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In the seventies of the last century A. Gray started to consider non-integrable special Riemannian
geometries of small dimensions (n ≤ 8). Some years later – in the second half of the eighties – these
structures played a crucial role in the investigations of T. Friedrich et al. concerning eigenvalue
estimates for the Dirac operator on a Riemannian manifold.

The interest in non-integrable geometries emerged once again from the developments of theo-
retical physics in the common sector of type II string theory. Around the end of the nineties T.
Friedrich and collaborators developed a new and systematic approach to non-integrable geometries
which takes up certain aspects of string theory straightforwardly. This approach leads naturally to
the notion of characteristic connection ∇c, an affine connection with totally skew-symmetric torsion
T c, i.e. a 3-form, which can be associated to certain G-structures in a well-defined way. This point
of view grew to show that structures with parallel torsion (∇cT c = 0) are of particular interest.
This restricted type clearly carries more information about the properties of these structures and
provides a basis to solve Strominger’s equations in a natural manner (see [Str86] and [FI02]). We
recommend the article [Agr06] as a compendium of these developments.

Since the turn of the century a more general system of spinorial field equations than those de-
scribed by Strominger has become a matter of particular interest in type II string theory. These
models of supergravity – the so-called supergravity models with fluxes – can be described geomet-
rically by a tuple (Mn, g, T, F,Ψ) consisting of a Riemannian spin manifold (Mn, g), a 3-form T , a
4-form F and a spinor field Ψ. The link between these objects are the equations (see [Duf02])

(ℵ) ∇g
XΨ + 1

4 (X T ) ·Ψ + p (X F ) ·Ψ + q (X ∧ F ) ·Ψ = 0,

Ricgij −
1

4
TimnTjmn = 0, δ(T ) = 0

where ∇g denotes the Levi-Civita connection of (Mn, g) and p, q ∈ R are real parameters. The first
of these three equations – the so-called Killing equation – should be satisfied for any vector field
X ∈ TM . If one introduces the new covariant spinorial derivative

∇XΨ := ∇g
XΨ +

1

4
(X T ) ·Ψ + p (X F ) ·Ψ + q (X ∧ F ) ·Ψ,
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then the Killing equation takes the particularly simple form ∇Ψ = 0. Considering the Kaluza-Klein
reduction ofM-theory (see [WNW85], [Ali01], [BDS02] and [BJ03]) the relevant dimension for Mn

lies between 4 and 8 (4 ≤ n ≤ 8).
Moreover, additional algebraic constraints occur, for example the algebraic coupling between the

3-form or the 4-form and the spinor field Ψ

(ℵℵ) T ·Ψ = λ ·Ψ, F ·Ψ = κ ·Ψ, λ, κ ∈ C.

Obviously, the system (ℵ), (ℵℵ) generalizes Strominger’s model by introducing the new degree of
freedom given by a 4-form F , usually called flux form.

The motivation of the present work is the construction of solutions to the system (ℵ), (ℵℵ). At
first sight, some aspects to that aim are unclear:

• Which is the correct way to obtain solutions to the entire system?

• How can the high degree of freedom in the choice of the differential forms T and F be
controlled?

The starting point in order to answer the first question is to consider the Killing equation, ∇Ψ = 0.
Solving this equation is the central task of this work and will be treated in the following chapters
in a systematic way. At the end of this summary we will review the solutions obtained in the light
of the entire system (ℵ), (ℵℵ).

A direct construction of solutions to ∇Ψ = 0 on an arbitrary Riemannian spin manifold is
not to be expected, as suggested by the discussion of the case F = 0 of [AFNP05]. Instead we
study a certain class of non-integrable G-structures with characteristic connection ∇c and parallel
torsion T c. We will introduce these structures and their properties in the first section of chapter
1. This approach has the advantage that many geometric properties are known already due to the
parallelism of T c. In this case a natural ansatz for the 3-form T is to require that it is fixed up to
a real parameter: T ∼ T c. Unfortunately no analogue approach to geometric structures is known
that determines a 4-form intrinsically, to the effect that – at least in principle – F is completely
arbitrary. To overcome this problem we shall make a special ansatz, and furthermore demand F to
be parallel with respect to ∇c.

