℓmin, ℓmax]. The measure P is
assumed to be a product

⊗
e∈E Pe of probability measures Pe. Moreover,

for every e ∈ E, we assume that Pe is absolutely continuous with respect
to the Lebesgue measure on [ℓmin, ℓmax] with density functions he ∈ C1(R)
satisfying

‖he‖∞, ‖h′e‖∞ ≤ Ch, (2.14)

for a constant Ch > 0 independent of e ∈ E.

Recall that trω is the trace in the Hilbert space L2(Λ, ℓω). In the next theorem
PΛ,D

ω denotes the spectral projection of the Laplacian ∆Λ,D
ω on (Λ, ℓω) with Kirch-

hoff vertex conditions on all interior vertices and Dirichlet boundary conditions on
∂Λ. Under these assumptions we have:

Theorem 2.9. Let (X,Ω,P, ℓ) be a random length model satisfying Assumption 2.8.
Let u > 1 and Ju = [1/u, u]. Then there exists a constant C > 0 such that

E(trPΛ,D
• (I)) ≤ C · λ(I) · |E(Λ)|

for all compact subgraphs Λ ⊂ X and all compact intervals I ⊂ Ju, where λ(I)
denotes the Lebesgue-measure of I, and where |E(Λ)| denotes the number of edges
in Λ. The constant C > 0 depends only the constants u, dmax, ℓmin, ℓmax and the
bound Ch > 0 associated to the densities he (see (2.14)).

The proof will be given in Section 5. We finish this section with the following
corollary. Recall that the periodic situation is a special case of a random length
covering model (see Remark 2.5):
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Corollary 2.10. Let (X,Ω,P, ℓ) be a random length covering model, satisfying
both Assumptions 2.4 and 2.8, with amenable covering group Γ. Then the IDS N
of the Laplacians ∆ω is a continuous function on R and even Lipschitz continuous
on (0,∞).

Proof. The Lipschitz continuity of N on (0,∞) follows immediately from Theo-
rems 2.6 and 2.9. It remains to prove continuity of N on (−∞, 0]. Note that our
model is a special situation of the general ergodic groupoid setting given in [LPV07].
Thus, N is the distribution function of a spectral measure of the direct integral
operator

∫ ⊕

Ω
∆ω dP(ω). Since ∆ω ≥ 0 for all ω, N(λ) vanishes for all λ < 0.

Moreover, if N would have a jump at λ = 0, then ker ∆ω would be non-trivial for
almost all ω ∈ Ω. But ∆ωf = 0 implies

0 = 〈f,∆ωf〉 =

∫

X

∣∣∣∣
df

dx
(x)

∣∣∣∣
2

dx

since ∆ω has Kirchhoff vertex conditions. Thus f is a constant function. Now X
is connected as well as non-compact, which implies that vol(X, ℓω) = ∞ by the
lower bound ℓmin on the lengths of the edges. Hence constant functions are not in
L2. This gives a contradiction.

�

Our result on Lipschitz continuity of N on (0,∞) is optimal in the following
sense:

Remark 2.11. It is well-known that the IDS of the free Laplacian ∆
R

on R is
proportional to the square root of the energy. Note that this does not change
when adding Kirchhoff boundary conditions at arbitrary points. Therefore, every
model satisfying Assumptions 2.4 and 2.8 for a metric graph isometric to R has in
fact the above IDS. Therefore, we cannot expect Lipschitz continuity of the IDS
at zero for random length models without further assumptions.

3. Kagome lattice as an example of a planar graph

In this section, we illustrate the concepts of the previous section for an explicit
example. We introduce a particular regular tessellation of the Euclidean plane
admitting finitely supported eigenfunctions of the combinatorial Laplacian. We
discuss in detail the discontinuities of the IDS of the combinatorial Laplacian
and of the Kirchhoff Laplacian of the induced equilateral metric graph. On the
other hand, applying Corollary 2.10, we see that the IDS of a random family of
Kirchhoff Laplacians for independent distributed edge lengths is continuous. Thus,
randomness leads to an improvement of the regularity of the IDS in this example.

We consider the infinite planar topological graph X ⊂ C as illustrated in Fig-
ure 1. This graph is sometimes called Kagome lattice. Every vertex ofX has degree
four and belongs to a uniquely determined upside triangle. Introducing w1 = 1
and w2 = eπi/3, we can identify the lower left vertex of a particular upside triangle
with the origin in C and its other two vertices with w1, w2 ∈ C. Consequently, the
vertex set of X is given explicitly as the disjoint union of the following three sets:

V (X) = (2Zw1 + 2Zw2) ·∪ (w1 + 2Zw1 + 2Zw2) ·∪ (w2 + 2Zw1 + 2Zw2).
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A pair v1, v2 ∈ V = V (X) of vertices is connected by a straight edge if and only if
|v2 − v1| = 1. We write v1 ∼ v2 for adjacent vertices. The above realisation of the
planar graph X ⊂ C is an isometric embedding of the metric graph (X, ℓ0).

w1

w2

Figure 1. Illustration of the planar graph X (Kagome lattice).

The group Z
2 acts on X via the maps Tγ(x) := 2γ1w1+2γ2w2 +x. A topological

fundamental domain F0 of X is thickened in Figure 2 (a). The set of vertices of
the topological subgraph F = F0 is given by {a, b, c, a′, b′, b′′, c′′}.

Note that we have to distinguish carefully between a topological and a combina-
torial fundamental domain. Let G denote the underlying combinatorial graph with
set V of vertices and E of combinatorial edges. The maps Tγ act also on the set
of vertices V and a combinatorial fundamental domain is given by Q = {a, b, c}.
We denote the translates Tγ(Q) of Q by Qγ.

2w1

2w2

a

b c

a′
b′

b′′ c′′ b′′′

(a) (b)

v1

v2 v3

v4

v5

w1

w2

Hγ0

Figure 2. (a) The periodic graph with thickened topological fun-
damental domain F0 and combinatorial fundamental domain Q =
{a, b, c} (b) If γ0 is vertically extremal for F , all white encircled
vertices are zeroes of F .

