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The three-dimensional interface problem with the homogeneous Lame system in an unbounded exterior 
domain and holonomic material behaviour in a bounded interior Lipschitz domain is considered. Existence 
and uniqueness of solutions of the interface problem are obtained rewriting the exterior problem in terms of 
boundary integral operators following the symmetric coupling procedure. 

The numerical approximation of the solutions consists in coupling of the boundary element method 
(BEM) and the finite element method (FEM). A Cea-like error estimate is presented for the discrete 
solutions of the numerical procedure proving its convergence. 

1. Introduction 

This paper is concerned with interface (or transmission) problems in solid mechan- 
ics which consist of a non-linear problem of holonomic elastoplasticity [20-221 in 
a bounded Lipschitz domain R and the homogeneous linear elasticity problem in an 
unbounded exterior domain R2. The numerical treatment of such interface problems 
combines'BEM-living on the interface r = n a2-and FEM-with a triangula- 
tion of R. 

The coupling of BEM and FEM was introduced by engineers and mathematically 
justified later. The first papers by Brezzi and Johnson [2] and Johnson and Nedelec 
[ 181 present a mathematical explanation for the so-called direct boundary integral 
method, further extended by Wendland, cf. [23]. Bielak and MacCamy [l] study the 
so-called single-layer ansatz. These coupling procedures are successful as far as the 
double-layer potential is compact. In the case of elasticity or if the interface r is not 
smooth, the convergence proof generally fails; see however [23] for some special 
results. 

Costabel [4] and Han [lS] propose modifications of the coupling of FEM and 
BEM taking the tractions into account. Further progress is obtained by Costabel and 
Stephan [lo] and Gatica and Hsiao [12,13], treating the coupling procedure also for 
non-linear problems in R of monotone type. Gatica and Hsiao consider Han's method 
and can directly apply the theory of monotone operators, while Costabel and Stephan 
extend the so-called Costabel's symmetric coupling of FEM and BEM which leads to 
a saddle point problem. 
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The interface problem (IP) is formulated in section 2. Following the symmetric 
coupling procedure an equivalent formulation (P) with boundary integral operators is 
derived in section 3. In section 4 we derive some useful equivalent formulations of the 
problem (P). Existence and uniqueness of solutions of the problem (P), and hence of 
the interface problem (IP), is proved in section 5. Finally, the numerical approxima- 
tion with finite and boundary elements is treated in section 6, where a Cka-like error 
estimate is proved. 

2. Interface problem 

Let Ro c R1 c R3 be bounded Lipschitz domains in three dimensions such that 
Ro lies compactly in R,.  Then R := R, \no is the interior domain and R2 := R 3 \ a 1  is 
the exterior domain. 

The boundary of R is divided into two parts, namely the interior boundary 
To := aRo and the interface I' := aR1, cf. Fig. 1. We consider Dirichlet, Neumann or 
mixed boundary conditions on To and allow the case To = 8 (whence Ro = 8). Let 
f~ L 2 ( T p ;  R3) be a given applied surface force, where To = rp u r, with rP n T. = 8. 

The exterior problem is the homogeneous Lame system of linear elasticity [9, lo] 

A*u:= - p 2 A ~ - ( A . 2 + p 2 ) g r a d d i v u = 0  i n n , ,  (1) 

with A = divgrad denoting the Laplace operator, p,, A, being the positive Lame 
constants. 

Given a smooth vector field u 2 ,  its Cauchy data on the boundary r are 

(u2 I r I r2 ( ~ 2 )  I r), 
where T2 ( u 2 )  is the conormal derivative defined by 

T2(u2):= 2p2a,u2 + L2ndivu2 + p2nxcurlu2.  

a, denotes the normal derivative, n being the unit normal pointing into R,, cf . Fig. 1. 

