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Abstract

We study an approach for the evaluation of approximation and solution meth-

ods for multistage linear stochastic programs by measuring the performance of the

obtained solutions on a set of out-of-sample scenarios. The main point of the ap-

proach is to restore the feasibility of solutions to an approximate problem along the

out-of-sample scenarios. For this purpose, we consider and compare different feasi-

bility and optimality based projection methods. With this at hand, we study the

quality of solutions to different test models based on classical as well as recombining

scenario trees.
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1 Introduction

In general, numerical solution methods for stochastic optimization problems require the

underlying probability measures to have only a finite support. Thus, different techniques

have been developed to approximate random variables or stochastic processes by a limited

number of scenarios or finite scenario trees, respectively. These techniques follow different

principles like random sampling [19], moment matching [8], probability metrics [3, 4, 6, 15],

and Quasi Monte-Carlo sampling [14]. Convergence of optimal values and/or solution sets

has been proved for specific techniques and properties of statistical estimates and bounds

have been established (cf., e.g., [19] and the references therein). Stability analysis of

stochastic programs yields further hints how approximations should look like, cf. [5, 11,

13, 16].
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Unfortunately, on the one hand, these theoretical results may require the optimization

problems and underlying random variables to fulfill specific regularity assumptions that

may be hard to verify in some cases of practical interest. On the other hand, quantitative

error bounds and statistical properties are not available for all problem classes. Further-

more, due to the numerical complexity of stochastic programming models, it is sometimes

necessary to use approximations that are too rough to obtain meaningful error bounds or

confidence intervals via asymptotic results.

In such cases, one has to resort to numerical methods to measure the performance

and quality of approximation and solution methods. Since a main task of stochastic

programming is to provide decision strategies that are robust enough to be applicable in

real-world scenarios, it suggests itself to measure the quality of an approximation method

by evaluating the (optimal) solutions obtained from solving the approximate problem.

This can be done, e.g., by evaluating these solutions along out-of-sample scenarios, cf.,

e.g., [10] and [2, 7] for one- and multistage problems, respectively.

In this paper, we study how out-of-sample testing may be used to study the behaviour

of approximations to linear multistage stochastic programs (MSP). Thereby, we aim for

problems with many stages, where, due to numerical complexity, the thoroughly con-

struction of out-of-sample strategies as in [7] and the second method of [2] do not apply.

Furthermore, our framework differs since we abstain from a (relatively) complete recourse

assumption. Then, in particular, optimal solutions of an approximate problem are not

necessarily feasible along out-of-sample scenarios. Therefore, the generation of feasible

solutions out of solutions of an approximate problem is an important issue. Furthermore,

this question may be of interest whenever one is interested in obtaining practically appli-

cable solutions. For this feasibility restoration we adopt different projection approaches.

Considering MSPs from power scheduling and finance, the proposed feasibility restora-

tion approaches are applied to study the quality of solutions obtained by the decomposition

approach proposed in [12], based on recombining scenario trees, and solutions induced by

non-recombining trees that have been constructed using the Forward Tree Construction

Algorithm of Heitsch and Römisch [4, Algorithm 4.5].

Acknowledgement. We are grateful to Teemu Pennanen for motivating us to this work

and to Prof. Werner Römisch for his help and encouragement. This work was supported by

the Bundesministerium für Bildung und Forschung (BMBF) under the grant 03SF0312E,

which is gratefully acknowledged.



Numerical Evaluation of Approximation Methods 3

2 Problem Formulation

On a probability space (Ω,F , P) we consider an R
s-valued discrete time stochastic process

ξ = (ξt)t=1,...,T . For t = 1, . . . , T , the vector (ξ1, . . . , ξt) is denoted by ξ[t]. We study the

following linear multistage stochastic program:

(P ) v(ξ) := inf

{

E [ϕ(ξ, x(ξ))] :
x ∈ Mm, xt ≥ 0, t = 1, ..., T

At,0xt(ξ[t]) + At,1xt−1(ξ[t−1]) = ht(ξt), t = 2, ..., T

}

,

with the cost function

ϕ(ξ, x(ξ)) :=
T

∑

t=1

〈

ct(ξt), xt(ξ[t])
〉

.

The set Mm consists of all tuples x = (x1, . . . , xT ) of Borel-measurable mappings xt :

R
s·t → R

m. The costs ct(·) and the right-hand sides ht(·) are affine mappings from R
s to

R
m and R

r, respectively, for t = 1, . . . , T . The assumption of non-random technology and

recourse matrices is due to notational simplicity.