3.1. Spectrum and IDS of the combinatorial Laplacian. We first observe
that G admits finitely supported eigenfunctions of the combinatorial Laplacian
∆comb: Choose an arbitrary hexagon H ⊂ X with vertices {u0, u1, . . . , u5}. Then
there exists a centre w0 ∈ C of H such that we have

{u0, u1, . . . , u5} = {w0 + ekπi/3 | k = 0, 1, . . . , 5 }.
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The following function FH : V −→ {0,±1} on the vertices

FH(v) :=

{
0, if v ∈ V \ {u0, . . . , u5},
(−1)k, if v = w0 + ekπi/3,

(3.1)

satisfies

∆combFH(v) =
1

deg(v)

∑

w∼v

(FH(v) − FH(w)) =
3

2
FH(v).

Thus, the vertices of every hexagon H ⊂ X are the support of a combinatorial
eigenfunction FH : V −→ R. The functions FH are the only finitely supported
eigenfunctions up to linear combinations:

Proposition 3.1. (a) Let F : V −→ R be a combinatorial eigenfunction on X
with finite support suppF ⊂ V . Then

∆combF =
3

2
F

and F is a linear combination of finitely many eigenfunctions FH of the above
type (3.1).

(b) Let Hi (i = 1, . . . , k) be a collection of distinct, albeit not necessarily disjoint,
hexagons, and Fi := FHi

the associated compactly supported eigenfunctions.
Then the set F1, . . . , Fk is linearly independent.

(c) If g ∈ ℓ2(V ) satisfies ∆combg = µg, then µ = 3/2.
(d) The space of ℓ2(V )-eigenfunctions to the eigenvalue 3/2 is spanned by com-

pactly supported eigenfunctions.

Proof. To prove (a), assume that F : V −→ R is a finitely supported eigenfunction.
Let Q = {a, b, c} be a combinatorial fundamental domain of Z2, as illustrated in
Figure 2 (a) and Qγ := Tγ(Q). Let Hγ be the uniquely defined hexagon containing
the three vertices Qγ . Moreover, we define

A0 := { γ ∈ Z
2 | suppF ∩Qγ 6= ∅ }.

Let ε1 = (1, 0) and ε2 = (0, 1). We say that γ0 = (γ01, γ02) ∈ A0 is vertically
extremal for F , if the second coordinate γ02 is maximal amongst all γ ∈ A0 and if
γ0 − ε1 /∈ A0. This means that F vanishes in the left neighbour of Qγ0

and in all
vertices vertically above Qγ0

. Hence, γ0 in Figure 2 (b) is vertically extremal if F
vanishes in all white encircled vertices and does not vanish in at least one of the
black vertices. Obviously, A0 has always vertically extremal elements. Choosing
such a γ0 ∈ A0, we will show below that F is an eigenfunction with eigenvalue 3/2
and that the following facts hold:

(i) γ0 + ε1 belongs to A0,
(ii) γ0 − ε2 or γ0 − ε2 − ε1 belong to A0,
(iii) adding a suitable multiple of FHγ0

to F , we obtain a new eigenfunction F1

and a set A1 := { γ ∈ Z2 | suppF1 ∩Qγ 6= ∅ } satisfying

γ0 /∈ A1, A1 \ A0 ⊂ {γ0 − ε2, γ0 + ε1 − ε2}.
To see this, let γ0 ∈ A0 be vertically extremal and v1, . . . , v5, w1, w2 be chosen

as in Figure 2 (b). The eigenvalue equation at the vertices v4 and v5, in which
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F vanishes, imply that we have F (v1) = −F (v2) = F (v3) 6= 0. Applying the
eigenvalue equation again, now at v2, yields that the eigenvalue of F must be 3/2.

If γ0 + ε1 /∈ A0, F would vanish in w1 and all its neighbours, except for v3. This
would contradict to the eigenvalue equation at w1 and (i) is proven. Similarly,
if γ0 − ε2, γ0 − ε2 − ε1 /∈ A0, we would obtain a contradiction to the eigenvalue
equation at the vertex w2. This proves (ii).

By adding F (v1)FHγ0
to F , we obtain a new eigenfunction F1 (again to the

eigenvalue 3/2) which vanishes at all vertices of Qγ0
= {v1, v2, v3}. Thus we have

γ0 /∈ A1. But F and F1 differ only in the vertices Qγ0
, Qγ0+ε1

, Qγ0−ε2
and Qγ0+ε1−ε2

,
establishing property (iii).

The above procedure can be iteratively (from left to right) applied to the
hexagons in the top row of A0: Step (iii) can be applied to the function F1 and a
vertically extremal element of A1. After a finite number n of steps the top row of
hexagons in A0 is no longer in the support of the function Fn. (Note that property
(i) implies that when removing the penultimate hexagon form the right, one has
simultaneously removed the rightermost one, too.) Again, this procedure can be
iterated removing successively rows of hexagons. This time property (ii) guaran-
tees that the procedure stops after a finite number N of steps with FN ≡ 0. We
have proven statement (a).

Now we turn to the proof of (b). Since the graph is connected there exists a
vertex v in A := ∪k

i=1Hi which is adjacent to some vertex outside A. Then v is
contained in precisely one hexagon Hi0. (In the full graph each vertex is in two
hexagons.) Thus the condition

k∑

i=1

αiFi = 0 αi ∈ C (3.2)

evaluated at the vertex v implies αi0 = 0. This shows that all coefficients αi in
(3.2) corresponding to hexagons Hi lying at the boundary of A vanish. This leads
to an equation analogous to (3.2) where the indices in the sum run over a strict
subset of {1, . . . , k}. Now one iterates the pocedure and shows that actually all
coefficients α1, . . . , αk in (3.2) are zero. We have shown linear independence of
F1, . . . , Fk.

To prove (c) we recall that the IDS ∆comb is a spectral measure (see e.g. [LPV07,
Prop. 5.2]). Thus the IDS jumps at the value µ. This in turn implies by [Ves05,
Prop. 5.2] that there is a compactly supported g̃ satisfying the eigenvalue equation.
Now (a) implies µ = 3/2.

Statement (d) follows from [LV08, Thm. 2.2], cf. also the proof of Proposition
3.3. �

We are primarily interested in ℓ2-eigenfunctions of ∆comb, since their eigenvalues
coincide with the discontinuities of the corresponding IDS. For combinatorial cov-
ering graphs with amenable covering group Γ, every ℓ2-eigenfunction F implies the
existence of a finitely supported eigenfunction to the same eigenvalue which is im-
plied, e.g., by [Ves05, Prop. 5.2] or [LV08, Thm. 2.2]. (Related, but different results
have been obtained before in [MY02]. If the group is even abelian, as is the case
for the Kagome lattice, the analogous result was proven even earlier in[Kuc91].)



14 englishD. LENZ, N. PEYERIMHOFF, O. POST, AND I. VESELIĆ

It should be mentioned here that the situation is very different in the smooth
category of Riemannian manifolds. There, compactly supported eigenfunctions
cannot occur due to the unique continuation principle. In the discrete setting of
graphs, non-existence of finitely supported combinatorial eigenfunctions is — at
present — only be proved for particular examples or in the case of planar graphs
of non-positive combinatorial curvature; see [KLPS06] for more details. Hence,
Proposition 3.1 tells us that X does not admit combinatorial ℓ2-eigenfunctions
associated to eigenvalues µ 6= 3/2.

