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Claessens' cross rule [8] enables simple computation of the values of the rational 
interpolation table if the table is normal, i.e. if the denominators in the cross rule are 
non-zero. In the exceptional case of a vanishing denominator a singular block is detected 
having certain structural properties so that some values are known without further computa- 
tions. Nevertheless there remain entries which cannot be determined using only the cross 
rule. 

In this note we introduce a simple recursive algorithm for computation of the values of 
neighbours of the singular block. This allows to compute entries in the rational interpolation 
table along antidiagonals even in the presence of singular blocks. Moreover, in the case of 
non-square singular blocks, we discuss a facility to monitor the stability. 
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I. Introduction 

Le t  (z , )  iE ~o be  a s e q u e n c e  of  (no t  necessar i ly  dist inct)  knots  in the  complex  
p lane .  Le t  f be  a func t ion  which  is suff ic ient ly  s m o o t h  in a n e i g h b o u r h o o d  of  
these  knots .  T h e n ,  the  rational interpolation problem consists  in c o m p u t i n g  
po lynomia ls  p and  q wi th  given maximal  d e g r e e  m and  n such tha t  f - p / q  has 

the  zeros  z 0, z l , . . . ,  Zm+n coun t ing  mult ipl ici t ies .  
It  is we l l -known (cf. [15]) tha t  this p r o b l e m  is closely c o n n e c t e d  with the  

linearized rational interpolation problem (or  Newton-Pad~ approximation prob- 
/em) which is also u n d e r  cons ide ra t i on  here .  As was p o i n t e d  ou t  by Claessens  [5, 
t h e o r e m  1], fo r  any m,  n ~ N O the r e  exist un ique  po lynomia l s  p *  and  q *  of  m , n  m , n  

" m i n i m a l  d e g r e e "  

deg p* <~ m and  deg * qm,n <~ n, m ~FI 

�9 J.C. Baltzer A.G. Scientific Publishing Company 
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q* being a monic polynomial and a m n being the leading coefficient of * Ptn,n' m,n 
which satisfy the interpolation conditions 

p*  q* ,. ( m,n - - f"  m,,,) has the zeros z 0 . . ,  Zm+ n counting multiplicities, 

such that other solutions of the linearized rational (m, n)-interpolation problem 
are of the form s Pm,n, S " qm,n, where s is a polynomial of degree less than or 
equal to min{m - d e g  * * is the minimal solution of P,,.,,, n - deg qm.,,}" * q* Pm,n, m,n 
the linearized rational (m, n)-interpolation problem. 

Throughout  this note we are interested in a certain value of the rational 
interpolant, i.e. in the value of the meromorphic  function 

p*  
IF/ �9  n 

rm ,,, q * 
Fr rl  

at a point z ~ C \ { z 0 , . . . , Z m + , } .  Note that two solutions of the linearized 
rational (m, n)-interpolation problem have the same reduced form�9 Therefore,  
rm, . is called the solution of the (m, n)-rational interpolation problem. 

The polynomials of the minimal solution p* and q* are not necessarily tn~ll In)n 

irreducible. But their greatest common divisor dm. n only has zeros from 
Zo, . . . ,  Zm+ n which are called unattainable points of the rational interpolant; cf. 
[5, theorem 2]. 

Note also that z ff {z0, . . . ,  Zm+ n} excludes the exceptional case p*,n(z) = 0 = 
q,*,~( z). 

So far we have fixed the maximal degrees m and n. Actually, as in most 
applications, we wish to compute  the table o f  rational interpolants, i.e. to 
compute some elements of (rm,n(z) lm,  n ~ N0). This can be done recursively by 
various algorithms, like, e.g., Claessens' cross rule [8]: 

1 / e 1 ) 

Z--Zm.,, W(Z) C(Z) N(z) C(z) 

1 1 1 

z -zm+. . l  s ( z ) - c ( z )  E ( z ) - C ( z )  ' 

where neighbouring interpolants are identified with compass points 

N ( z )  rm_l,n(z) 

W ( z )  C ( z )  E ( z ) : = r m , n _ l ( Z  ) rm,n(Z ) rm,.+l(Z ). 
S ( z )  rm+,,n(Z ) 

Here, the initializations r l,n(z) := 0 and rn_l(z)  := oo (n ~ t~ 0) are used and the 
quantities rn,o(Z) are determined by, e.g., the Newton interpolation formula. 