Whenever the optimization problem (P ) is not solvable analytically, a usual approach

is to replace the process ξ by a process ξ̄ taking only a finite number of scenarios ξ̄j =

(ξ̄j
t )t=1,...,T , j ∈ J , with J being some index set. The approximate problem

(P̄ ) v(ξ̄) := inf

{

E
[

ϕ(ξ̄, x(ξ̄))
]

:
x ∈ Mm, xt ≥ 0, t = 1, ..., T

At,0xt(ξ̄[t]) + At,1xt−1(ξ̄[t−1]) = ht(ξ̄t), t = 2, ..., T

}

,

may then be solved by numerical methods (that may be again approximative). Denoting

by x̄ = (x̄t(·))t=1,...,T a solution resulting from the particular approximation and solution

procedure, the optimal value of the approximate problem

v(ξ̄) = E[ϕ(ξ̄, x̄(ξ̄))]

is often considered as an approximation of v(ξ). However, specific regularity assumptions

on the problem (P ) and the processes ξ and ξ̄ are necessary to ensure certain approxima-

tion qualities, cf. [5], [11], and [13]. Indeed, without such conditions ξ̄ may be close to ξ

in some sense, but passing from (P ) to (P̄ ) may lead to significant changes in the optimal

value, e.g., by providing arbitrage possibilities, see [11, Example A.4].

Being interested in a good approximation of the unknown value v(ξ), it is thus rea-

sonable rather to evaluate the approximate solution x̄ with regard to the original data

process ξ, that is, to consider

E[ϕ(ξ, x̄(ξ))].

Furthermore, whenever the approximate solution x̄ is not feasible (or even not defined)

along the initial process ξ, it may be appropriate to modify x̄ to a feasible strategy x̃.

Then the value

(1) E[ϕ(ξ, x̃(ξ))]
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provides an upper bound on v(ξ) that can be realized by implementing the strategy x̃.

The value (1) thus appears to be a more reliable approximation of v(ξ) than E[ϕ(ξ, x̄(ξ))].

To evaluate the integral (1), the law of large numbers suggests to draw independent

samples ξi, i ∈ I, from the distribution of ξ and to consider the out-of-sample value

(2) ṽ(ξ̄) :=
1

|I|

∑

i∈I

ϕ(ξi, x̃(ξi)).

The value ṽ(ξ̄) can be seen as the real-world performance of the approximative solution

x̄(·). Consequently, approximations ξ̄
′

and ξ̄
′′

of different accuracy or constructed by

different algorithms may be compared by means of their out-of-sample values ṽ(ξ̄
′

) and

ṽ(ξ̄
′′

). Similarly, approximative solution algorithms can be compared by evaluating the

resulting solutions.

3 Out-of-sample Evaluation

We consider a solution x̄(·) to the approximate problem (P̄ ) and denote the finite set

of scenarios of the approximating process ξ̄ by {ξ̄j : j ∈ J}. Starting from x̄(·), we

aim to construct a strategy x̃(·) that is feasible along a set of out-of-sample scenarios

{ξi, i ∈ I} ⊂ supp Pξ. In order to ensure that x̃(·) is implementable by a non-clairvoyant

decision maker, this feasibility restoration has to be nonanticipative.

To this end, we consider a nonanticipative mapping π : {ξi : i ∈ I} → {ξ̄j : j ∈ J}

that assigns every out-of-sample scenario ξi to some scenario of the approximated process

that is close to ξi, in some sense. We say that π is nonanticipative if it can be written

as π(ξi) = (π1(ξ
i
[1]), . . . , πT (ξi

[T ])), where πt are Borel measurable mappings from R
s·t →

{ξ̄j
t : j ∈ J}. Assuming a decision maker who has observed {ξ[t] = ξi

[t]} until time t, the

rule π suggests him a scenario (π1(ξ
i
[1]), . . . , πt(ξ

i
[t])) of the approximate model (and the

corresponding strategy) that is close to his observation. The mapping π may be defined

as a (conditional) projection, see the Appendix for a detailed construction.

The distance between the set of out-of-sample scenarios {ξi : i ∈ I} and their associ-

ated tree scenarios π(ξi) can be measured by the term

dπ(I, J) :=
1

|I|

∑

i∈I

∑T

t=1 ‖ξ
i
t − πt(ξ

i
[t])‖

∑T

t=1 ‖ξ
i
t‖

,

which is the relative euclidean distance between a scenario ξi and its assigned scenario

π(ξi), averaged over all scenarios i ∈ I.