Fig. 1 
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Due to the trace lemma u Z I ~  E H ” 2  whenever u2 E Hkc(R2; R3), H;0c(f22; R3) 

As e.g. in [8-101 the traction T2 ( ~ 2 ) l r  can be defined via the first Green formula. In 
denoting the displacements of locally finite energy. 

order to do this, we introduce the following notation: 

a i j k l  := 1 2 6 i j 6 k I  -k l L 2 ( 8 i k S j l  + a i l a j k ) ,  

where J i j  = 1 for i = J  and 6 ,  = 0 for i # j .  The strain tensor E ( U )  is defined by 

E i j ( U )  := : c u i ,  j + u j .  i ) ,  (2) 

where (ui. j )  := (ui, j ) i ,  j =  1 , 2 ,  : = grad u. The brackets ( .; ) always denote the duality 
between H ’ / ’ : =  H1”(r;R3) and H-‘12  := H-’/2(r;R3) = ( H ’ l 2 ) * ;  such that for 
u E H ‘ I 2  and w E L2(T;  R3) 

( w ,  o >  = Jr u-vdT. 

Lemma 1 ([lo]).  Let u2 E H,!0c(R2, R3) with A*u2 E Lkc(Q2, R3). Then T2(142)1r 

E H-1/2(r ,  R3) is dejined by 

(3) !nz ~ * u 2 u d ~ 2  = ( ~ 2 U 2 ,  v ~ r >  + ~ 2 ( u 2 , 0 )  

for any u E H1 (Q2; R3) with compact support and 
3 

@ 2 ( u 2 ,  0 )  = 1 a i j k l & k l ( ~ 2 ) E i j ( u ) d ~ 2 .  s nz i j k l =  1 

According to Lemma 1 the Cauchy data of a function u2 E H:,,(R2, R”) with 
A*u2 = 0 satisfy 

(u21r, T ~ ( U ~ ) ~ T ) E  H112 x H-1/2  := H 1 / 2 ( r ; R 3 ) ~ ~ - 1 / 2 ( r ; R 3 ) .  
Note that in (3), v must have a compact support. In order to allow u E H ‘(R2; R’), 

a boundary condition at infinity is required. Following e.g. [8-10, 12, 17, 191, we 
consider solutions which are regular at infinity, which means in the three-dimensional 
case that u2 satisfies the Sommerfelds radiation condition 

Then, the exterior problem consists in finding u2 E Y2,  

Y 2  : = { u 2  E H;0c(Q2; R3): u2 satisfies (4) and A*u2 = 0}, ( 5 )  
subject to some interface conditions concerning the Cauchy data (u21r, T2u2) of u2. 

The non-linear interior problem of holonomic elastoplasticity is considered in 
[20-221 and leads to a variational inequality. 

The strong form of local equilibrium is 

o = oT in 9 
diva + f =  0 in R, 

on = t on r, 
on= t on I-,,, 

- 
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where 0 is the symmetric stress field, f is the vector field of given body forces, t is 
a given surface traction, t are the (unknown) tractions on T and n is the outer normal 
vector along the interface as well as r,,. 

In order to state the weak form of the equilibrium conditions, let 

H := H,! (R; W 3 )  := (U E H'(R; W3):  uIrU = 0}, 

L : = LZ(L-2; R:y3  

(6) 

(7) 

H* being the dual of H, and let 

denote the Lebesgue space with values in the six-dimensional real vector space 
W:yk3 of symmetric three-dimensional matrices. L is identified with its dual, i.e. 
L* = L. 

For real Banach spaces X and Y, let Y ( X ;  Y) denote the real vector space of 
bounded linear mappings from X into Y. If X E X  and Y E  X then 
distx(x, Y )  : = inf { )I x - y 11 x: y E Y} denotes the distance of x to Y. 

Then, the trace mapping 

:= .Ir E Y ( H ; H ' " ) ,  71.4 := u I ~  (U E H), 
has the dual y* E Y ( H  - ' I 2 ;  H*). Let the mapping 

& E Y ( H ;  L )  

be defined by (2), E* E 9 ( L ,  H*) being the dual of E.  