Unfortunately, Claessens' cross rule fails if certain related values of the table 
of rational interpolants are equal to each other; such neighbouring entries will 
be combined in so-called singular blocks. 
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The aim of this note is the introduction of an algorithm for computing the 
remaining entries in the rational interpolation table, i.e. we will generalize 
Cordellier's identity [9]. This reliable modification of the cross rule can be seen 
complementary to Werner 's  and Arndt 's  modification of the continued fraction 
of Thiele [18,1]. It was shown independently by Gutknecht  [14], Van Barel and 
Bultheel [16] and Beckermann [4, pp. 266-272] that such a modified continued 
fraction can be given also without reordering of interpolation knots. In this 
context, let us also mention a modification of a class of rhombus-type algorithms 
due to Cordellier [10;11, Annexe 6] including Claessens' e-algorithm which 
yields a quite different approach for computing the table of values of rational 
interpolants in the presence of singular blocks. 

The paper is organized as follows: In section 2 some preliminaries, partly 
known, are stated which give a brief review of the structure of a singular block 
as it was essentially pointed out by Claessens [6]. We describe the block 
structure in detail and fix the notation. Then, in section 3 - as our main result - 
we prove dependencies for certain polynomials related to neighbours of singular 
blocks and construct the modification of Claessens' cross rule. The Pad6 case of 
confluent knots is considered more explicitly and Cordellier's identity is ob- 
tained for the Pad6 approximation problem as a particular case. We illustrate 
this note with a numerical example in section 4 where a quite complicated 
singular table is discussed. 

2. Singular blocks 

In this section we summarize some facts for later use which are partly 
well-known. For j < k we define monic polynomials wi, k of degree k - j  by 

Okj,k( Z ) := ( Z --  Z j )  " ( Z --  Z j+  I)  . . . . .  ( Z --  Z k _ l )  , 

z e C, j, k ~ 1~o, while by convention empty products equal one. 
The first result concerns relations between neighbours and introduces the 

polynomials am, . k  which will be essential in the sequel. 

T H E O R E M  1 

(a) For any m, n ~ N O 

'0 i f fdegp ,*+l , .  < m + l ~  < n ,  m , n  

= ( ' O 0 ' m + n +  1 otherwise; rm + 1,n - rm,n am + 1,n q .  . 

m,n " q m  + 1,n 

0 i f f  deg  p * < m or  deg  * < n + l ,  q m  ,n + 1 

(-O0,m + n  + 1 
rm'~ - rm'~§ ~ = am, . q .  . q *  otherwise; 

m,n m , n + l  

(1) 

(2) 
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0 i f f d e g  * < n + l ,  Pm+l,n < m + 1 or deg * qm,n+ l 

= o%:"+"+2 otherwise.  (3) rm+l'n--rm'n+l am+l,, q,.+l, . q . , . +  1 

(b) For  any m, n, k ~ N 0 there exists a unique polynomial am, . k  which is 
identical zero if deg p*  + deg * q,,_ < m + n + k and monic and of m+k,n-I  l,n+k 
degree 

deg p,*+k,._ I + deg q,*-X,n+k -- (m + n + k)  

otherwise, such that 

k O)O,m+n+k 
rm+k'n-1 -- r m - l ' n + k  = am+k 'n-1  " Olm'n ql*n+k,n-I m- l , n+k  

. q .  (4) 

Proof 
Assertions (1), (2) have been given in [7, lemma 2; 17] supposing that there 

are no singular blocks. We prove only (b) since (3) is a particular case of (4) and 
(1), (2) can be shown by applying similar techniques. 