Having related the out-of-sample scenarios ξi to the approximation scenarios ξ̄j by the

mapping π, we obtain that x̄(π(·)) ∈ Mm, i.e., x̄(π(ξ)) is nonanticipative w.r.t. the process

ξ and thus indeed a potential solution to the initial problem (P ). Unfortunately, x̄(π(ξi))
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does not need to be feasible along the scenario ξi of the initial process ξ, in general. In

order to achieve this feasibility, different projection-based approaches to modify x̄(π(·))

are proposed in the next section.

In the following, we denote the decision x̄(·) along the scenario π(ξi) by x̄i and refer

to it as the reference solution. The modification of x̄i along the out-of-sample scenario ξi

is denoted by x̃i.

3.1 Feasibility Restoration

Aiming for a (nonanticipative) solution x̃i that is feasible along the scenario ξi, we propose

the following straightforward approach. Let x̃i
1 := x̄i

1. For t = 2, . . . , T and given x̃i
t−1,

we search for a feasible point x̃i
t that is close to x̄i

t.

Such a point x̃i
t may be found by projecting x̄i

t on the feasible set at timestage t,

i.e., on the set {xt ∈ R
m : At,0xt + At,1x̃

i
t−1 = ht(ξ

i), xt ≥ 0}. However, in order to

cope with possible future infeasibilities in models without relatively complete recourse,

we further restrict the feasible set by incorporating information about future constraints.

More precisely, we consider the value

∆i
t := min

xt

‖xt − x̄i
t‖∞(3)

s.t. At,0 xt + At,1 x̃i
t−1 = ht(ξ

i
t),

hlow
τ ≤ Aτ,0 xτ + Aτ,1 xτ−1 ≤ hup

τ , τ = t + 1, . . . , T,

xτ ≥ 0, τ = t, . . . , T,

being the minimal distance from x̄i
t onto the (reduced) feasible set at timestage t. The

vectors hlow
τ and hup

τ are chosen such that hlow
τ ≤ hτ (ξ

i
τ ) ≤ hup

τ holds true for all i ∈ I.

The corresponding conditions in (3) are added to avoid decisions x̃i
t that may lead to

future infeasibilities, at least to some degree. In particular, we set hlow
τ,j = hup

τ,j for those

components j of hτ (·) that do not depend on ξ. Observe that this simple approach to

avoid future infeasibilities relies on the assumption of non-random matrices Aτ,0 and Aτ,1.

However, the approach can be extended, e.g., by demanding the existence of feasible

decisions xτ , τ ≥ t, along all possible future realizations of the process ξ̄.

Basic Restoration

One may think about several techniques for determining a feasible point x̃i
t based on

previously computed values for x̃i
1, . . ., x̃i

t−1. A basic method is to just stay as close as
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possible to the reference solution x̄i
t and to set x̃i

t to a solution point of problem (3):

x̃i
t := argmin

xt

‖xt − x̄i
t‖∞

s.t. At,0 xt + At,1 x̃i
t−1 = ht(ξ

i
t),

hlow
τ ≤ Aτ,0 xτ + Aτ,1 xτ−1 ≤ hup

τ , τ = t + 1, . . . , T,

xτ ≥ 0, τ = t, . . . , T.

Myopic Restoration

However, sometimes it may be reasonable to exchange some closeness to x̄i
t by cost min-

imality along the out-of-sample scenario ξi. That is, we allow the decision x̃i
t to deviate

from the set of closest feasible solutions by a relative fraction εrel ≥ 0 or an absolute value

εabs ≥ 0 in order to minimizing the costs along ξi. Doing so in a myopic way means to

minimize 〈ct(ξ
i), xt〉, i.e.,

x̃i
t := argmin

xt

〈ct(ξ
i), xt〉 + ρt‖xt − x̄i

t‖∞

s.t. At,0 xt + At,1 x̃i
t−1 = ht(ξ

i
t),

hlow
τ ≤ Aτ,0 xτ + Aτ,1 xτ−1 ≤ hup

τ , τ = t + 1, . . . , T,

xτ ≥ 0, τ = t, . . . , T,

‖xt − x̄i
t‖∞ ≤ (1 + εrel)∆

i
t + εabs.

where ρt ≥ 0 is chosen very small, e.g., ρt = 10−4‖ct(ξ
i)‖∞.