Next, let us discuss spectral informations which can be obtained with the help
of Floquet theory. Using a general result of Kuchment (see [Kuc91] or [Kuc05,
Thm. 8]) for periodic finite difference operators (applying Floquet theory to such
operators) we conclude that the compactly supported eigenfunctions of ∆comb asso-
ciated to the eigenvalue 3/2 are already dense in the whole eigenspace ker(∆comb−
3/2). As for the whole spectrum, we derive the following result:

Proposition 3.2. Denote by σac(∆comb) and σp(∆comp) the absolutely continuous

and point spectrum of ∆comb on our Z
2-periodic graph X. Then we have

σac(∆comb) =
[
0,

3

2

]
and σp(∆comb) =

{3

2

}
.

The proof follows from standard Floquet theory (for a similar hexagonal graph
model see [KP07]):

Proof. Note that we have the unitary equivalence

∆comb
∼=

∫ ⊕

T2

∆θ
comb dθ,

where ∆θ
comb is the θ-equivariant Laplacian on Q, θ ∈ T2 := R2/(2πZ)2. This

operator is equivalent to the matrix

∆θ
comb

∼= 1

4




4 −1 − e−iθ2 −e−iθ1 − e−iθ2

−1 − eiθ2 4 −1 − e−iθ1

−eiθ1 − eiθ2 −1 − eiθ1 4





using the basis F ∼= (F (a), F (b), F (c)) for a function on Q and the fact that
F (Tγv) = ei〈θ,γ〉F (v) (equivariance). The characteristic polynomial is

p(µ) =
(
µ− 3

2

)((
µ− 3

4

)2

− 3 + 2κ

16

)
,

where κ = cos θ1 + cos θ2 + cos(θ1 − θ2), and the eigenvalues of ∆θ
comb are

µ1 =
3

2
and µ± =

3

4
± 1

4

√
3 + 2κ.

In particular, we recover the fact that ∆comb has an eigenfunction, since µ1 is
independent of θ, only µ± depend on θ via κ = κ(θ). Note that we have

−3

2
= κ

(2π

3
,
4π

3

)
≤ κ(θ) ≤ κ(0, 0) = 3,

giving the spectral bands B− = [0, 3/4] and B+ = [3/4, 3/2]. �
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The next result discusses (dis)continuity properties of the IDS associated to the
combinatorial Laplacian on X:

Proposition 3.3. Let Ncomb be the (abstract) IDS of the Z2-periodic operator
∆comb, given by

Ncomb(µ) =
1

|Q| tr[1QPcomb((−∞, µ])],

where tr is the trace on the Hilbert space ℓ2(V ) and Pcomb denotes the spectral
projection of ∆comb. Then Ncomb vanishes on (−∞, 0], is continuous on R \ {3/2}
and has a jump of size 1/3 at µ = 3/2. Moreover, Ncomb is strictly monotone
increasing on [0, 3/2] and Ncomb(µ) = 1 for µ ≥ 3/2.

Proof. The following facts are given, e.g., in [MY02, p. 119]:

(i) the points of increase of Ncomb coincide with the spectrum σ(∆comb) and
(ii) Ncomb can only have discontinuities at σp(∆comb),

together with Proposition 3.2 yield all statements of the proposition, except for
the size of the jump at µ = 3/2.

Now, we choose a Følner sequence In ⊂ Z2 and define Λn =
⋃

γ∈In
Qγ. Let ∂Λn

denote the set of boundary vertices of the combinatorial graph induced by the
vertex set Λn, and

∂rΛ := { v ∈ V (X) | d(v, ∂Λn) ≤ r } (3.3)

be the thickened (combinatorial) boundary. Let

D(λ) := Ncomb(µ) − lim
ε→0

Ncomb(µ− ε) =
1

|Λn|
tr

[1Λn
Pcomb({µ})

]
. (3.4)

The last equality in (3.4) holds for all n and follows easily from the Z2-invariance
of the operator ∆comb. It remains to prove that D(3/2) = 1/3. Let Λ′

n = Λn \∂1Λn

and

Dn(µ) :=
1

|Λn|
dimEn(µ),

where En(µ) := {F ∈ ker(∆comb − µ) | suppF ⊂ Λ′
n }. Arguments as in [MSY03]

or in [LV08] show that
D(µ) = lim

n→∞
Dn(µ). (3.5)

For the convenience of the reader, we outline the proof of (3.5) below. Using part
(b) of Proposition 3.1 one can show that dimEn(µ) equals up to a boundary term
the number of hexagons contained in Λ′

n. Since every translated combinatorial
fundamental domain Qγ uniquely determines a hexagon Hγ and |Q| = 3, we con-
clude that dimEn(µ) ≈ 1

3
|Λn|, up to an error proportional to |∂1Λn|. The van

Hove property (2.11) (which holds also in the combinatorial setting) then implies
the desired result D(3/2) = limn→∞Dn(3/2) = 1/3.

Finally, we outline the proof of (3.5): Let E(µ) = ker(∆comb − µ) and Sn(µ) =1Λn
E(µ). Let bn : Sn(µ) −→ R|∂1Λn| be the boundary map, i.e., bn(F ) is the

collection of all values of F assumed at the (thickened) boundary vertices ∂1Λn.
Then ker bn = En(µ) ⊂ Sn(µ), and we have

Dn(µ) ≤ D(µ) ≤ dimSn(µ)

|Λn|
=

dim ker bn
|Λn|

+
dim ran bn

|Λn|
≤ Dn(µ) +

|∂1Λn|
|Λn|

,
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which yields (3.5), by taking the limit, as n→ ∞. �

3.2. Spectrum and IDS of the periodic Kirchhoff Laplacian. There is a
well known correspondence between the spectrum σ(∆comb) on a graph G and
the spectrum of the (Kirchhoff) Laplacian ∆0 on the corresponding (equilateral)
metric graph (X, ℓ0) with ℓ0 = 1E (see e.g. [vB85, Cat97, BGP08, Pos08] and
the references therein). Namely, any λ 6= k2π2 lies in σp(∆0) resp. σac(∆0) iff

µ(λ) = 1− cos
√
λ lies in σp(∆comb) resp. σac(∆comb). Moreover, the eigenspace of

the metric Laplacian is isomorphic to the corresponding eigenspace of the combi-
natorial Laplacian.