Let h : =  * .p*  * .q*  Then  h has the zeros q m - l , n + k  m+k,n-1 - - P m - l , n + k  rn+k,n-l" 
Zo , . . ,Zm+, ,+k_  I because f .  * * and f . q *  - p *  " qm- l , n+k  - - P m - l , n + k  m+k,n-1 m+k,n-1 
have these zeros by construction and h = * "( * q* - l )  + qm- l , n+k  P m + k , n - l - - f "  m+k,n 
q* * �9 m+k, , - l"  ( f "  qm-1,n+k -- Pro- ~,,+k)" Note that this remains valid if some or all 
knots coincide. The leading coef ic ien t  of  h is am+k,n_ 1 and hence k 
h / (  a m + k,n - 1 " 60 0,m + n + k ) h a s  t h e  c l a i m e d  properties. [] 

Remark 
Theorem 1 states that two neighbours in the rational interpolation table (like 

rm,n, Fro+l, n o r  fro,n, rm,n+ 1) are identical iff they are equal at only one arbitrary 
point z ~ C \ { z  0, z l, z 2, ...}. Note that this remains valid if z is a common 
pole. 

In the second theorem we describe the form of singular blocks in the 
non-normal  rational Hermi te  interpolation table. We will not give a proof  of this 
theorem which is an immediate  consequence of the local result of theorem 1. 
Instead we refer  to the original proof  of [6] and the more  compact  results of  
Gutknecht  [14]. Also, the structure of the N e w t o n - P a d ~  table is covered by [3] 
where  a more  general  interpolation problem has been studied. The notation 
chosen in this theorem is extended in view of the new algorithm. 

THEOREM 2 
Suppose that m, n ~ N 0 with rm,n(Z) #:rm_l,n(Z) and r,,,n(z) --#rm,n_l(z). 

There  exists a (minimal) p ~ ~ L) { + oo} such that rm, ~ interpolates f at exactly p 
of the knots z , ,+ , , . . . ,Zm+n+2p_  1 counting multiplicities, namely Zm+,+ i for 
j ~ A c { 0 ,  1 , . . . , 2 p - 1 } .  Let  U : = { 0 , 1  . . . .  , 2 p - 1 } \ A  denote  the set of  
unat tainable knots. 
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rm, n and A,  U induce a singular block consisting of squares with a c o m m o n  
main diagonal  as follows. For  0 ~<j ~< 2p  let 

l t := card{i  < j l i ~  U}I 

k / : = c a r d { i  < j l i ~ A }  - lj = j  - 2l / .  

Then  k 0 = kzp  = 0 and (since p is minimal)  k 1, k 2 . . . .  , kzp_ ~ > 0. For  0 < j  < 2p,  
0 ~< i < k~. there  holds 

rm+l~+kj_l_i,n+li+i = C ,  (5) 

p *  ( ,n+lj+k,-l-i .n+lj+i,  q*+lj+k/-1- i ,n+l /+i)=dj(P*m,n;  q* ,n) ,  

d j (  z ) = H ( z - Zm+n+i) , (6) 
i<j,i~U 

while for 0 ~<j ~< 2p  there  holds 

SW/:= r m +t, +kj,, +tj- 1 "-/= C ~ r~ +t i -  1,n +lj +k i =: N E j .  (7) 

Hence  kj describes the n u m b e r  of occurrences  of C, lj. --- deg d r the n u m b e r  of 
unat ta inable  knots  with respect  to ant idiagonal  no . (m + n + j  - 1). Locally, for 
the growth of the block we have to distinguish be tween two cases [14, p. 555]: 
(a) j ~ A  (the block becomes  "wider") :  here  kj+ 1 = k~ + 1 and l/+ 1 = l i. 
(b) j ~ U (the block becomes  "narrower") :  here  k/+ 1 = kj - 1 and I/+ 1 = lj + 1. 

[] 

EXAMPLE 1 
As in [6, example 2], let zo+4i := - 3 ,  Zl+4i := 0, Z2+4i := 1, Z3+4i :~--" 2, ZI2+i := 3 

for i = 0 ,  1, 2 and f ( - 3 ) =  1 /2 ,  f ( 0 ) = 2 ,  f ( 1 ) = 3 / 2 ,  f ( 2 ) = 4 / 3 ,  f ' ( - 3 ) - -  
- 1 / 4 ,  f ' ( 0 ) =  1, f ' ( 1 ) =  1, f ' ( 2 ) = - 1 / 9 ,  f " ( - 3 ) =  1, f " ( 0 ) = 2 ,  f " ( 1 ) =  1, 

f " (2 )  = 2 /27 ,  f (3)  = 5 / 4 ,  f ' ( 3 )  = 1, f " (3 )  = 1. For  z = - 2, applying Claessens '  
cross rule and proceeding  by ant idiagonals  f rom south west to nor th  east, we 
obtain the incomple te  table of values of rational in terpolants  as shown in table 
1. 