Note that letting ρt → 0 and εrel+εabs → ∞ increases the emphasis on cost minimality

along ξi by allowing larger deviation from the reference solution x̄i
t.

Farsighted Restoration

Due to the time-coupling constraints, a decision xt at time t impacts the feasible sets for

future decisions and thus the future costs. These future costs can be taken into account

within the feasibility restoration by considering the shadow prices associated to the time-

coupling constraints. For this purpose, we consider the dual problem to (P̄ ),

(D̄) max











E

[

T
∑

t=1

〈

ht(ξ̄t), µt

〉

]

:

µ ∈ Mr, µ1A1,1 ≤ c1, µT (ξ̄[T ])AT,0 ≤ cT (ξ̄T ),

µt(ξ̄[t])At,0 + E
[

µt+1(ξ̄[t+1])At+1,1|ξ̄[t]

]

≤ ct(ξ̄t),

t = 2, .., T − 1.











,

and denote by µ̄ an optimal solution of (D̄). The shadow price vector corresponding to

the primal decision xt is then equal to µ̄t+1(ξ̄[t+1])At+1,1. In particular, this value is a

subgradient of the cost-to-go function at time t + 1, that will be defined below. In order
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to maintain the nonanticipativity of the feasibility restoration along the out-of-sample

scenario ξi, we resort to the expected shadow price vector

ηt+1 := E
[

µt+1(ξ̄[t+1])At+1,1

∣

∣ξ̄[t] = πt(ξ
i
[t])

]

.

Using this dual information about future costs, we choose x̃i
t in a farsighted way by setting

x̃i
t := argmin

xt

〈ct(ξ
i) − ηt+1, xt〉 + ρt‖xt − x̄i

t‖∞

s.t.At,0 xt + At,1 x̃i
t−1 = ht(ξ

i
t),

hlow
τ ≤ Aτ,0 xτ + Aτ,1 xτ−1 ≤ hup

τ , τ = t + 1, . . . , T,

xτ ≥ 0, τ = t, . . . , T,

‖xt − x̄i
t‖∞ ≤ (1 + εrel)∆

i
t + εabs.

Extensive Restoration

An even more farsighted method is to use not only a single subgradient, but several. Such

subgradients are available, e.g., whenever the approximate problem (P̄ ) was solved by a

Nested-Benders-style algorithm [17]. Thus, for t = 1, . . . , T , let

Qt(xt−1, ξ[t]) := min
xt

〈ct(ξt), xt〉 + E
[

Qt+1(xt, ξ̄[t+1])
∣

∣ξ̄[t] = ξ[t]

]

s.t.At,0xt + At,1xt−1 = ht(ξt), xt ≥ 0,

be the cost-to-go function at time t in state ξ[t] (with QT+1(·, ·) := 0). Having subgradient

information π′

t about E
[

Qt+1(·, ξ̄[t+1])
∣

∣ξ̄[t] = ξ[t]

]

available in a set of supporting points

x′

t, we can set

x̃i
t := argmin

xt

〈ct(ξ
i), xt〉 + Θt + ρt‖xt − x̄i

t‖∞

s.t. At,0 xt + At,1 x̃i
t−1 = ht(ξ

i
t),

hlow
τ ≤ Aτ,0 xτ + Aτ,1 xτ−1 ≤ hup

τ , τ = t + 1, . . . , T,

xτ ≥ 0, τ = t, . . . , T,

Θt ≥ E
[

Qt+1(x
′

t, ξ̄[t+1])
∣

∣ξ̄[t] = πt(ξ
i
[t])

]

+ 〈π′

t, xt − x′

t〉, for all x′

t,

‖xt − x̄i
t‖∞ ≤ (1 + εrel)∆

i
t + εabs.

Remark 1. The latter ‘extensive’ method is related to the first approach in [2], which

has been proposed for MSPs with interstage independence or a weak type of interstage

dependence.

Remark 2. It is also possible to apply a preprocessing step to the introduced restoration

methods similar to the optimal basis prolongation in [1]. That is, having an optimal

basis from the solution of (P̄ ) and a feasible solution x̃i
t−1 at hand, one can construct a
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corresponding primal solution x̄i
t that satisfies At,0x̄

i
t +At,1x̃

i
t−1 = ht(ξ

i
t), but might violate

the positivity constraint xt ≥ 0. Thus, a feasibility restoration step that uses x̄i
t instead

of x̃i
t is applied afterwards. However, within our numerical experiments this preprocessing

affects the out-of-sample evaluation rather adversely.

