
Arrow Debreu Prices

Dirk Becherer, Mark H.A. Davis - this draft: May 26, 2008

Arrow Debreu prices are the prices of ‘atomic’ time and state contingent
claims which deliver one unit of a specific consumption good if a specific un-
certain state realizes at a specific future date. For instance, claims on the good
‘ice cream tomorrow’ are split into different commodities depending whether the
weather will be good or bad, so that good-weather and bad-weather ice cream
tomorrow can be traded separately. Such claims were introduced by K.J. Arrow
and G. Debreu in their work on general equilibrium theory under uncertainty,
to allow agents to exchange state and time contingent claims on goods. Thereby
the general equilibrium problem with uncertainly can be reduced to a conven-
tional one without uncertainty. In finite state financial models, Arrow-Debreu
securities delivering one unit of the numeraire good can be viewed as natural
atomic building blocks for all other state-time contingent financial claims; their
prices determine a unique arbitrage-free price system.

Arrow-Debreu Equilibrium Prices

This section explains Arrow-Debreu prices in an equilibrium context, where they
originated, see Arrow (1953) and Debreu (1959). We consider at first a single-
period model with uncertain states, that will be extended to multiple periods
later. For this exposition, we restrict ourself to a single consumption good only,
and consider a pure exchange economy without production. Let (Ω, F) be a
measurable space of finitely many outcomes ω ∈ Ω = {1, 2, . . . , m}, where the
σ-field F = 2Ω is the power set of all events A ⊂ Ω. There is a finite set
of agents, each seeking to maximize the utility ua(ca) from his consumption
ca = (ca

0 , c
a
1(ω)ω∈Ω) at present and future dates 0 and 1, given some endowment

that is denoted by a vector (ea
0 , e

a
1(ω)) ∈ R

1+m
++ . For simplicity, let consumption

preferences of agent a be of the expected utility form

ua(ca) = Ua
0 (c0) +

m
∑

ω=1

P a(ω)Ua
ω(c1(ω)) ,

where P a(ω) > 0 are subjective probability weights, and the direct utility func-
tions Ua

ω and Ua
0 are, for present purposes, taken to be of the form Ua

i (c) =
da

i cγ/γ with relative risk aversion coefficient γ = γa ∈ (0, 1) and discount factors
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da
i > 0. This example for preferences satisfies the general requirements (insatu-

ration, continuity and convexity) on preferences for state contingent consump-
tion in Debreu (1959), which need not be of the separable subjective expected
utility form above. The only way for agents to allocate their consumption is
by exchanging state contingent claims, for delivery of some units of the (perish-
able) consumption good at a specific future state. Let qω denote the price at
time 0 for the state contingent claim that pays q0 > 0 units if and only if state
ω ∈ Ω is realized. Given the endowments and utility preferences of the agents,
an equilibrium is given by consumption allocations ca∗ and a linear price system
(qω)ω∈Ω ∈ R

m
+ such that,

a) for any agent a, his consumption ca∗ maximizes ua(ca) over all ca subject
to budget constraint (ca

0 − ea
0)q0 +

∑

ω(ca
1 − ea

1)(ω)qω ≤ 0, and

b) markets clear, i.e.
∑

a(ca
t − ea

t )(ω) = 0 for all dates t = 0, 1 and states ω .

An equilibrium exists and yields a Pareto optimal allocation; see Debreu
(1959), Chapter 7, or the references below. Relative equilibrium prices qω/q0 of
the Arrow securities are determined by first order conditions from the ratio of
marginal utilities evaluated at optimal consumption: For any a,

qω

q0
= P a(ω)

∂

∂ca
1

Ua
ω (ca∗

1 (ω))
/ ∂

∂ca
0

Ua
0 (ca∗

0 ) .