Let F : V −→ C be a finitely supported eigenfunction of ∆comb as in the previous
section. In particular, the eigenvalue must be µ = 3/2. The above mentioned
correspondence shows that, for every λ = (2k+2/3)2π2, k ∈ Z, (i.e. µ(λ) = 3/2)),
there is a Kirchhoff eigenfunction f : X −→ R of compact support associated to
the eigenvalue λ, satisfying f(v) = F (v) at all vertices v ∈ V . In addition, if
λ = k2π2, there are so-called Dirichlet eigenfunctions of ∆0, determined by the
topology of the graph (see e.g. [vB85, Kuc05, LP08]), which are also generated by
compactly supported eigenfunctions.

Using the results [Cat97, BGP08], we conclude from Proposition 3.2:

Corollary 3.4. Let ∆0 denote the Kirchhoff Laplacian of the equilateral metric
graph (X, ℓ0). Let σp and σac denote the point spectrum and absolutely contin-
uous spectrum and σcomp denote the spectrum given by the compactly supported
eigenfunctions. Then we have

σcomp(∆0) = σp(∆0) =
{(

2k +
2

3

)2

π2
∣∣∣ k ∈ Z

}
∪

{
k2π2

∣∣ k ∈ N
}

and

σac(∆0) =
[
0,

(2

3

)2

π2
]
∪

⋃

k∈N

[(
2k − 2

3

)2

π2,
(
2k +

2

3

)2

π2
]
. (3.6)

Similarly, as in the discrete setting, we conclude the following (dis)continuity
properties of the IDS:

Proposition 3.5. Let N0 be the (abstract) IDS of the Z2-periodic Kirchhoff Lapla-
cian ∆0 on the metric graph (X, ℓ0), given by

N0(λ) =
1

vol(F , ℓ0)
tr[1FP0((−∞, λ])],

where tr is the trace on the Hilbert space L2(X, ℓ0) and P0 denotes the spectral
projection of ∆0. Then all the discontinuities of N0 : R −→ [0,∞) are

(i) at λ = (2k + 2
3
)2π2, k ∈ Z, with jumps of size 1

6
,

(ii) at λ = k2π2, k ∈ N, with jumps of size 1
2
.

Moreover, N0 is strictly monotone increasing on the absolutely continuous spectrum
σac(∆0) given in (3.6) and N0 is constant on the complement of σ(∆0).

Proof. Our periodic situation fits into the general setting given in [LPV07], by
choosing the trivial probability space Ω = {ω} with only one element. Proposi-
tion 5.2 in [LPV07] states that N0 is the distribution function of a spectral measure
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for the operator ∆0. Consequently, discontinuities of N0 can only occur at the L2-
eigenvalues of ∆0, and the points of increase of N0 coincide with the spectrum
σ(∆0), which is given in Corollary 3.4. Hence, it only remains to prove the state-
ments about the discontinuities of N0. We know from [Kuc05, Theorem 11] that
the compactly supported eigenfunctions densely exhaust every L2-eigenspace of
∆0.

Let In ⊂ Z2 be a Følner sequence. This time, we look at the corresponding
topological graphs Λ(In) and their thickened topological boundaries ∂rΛ(In) =
{ x ∈ X | d(x, ∂Λ(In)) ≤ r }, and denote them by Λn and ∂rΛn, respectively. We
are interested in the jumps

D(λ) := N0(λ) − lim
ε→0

N0(λ− ε) =
1

vol(Λn, ℓ0)
tr

[1Λn
P0({λ})

]
,

where the right hand side is, again, independent of the choice of n. Let Λ′
n be the

closure of Λn \ ∂1Λn and

Dn(λ) :=
1

vol(Λn, ℓ0)
dimEn(λ),

with En(λ) = { f ∈ ker(∆0 − λ) | supp f ⊂ Λ′
n }. Arguments analogously to the

proof of (3.5) yield
D(λ) = lim

n→∞
Dn(λ). (3.7)

For the proof of (3.7), however, we have to define the boundary map

bn : Sn(λ) −→
⊕

v∈∂Λn

(C ⊕ C
Ev) by (bnf)v := (f(v), Df−→(v)).

Let λ = (2k+ 2/3)2π2, k ∈ Z. We follow the same arguments as in the proof of
Proposition 3.3. Again, dimEn(λ) is equal to the number of hexagons contained
in Λn up to a boundary term and we have vol(F , ℓ0) = 6 (see Figure 2 (a)).
Therefore, we derive that the corresponding jump is of size 1/6.

Let λ = k2π2, k ∈ N. We know from [vB85] or from [LP08, Lem. 5.1 and
Prop. 5.2] that the dimension of En(λ) is (up to an error proportional to |∂Λn|)
approximately equal to

|E(Λn)| − |V (Λn)| ≈ 1

2
vol(Λn, ℓ0).

This implies that N0 has a discontinuity at λ = k2π2 of size 1/2. �

Remark 3.6. Note that Propositions 3.3 and 3.5 hold also for general covering
graphs X → X0 with amenable covering group Γ and compact quotient X0

∼= X/Γ,
once we have information about the shape of the support of elementary eigenfunc-
tions (i.e., eigenfunctions, which generate the eigenspace by linear combinations
and translations). In our Kagome lattice example the elementary eigenfunction
is supported on a hexagon. For example, the jump of size 1/3 at the eigenvalue
µ = 3/2 in the discrete case is the number ν of hexagons determined by a com-
binatorial fundamental domain (ν = 1) divided by the number of vertices in a
combinatorial fundamental domain (|Q| = 3).

In the metric graph setting, the jump at λ = (2k+ 2/3)2π2 is of size 1/6 due to
the fact that we have six edges in one topological fundamental domain.
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For the eigenvalues at λ = k2π2 (also called topological, see [LP08]) we even have
a precise information for any r-regular amenable covering graph, namely

dimEn(λ) ≈ |E(Λn)| − |V (Λn)| ≈
(
1 − 2

r

)
|E(Λn)| =

(
1 − 2

r

)
vol(Λn, ℓ0),

up to an error proportional to |∂Λn|, so that the jump of N0 at λ is (1 − 2/r).

3.3. IDS of associated random length models. Finally, we impose a random
length structure ℓ : Ω×E −→ [ℓmin, ℓmax] on the edges of (X, ℓ0) with independently
distributed edge lengths, as described in Assumption 2.8. Then Corollary 2.10 tells
us that the associated integrated density of states N : R −→ [0,∞) is continuous
and even Lipschitz continuous on (0,∞). Hence, all discontinuities occurring for
the IDS of the Kirchhoff Laplacian on the Z2-periodic graph (X, ℓ0) disappear by
introducing this type of randomness.