3.2 Measuring Infeasibility

Without relatively complete recourse, the feasibility restoration might fail if problem (3)

is infeasible. However, in some cases it might be possible to relax certain ’soft’ constraints

in order to obtain a feasible solution. Let St be a matrix that indicates the ’soft’ dynamic

constraints at timestage t (of course, the concrete choice of St depends on the considered

model). In order to determine how much these constraints have to be relaxed to make (3)

feasible, we solve the auxiliary problem

min
xt,...,xT ,s̃i

t

|s̃i
t|1(4)

s.t. At,0 xt + At,1 x̃i
t−1 + Sts̃

i
t = ht(ξ

i
t).

hlow
τ ≤ Aτ,0 xτ + Aτ,1 xτ−1 ≤ hup

τ , τ = t + 1, . . . , T,

xτ ≥ 0, τ = t, . . . , T.

If problem (4) is feasible, we apply one of the feasibility restoration methods from above

with εrel = εabs = 0 and the right side ht(ξ
i) replaced by ht(ξ

i)− s̃i
t, to obtain a ‘minimal

infeasible’ solution x̃i
t−1. With this solution at hand we can proceed to the next timestage.

If the relaxed problem (4) is feasible for every t = 2, . . . , T , we say that the solution x̃i is

weakly infeasible. The minimal weak infeasibility of x̃i along ξi is then defined as

(5) s̃i :=
T

∑

t=1

|s̃i
t|1,

where we let s̃i
t = 0 if (3) was feasible in timestage t.

If even the relaxed problem (4) is infeasible for some t ≥ 2, x̃i is denoted as strongly

infeasible and the feasibility restoration for the out-of-sample scenario ξi is abandoned.

Piecing this all together, it is reasonable to measure the quality of a solution by the

following parameters. By I+, I−, and I−− we denote the sets of indices i ∈ I such that x̃i

is feasible, weakly infeasible, or strongly infeasible, respectively. Then we consider the

(feasible) out-of-sample value ṽ(ξ̄) :=
1

|I+|

∑

i∈I+

ϕ(ξi, x̃(ξi)),

infeasibility rate r̃ :=
|I− ∪ I−−|

|I|
, and

average (weak) infeasibility s̃ :=
1

|I−|

∑

i∈I
−

s̃i,

where s̃i is defined by (5).
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4 Numerical Examples

We apply the proposed out-of-sample evaluation method for two stochastic programming

models using in both cases classical scenario trees as well as recombining scenario trees.

The classical scenario trees are generated using the Forward Tree Construction Algo-

rithm of Heitsch and Römisch [4, Algorithm 4.5]. The optimal value v(ξ̄) of the scenario

tree based problem is computed by solving the deterministic equivalent with CPLEX [9].

The recombining scenario trees are constructed by a modified version of [4, Alg. 4.5].

Recombination takes place every four time stages and the number of different subtrees

per timeperiod (the time between two recombination points) is varied between two and

eight. The tree based problem is solved by an extension of the Nested Benders Decom-

position Algorithm as introduced in [12]. Note that the decomposition approach does not

require the solution process to be recombining too. However, the recombining nature of the

process ξ allows a“dynamic recombination”of solutions due to the re-use of Benders Cuts.

Within this decomposition algorithm the quality of the approximated cost-to-go functions

is controlled by an aggregation parameter γ ∈ [0, 1]. Numerical experiments with various

values of γ have shown that the choice γ = 0.01 yields sufficiently accurate solutions.

For details about the generation of recombining scenario trees and the decomposition

approach, see also [12].

4.1 Power Scheduling

Model Description

We consider a power generating system consisting of several thermal units (index set I), a

pumped hydro unit, and a wind power plant. The objective is to find cost-optimal opera-

tion levels of the thermal units and hydro units under uncertain production of electricity

from wind. The model makes no claim to depict a real world situation, but is for studying

purposes only.