To demonstrate existence of equilibrium, the classical approach is to show that
excess demand vanishes, i.e. markets clear, by using a fixed point argument, see
Chapter 17 in Mas-Colell et al. (1995). To this end, it is convenient to consider
ca, ea and q = (q0, q1, . . . , qm) as vectors in R

1+m. Since only relative prices
matter, we may and shall suppose that prices are normalized so that

∑m
0 qi = 1,

i.e. the vector q lies in the unit simplex ∆ = {q ∈ R
1+m
+ |

∑m
0 qi = 1}. The

budget condition a) then reads compactly as (ca−ea)q ≤ 0, where the left-hand
side is the inner product in R

1+m. For given prices q, the optimal consumption
of agent a is given by the inverse of the marginal utility, evaluated at a multiple
of the state price density (see (6) for the general definition in the multi-period
case), as ca∗

0 = ca∗
0 (q) = (Ua

0
′)−1 (λaq0) and

ca∗
1,ω = ca∗

1,ω(q) = (Ua
ω
′)−1 (λaqω/P a(ω)) , ω ∈ Ω ,

where λa = λa(q) > 0 is determined by the budget constraint (ca∗−ea)q = 0 as
the Lagrange multiplier associated to the constrained optimization problem a).
Equilibrium is attained at prices q∗ where the aggregate excess demand

z(q) :=
∑

a
(ca∗(q) − ea)

vanishes, i.e. z(q∗) = 0. One can check that z : ∆ → R
1+m is continuous in

the (relative) interior ∆int := ∆∩R
1+m
++ of the simplex, and that |z(qn)| goes to

∞ when qn tends to a point on the boundary of ∆. Since each agent exhausts
his budget constraint a) with equality, Walras’ law z(q)q = 0 holds for any
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q ∈ ∆int. Let ∆n be an increasing sequence of compact sets exhausting the
simplex interior: ∆int = ∪n∆n. Set νn(z) := {q ∈ ∆n | zq ≥ zp ∀p ∈ ∆n}, and
consider the correspondence (a multi-valued mapping)

Πn : (q, z) 7→ (νn(z), z(q)) ,

that can be shown to be convex, non-empty valued, and maps the compact
convex set ∆n × z(∆n) into itself. Hence, by Kakutani’s fixed point theorem, it
has a fixed point (qn∗, zn∗) ∈ Πn(qn∗, zn∗). This implies that

(1) z(qn∗)q ≤ z(qn∗)qn∗ = 0 for all q ∈ ∆n,

using Walras’ law. A subsequence of qn∗ converges to a limit q∗ ∈ ∆. Provided
one can show that q∗ is in the interior simplex ∆int, existence of equilibrium
follows. Indeed, it follows that z(q∗)q ≤ 0 for all q ∈ ∆int, implying that
z(q∗) = 0 since z(q∗)q∗ = 0 by Walras’ law. To show that any limit point of qn∗

is indeed in ∆int, it suffices to show that |z(qn∗)| is bounded in n, recalling that
z explodes at the simplex boundary. Indeed, z =

∑

a za is bounded from below
since each agent’s excess demand satisfies za = ca−ea ≥ −ea. This lower bound
implies also an upper bound, by using (1) applied with some q ∈ ∆1 ⊂ ∆n, since
0 < ǫ ≤ qi ≤ 1 uniformly in i. This establishes existence of equilibrium. To
ensure uniqueness of equilibrium, a sufficient condition is that all agents’ risk
aversions are less or equal to one, that is γa ∈ (0, 1] for all a, see Dana (1993).

For multiple consumption goods, above ideas generalize if one considers con-
sumption bundles and state contingent claims of every good. Arrow (1953)
showed that in the case of multiple consumption goods, all possible consump-
tion allocations are spanned if agents could trade as securities solely state con-
tingent claims on the unit of account (so called Arrow securities), provided that
spot markets with anticipated prices exists for all other goods exists in all future
states. In the sequel, we only deal with Arrow securities in financial models with
a single numeraire good that serves as unit of account, and could for simplicity
be considered as money (‘Euro’). If the set of outcomes Ω were (uncountably)
infinite, the natural notion of atomic securities is lost, although a state price
density (stochastic discount factor, deflator) may still exist, which could be
interpreted intuitively as an Arrow-Debreu state price per unit probability.