4. Proof of the approximation of the IDS via exhaustions

In this section, we prove Theorem 2.6, namely, that the non-random integrated
density of states (2.9) can be approximated by suitably chosen normalised eigen-
value counting functions, for P-almost all random parameters ω ∈ Ω.

For the following considerations, we need the quadratic forms associated to the
Schrödinger operators. Recall that for each Lagrangian subspace Lv ⊂ CEv ⊕CEv

describing the vertex condition at v ∈ V there exists a unique orthogonal projection
Qv on CEv with range Gv := ranQv and a symmetric operator on Gv such that (2.5)
holds.

Let Λ ⊂ X be a topological subgraph. The quadratic form associated to the
operator with vertex conditions given by (Gv, Rv) at inner vertices V (Λ) \ ∂Λ and
Dirichlet conditions at ∂Λ is defined as

dom hΛ,D =
{
f ∈ H

1
max(X, ℓ)

∣∣ f(v) ∈ Gv ∀v ∈ V (Λ) \ ∂Λ, f(v) = 0 ∀v ∈ ∂Λ
}
,

hΛ,D(f) = ‖Df‖2
L
2
(Λ,ℓ) + 〈qf, f〉L

2
(Λ,ℓ) +

∑

v∈V (Λ)

〈Rvf(v), f(v)〉Gv
.

In particular, if Λ = X is the full graph, then there is no boundary and h = hX is
the quadratic form associated to the operator H = H(X,ℓ),L.

If ℓmin := infe ℓ(e) > 0, Cpot := ‖q‖∞ < ∞ and supv ‖Rv‖ =: CR < ∞, then
hΛ,D is a closed quadratic form with corresponding self-adjoint operator HΛ,D.

Lemma 4.1. For any subgraph Λ of X, the quadratic form hΛ,D is closed. More-
over, the associated self-adjoint operator HΛ,D has domain given by

domHΛ,D =
{
f ∈ H

2
max(X, ℓ)

∣∣∣ f(v) = 0 ∀v ∈ ∂V,

f(v) ∈ Gv, QvDf−→(v) = Rvf(v) ∀v ∈ V (Λ) \ ∂Λ
}
.

Moreover, HΛ,D is uniformly bounded from below by −C0 where C0 ≥ 0 depends
only on ℓ−, CR and Cpot, but not on Λ.
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Proof. The first assertion follows from [Kuc04, Thm. 17]. The uniform lower bound
is a consequence of [Kuc04, Cor. 10] where the lower bound is given explicitly.
Basically, the statements follow from a standard Sobolev estimate of the type

∣∣∣
∑

v

〈Rvf(v), f(v)〉
∣∣∣ ≤ CR

∑

v∈V (Λ)

|f(v)|2 ≤ η‖Df‖2 + Cη‖f‖2

for η > 0, where Cη depends only on η, CR and ℓmin. �

The Dirichlet operator will serve as upper bound in the bracketing inequal-
ity (4.1) later on. In order to have a lower bound we introduce a Neumann-type
operatorHΛ via its quadratic form hΛ. Since the vertex conditions can be negative,
we have to use the boundary condition (CEv ,−CR) instead of a simple Neumann
boundary condition (CEv , 0). The quadratic form hΛ is defined by

dom hΛ =
{
f ∈ H

1
max(X, ℓ)

∣∣ f(v) ∈ Gv ∀v ∈ V (Λ) \ ∂Λ
}
,

hΛ(f) = ‖Df‖2
L
2
(Λ,ℓ) + 〈qf, f〉L

2
(Λ,ℓ) +

∑

v∈V (Λ)\∂Λ

〈Rvf(v), f(v)〉Gv
− CR

∑

v∈∂Λ

|f(v)|2Gv
.

Note that the boundary condition R̃v = −CR trivially fulfills the norm bound

‖R̃v‖ ≤ CR, and therefore by Lemma 4.1, the form hΛ is uniformly bounded from
below by the same constant −C0 as hΛ,D. By adding C0 to the (edge) potential q we
may assume that w.l.o.g. HX , HΛ,D and HΛ are all non-negative for all subgraphs
Λ.

We can now show the following bracketing result:

Lemma 4.2. Let Λ be a topological subgraph of X and Λ′ be the closure of the
complement Λc. Then

HΛ,D ⊕HΛ′,D ≥ H ≥ HΛ ⊕HΛ′ ≥ 0 (4.1)

in the sense of quadratic forms.

Proof. It is clear from the inclusions {0} ⊂ Gv ⊂ CEv for all boundary vertices
v ∈ ∂Λ that the quadratic form domains fulfil

dom hΛ,D ⊕ dom hΛ′,D ⊂ dom h ⊂ dom hΛ ⊕ dom hΛ′

.

Moreover, if f = fΛ ⊕ fΛ′ is in the decoupled Dirichlet domain, then

hΛ,D(fΛ) + hΛ′,D(fΛ′) = h(f)

since f(v) = 0 on boundary vertices, if f ∈ dom h, then

h(f) ≥ hΛ(fΛ) + hΛ′

(fΛ′)

since Rv ≥ −CR. In particular, we have shown the inequality for the quadratic
forms. �

Next, we provide a useful lemma about the spectral shift function of two oper-
ators. For a non-negative operator H with purely discrete spectrum { λk(H) | k ≥
0 } (repeated according to multiplicity), the eigenvalue counting function is given
by

n(H, λ) := tr1[0,λ)(H) =
∣∣{ k ≥ 0 | λk(H) ≤ λ }

∣∣.
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The spectral shift function (SSF) of two non-negative operators H1, H2 with purely
discrete spectrum is then defined as

ξ(H1, H2, λ) := n(H2, λ) − n(H1, λ).

We have the following estimate:

Lemma 4.3. Let (X,Ω,P, ℓ) be a random length metric graph (as described in
Subsection 2.3) and Λ ⊂ X be a compact topological subgraph. Let L1, L2 be two
vertex conditions differing in the vertex set Vdiff ⊂ V (Λ) only, and such that the
operators ∆(Λ,ℓω),Li

are non-negative. Let 0 ≤ q be a bounded measurable potential
and Hi = ∆(Λ,ℓω),Li

+ q. Then we have

|ξ(H1, H2, λ)| ≤ 2
∑

v∈Vdiff

deg v. (4.2)

Moreover, if ρ : R+ −→ R is a monotone function with ρ′ ∈ L1(R+), then
∣∣tr[ρ(H1) − ρ(H2)]

∣∣ ≤ 2|ρ(∞) − ρ(0)|
∑

v∈Vdiff

deg v, (4.3)

where the trace is taken in the Hilbert space L2(Λ, ℓω).