The  entries marked  by �9 are singular since Claessens '  cross rule fails and no 
informat ion f rom theo rem 2 is available. It is s tated in t heo rem 2 that  the 
singular entr ies build a symmetric  union  of squares which are overlapping along 
the diagonal.  Using the initializations and the fact that  all entr ies in the singular 
block are equal  to 0, we can de te rmine  the western,  sou thern  and some of the 
nor thern  neighbours  such that  the size of  the singular block is known. With the 
notat ion of t heo rem 2, the singular block appears  as follows: 

NE 0 NE 1 NE 2 NE3 

SW 0 C C C NE 4 

SW 1 C C C NE 5 NE 6 

SW 2 C C C C NE 7 

SW 3 S W  4 S W 5 C C NE 8 

swo sw7 
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m 

r e + p -  

n n+p- -1  
I I J J I I I I I I I I I I ' 
I 
I 

. . . .  c lii!i! !i l . . . . . . . . . . .  t- . . . . . . .  

* l j  S l t C j  

I 

Fig. 1. An example of a singular block. 

The  first en t ry  C has the  p ropos i t ion  (m,  n) . '=  (1, 1) and the  b o u n d a r y  is 
c o u n t e d  s tar t ing with 0 and ending  with 2 p  once  along the  top  of  the  s t ruc tu re  
and once  a long the  b o t t o m  of  the  s t ruc ture  wri t ing N E  i or  SWj for  j = 0 , . . . ,  2p ;  
p .'= 4. Moreove r ,  we  have ( k 0 , . . .  , k s) = (0, 1, 2, 3, 2, 1, 2, 1, 0), (10, . . ., /8) = 
(0, 0, 0, 0, 1, 2, 2, 3, 4), A = {0, 1, 2, 5} and U -- {3, 4, 6, 7}. In example  2 we will 
show how to c o m p u t e  N E 4 , . . .  , N E  s (and hence  the  rest  o f  the  table) ,  using our  
new modi f ica t ion  as a s ingular  rule.  [] 

The  next t h e o r e m  provides  an explicit  r ep r e se n t a t i on  of  the  quant i t ies  in- 
volved in Claessens '  cross  rule and Corde l l ie r ' s  s ingular  rule. 

Table 1 

r,,,.,,( - 2) n = - i  0 1 2 3 4 5 6 

m = - I  0 0 0 0 0 0 0 
0 ~ 1/2 2/3 6/7 12/11 12/23 �9 
1 ~ 1 0 0 0 �9 
2 ~ 3/2 0 0 0 �9 
3 ~ 2 0 0 0 0 �9 
4 ~ 1 8/13 120/193 0 0 �9 
5 oo - 2 / 3  156/251 240/389 240/371 80/121 600/1013 �9 
6 oo - 3 5 / 4  64/195 102/157 816/1247 34224/52439 4800/7471 0 
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THEOREM 3 
With the notation of theorem 2, let the functions aj be defined by 

1 1 di( z )2. q, , , , (  z )2 

S W / ( z ) - C ( z )  - n E / ( z ) - C ( z )  =a j ( z )  (-O0,m+n+j( Z ) "am,  n 

0 ~<j ~< 2p. Then aj is a monic polynomial of degree kj. 

Proof 
Let 0 < j  < 2p. By assumption the left hand side of (8) is equal to 

rm +1~- 1,n +lj+k i -- rm +lj+ki,n +11- 1 

(8) 

( r,, +tj+kj,,, +t i- 1 - rm +lj+kj-  l ,n +lj )"  (r,, %_ lm +lj+kj -- rm +li,n +lj+kj-  1) " 

By theorem 1 any of the occurring differences can be expressed through certain 
right hand sides of (3), (4), where akmJ+rn+r=:aj with deg a j =  
degPm+t,+k,,n+ti-~ +degqm+b-l,n+b+k, ( m + l j + n + l y + k y ) = k j .  Using(6)we 
obtain (8). F o r j  = 0, j = 2p, assertion (8) follows directly from (1), (2) and (3), 
in this case aj equals one. [] 

Equation (8) for j = 0, j = 2p yields the following singular rule including 
Claessens' cross rule [8] for p = 1. 

