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4. Conclusion

The aforementioned Wiren’s model can be used for the developed probability model of fatigue crack propagation which
is based on experimental results. The described improvements of the reliability model of fatigue crack growth propagation
allow for the assessment of fatigue crack length as a function of 4K, and the derivation of the increasing reliability R(4K)
at lower loading conditions 4F,. The reliability tends towards the final value of reliability outside experimental observations.
It is proved that improvements are valid under the zone of lower loading conditions of a specimen with crack,
because the microstructural and mechanical properties are preserved. But inside this zone of loading conditions, the
reliability R(4K ) that the crack length will be shorter than in case of experimental testing is substantially increased.
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We study quantitative stability properties of solutions to certain two-stage stochastic programs which are given by
P(u): min {g(x) + Q,(4x):x € C},
where 0.0 = g Q(z — ) u(dz) and Q(r):=min{q'y: Wy =t,y = 0}.

We assume that g:IR" — IR is a convex function, C = R" is a non-empty closed convex set, ¢ € R™ and A, W are matrices
of proper dimensions, and uis a (Borel) probability measure on R*. Throughout, we have the following general assumptions:

(A1) W(RY) = IR* (complete recourse),

(A2) {ueR*: WTu < q} + 0 (dual feasibility),

(A3) e A (R¥) = {v:v probability measure, | [|z|| v(dz) < oo},
IRS

(A1)— (A3) ensure Q, to be a real-valued convex function on R* ([1]). Assigning to each v € ./, (R?) the set y(v) of solutions
to P(v) we study quantitative continuity properties of the multifunction 1 at some original measure u. For motivation,
background and further references on stability in stochastic programming see [4]. Since the uniqueness of solutions in P(u)
is rather exceptional (see e.g. the discussion in [5]), standard techniques of parametric optimization fail (e.g. those using
traditional sufficient second order conditions). Our main result is the following

Theorem 1: Suppose (Al)— (A3) and that w(u) is nonempty and bounded. Let U < IR™ be an open convex bounded
set containing v (1).
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a) Let the following growth condition be fulfilled:
(GO) There exists a constant o > 0 such that

g(x) + Q,(Ax) = inf {g(x) + Q,(Ax)} + ad(x, p(w)* holds for all xeC N U.

xeC

Then there exists a constant L > 0 such that

i
sup d(x, () S L Y, sup [Py p)(=Bj ') = Fu.()(= B '0)

xewp(v) J=11eA)

whenever v € M, (IR®) has the property that the right-hand side is sufficiently small.
b) Let g be convex quadratic and C be convex polyhedral. Assume that Q, is strongly convex on A(U), Le., there exists
a »x > 0 such that for all y, 7€ A(U), 1€]0, 1],

Qi + (1 = H D =40, + (1 = H Q) — AL — A llx — 7*.

Then there exists a constant L > 0 such that

1
du(p(), () £ L Y, sup |F,.—py(—B;j't) — F,.p,(—Bj 1)

ji=1 te AU)
whenever v € #(IR") has the property that the right-hand side is sufficiently small.

(Here dy denotes the Hausdorff distance on subsets of R™, B, j = 1, ..., 1, denote the optimal basis submatrices of W, and
F,.(_p, denotes the distribution of the linearly transformed measures v > (—B;).)

The Proof of a) is a consequence of the results in [7] together with Proposition 2.3 and Corollary 2.11 in [5]; b) is
proved in [5].

The assumptions of b) imply (GC) (Proposition 2.5 in [5]), but (GC) does not imply the assertion of b} (Example 2.6 in
[5]). Condition (GC) and both estimates are lost for general convex C = R” and g even if Q,, is strongly convex (Example 2.7
in [5]). Q, is strongly convex on some open convex set ¥ < R*if (i) (A1), (A3) are fulfilled, (i) there exists a 7 € R® such
that Wi < g componentwise, and (iii) 1 has a density @, and @,(t) = r > Ofor all t in a neighbourhood of V' (Theorem 2.2
in [6]).

Finally we show how Theorem 1 can be used to derive asymptotic properties of optimal solutions when estimating
the underlying distribution by empirical ones. We obtain a large-deviation estimate for solutions without imposing the
unique solvability of P(x). Let £, &,, ..., &, ... be independent IR%-valued random on some probability space (2, o, P)
having common distribution u, and let us consider the empirical measures

1 n
w)=— 3 d(@), weR; neN.
ni=1
Corollary 2: Under the assumptions of Theorem 1b) there exists a constant ¢y > Osuch that for all e € (0, gy] holds

N\ 2
lim Supilog P({w:du(p(), p(p, (@) = &}) < —2<§> ,

where L and | denote the Lipschitz modulus and the number of basis matrices, respectively, arising in Theorem 1.

Proof: Well-known measurability arguments imply that the Hausdorff distance of dy(yp(u), w(u,()) is an
o/-measurable random variable with values in R U {+ co}. We introduce the notation

?,(w):= max ﬂr:.j(w)a ”ln.j(w) G Suﬂ? |Fun(—Bj)(t) = Fu,.(w)u(—ls,-)(m s wel; nelN.
Jj=1,...1 telRs

Next we select g, > 0 such that LI®,(w) < g, implies dy;(p (1), w(u, (@) £ LI®,(w) (Theorem 1). Then we have for each
e€(0,e0] and all ne N,

1
P{{w:dulp W), p(u,(@) 2 €}) < ; ({w M, j(@) = 5})

The multivariate Dvoretzky-Kiefer-Wolfowitz inequality ([3]) then implies that, for each 6 > 0 and j e {1, ..., I}, there exist
constants C; > 0 such that

P({w:n,, j(w) = ¢/Ll}) < C;exp (— (2 — ) n(e/Ll)?), nelN.
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Hence, we obtain for each ne€ N,

i € 2
log P({w: du(p (1), w,(w)) Z e}) < log < > C,—) —(2—-9)n <E> .
Jj=1
Since § > O was arbitrary, the proof is complete. []J
By making use of Theorem 1a) the analogue of Corollary 2 for the one-sided Hausdorff distance is valid, too. Large
deviation estimates were also obtained in [2] and [8] for more general stochastic programs. However, the results of [2]
require the unique solvability of the original program and Theorem 2 of [8] only applies to measures ¢ with bounded support.
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An dem realistischen Modell einer Raumsonde zur Venus werden Mdoglichkeiten zur kombinierten Optimierung von
Flugbahn und Raumfahrzeug aufgezeigt. Der Schwerpunkt der Gerdteoptimierung liegt auf dem Antriebssystem.

Das Modell (1)

In einem heliozentrischen Kugelkoordinatensystem wird die Bewegung des Massenschwerpunktes einer Raumsonde
mathematisch durch das folgende hoch-nichtlineare Differentialgleichungssystem dimensionsloser GréBen der Form
X = f(x,u,t) (x Zustandsvektor, u Steuerungsvektor; t unabhéngige Variable, hier die Zeit) beschrieben:

0 5 Uy : Uy 4
F =y, p=—"") ==, m=—p, + B,,
2or sin I ¥
2 2
. cfty + eafls . - v, + Ug 1 &
Ur=—17“'!“smWs1n.:+—“’ -5+ =
m r r mr

o m; . .
— ,-;1 s_; [r — rjcos § cos §; — r;sin 9sin 9; cos 2n(e — @),
J

e ffy + cafi, v, VU "om; ) ,
By = 2 2ha cos Weos & — 22 — 2% .ot 9 — Y = [rysin §;sin 2zl — )],
m 7 r =1 8;