Proof. Let D0 = domH1 ∩ domH2. Then D0 has finite index in domHi, bounded
above by twice the number of all edges adjacent to vertices v ∈ Vdiff . This implies
dim(domHi/D0) ≤ 2

∑
v∈Vdiff

deg v. Inequality (4.2) follows now from [GLV07,
Lemma 9]. The second inequality (4.3) follows readily from Krein’s trace identity

| trρ(H1) − ρ(H2)| ≤
∫ ∞

0

|ρ′(λ)| · |ξ(H1, H2, λ)| dλ. (4.4)

�

The following uniform resolvent boundedness holds in every random length cov-
ering model:

Lemma 4.4. Let (X,Ω,P, ℓ, L, q) be a random length covering model with covering
group Γ, as described in Assumption 2.4, and λ > 0. Then there is a constant
Cλ > 0 such that we have

tr(HΛ
ω + λ)−1 ≤ Cλ vol(Λ, ℓ0)

for all compact subgraphs Λ ⊂ (X, ℓ) and all ω ∈ Ω.

Proof. Let HΛ,0
ω denote the restriction on Λ with Dirichlet vertex conditions at

all vertices. Then HΛ,0
ω =

⊕
e∈E(Λ)H

e,D
ω , where we identify the edge e with the

topological subgraph consisting of this edge and its end vertices in X. From (4.2)
of Lemma 4.3 we conclude that

| tr (HΛ,0
ω + λ)−1 − (HΛ

ω + λ)−1| ≤ 4

λ
|E(Λ)| =

4

λ
vol(Λ, ℓ0).

Since (He,D
ω + λ)−1 is bounded from above by (∆e,D

ω + λ)−1, and since the edges
are uniformly bounded from above by ℓmax, there is a constant cλ > 0 such that
tr (He,D

ω +λ)−1 ≤ cλ for all e ∈ E(Λ) and ω ∈ Ω. This implies the desired estimate
with constant Cλ = 4λ−1 + cλ. �



englishCONTINUITY OF THE IDS ON RANDOM LENGTH METRIC GRAPHS 21

The proof of Theorem 2.6 will now be given in four lemmata. All of these lem-
mata are based on a given random length covering model (X,Ω,P, ℓ, L, q) with an
amenable covering group Γ and a fixed tempered Følner sequence In with associ-
ated compact topological graphs Λn := Λ(In).

In the first lemma, we prove the convergence (2.13) for a special family of func-
tions fλ associated to resolvents of the operators. Here, we need to apply an
ergodic theorem of Lindenstrauss [Lin01].

In later lemmata we show that the convergence (2.13) carries over to the uni-
form closure of finite linear combinations of the functions fλ, identify this closure
with the help of the Stone-Weierstrass Theorem, and finally conclude the desired
convergence for characteristic functions 1[0,λ] at continuity points λ > 0 of the IDS.

Lemma 4.5. Let λ > 0 and fλ : [0,∞) −→ R, fλ(x) = 1
x+λ

. Then there exists a
subset Ω0 ⊂ Ω of full P-measure such that

lim
n→∞

1

vol(Λn, ℓω)
tr[fλ(H

n,D
ω )] =

1

E(vol(F , ℓ•))
E(tr[1Ffλ(H•)])

for all ω ∈ Ω0.

Proof. We first consider a fixed ω ∈ Ω and a fixed Λ = Λ(In) and suppress the
parameters ω and n in the notation. Recall the definitions of HΛ,D and HΛ with
quadratic form domains given below. Let Λ′ denote the closure of the complement
Λc in the metric graph (X, ℓ). By Lemma 4.2 we have (4.1) in the sense of quadratic
forms. Since taking inverses is operator monotone, this implies

(HΛ,D ⊕HΛ′,D + λ)−1 ≤ (H + λ)−1 ≤ (HΛ ⊕HΛ′

+ λ)−1

for all λ > 0. In particular, we obtain inequalities for the following restricted
quadratic forms: Set (H + λ)−1

Λ = pΛ(H + λ)−1iΛ, where iΛ and pΛ denote the
canonical inclusions and projections between L2(Λ, ℓ) and L2(X, ℓ). Then

(HΛ,D + λ)−1 ≤ (H + λ)−1
Λ ≤ (HΛ + λ)−1. (4.5)

Consequently, (H + λ)−1
Λ − (HΛ,D + λ)−1 is non-negative and we have

0 ≤ trL
2
(Λ,ℓ)

[
(H + λ)−1

Λ − (HΛ,D + λ)−1
]

≤ trL
2
(Λ,ℓ)

[
fλ(H

Λ) − fλ(H
Λ,D)

]
≤ 2

λ
dmax|∂Λ|,

using Lemma 4.3, where dmax is a finite upper bound on the vertex degree of X,
which exists due to the Γ-periodicity of X. Using the van Hove property (2.11)
and the estimate

ℓmin vol(Λ, ℓ0) ≤ vol(Λ, ℓω) ≤ ℓmax vol(Λ, ℓ0),

we conclude that

lim
n→∞

1

vol(Λn, ℓω)

(
tr[(Hω + λ)−1

Λn
] − tr[fλ(H

n,D
ω )]

)
= 0. (4.6)

Using additivity of the trace and the operator consistency (2.8b), we obtain

trL
2
(Λn,ℓω)(Hω + λ)−1

Λn
=

∑

γ∈In

trL
2
(γF ,ℓω)(Hω + λ)−1

γF
=

∑

γ∈I−1
n

gλ(γω),
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where

gλ(ω) = trL
2
(F ,ℓω)[(Hω + λ)−1

F
] = tr[1Ffλ(Hω)]. (4.7)

Since, by monotonicity (4.5) and Lemma 4.4,

0 ≤ gλ(ω) ≤ trL
2
(F ,ℓω)[(H

F

ω + λ)−1] ≤ Cλ vol(F , ℓ0),

we conclude that gλ ∈ L1(Ω). Now, we argue as in the proof of Theorem 7
in [LPV04]: Applying Lindenstrauss’ ergodic theorem separately to both expres-
sions

1

|In|
∑

γ∈I−1
n

gλ(γω) and
1

|In|
∑

γ∈I−1
n

vol(F , ℓγω),

we conclude that

lim
n→∞

1

vol(Λn, ℓω)
tr[(Hω + λ)−1

Λn
] =

1

E(vol(F , ℓ•))
E(tr[1Ffλ(H•)]) (4.8)

for almost all ω ∈ Ω. The lemma follows now immediately from (4.6) and (4.8).
�

Let us denote by L the set of functions { x 7→ fλ(x) = (x + λ)−1 | λ > 0 }
and by A the ‖·‖∞-closure of the linear span of L and the constant function1 : [0,∞) −→ R, 1(x) = 1. Note that, by monotonicity (4.5) and Lemma 4.4, both
expressions µn

ω(f1) and µ(f1) = (E(vol(F , ℓ•)))
−1E(g1) (with g1 defined in (4.7))

are bounded by a constant K > 0, independent of ω and n. Let Ω0 ⊂ Ω be the
set of full P-measure from Lemma 4.5.