Let us denote by pi,t the operation level of the thermal unit i ∈ I at time t, by lt the

fill level of the water reservoir, and by wt and vt the operation level of the water pump

and turbine, respectively. Deterministic parameters of the problem are operation ranges

for the thermal units p
i
< p̄i, i ∈ I, the pump w̄ > 0, and the turbines v̄ > 0, the capacity

of the water reservoirs l̄ > 0, the fill levels lin and lend of the reservoirs at the beginning

and at the end of the considered time horizon, the efficiency of the pump η, the fuel costs

bi, i ∈ I, and the energy demand dt. As stochastic parameter we consider the wind power



Numerical Evaluation of Approximation Methods 10

production κt. The complete model has the form

min E

[

T
∑

t=1

∑

i∈I

bipi,t

]

s.t. l0 = lin, lT ≥ lend,(6)

lt = lt−1 − (vt − ηwt), t = 1, . . . , T,(7)

|pi,t − pi,t−1| ≤
1

2
(p̄i − p

i
), i ∈ I, t = 2, . . . , T,(8)

∑

i∈I

pi,t + (vt − wt) + κt ≥ dt, t = 1, . . . , T,(9)

∑

i∈I

pi,t ≤
∑

i∈I

p̄i −
1

10
dt, t = 1, . . . , T,(10)

p
i
≤ pi,t ≤ p̄i, 0 ≤ vt ≤ v̄, 0 ≤ wt ≤ w̄, 0 ≤ lt ≤ l̄, i ∈ I, t = 1, . . . , T.

Constraint (6) models the initial and final fill level of the reservoir, (7) couples the fill level

of the reservoir between successive time stages, (8) bounds the change in the operation of

the thermal units between successive time stages, (9) ensures that the electricity demand

is covered, and (10) is a reserve requirement. The model parameters are given by Table 1

in the Appendix.

The time horizon is T = 48 hours. The random nature of future wind power output is

modeled by adding a discrete time Brownian motion to the predicted wind speed curve.

Then 1000 trajectories of wind speed are simulated and transformed into wind power

output using a (piecewise linear) wind park power curve, c.f. Figure 1. The resulting wind

power output scenarios are used for the construction of scenario trees. For the bounds

on κt (as required for hlow
t and hup

t in (3)) we use κlow
t ≡ 0 and κup

t ≡ maxτ ‖κτ‖∞ for

t = 1, . . . , T .

10 20 30 40
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20
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100

Figure 1: Left side: 1000 simulated trajectories from wind speed in m/s. Right side: The

corresponding wind power output trajectories (percentage of maximal capacity). The

maximal capacity of the wind power park is attained for a wind speed above 15 m/s.

While the capacity of the thermal units is sufficient to cover the maximal load, this
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model does not possess relatively complete recourse due to the condition (6) on the mini-

mal final fill level of the water storage and the reserve requirements (10). Since a violation

of the reserve requirement (10) does not prohibit the power plant to operate inside its op-

erational bounds and such that the demand is satisfied, we have chosen these constraints

as soft constraints (cf. Section 3.1), i.e., weakly infeasible solutions are allowed to violate

the reserve requirement.

Out-of-sample Evaluation

Figure 2 presents the results of the out-of-sample evaluation of classical and two types of

recombining scenario trees using the farsighted feasibility restoration. As one can observe,

the out-of-sample values ṽ(ξ̄) are higher than the minimal costs v(ξ̄) of the tree based

stochastic programs. While the optimal values v(ξ̄) of the approximate problems do not

significantly differ for scenario trees having different numbers of nodes, the out-of-sample

values are decreasing with a growing number of nodes in the same manner as the distance

dπ between the scenario trees and the set of out-of-sample scenarios. This indicates that

the quality of the tree based solutions with regard to their usefulness for real-world decision

making improves with increasing accuracy of the scenario tree approximation.

Next, we observe that the out-of-sample values ṽ(ξ̄) computed from solutions of re-

combining tree based stochastic programs are better than when classical scenario trees on

the same number of nodes are used. This is probably due to the much higher number of

scenarios that can be used within recombining trees. Comparing the out-of-sample values

for recombining scenario trees with two and four different subtrees per timeperiod shows

that a too extensive recombination (i.e., using only two subtrees) worsen the results, even

though the number of nodes is the same.

Further, we compare the out-of-sample values that are obtained with varying values

of εrel, i.e., allowing the modified solution to differ more or less from the tree solution in

favor of cost minimality. The results for the farsighted feasibility restoration are shown

on the left side of Figure 2. The choice εrel = 0 is equivalent to the basic method. As

we can see, the out-of-sample values decrease with increasing values of εrel, i.e., with an

increasing freedom to move solutions towards optimality per timestage. However, we also

observed that the number of out-of-sample scenarios that lead to an infeasible problem

(3) in the feasibility restoration phase increases. While for εrel ≤ 0.1 the percentage of

infeasible scenarios r̃ (c.f. Section 3.2) is at most 0.1% for all trees, this value increased to

0.4% for εrel = 0.5. For εrel = 1 the fraction of infeasible scenarios raised to 5%, where the

infeasibilities resulting from recombining scenario tree solutions were always of the weak

type. Both types of infeasibilities could be observed when using classical scenario trees.