The weak form of the equilibrium condition is obtained as usual: Take a test 
function u E H : = H,! (R, W3),  multiply div 0 +f= 0 with u, integrate over Q to obtain 
after integration by parts (Green's formulas) using e.g. t = a n  on aR = r u To, etc. 

tT-udT + t T - u d T  - a:gradudR + uT*fdR = 0. 
I r  Irp- Sn sn 

Since 0:  grad u = 6: EU, ':' being the scalar product in R3 3, the last formula gives the 
weak form of equilibrium 

E*U = Y*t  + b (8) 
fo raEL,  t E H - ' 1 2 ,  b E H * .  

tion is given by 
Besides the equilibrium, constitutive relations are required. The stress-strain rela- 

0 = A ( E U  - p ) ,  (9) 
where p E L is a new internal variable which may be regarded as the plastic part p of 
the total strain EU. A E 9 ( L ;  L) describes linear elasticity, is symmetric and positive- 
definite, i.e. there exists a constant c > 0 with 

( A < ? < ) r f 2 C * l l < I l L  
Since an additional internal variable p is under consideration a further constitutive 

relation for p is required. Following [16, 20, 221, we consider 

0 - q p ~  a @ ( p  - p o )  in R, (10) 

where p o  E L is prescribed and f i ( q ) : =  k . l q l  for any 4 E W?G3, 
(4) = 6 = ,/=.. Assume that k, E L"(R, R) and that there exist 
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constants ql, q 2 ,  k l ,  k 2  with 

0 < q1 < q ( x )  < q2 < co and 0 < kl  < k(x)  < k2 < 03 (1  1) 

for a.e. x E R. q is the hardening parameter while k and po  describe the yield function. 
R: Iws”,,, Iw represents the non-differentiable part of the minimum plastic work 
function. a denotes the subdifferential defined through 

a P ( r )  = ( 0  E RS”,,’ : Vq E R:~:’, R(q) - P ( r )  2 0: (4 - r ) }  , 
r E R:yk3. Define 

j :  L + R, q H jn @(q)  dR = jn k * I q I dR. (12) 

Then, j is convex and Lipschitz-continuous (cf. [20, Lemma 2.33). Let aj be the 
subdifferential o f j  in L, i.e. 

a j ( p )  = { q  E L: Vr E L , j ( p )  - J ( r )  < ( 4 ,  P - r ) L ) ;  

0 - q p  E W P  - Po). 
note that we identify L with its dual L*. Then the weak form of (10) reads 

(13) 

Definition 1. Given b E H *  and po  E L, the interface problem (IP) consists in jnding 
functions u E H, u2 E LZ2, 0 E L, p E L satisfying (8), (9), (13) and t E H - ’ l 2  with 

YU = ~ 2 1 1 - 9  t = Tz(u2)lr. (14) 
Remark 1. We neglected initial values o0 and uo from [ 16,20,22] for convenience of 
notation. It can be observed in e.g. [20, Theorem 2.11 that go # 0, uo # 0 only 
concerns the constant or linear terms, while po # 0 is used in the non-linear part 
aR(p - p o ) .  Hence, o0 = 0, uo = 0 is no essential restriction. 

3. Formulation with houndary integral operators 

The interface problem can be rewritten in terms of boundary integral operators 
leading to non-local boundary conditions. For the Lame operator the fundamental 
solution G2 with the kernel G2(x, y ) ,  called Kelvin-matrix, is well known, i.e. 

I A 2  + P2 (x - Y ) ( X  - YIT 
8 M A 2  A 2  +3P2 + 2 ~ ~ )  PZ+ I X  - YI A 2  + 3 ~ 2  I X  - yi3 

G2(X, Y )  = 

for the three-dimensional case. 1 is the unit matrix and T denotes the transposed 
matrix. Since G2 is analytic in R3 x R3 without the diagonal, we may define its traction 

T 2 ( x , y ) : =  T2,,(G2(x,Y))T, x z y .  