COROLLARY 1 

H ( Z _ _ Z , n + n + i ) _ I . ( 1  1 }  
i ~ A  SW 0 - C NE o - C 

: 1 1 / 
i ~U  S W 2 p -  C q- N E ~ -  C " [] 

The Kronecker algorithm is a coefficient algorithm for computing rational 
interpolants on antidiagonals. There exists a modification based on the Eu- 
clidean algorithm which can be applied in the presence of singularities (cf. [2, p. 
7]). It can be shown that the auxiliary polynomial required for the basic relation 
of the reliable Kronecker algorithm on antidiagonal no.(m + n + j  - 1) coincides 
with our polynomial a j, j = 1, 2 , . . . ,  2p - 1. 

3. The reliable modification 

For p >/2, theorem 3 leads us to consider relations between a0 , . . . ,  a2p. In 
the sequel, let 

R(t) ' .= am"'O%'m*"(t) 
-2- ; - - -_  ZZ-~.~,  (9) 
qm,,(t) qm,,(t) 
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b~,,v:= l i m t ~ - ~ . r . , ~ ( t ) ~ { O ,  oo, a.,~}, tz, v ~ t ~ o ,  
t .---~ oo 

bm,n bm +tj- 1,n +tj +k/ 
Cj : =  -b 

bm + tj + kj,n + l t -  1 bm,n 
~ C .  

(10) 

(11) 

THEOREM 4 
For 0 ~<j ~< 2p, there holds 

I-I ( t--Zm+"+v) C(t) 
aj( t )  ~<j,~ev 

1-I ( t - z , , ,+ ,+~)  R ( t )  
v<j,vEA 

- -  = 1 +c j t  -1-kj + O(t-2-kot_~oo. 

Proof 
From NEj 4: C and (3) we conclude 

lim tn-m+k~+l. N E j ( t )  = lim tn-m+kj+l'rm+t/_l,n+tj+ki(t ) 
t ---~ oe t ----~ oo 

Thus 

NEj(t)  

c(t) 

= bm+l/_l,n+lj+k j --/= o0. 

b,n +t~- 1,,, +t~+k~ t -  1 -k~ + O( t -  2-k@_.o~, 
bm ,rl 

bm, n #= 0 ,  bm+lj_l,n+tj+k / ~ oo, 

and similarly 

C(t) b~,,, 
_ _  _ t-x-k~ + O(t-2-k@_.~o, 
S W j ( / )  bm+lj+ki,n+lj_ 1 

b,n,n ~ 0% bm+lj+kj,n+l/_ 1 --/= O. 

Because of kj >1 0 we obtain 

C(t) C(t) 

SWj(t) - C(t) NEj(t  ) - C(t) 

C( t ) /SWj( t )  N E j ( t ) / C ( t )  
= + 1 +  

1 - C ( t ) / S W j ( t )  1 - N E j ( t ) / C ( t )  

= 1 + cj t  - l - k ~  + O ( t - 2 - k J ) t ~ .  

Hence the assertion follows from (8). [] 
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C O R O L L A R Y  2 

F o r 0 ~ < i , j ~ < 2 p w i t h  k t~<k; 

l'-[ ( t -Z m+.+~)  I-I ( t - z m + . + ~ )  
aj(t  ) .<j,~Eu =a i ( t )  ~<i ,~v  

H ( t - -Zm+n+v)  H ( t - -Zm+n+v)  
v<j,v~A v<i,v~A 

+ O(t-l-kO,_.oo. 

[] 

Remark  
Cordellier 's singular rule (see (12) below) for Pad6 approximation is an 

immediate  consequence of corollary 2. To prove it let us have a closer look at 
the Pad6 case which is included for 0 = z  0 = z 1 = z  2 . . . .  . A knot which has 
once become unattainable cannot  be an attainable point any longer (cf., e.g. 
[6,14]). Since we have exactly one knot 0, singular blocks must be squares, finite 
or infinite (except perhaps those lying at the border  of the table). Hence  
A ={0, 1 , . . . , p -  1}, U = { p ,  p +  1 . . . .  , 2 p -  1} a n d w e  obtain kj = min{j, 2 p -  
j}. For  this special case, corollary 2 with i = 2 p - j  takes the simple form 
at(t) = a z p _ t ( t ) +  O(t-1)t_.,oo. a t and a2p_ t are both polynomials, consequently 
a t = a2p_ t and with (8) 