We also performed computations with the myopic feasibility restoration and observed

that the out-of-sample values are only slightly worse than with the farsighted approach.
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Scenario tree constructed with the Forward Tree Construction Algorithm [4]:
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Recombining scenario tree with two subtrees per timeperiod:
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Recombining scenario tree with four subtrees per timeperiod:
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Figure 2: Results for the power scheduling model. Left side: Optimal value v(ξ̄) of the

tree based problems (in bold) and corresponding out-of-sample values ṽ(ξ̄) for εabs = 0

and several values of εrel using a series of scenario trees with increasing number of nodes

(horizontal axis). The values for εrel are (with decreasing position of the ṽ(ξ̄) curve) 0,

0.05, 0.10, 0.25, 0.5, and 1.0, where the farsighted feasibility restoration was used. Right

side: The distance dπ between the scenario trees and the set of out-of-sample scenarios.

Hence, the additional information on (future) costs related to changes in the fill level of

the water reservoir does not change the out-of-sample values considerably.
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4.2 Swing Option Exercising

Model Description

The following problem of evaluating a swing option basically coincides with Problem 1

considered in [7]. A swing option allows its holder to purchase a total amount of U units

of energy during the time [1, T ], for a fixed strike price K per unit. The amount of energy

purchased at time t ∈ [1, T ] is denoted by xt and has to lie in some interval [l, u]. Assuming

that the purchased energy is immediately sold on the spot market, the holder of the swing

option is interested in finding a purchase strategy xt, t = 1, . . . , T , that maximizes the

expected accumulated wealth. This problem can be written as follows:

(11) min

{

E

[

T
∑

t=1

〈K − ξt, xt〉

]

:
x ∈ M1, xt ∈ [l, u], t = 1, . . . , T,
∑T

t=1 xt ≤ U,

}

with positive constants l, u, U , and K. The stochastic process ξ = (ξt)
T
t=1 describes

the spot market price per energy unit and is assumed to follow a discrete time geometric

Brownian motion, i.e., ξ1 = 1 and

(12) ξt = ξt−1 exp(εt −
1

2
σ2), t = 2, . . . , T.

Thereby εt, t = 2, . . . , T, are independent, normally distributed random variables with

expectation µ and variance σ2. In the following, we assume for the sake of notational

simplicity l = 0, u = 1, and U ∈ N.

In particular, this model allows for an analytic solution whenever the drift µ of the

spot price process ξ is nonnegative. Indeed, using the (negative) payoff function ϕ(ξt) :=

(K − ξt)
−, problem (11) can be written as

(13) min

{

E

[

T
∑

t=1

xtϕ(ξt)

]

:
xt ∈ M1, xt ∈ [0, 1], t = 1, . . . , T,
∑T

t=1 xt ≤ U

}

.

If µ ≥ 0, the process ξ is a submartingale. Consequently, due to the negativity, mono-

tonicity, and concavity of ϕ, the process (ϕ(ξt))t=1,...,T is a supermartingale. It is thus no

surprise that an early exercise of the the swing option is not optimal. Indeed, one easily

shows that x∗ defined by

(14) x∗

t (ξt) :=







0, if t ≤ T − U,

1, if t > T − U and ξt > K,

is an optimal solution for (11). Observe that the algorithms we have used for the scenario

tree construction do not maintain the martingale property, in general. Hence, the tree

based optimal solutions are not necessarily of type (14).
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Out-of-sample Evaluation

For the following computations, we used the parameter values T = 52, U = 20, K = 1,

µ = 0, and σ = 0.07. We reformulated the model by adding auxiliary variables ut =
∑t

τ=1 xt and the (redundant) constraints ut ≤ U , t = 1, . . . , T − 1. Thus, by virtue of

these modifications, the model has relatively complete recourse. This property and the

small number of variables and constraints might let this model appear ‘simple’. However,

while in the power scheduling model uncertainty appeared only in one component of the

power generating system, the decisions in the swing option model are mainly driven by

the stochastic price process. Thus, one can expect that the quality of the price process

approximations ξ̄ has a major impact on the optimal value of the stochastic program and

the out-of-sample values. Indeed, Figure 3 shows that the relative deviation between the

tree based optimal values v(ξ̄) and the out-of-sample values ṽ(ξ̄) is much larger than in

the power scheduling problem, see Figure 2.