Due to the second Green formula (see Lemma l), the following Somigliana repres- 
entation formula for x E Q2, 

(15) 

is proved for Lipschitz domains in [ 5 ] .  Equation (15) holds for all u2 E H!0c(R2) with 
compact support satisfying (1) and v = u2 I r, 4 = T2 (u2 ) I r . 

u 2 ( 4  = (7-2(x,-), v >  - (G2(X,’), 4), 
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For any x E Q2, (15) can be differentiated giving a representation formula for the 
stresses T2(u2). By using the classical jump relations for x + r and inserting the 
Cauchy data into these formulas, one obtains on r 

(;) = v,.( ;), 
where the Calderon projector 

is defined through 

(V2 4 ) b )  = ( G2 ( x ,  .), 4 >, 
( A 2 U ) ( X )  = ( T2(x,.), o>, 

( D z v ) ( x )  = - 7 - 2 . X ( ( T Z ( X , ' ) ,  u>) ,  

( & 4 ) ( x )  = - 7 - 2 . x ( ( G 2 ( X , ' ) ,  4)) (x E r). 
V2 is the single-layer potential, A2 is the double-layer potential with its dual A; and 
D2 is the hypersingular operator. 

The next lemma recalls some properties of the above operators as their domain, 
continuity and ellipticity from [4, Lemma 4.11, [5 ,  Theorem 13 and [lo, Lemma 4.53; 
see also [7] and [8, Lemma 3.91 for related results. 

Lemma 2 ( [ 5 ,  lo]). Set H'12 := H'12(r ,  R3), H-'12  := H-'12(r, R3). Then 

V2 E Y ( H  - 1/2; H ' I 2 ) ,  

A2 E Y ( H ' ' 2 ; H ' ' 2 )  

9 1 9  
I\; E y ( H -  112. H -  112 

D2 E Y ( H " 2 ; H - ' ' 2  1. 
D2 is positive-semi-dejnite and V2 is positive-definite, i.e. there exists a constant c > 0 
such that for all u E H'12 and all 4 E H -  ' I 2  there holds 

( D Z U , U >  2 0 and (4, V 2 4 )  3 c I I ~ I I & ~ I z .  
D2 and V2 are symmetric, A' is the dual of A. 

The relations between the Calderon projector g2 E Y ( H ' 1 2  x H - ' I 2 ;  H ' I 2  x H - ' I 2 )  
and the Cauchy data of a function in Y 2  are recalled in the next lemma. 

Lemma 3 ([S, 101). (i) If u2 E Y2 then (15) holds for u := u2 I r  E H'12 : = H'"(T, R3) 
and 4 := T2(u2)lr E H-'12 := H - ' 1 2 ( r ,  R3). 

(ii) For any u E H ' I 2  and 4 E H - ' I 2  the uectorjeld u2 defned via (1 5 )  belongs to Y2.  
(iii) For (u, 4) E 

(a) (u, 4) are Cauchy data of some u2 E Y 2 ,  i.e. u = u2 I r ,  4 = T2 (u2)lr for some 

(b) (u, 4) satisfies (16). 
(iv) The Calderbn projector is  a projection in H'12 x H-'12 onto its subspace of 

Cauchy data of weak solutions in Y2,  i.e. onto ( (uz l r ,  T'Z(~2)lr):  u2 E U2} .  

x H - ' I 2  the following statements (a) and (b) are equiualent. 

u2 E 9 2 .  
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We are now in a position to prove the following equivalence result concerning 
problem (P). 

Definition 2. Given b E H *  and p o  E L the problem ( P )  consists in Jinding functions 
u E H and p E L satisfying 

(&*A& + S ) U  = b + &*Ap, 

AEU - ( A  + ~ I ) P  E W p  - pol ,  

S2 := 0 2  + (1/2 - A;) V ;  (1/2 - A2) E S?(H1l2; H - ' I 2  )9 

S := y * S z y  E Y ( H ; H * ) .  

(17) 

(18) 

(19) 

(20) 

where I denotes identity in L and 

Theorem 1. (u, u 2 ,  0, p )  E H x 9, x L x L solves the interface problem (IP) ifand only if 
(u, a, p )  E H x L x L solues problem (P). 

In the latter case, uZ is given through (1 5), where u = yu, 4 : = V ;  (A2 - 1/2)v. 