Lemma 4.6. Let ω ∈ Ω0. Set νn = f1 · µn
ω (for n ∈ N) and ν = f1 · µ. Then we

have, for all g ∈ A ,

lim
n→∞

νn(g) = ν(g).

Proof. By Lemma 4.5 we know that the statement holds for the function g = 1.
We note that fλ · f1 = 1

λ−1
(fλ − f1) for λ 6= 1. Thus, by linearity and Lemma 4.5,

the convergence holds also for all functions g = fλ with λ > 0, λ 6= 1. To deal
with the case λ = 1 note that f1+ε converges to f1 uniformly, as ε→ 0. Thus

|νn(f1) − νn(f1+ε)| ≤ ‖f1 − f1+ε‖∞ νn(1) ≤ Kε.

An analogous statement holds for νn replaced by ν. Thus

|ν(f1) − νn(f1)| ≤ 2Kε+
∣∣ν(f1+ε) − νn(f1+ε)

∣∣ → 2Kε, (4.9)

as n → ∞. Since ε > 0 was arbitrary, we conclude that limn→∞ νn(f1) = ν(f1).
By linearity, the convergence statement of the Lemma holds for all functions g in
the linear span of L ∪ {1}. To show that is holds for all functions in the closure
A , as well, one uses uniform approximation and an estimate of the same type as
in (4.9). �

The next lemma identifies the space A explicitly:

Lemma 4.7. The function space A coincides with the set of continuous functions
on [0,∞) which converge at infinity.
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Proof. The statement of the lemma is equivalent to A = C([0,∞]), where [0,∞] is
the one-point-compactification of [0,∞). We want to apply the Stone-Weierstrass
Theorem. Any fλ with λ > 0 separates points and 1 is nowhere vanishing in
[0,∞]. By definition A is a linear space. To show that it is an algebra we use
again the formula fλ1

· fλ2
= 1

λ2−λ1
(fλ1

− fλ2
), which shows that fλ1

· fλ2
∈ A for

λ1 6= λ2. Since A is closed in the sup-norm, we can use an approximation as in
the proof of the Lemma 4.6 to show f 2

λ ∈ A . A similar argument shows that the
product of two limit points f, g of the linear span of L ∪ {1} is in A . �

We have established the convergence µn
ω(g) → µ(g) for all functions of the form

g · f1 with g ∈ A . The following lemma shows that this is sufficient to conclude
the almost sure convergence Nn

ω (λ) → N(λ) at continuity points λ, finishing the
proof of Theorem 2.6. One has only to observe that every continuous function of
compact support on R+ = [0,∞) can be written as g · f1, with an element g ∈ A .

Lemma 4.8. For n ∈ N, let ρn, ρ be locally finite measures on R+. Then

lim
n→∞

ρn(g) = ρ(g)

for all continuous functions g of compact support implies that

lim
n→∞

ρn([0, λ]) = ρ([0, λ])

for all λ > 0 which are not atoms of ρ.

Proof. The proof is standard. First note that locally finiteness of ρ implies

lim
ε→0

ρ([λ− ε, λ+ ε]) = ρ({λ}) = 0.

Now choose monotone functions g−ε , g
+
ε ∈ Cc(R

+) satisfying1[0,λ−ε] ≤ g−ε ≤ 1[0,λ] ≤ g+
ε ≤ 1[0,λ+ε].

Then

ρ([0, λ]) − ρn([0, λ]) ≤ ρ(g+
ε ) − ρ(g−ε ) + ρ(g−ε ) − ρn(g−ε )

≤ ρ([λ− ε, λ+ ε]) + ρ(g−ε ) − ρn(g−ε ).

For any δ > 0 one can choose ε > 0 such that ρ([λ−ε, λ+ε]) < δ. Since δ > 0 was
arbitrary, we have shown ρ([0, λ]) ≤ lim infn→∞ ρn([0, λ]). The opposite inequality
is shown similarly. �

5. Proof of the Wegner estimate

This section is devoted to the proof of Theorem 2.9. Let (X,Ω,P, ℓ) be a ran-
dom length model satisfying Assumption 2.8. We first introduce a new measur-
able map α : Ω × E −→ [ω−, ω+] with ω− = ln ℓmin, ω+ = ln ℓmax, defined by
αω(e) := α(ω, e) = ln ℓω(e). The random variables α(·, e), e ∈ E, are indepen-
dently distributed with density functions ge(x) = exhe(e

x), and we have

‖g′e‖∞ ≤ ℓmax‖he‖∞ + ℓ2max‖h′e‖∞ ≤ (ℓmax + ℓ2max)Ch =: Dh <∞. (5.1)

Thus, we can re-identify Ω with the Cartesian product
∏

e∈E [ω−, ω+], and the
maps α(·, e) are simply projections to the component with index e. The measure

P is now given as the product
⊗

e∈E P̃e of marginal measures P̃e with density
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functions ge ∈ C1(R) satisfying the above estimate (5.1). The advantage of the
new “rescaled” identification Ω =

∏
e∈E[ω−, ω+] is the following property of the

eigenvalues of the Laplacian on any compact subgraph (Λ, ℓω):

λi(∆
Λ,D
ω+s1) = e−2sλi(∆

Λ,D
ω ). (5.2)

Here, the eigenvalues λi are counted with multiplicity and ω + s1 denotes the
element {ωe+s}e∈E(X) ∈ Ω. Property (5.2) is an immediate consequence of (2.3b),

ℓω+s1(e) = eαω(e)+s = esℓω(e), and the fact that a rescaling of all lengths by a fixed
multiplicative constant does not change the domain of the Kirchhoff Laplacian
with Dirichlet boundary conditions on ∂Λ. Property (5.2) is of crucial importance
for the proof of the Wegner estimate.

Henceforth, we use this new interpretation of Ω and rename P̃e by Pe, for sim-
plicity.