We thus take a class (Mn, g,∇cT c = 0) of non-integrable geometric structures with parallel
torsion T c, fix ∇c-parallel 4-forms Fi and make the following ansatz for T and F :

F =
∑
i

Ai · Fi, T = B · T c, Ai, B ∈ R.

With these we try to solve ∇Ψ = 0 on the corresponding geometric structure. Which are then the
classes of geometric structures dealt with in this work?

Our treatise includes the dimensions 5, 6 and 7 in chapters 2, 3 and 4, respectively. In dimension
5 we investigate quasi-Sasakian structures. As far as dimension 6 is concerned we choose almost
Hermitian structures with parallel torsion, ∇cT c = 0. These were classified by N. Schömann
(see [Sch06]). We say that six-dimensional almost Hermitian structures with parallel torsion and
Hol(∇c) ⊂ G ⊂ Iso(T c) belong to the class C[G]. Here Hol(∇c) is the holonomy group of the
characteristic connection and Iso(T c) the connected component of the identity of the isotropy
group of T c. In dimension 7 we solve ∇Ψ = 0 both on α-Sasakian structures and cocalibrated
G2-structures with parallel torsion, the latter fully described in the work of Friedrich (see [Fri06]).
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The cocalibrated, non-nearly parallel G2-structures with parallel torsion, for which the holonomy
algebra hol(∇c) of the characteristic connection equals g, are said to belong to the class C[g].

To solve ∇Ψ = 0 in terms of the previous set-up we proceed in two steps:

(1) We ‘classify’ solutions, i.e. determine necessary conditions for the solvability of ∇Ψ = 0.

(2) We construct solutions, with the help of (1).

Step one is described in detail in the second section of chapter 1, where we discuss how the kernel
of the endomorphism ∑

k

ek · R∇(ek, X)

can be used to classify solutions. We will refer to this endomorphism of spinors as the ‘first
contraction’ of the curvature tensor R∇ with respect to ∇. It can be computed algebraically,
provided we know the Ricci tensor Ricc of the characteristic connection, and if T and F are parallel
with respect to ∇c.

As typical examples of the results obtained via the above two-step procedure, we mention the
following, taken from chapters 3 and 4:

Theorem 1. Let G be a connected, non-abelian subgroup of U(3) that stabilizes a non-trivial 3-form
T c ∈ Λ3(R6) and (M6, g, J) a six-dimensional almost Hermitian spin manifold of class C[G] with
characteristic connection ∇c, characteristic torsion T c, 4-form F = A · ∗Ω 6= 0, 3-form T = B · T c

and covariant spinorial derivative

∇0
XΨ = ∇g

XΨ +
1

4
(X T ) ·Ψ +

1

2
(X F ) ·Ψ + (X ∧ F ) ·Ψ.

Then there exists one ∇0-parallel spinor field Ψ0 if and only if the following conditions are satisfied:

(1) The spinor field Ψ0 is parallel with respect to the characteristic connection ∇c.
(2) The spinor field Ψ0 satisfies ∗Ω ·Ψ = −3 ·Ψ.
(3) The 3-form T coincides with the characteristic torsion, T = T c.

Theorem 2. Let g be a proper, non-abelian subalgebra of g2 and (M7, g, ω3) a seven-dimensional,
cocalibrated G2-manifold of class C[g] with characteristic connection ∇c, characteristic torsion T c,
4-form F = A · ∗ω3 6= 0, 3-form T = B · T c and covariant spinorial derivative

∇0
XΨ = ∇g

XΨ +
1

4
(X T ) ·Ψ +

3

4
(X F ) ·Ψ + (X ∧ F ) ·Ψ.

In case B 6= −7, there exists one ∇0-parallel spinor field Ψ0 if and only if the following conditions
are satisfied:

(1) The spinor field Ψ0 is parallel with respect to the characteristic connection ∇c.
(2) The spinor field Ψ0 satisfies ∗ω3 ·Ψ = −7 ·Ψ.
(3) The 3-form T coincides with the characteristic torsion, T = T c.

These theorems have two common aspects. Firstly, both refer to a particular ratio between the
parameters p and q

4 p = (n− 4) q.