Multiple period extension and No-Arbitrage implications

The one period setting with finitely many states is easily extended to finitely
many periods with dates t ∈ {0, . . . , T} by considering an enlarged state space
of suitable date-event pairs, see Chapter 7 in Debreu (1959). To this end, it
is mathematically convenient to describe the information flow by a filtration
(Ft) that is generated by a stochastic process X = (Xt(ω))0≤t≤T (abstract, at
this stage) on the finite probability space (Ω, F, P0). Let F0 be trivial, FT =
F = 2Ω, and assume P0({ω}) > 0, ω ∈ Ω. The σ-field Ft contains all events
that are based on information from observing paths of X up to time t, and is
defined by a partition of Ω. The smallest non-empty events in Ft are ‘t-atomic’
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events A ∈ At of the type A = [x0 · · ·xt] := {X0 = x0, . . . , Xt = xt}, and
constitute a partition of Ω. Figure 1 illustrates the partitions At corresponding
to the filtration (Ft)t=0,1,2 in a 5-element space Ω, as generated by a process
Xt taking values a, . . . , f . It shows that a filtration can be represented by a
non-recombining tree. There are 8 (atomic) date-event pairs (t, A), A ∈ At. An
adapted process (ct)t≥0, describing for instance a consumption allocation, has
the property that ct is constant on each atom A of partition At, and hence is
determined by specifying its value ct(A) at each node point A ∈ At of the tree.
Arrow-Debreu prices q(t, A) are specified for each node of the tree and represent
the value at time 0 of one unit of account at date t in node A ∈ At.
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Figure 1: Equivalent representations of the multi-period case. Left: Tree of the
filtration generating process Xt. Right: Partitions At of filtration (Ft)t=0,1,2.

Technically, this is easily embedded in the previous single period setting by
passing to an extended space Ω′ := {1, . . . T}×Ω with σ-field F

′ generated by all
sets {t}×A with A being an (atomic) event of Ft, and P ′

0({t}×A) := µ(t)P0(A)
for a (strictly positive) probability measure µ on {1, . . . T}.

For the common no-arbitrage pricing approach in finance, the focus is to price
contingent claims solely in relation to prices of other claims, that are taken as
exogenously given. In doing so, the aim of the model shifts from the fundamental
economic equilibrium task to explain all prices, towards a ‘financial engineering’
task to determine prices from already given other prices solely by no-arbitrage
conditions, which are a necessary prerequisite for equilibrium. From this point
of view, the (atomic) Arrow-Debreu securities span a complete market, as every
contingent payoff c, paying ct(A) at time t in atomic event A ∈ At, can be
decomposed by c =

∑

t,A∈At
ct(A)1(t,A) into a portfolio of atomic Arrow secu-

rities, paying one Euro at date t in event A. Hence the no-arbitrage price of
the claim must be

∑

t,A∈At
ct(A)q(t, A). Given that all atomic Arrow-Debreu

securities are traded at initial time 0, the market is statically complete in that
any state contingent cash flow c can be replicated by a portfolio of Arrow-Debreu
securities that is formed statically at initial time, without need for any dynamic
trading. The no arbitrage price for c simply equals the cost of replication by
Arrow-Debreu securities. It is easy to check that, if all prices are determined
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like this and trading takes place only at time 0, the market is free of arbitrage,
given all Arrow-Debreu prices are strictly positive. To give some examples,
the price at time 0 of a zero coupon bond paying one Euro at date t equals
ZCBt =

∑

A∈At
q(t, A). For absence of arbitrage, the t-forward prices qf (t, A′),

A′ ∈ At, must be related to spot prices of Arrow-Debreu securities by

(2) qf (t, A′) =
q(t, A′)

∑

A∈At
q(t, A)

=
1

ZCBt q(t, A
′) , A′ ∈ At .

Hence, the forward prices qf (t, A′) are normalized Arrow-Debreu prices and
constitute a probability measure Qt on Ft, which is the t-forward measure asso-
ciated to the t−ZCB as numeraire, and yields qf (t, A) = Et[1A] for A ∈ At, with
Et denoting expectation under Qt. Below, we will also consider ‘non-atomic’
state contingent claims with payoffs ck(ω) = 1(t,B)(k, ω), k ≤ T , for B ∈ Ft,
whose Arrow-Debreu prices are denoted by q(t, B) =

∑

A∈At,A⊂B q(t, A).