Let Λ ⊂ X be a compact topological subgraph, λ ∈ R and ε > 0. We write
the interval I as [λ − ǫ, λ + ǫ] and start with a smooth function ρ : R −→ [−1, 0]
satisfying ρ ≡ −1 on (−∞,−ε], 0 ≤ ρ′ ≤ 1/ε, ρ ≡ 0 on [ε,∞). Moreover, we set
ρλ(x) = ρ(x− λ). Then we have1[λ−ε,λ+ε](x) ≤ ρλ(x+ 2ε) − ρλ(x− 2ε) =

∫ 2ε

−2ε

ρ′λ(x+ t) dt.

Using the spectral theorem, we obtain

PΛ,D
ω ([λ− ε, λ+ ε]) = 1[λ−ε,λ+ε](∆

Λ,D
ω ) ≤

∫ 2ε

−2ε

ρ′λ(∆
Λ,D
ω + t) dt,

and, consequently,

trPΛ,D
ω ([λ− ε, λ+ ε]) ≤

∫ 2ε

−2ε

tr ρ′λ(∆
Λ,D
ω + t) dt.

Denote by (Ω(Λ),PΛ) the space Ω(Λ) =
∏

e∈E(Λ)[ω−, ω+] with probability mea-

sure PΛ =
⊗

e∈E(Λ) Pe, and EΛ(·) denote the associated expectation. E(·) means

expectation with respect to the full space (Ω,P). Applying expectation yields

E(trPΛ,D
• ([λ− ε, λ+ ε])) = EΛ(trPΛ,D

• ([λ− ε, λ+ ε]))

≤
∫

Ω(Λ)

∫ 2ε

−2ε

tr ρ′λ(∆
Λ,D
ω + t) dt dPΛ(ω). (5.3)

Using the chain rule and scaling property (5.2), we obtain

∑

e∈E(Λ)

∂

∂ωe
ρλ(λi(∆

Λ,D
ω ) + t) = ρ′λ(λi(∆

λ,D
ω ) + t)

d

ds

∣∣∣
s=0

(
s 7→ λi(∆

Λ,D
ω+s1))

= −2ρ′λ(λi(∆
λ,D
ω ) + t)λi(∆

Λ,D
ω ) ≤ 0.

Now, we use that [λ− ε, λ+ ε] ⊂ Ju = [1/u, u]. Since supp ρ′λ ⊂ [λ− ε, λ+ ε], we
derive

0 ≤ tr ρ′λ(∆
Λ,D
ω + t) ≤ −u

2

( ∑

e∈E(Λ)

∂

∂ωe
tr ρλ(∆

Λ,D
ω + t)

)
. (5.4)
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For e ∈ E(Λ), denote by Λe the topological subgraph with vertex set Ve := V (Λ)
and edge set Ee := E(Λ) \ {e}. Using the estimate (5.4), we obtain from (5.3)

E(trPΛ,D
• ([λ− ε, λ+ ε]))

≤ −u
2

∑

e∈E(Λ)

∫

Ω(Λe)

∫ 2ε

−2ε

∫ ω+

ω−

( ∂

∂ωe

tr ρλ(∆
Λ,D
(ω′,x) + t)

)
ge(x) dx dt dPΛe

(ω′) (5.5)

with (ω′, x) ∈ Ω(Λe) × [ω−, ω+] = Ω(Λ). Next, we want to carry out partial
integration with respect to x in (5.5). Before doing so, it is useful to observe, for
fixed c ∈ [ω−, ω+],

∂

∂ωe

tr ρλ(∆
Λ,D
(ω′,x) + t) =

∂

∂ωe

(
tr ρλ(∆

Λ,D
(ω′,x) + t) − tr ρλ(∆

Λ,D
(ω′,c) + t)

)
. (5.6)

Using (5.6) and applying partial integration, we obtain

∣∣∣
∫ ω+

ω−

( ∂

∂ωe
tr ρλ(∆

Λ,D
(ω′,x) + t)

)
ge(x) dx

∣∣∣

≤ ‖g′e‖L1 sup
c′∈[ω−,ω+]

∣∣tr ρλ−t(∆
Λ,D
(ω′,c′)) − tr ρλ−t(∆

Λ,D
(ω′,c))

∣∣. (5.7)

For notational convenience, we identify the compact topological graph consisting
only of the edge e and its end-points with e, and we denote by ∆e,D

c be the Dirichlet-
Laplacian on the metric graph (e, ℓc) defined by ℓc(e) = exp(c). Using (4.3) in
Lemma 4.3, we conclude that

∣∣tr ρλ−t(∆
Λ,D
(ω′,c)) − tr ρλ−t(∆

Λe,D
ω′ ⊕ ∆e,D

c )
∣∣ ≤ 2 |ρ(∞) − ρ(t− λ)| 2dmax ≤ 4dmax,

for all values c ∈ [ω−, ω+]. Consequently, sup
∣∣tr ρλ−t(∆

Λ,D
(ω′,c′)) − tr ρλ−t(∆

Λ,D
(ω′,c))

∣∣
in (5.7) can be estimated from above by

8dmax +
∣∣tr ρ(∆e,D

c′ + t− λ) − tr ρ(∆e,D
c + t− λ)

∣∣.

Note that all eigenfunctions of the Dirichlet operator ∆e,D
c are explicitly given sine

functions. Therefore, since λ ∈ [1/u+ε, u−ε] and t ∈ [−2ε, 2ε], there is a constant
Cu,ℓmax

> 0, depending only on u, ℓmax, such that
∣∣tr ρ(∆e,D

c + t− λ)
∣∣ ≤ Cu,ℓmax

,

for all exp(c) ∈ [ℓmin, ℓmax]. This implies

∣∣∣
∫ ω+

ω−

(
∂

∂ωe
tr ρλ(∆

Λ,D
(ω′,x) + t)

)
ge(x) dx

∣∣∣ ≤ (8dmax + 2Cu,ℓmax
) ‖g′e‖L1([ω−,ω+]).

Plugging this into inequality (5.5), we finally obtain

E(trPΛ,D
• ([λ− ε, λ+ ε])) ≤ u (4dmax + Cu,ℓmax

)Dh ln
ℓmax

ℓmin

4ε |E(Λ)|,

finishing the proof of Theorem 2.9.
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[LV08] D. Lenz and I Veselić, Hamiltonians on discrete structures: jumps of the integrated

density of states and uniform convergence., to appear in Math. Z., arXiv:0709.2836
(2008).

[MSY03] V. Mathai, Th. Schick, and S. Yates, Approximating spectral invariants of Harper

operators on graphs. II, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1917–1923 (elec-
tronic).

[MY02] V. Mathai and S. Yates, Approximating spectral invariants of Harper operators on

graphs, J. Funct. Anal. 188 (2002), no. 1, 111–136.
[Pos08] O. Post, Equilateral quantum graphs and boundary triples, in [EKK+08] (2008), 469–

490.
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