This is special in several ways, so we will call the corresponding equation ‘of special type’. The
role of this ratio was mentioned in [AF03] in relation to the fact that the Dirac operator coming
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Table 1. Existence of solutions to ∇Ψ = 0. N denotes the maximum number of
constructed, distinct spinor fields which are parallel with respect to a certain family
of covariant spinorial derivatives ∇. The superscript c refers to the characteristic
connection ∇c. In the second last column we determine whether all constructed
solutions are eigenspinors of T .

Dim. Structure F 6= 0 F = 0

N N (RicT = 0) T ·Ψ = λ ·Ψ N c

T 6= T c T = T c

n = 5 α-Sasakian structure 1 1 1 4 2

quasi-Sasakian M5(a, b, c, d) 1 – – 4 2

n = 6 almost SU(3) 2 1 – 4 2

Hermitian SO(3) 2 1 2 4 2

structure SU(2) 2 – – 8 4

of U(2)0 2 – – 8 4

class U(2)1 no solutions constructable

C[G] U(2)−1 2 1 – 4 2

n = 7 nearly parallel G2-structure 2 2 – 4 1

cocalibrated su(3) I 2 – – 4 2

G2-structure II 2 2 – 4 2

of so(3) I 2 – – 4 2

class II 2 2 1 4 2

C[g] su(2) I 4 4 3 4 4

II 4 – – 4 4

III 3 – – 4 4

u(2) I 2 2 2 4 2

II 2 2 – 4 2

suc(2) rel. 1 1 1 4 1

α-Sasakian structure 2 2 2 4 2

from ∇ does not depend on F for p/q = (n− 4)/4 (see chapter 1). Secondly, in either case solving
∇Ψ = 0 is reduced to the existence of solutions to ∇cΨ = 0, which were classified in many works
relative to Strominger’s equations over the last years. In other words we have a good starting point
for constructing solutions.

We then proceed to the full system (ℵ), (ℵℵ). If we define

RicT := Ricgij −
1

4
TimnTjmn,
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the following relations:

δT = 0, F ·Ψ = κ ·Ψ, divc(RicT ) = div(RicT ) = 0

hold in all cases discussed here by [AFNP05]. If we replace – as suggested in [AFNP05] – the
equation RicT = 0 in (ℵ) by div(RicT ) = 0, then every solution Ψ constructed satisfies the entire
system (ℵ), (ℵℵ), provided furthermore that Ψ is an eigenspinor of T .

Table 1 contains a summary of our results regarding ∇Ψ = 0. It is to be understood as follows:
Cocalibrated G2-structures of class C[su(2)] with torsion type I will for instance admit at most four
distinct (i.e. linearly independent) spinor fields parallel with respect to a certain family of covariant
spinorial derivatives with non-vanishing 4-form. Should we further consider certain structures of
this type and choose T = T c, there exists a family ∇̄ rendering three distinct spinor fields parallel.
At the same time RicT

c
= Ricc = 0 is fulfilled. There exist other structures of the same type and

a family ∇̃ with now four distinct spinor fields such that ∇̃Ψ̃ = 0, RicT = 0 and T 6= T c. All these
spinor fields are eigenspinors relative to the 3-form T . Finally, there exist at most four distinct
∇c-parallel spinor fields for that type of geometric structures.

To conclude, a few comments on possible generalizations of our spinorial field equations. Solving
the following Killing equation is the main concern of supergravity models in type II string theory
(see [GLW06]):

∇g
XΨ +

1

4
(X T ) ·Ψ +

∑
i

pi (X F i) ·Ψ +
∑
i

qi (X ∧ F i) ·Ψ = 0.

The differential forms F i are of degree 2 i (type IIa) or of degree 2 i + 1 (type IIb). Due to the
complexity of the algebraic systems the approach of this thesis is unlikely to be suitable for this
general kind of equation. However, ∇c-parallel spinor fields may represent natural candidates to
begin with when constructing solutions. If we start from one of the structures considered in this
work and set T = B · T c, then the above equation will read

B − 1

4
(X T c) ·Ψ0 +

∑
i

pi (X F i) ·Ψ0 +
∑
i

qi (X ∧ F i) ·Ψ0 = 0

for a ∇c-parallel spinor field Ψ0. The last column of table 1 tells us how many such spinor fields
exist. We conjecture that this purely algebraic equation could be solved with an appropriate ansatz
for the differential forms F i.

Berlin, 23 January 2007 Christof Puhle
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