Arrow-Debreu prices in dynamic arbitrage-free markets

In the above setting, information is revealed dynamically over time, but trading
decisions are static in that they are entirely made at initial time 0. To discuss
relations between initial and intertemporal Arrow-Debreu prices in arbitrage free
models with dynamic trading, this section extends the above setting, assuming
all Arrow-Debreu securities are tradable dynamically over time.

Let qs(t, At), s ≤ t, denote the price process of the Arrow-Debreu security
paying one Euro at t in state At ∈ At. At maturity t, qt(t, At) = 1At

takes value
one on At and is zero otherwise. For absence of arbitrage, it is clearly necessary
that Arrow-Debreu prices are non-negative, and that qs(t, At)(As) > 0 holds for
s < t at As ∈ As if and only if As ⊃ At. Further, for s < t it must hold that

(3) qs(t, At)(As) = qs(s + 1, As+1)(As) qs+1(t, At)(As+1) ,

for As ∈ As, As+1 ∈ As+1 such that As ⊃ As+1 ⊃ At. In fact, the above
conditions are also sufficient to ensure that the market model is free of arbitrage:
At any date t, the Arrow-Debreu prices for the next date define the interest
rate Rt+1 for the next period (t, t + 1) of length ∆t > 0 of a savings account
Bt = exp(

∑t
s=1 Rs∆t) by

exp(−Rt+1(At)∆t) =
∑

At+1∈At+1,At+1⊂At

qt(t + 1, At+1) , At ∈ At ,

which is locally riskless, in that Rt+1 is known at time t, i.e. Ft-measurable.
They define an equivalent risk neutral probability QB by determining its tran-
sition probabilities from any At ∈ At to At+1 ∈ At+1 with At ⊃ At+1 as

(4) QB(At+1|At) =
qt(t + 1, At+1)(At)

∑

A∈At+1,A⊂At
qt(t + 1, A)(At)

.
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The transition probability (4) can be interpreted as 1-period forward price when
at At at time t, for one Euro at date t + 1 in event At+1, cf. (2). Since all B-
discounted Arrow-Debreu price processes qs(t, At)/Bs, s ≤ t, are martingales
under QB thanks to (3,4), the model is free of arbitrage by the fundamental
theorem of asset pricing, see Harrison and Kreps (1979). For initial Arrow-
Debreu prices, denoted by q0(t, At) ≡ q(t, At), the martingale property and
equations (3,4) imply that

q(t + 1, At+1) = e−Rt+1(At)∆tQB(At+1|At)q(t, At) ,(5)

hence q(t, At) = QB(At)/Bt(At) for At ∈ At. The deflator or state price density

for agent a is the adapted process ζa
t defined by

(6) ζa
t (At) :=

q(t, At)

P a(At)
=

QB(At)

Bt(At)P a(At)
, At ∈ At ,

so that ζa
t St is a P a-martingale for any security price process S, e.g. St =

qt(T, AT ), t ≤ T , with AT ∈ AT . If one chooses instead of Bt another secu-
rity Nt =

∑

AT ∈AT
NT (AT )qt(T, AT ) with NT > 0 as the numeraire asset for

discounting, one can define an equivalent measure QN by

QN(A)

P a(A)
=

NT (A)

N0(A)
ζa
T (A) , A ∈ AT ,

which has the property that St/Nt is a QN -martingale for any security price
process S. Taking N = (ZCBT

t )t≤T as the T -zero-coupon bond, yields the
T -forward measure QT .

If X is a QB-Markov process, the conditional probability QB(At+1|At) in
(5) is a transition probability pt(xt+1|xt) := QB(Xt+1 = xt+1|Xt = xt), where
Ak = [x1 . . . xk] for k = t, t+1. By summation of suitable atomic events follows

q(t + 1, Xt+1 = xt+1) =
∑

xt

e−R(xt)∆tpt(xt+1|xt)q(t, Xt = xt)(7)

where the sum is over all xt from the range of Xt.