For the considered classical scenario trees, the values v(ξ̄) and ṽ(ξ̄) appear to be far

from convergent. This illustrates that the number of scenarios used to approximate the

price process over T = 52 timestages does not lead to a reliable solution yet. In contrast,

scenario trees of similar size have shown to be adequate for the power scheduling model

(48 timestages, cf. Section 4.1).

Using recombining scenario trees seems to slightly improve the situation. The optimal

value v(ξ̄) and out-of-sample values ṽ(ξ̄) are less fluctuating here. Again, we can observe

that using only two subtrees per timeperiod is not sufficient and yields a too optimistic

value v(ξ̄), while the use of eight scenario trees shifts both the tree value v(ξ̄) and the

out-of-sample value ṽ(ξ̄) closer to the exact value v(ξ).

Next, we compare different feasibility restoration strategies. Since uncertainty appears

only in the objective function coefficients, the scenario-wise solutions x̄i, i ∈ I, are always

feasible for the corresponding scenario ξi, that is ∆i
t = 0. Hence, the basic feasibility

restoration method coincides with evaluating the scenario solution x̄i along the costs

ct(ξ
i
t), t = 1, . . . , T . We compare a basic, a myopic, and a farsighted strategy using

εabs = 1. In difference to the power scheduling model, here the basic approach yields the

best results. For the myopic feasibility restoration, the choice εabs = 1 yields a solution

x̃i
t that is independent of the scenario tree solution x̄. In particular, the out-of-sample

values based on the myopic approach do not depend on the scenario tree. The farsighted

feasibility restoration with εabs = 1 additionally utilizes in each timestage information

from the scenario tree solution in form of shadow prices. As one can observe, this allows

to improve the myopic results, even though the out-of-sample value gets worse with a

growing number of nodes.



Numerical Evaluation of Approximation Methods 15

Scenario tree constructed with the Forward Tree Construction Algorithm [4]:
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Recombining scenario tree with two subtrees per timeperiod:
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Recombining scenario tree with eight subtrees per timeperiod:
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Figure 3: Results for the swing option model. Left side: Optimal value v(ξ̄) of the

stochastic program (in bold) and the corresponding out-of-sample values ṽ(ξ̄) for basic

(lower solid line) and farsighted (upper solid line) feasibility restoration using a series of

scenario trees with increasing number of nodes (horizontal axis). The myopic value and

the exact value v(ξ) are plotted as the upper and lower dashed lines, respectively. The

parameters εrel = 0 and εabs = 1 were used. Right side: The distance dπ between the

scenario trees and the set of out-of-sample scenarios.

Appendix

For the sake of completeness, we sketch how the mapping π : {ξi : i ∈ I} → {ξ̄j : j ∈ J},

as introduced in Section 3, may be constructed. Given a scenario tree consisting of the
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scenarios ξ̄j, j ∈ J , a node nt at time t is a subset of J , such that the scenarios ξ̄j, j ∈ nt

are indistinguishable until time t. The set of nodes at time t is denoted by Nt. The set

of nodes at time t + 1 succeeding from the node nt is denoted by succ(nt) ⊂ Nt+1 and we

have ∪nt+1∈succ(nt)nt+1 = nt. The realization of the (tree) process ξ̄ on a node nt is denoted

by ξ̄nt

t . Recall that there is only one node at time t = 1, i.e. N1 = {n1} = {J}, and there

are |J | nodes at time horizon T , each of it containing a different singular scenario index.

Now, the mapping π is constructed recursively as follows. Given some out-of-sample

scenario ξi, we set π1(ξ
i
[1]) := ξ̄n1

1 . Assume that for some t ∈ {2, . . . , T} we have

πt−1(ξ
i
[t−1]) = ξ̄

nt−1

t−1 for some node nt−1. Then we define

πt(ξ
i
[t]) := argmin

ξ̄nt :nt∈succ(nt−1)

‖ξi
t − ξ̄nt

t ‖.

parameter value

b1 fuel cost coal 21

b2 fuel cost gas & steam 48

b3 fuel cost gas 154

p̄1 capacity coal 1,000

p̄2 capacity gas & steam 500

p̄3 capacity gas 500

k̄ capacity wind 1,000

v̄ capacity hydro turbine 2,000

w̄ capacity hydro pump 2,000

η pump efficiency 0.75

l̄ capacity hydro storage 12,000

lin, lend initial/final storage level 6,000

Table 1: Parameter of power scheduling model. Maximum demand per hour is 2, 000.
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