1 1 1 1 
(12) 

SWj - C NE t - -  C = SW2p_ t - C NE2p_ j - C 

( j  = p  + 1, p + 2 . . . .  ,2p) .  Note that for j = 2p (12) coincides with corollary 1. 
[] 

Let  us re turn to the more  general  case of arbitrary knots. A more careful 
discussion of the asymptotic expansion of theorem 4 as in the proof of corollary 
2 yields 

C O R O L L A R Y  3 

For j e {0, 1 , . . . ,  2p - 1}, there holds 

at+ 1 = a t �9 6 0 m + n + j , m + n + j +  1 --  Cj if j c A ,  
a t=a t+l  "oJm+n+t.m+~+t+l -c~+ 1 if j ~ U. [] 

Remark  
Corollary 3 enables the computat ion of the polynomials a i provided that A 

and the values at(z)  are known for j - 1 c A .  Beside the initialization ao(t) = 1, 
we apply the formulas 

aj+l ( t )  = a j + l ( Z )  + ( t - -Zm+n+j)  

�9 a ~ ( t ) - ( Z - Z m + n + i ) ' a ~ ( z )  i f j ~ A ,  (13) 

a t ( t )  --aj(Zm+n+j) 
aj+a(t ) ----- , if j ~ U. (14) 

t - z m +n +j 
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Moreover, the unknown values ( a j ( z ) l j -  1 ~ U) (corresponding to "S-" and 
"E-neighbours") are uniquely determined by ( a j ( z ) l j - 1  q} U, j ~ A )  (corre- 
sponding to "W-" and "N-neighbours") which can be computed using Claessens' 
cross rule for SWj and NEj. [] 

Of course, (13) and (14) can be used as a singular rule of Claessens' cross 
rule. Instead, we want to propose a different reliable modification which, for 
non-square singular blocks, requires less input data and, in addition, provides a 
facility to monitor the stability of our method if exact arithmetic is not available. 
This will be done by exploiting the information of corollary 2. In the next 
definition, we give a representation of the auxiliary quantities involved in our 
reliable efficient modification of Claessens' cross rule. 

DEFINITION 
Let the monic polynomial a of degree p be defined by 

R ( t )  
a(t)  := C(t------) je/tl-I ( t - -Zm+n+j)  + O(t-1) t -~= 

am., , 'Wo. , .+.( t)  
= -S-U- - - _ _--g---~. ~ I--[ ( t -- Zm +n + j ) + O ( t - ' ) t -'~ 

Pm,.(t) qm, . ( t )  j~A 

We denote the attainable and unattainable knots in (Zm+ n . . . .  ,Zm+.+Zp_l) ,  
( Z ~ , . . . , Z  A) and ( z ~ , . . . , z ~ )  more explicitly: for l~<j~< 2p 

z A if j -  1 ~ A ,  li+k j 

Zm+n+J-1= ~ZI U if j - -  1 ~ U. 

Finally, for 0 ~<j ~< 2p let ([.] denotes divided differences) 

1 I[z, zU, zV z~, .4 .,z;]a iflj<~v<~lj+kj, A j : =  _ _  . 2 , ' " ,  . Zj+l -v ' ' "  

R ( z )  I [ z ' z V ' z [  '" ' z U ' z A t , + k i + ' ' ' ' ' ' z A ] a  i fO~<v~ l j .  D 

COROLLARY 4 
For 0 ~<j ~< 2p we have 

a j ( z )  
A J j = R ( z )  

F[ (Z--Zm+.+i) 
i <j,i ~A [ 1 

= H (Z--Zm+n+i)  [ SWj(z)-- C(z) 
i<j,i~u 

1 

N E j ( z ) - C ( z )  )" 
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Proof  
Apply theorem 4 to verify that ai ( t ) l - I i<i . i~u( t - z , ,+n+i) l - I i>_. j , i~A( t -  

g i n + n +  i)  - -  a(t )  is a polynomial in t of degree at most p - kj - 1. [] 

By definition of the divided differences, the following recurrence relations for 
the quantities A~ are immediate 

j - I  A~_]  

A . _  1 + A~ 

j _  j--1 A ~ -  A v (15) 

.4 j 

Define for 0 ~<j ~ 2p 

K i := max{k 0, k l , . . . ,  kj}, 

M : = { j c { O , . . . , 2 p } l j = O o r  kj > Kj_~} 

c _ { j l j = O o r j -  1 cA}.  