Application examples: Calibration of pricing models

The role of Arrow-Debreu securities as ‘atomic building blocks’ is theoretical, in
that there exists no corresponding securities in real financial markets. Nonethe-
less, they are of practical use in the calibration of pricing models. For this
section, X is taken to be a QB-Markov process, possibly time-inhomogeneous.

The first example concerns the calibration of a short rate model to some
given term structure of Zero Coupon prices (ZCBt)t≤T , implied by market
quotes. For such models, a common calibration procedure relies on a suit-
able time-dependent shift of the state space for the short rate (see Hull (2006),
Chapter 28.7). Let suitable functions R∗

t be given such that the variations of
R∗

t (Xt) already reflect the desired volatility and mean-reversion behavior of the
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(discretized) short rate. Making an ansatz Rt(Xt) := R∗
t (Xt) + αt for the short

rate, the calibration task is to determine the parameters αt, 1 ≤ t ≤ T , such
that

ZCBt = EB



exp



−
∑

k≤t

(R∗
k(Xk) + αk)∆t







 ,

with the expectation being taken under the risk neutral measure QB. It is obvi-
ous that this determines all the αt uniquely. When computing this expectation
to obtain the αt by forward induction, it is efficient to use Arrow-Debreu prices
q(t, Xt = xt), since X usually can be implemented by a recombining tree. Sum-
ming over the range of states xt of Xt is more efficient than summing over all
paths of X . Suppose that αk, k ≤ t, and q(t, Xt = xt) for all values xt have
been computed already. Using (7), one can then compute αt+1 from equation

ZCBt+1 =
∑

xt+1

∑

xt

q(t, Xt = xt)e
(R∗

t+1(xt)+αt+1)∆tpt(xt+1|xt)

where the number of summand in the double sum is typically bounded or grows
at most linearly in t. Then Arrow-Debreu prices q(t + 1, Xt+1 = xt+1) for the
next date t + 1 are computed using (7), while those for t can be discarded.

The second example concerns the calibration to an implied volatility sur-
face. Let X denote the discounted stock price Xt = St exp(−rt) in a trinomial
tree model with constant interest Rt := r and ∆t = 1. Each Xt+1/Xt can

attain three possible values {m, u, d} := {1, e±σ
√

2} with positive probability,
for σ > 0. The example is motivated by the task to calibrate the model to
given prices of European calls and puts by a suitably choice of the (non-unique)
risk neutral Markov transition probabilities for Xt. We focus here on the main
step for this task, which is to show that the Arrow-Debreu prices of all state
contingent claims, which pay one unit at some t if Xt = xt for some xt, al-
ready determine the risk neutral transition probabilities of X . It is easy to see
that these prices are determined by those of calls and puts for sufficiently many
strikes and maturities. Indeed, strikes at all tree levels of the stock for each
maturity date t are sufficient, since Arrow-Debreu payoffs are equal to those of
suitable butterfly options that are combinations of such calls and puts. From
given Arrow-Debreu prices q(t, Xt = xt) for all t, xt, the transition probabilities
pt(xt+1|xt) are computed as follows: Starting from the highest stock level xt

at some date t, one obtains pt(xtu|xt) by (7) with Rt(xt) = r and ∆t = 1.
The remaining transition probabilities pt(xtm|xt), pt(xtd|xt) from (t, xt) are
determined from

pt(xtu|xt)u + pt(xtm|xt)m + pt(xtd|xt)d = 1

and pt(xtu|xt)+pt(xtm|xt)+pt(xtd|xt) = 1. Using these results, the transition
probabilities from the second highest (and subsequent) stock level(s) are implied
by (7) in a similar way. This yields all transition probabilities for any t.

To apply this in practice, the call and put prices for the maturities and strikes
required would be obtained from real market quotes, using suitable interpola-
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tion, and the trinomial state space (i.e. σ, r, ∆t) has to be chosen appropriately
to ensure positivity of all pt, see Dupire (1997) and Derman et al. (1996).
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