Lösung Klassenstufe 9/10 - Aufgabe 4

Es ist $|\angle BXY| = 30^{\circ}$, was wir im Folgenden beweisen.

Wir führen den Hilfspunkt Z auf der Strecke \overline{BC} so ein, dass $|\angle BAZ| = 60^{\circ}$ gilt. Weiterhin sei S der Schnittpunkt von den Strecken \overline{AZ} und \overline{BX} . Nach Voraussetzung gilt $|\angle BAC| = |\angle CBA| = 80^{\circ}$.

Wegen $|\angle BAS| = |\angle SBA| = 60^\circ$ ist das Dreieck $\triangle ABS$ gleichseitig. Das Dreieck $\triangle ABY$ ist gleichschenklig mit $|\overline{AB}| = |\overline{BY}|$, denn nach Innenwinkelsummensatz im Dreieck $\triangle ABY$ gilt $|\angle AYB| = 180^\circ - |\angle YBA| - |\angle BAY| = 180^\circ - 80^\circ - 50^\circ = 50^\circ = |\angle BAY|$. Folglich ist $|\overline{BY}| = |\overline{AB}| = |\overline{BS}|$ und das Dreieck $\triangle BSY$ gleichschenklig mit Schenkeln $|\overline{BY}| = |\overline{BS}|$. Also $|\angle BSY| = |\angle SYB| = 80^\circ$ wegen $|\angle YBS| = |\angle CBA| - |\angle XBA| = 80^\circ - 60^\circ = 20^\circ$.

Wir haben $|\angle YSZ| = 180^{\circ} - |\angle BSY| - |\angle ASB| = 180^{\circ} - 80^{\circ} - 60^{\circ} = 40^{\circ}$ und mit Innenwinkelsummensatz im Dreieck $\triangle ABZ$ erhalten wir $|\angle AZB| = 180^{\circ} - |\angle ZBA| - |\angle BAZ| = 180^{\circ} - 80^{\circ} - 60^{\circ} = 40^{\circ} = |\angle YSZ|$. Demnach ist das Dreieck $\triangle SYZ$ gleichschenklig mit Schenkeln $|\overline{SY}| = |\overline{YZ}|$.

Die Winkel $\angle ASB$ und $\angle ZSX$ sind als Scheitelwinkel beide gleich 60° groß. Nach der Wahl des Punktes Z liegt XZ parallel zu AB, folglich sind $\angle XZA$ und $\angle BAZ$ Wechselwinkel und beide 60° groß. Also ist das Dreieck $\triangle SZX$ gleichseitig. Insbesondere gilt $|\overline{SX}| = |\overline{XZ}|$, woraus mit $|\overline{SY}| = |\overline{YZ}|$ und dem Kongruenzsatz SSS die Kongruenz der Dreiecke $\triangle SYX$ und $\triangle XYZ$ folgt. Demnach gilt $|\angle SXY| = |\angle YXZ|$ und wegen $|\angle SXY| + |\angle YXZ| = |\angle SXZ| = 60^\circ$ gilt $|\angle SXY| = 60^\circ$: $2 = 30^\circ$. Also $|\angle BXY| = 30^\circ$.