It is easy to prove with the recurrence relations (by induction on j) that, given 
R(  z ) and ( ai( z ) l j c M ) ,  we can compute all quantities ( A~ ] l i + k i - K i <~ v <~ 1 i 
+ k i) and therefore the unknown values ( a i ( z ) l j  - 1 c U). Moreover, if the 
singular block is not square, the quantities (ai(z)l  j - 1  c A ,  j ~ M )  can be 
computed by two different rules, which allows us to monitor the stability of our 
algorithm (cf. the step "CHECK STABILITY" in the algorithm below). These 
preliminary remarks prove our reliable modification of Claessens' cross rule 
which is stated below. For an implementation of the following procedure, we 
can drop all indices j. 

if j - l e A  a n d l j < v ~ < l j . + k j ,  

i f j - l c A a n d 0 < v ~ < l j ,  

if j -  1 c U and 

(0~<v <l~ or v = l  i + k j ) ,  

if j -  1 c U and lj~< v < l j  +kj.. 

THE RELIABLE MODIFICATION 

Initialize for j = 0 E.4: k o = I o = Ko = O, 

1 1 

A~ = S W o ( z ) _ C ( z )  - N E o ( z ) _ C ( z  ) , 

for j = 1: kl = 1, l 1=0 ,  z~ =zm+ .,  01 =Z--Zm+, ,  
FOR j = 1, 2, . . .  until EXIT (kj < 0) do 

COMPUTE A~ for lj. + kj - K i_ ] ~< v ~< k i + li by (15) 
FILL j th  antidiagonal of singular block with C ( z )  by (5) 
IF k j_ l < k1 
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T H E N  ( j -  1 c A )  C O M P U T E  NEj(z)  directly (by cross rule or by reliable 
modification with respect to another singular block) 

H : = ~ j  S W j ( z ) - C ( z )  - N E j ( z ) - C ( z )  

IF Kj_I < kj 
T H E N ( j ~ M )  Kj=Kj_I + I , A ~ : = H  
ELSE ( j  ~ M) Kj = Kj_ l, CHECI~ STABILITY A j ~ H tj 

ELSE ( j  - 1 ~ U) Compute  NEj(z)  by 

s w j ( z ) - C ( z )  - NE (z)-C(z) 

IF r,,,%+~, ~+t(z) = C ( z )  AND kj ~ 0 
T H E N ( j ~ )  k j + ] - - k j +  l, l j + l = l j ,  z A = z  m ~ j + l - - ~ j ( z -  li+ 1 + k j+  I + n  + j '  

Zm+n+j) 
ELSE ( j ~  U OR j = 2 p )  kj+ 1 = k j  - 1, l j + l = l j +  1, z ulj+ 1 = Z m + n + j '  ~'~j+ l = 

O J ( z  - z,,,+.+~) 
EXIT IF k j+ l < 0 

EXAMPLE 2 
We continue example 1 from the last section. The reliable modification 

proposed above allows us to fill the singular table of values of rational inter- 
polants at z = - 2  (cf. table 1) as shown in table 2. Since with m - - n = l ,  
rm,.(t) = C( t )  = (t  + 2) / ( t  + 1), we have a(t )  = t 4 - -  2t 3 - 9t 2 + 30t - 24, our re- 
suits can be compared with those obtained directly from the definition. [] 

Remarks  
(i) Provided exact arithmetic the proposed strategy is reliable. It allows 

recursive computat ion of the values of the non-normal rational Hermite interpo- 
lation table and detects the size of a singular block. Its complexity has the same 
order as if one computes an equivalent part of a normal rational interpolation 
table applying Claessens' cross rule. 

(ii) If exact arithmetic is not available, then, of course, it is numerically 
delicate to detect singular blocks and to determine their size. For our strategy, 
we have to give a modified criterion for the decision j ~ A or j ~ U, taking into 
account the "global" numerical error accumulated during our computations. But 
once a singular block is detected, from the step "CHECK STABILITY" we 
obtain an estimate for the additional "local" numerical error occurring during 
the computations connected with this singular block. Since the step "CHECK 
STABILITY" is executed only for singular blocks consisting of several squares, 
we obtain a (heuristic) tool for monitoring the size of the tail of squares. 

(iii) Let us briefly discuss the problem of reordering interpolation knots as 
proposed by Werner 's modification of the Thiele interpolating continued frac- 
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tion. An advantage of this proceeding is that we only have to discuss the simpler 
case of square blocks. More important,  such an algorithm might be numerically 
more stable since we recognize all zeros during the computat ion and react 
immediately, hence this information will not be distroyed by non-exact arith- 
metic (under  certain restrictions, the stability of such a procedure  has been 
proved by Graves-Morris [12]). On the other  hand, as pointed out, e.g., by [14, p. 
578], after a reordering,  the entries on certain antidiagonals will not have any 
connection to the original problem which is to compute  a part  of  the table 
(r,,,.n(z)l m, n ~ No). In particular, a reordering is not compatible with a pro- 
gressive form of the algorithm where  we add the data zK+ 1, f ( z r +  1) after 
having de termined  the triangular part  (r,,,,~(z)l m,  n ~ N 0, m + n ~< K). Our  
reliable modification does not have this important  disadvantage. But it seems to 
be a new approach to give singular rules for rational interpolation where  the 
technique of reorder ing interpolation knots is applied implicitly such that a 
monitoring of the stability is still available. 

4. Numerical example 

We conclude this note with a numerical  example. Based on the proposed 
algorithm, a recursive strategy allows the calculation of the values in the 
non-normal  rational Hermite- interpolat ion table along antidiagonals and over- 
comes singular blocks, thus proving reliability. We present  a more  delicate 
example. Note that there  remain some entries which cannot  be calculated by the 
cross rule even if we use the initializations for roj(Z)  and ri.o(Z), j = O, 1, 2 . . . . .  

EXAMPLE 3 

Using the knots z s i+ j '= j  - 2, j = 0, 1, 2, 3, 4, i = 0, 1, 2 we take the data 
from a polynomial of degree 8, namely f ( x )  = 10 - 20x - 12x 2 + 17x 3 + l l . 5x  4 
- 8.25x 5 - 5.25x 6 -t- 1.25x 7 + 0.75x 8, but set the value f ' ( 0 )  .'= - 10 (instead of 
-20) .  For z := 3 / 7  the algorithm gives the entries of table 3. 

Note that, in the beginning, we have no information about the number  or size 
of the singular blocks which are ra ther  complicated. In contrast  to our  previous 
example we used a double precision floating point ari thmetic in this example. 
Thus we cannot  hope that the decision whether  a denominator  is zero or 
whether  case A or U is true, is exact; in the present  example, instead of 
equality, we observe at most a difference in the last four digits (six digits for 
m >/15). In our  implementat ion we consider two values of neighbouring rational 
interpolants to be equal iff they are equal using simple precision. The  step 
" C H E C K  STABILITY" at the positions (4; 4), (11, 2), (15; 3) of  the center  
indeed verifies that for large m we obtain a "local" relative error  of  four  
digits. [] 
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R e m a r k  
Since the  or iginal  submiss ion o f  this paper ,  we have b e c o m e  aware  that ,  fo r  

the  special  case o f  square  s ingular  blocks (kj. = min{j ,  2 p  - j } ) ,  the  asser t ions  o f  
t h e o r e m s  3 and  4 and  the i r  c o n n e c t i o n s  to the re l iable  K r o n e c k e r  a lgo r i thm 
w h e r e  i n d e p e n d e n t l y  d i scovered  by Graves -Mor r i s  [13]. S ince  in gene ra l  the  
func t ions  * * p.,,,, and and t h e r e f o r e  the  ra t iona l  func t ion  R o f  t h e o r e m  4 are  qwl,II 
not  known dur ing  the  compu ta t i ons ,  it seems  tha t  these  resul ts  are  no t  suff ic ient  
to ob ta in  a re l iable  modi f i ca t ion  of  Claessens '  cross rule,  even  if we suppose  tha t  
the  table  of  ra t iona l  i n t e rpo lan t s  only  con ta ins  squa re  s ingular  blocks. 
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