ProoJ: Let (ul, a, p ,  u 2 )  E H x L x L x Y 2  be a solution of the interface problem (IP) 
of Definition 1. According to Lemma 3 (u, t )  are Cauchy data of some u2 E Y 2  iff (0, t )  
satisfies (16) (with 4 = t ) ,  which is equivalent to 

V 2 4  = (A2 - 1/2)u and 4 = - D2u + (1/2 - A;)$. (21) 
Since-due to the Lax-Milgram lemma- V2 is invertible, (21) is equivalent to 

4 = V; ' (A2 - 1/2)v and 4 = - D2v + (1/2 - A;) V;l(A2 - 1/2)v. (22) 

The last equation in (22) is t = 4 = - S2v. Substitution of t = - S2yu in (8) and 
substitution of a from (9) in (8) and (13) prove (17) and (18). 

In order to verify the second implication assume that (u,  p )  E H x L solves problem 
(P). Define u2 as in the theorem by (15), where u = yu, 4 := V i 1 ( A 2  - 1/2)v. Then, 
according to Lemma 3(ii), uz E Y 2 .  

Using the jump relations for x -, r in (15) (cf. Lemma 3(iv)), we obtain 

where the last equality follows from the definition of 4 and S 2 .  Therefore, one obtains 
with t := - S ~ U ,  u21r = v, T ' ~ ( u ~ ) I T  = t .  

Define a by (9). The same calculations as in the first part of the proof verify that 
0 (u, u z ,  a, p )  E H x Y 2  x L x L solves the interface problem (IP). 

Remark 2. S2 can be considered as the Schur-complement in 

( ( 1 / 2 A 2 )  - - V2 

with respect to the pivot element - V 2 .  It is related to one step of Gaussian 
elimination with the pivot block; as seen in the proof of Theorem 1, S2  arises 
eliminating the second variable. 

Sz is sometimes called Dirichlet-Neumann map or Poincare-Stecklov operator. 
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Remark 3. According to Lemma 2, S2 E Y ( H ' l 2 ;  H- ' I2  ), as defined in (1 9), is symme- 
tric and positive-semi-definite, i.e. for all v, w E H ' I 2  there holds 

(S2v ,  w )  = ( S 2 w ,  v )  and ( S 2 v ,  v )  2 0. 

Following the proof of [lo, Lemma 4.53, one can see that S2 is positive-definite. 

Lemma 4 ([a]). S 2  is positive-definite, i.e. there exists c > 0 such thatfor any v E H'/' 
there holds 

(S20,  v )  2 cllvllHl'2. 

Proof: As shown in [lo, Lemma 4.53, D 2 ,  and hence S2,  is a compact perturbation of 
a positive-definite operator (see also [S]). Thus, since S2 is positive-semi-definite, it 
remains to prove that v E H'/' and S2v = 0 imply v = 0. 

with 0 = S2v, define u2 E Y 2  by (15) for q!J = 0. Note that S2v = 0 
implies D 2 v  = 0 and (A2 - + ) v  = 0. Then, as seen in the second part of the proof of 
Theorem 1, we have u21r = v and T2(u2)lr = q!J = 0. As in the proof of [9, Lemma 
4.51, (4) allows us to apply the first Green's formula to u A*u = 0 in R2, which (cf. (3)) 
leads to 

Given v E 

0 = a2 (u2, u2 )I 

i.e. u2 is a rigid-body motion. Because of (4), this gives u2 = 0. 0 

4. Equivalent formulations 

Some calculations give further equivalence results (cf. [20, Theorem 2.11 and 
Theorem 3 below) for which we need that E*E + S is positive-definite. 

Lemma 5. E*E + S E Y ( H ;  H*) is positive-definite. 

Proof: Using Lemma 4 it remains to show that there exists a constant c1 > 0 such that 
for any u E H 

II El4 IIE + I I P  Il& 2 c1 I1 l.4 11;. (23) 

I I E W I l t  2 c2Ilwll;. (24) 

According to Korn's inequality we have some c2 > 0 such that for any w E X $  

Here X o  : = (u  E H :  EU = 0} consists of rigid-body motions and is a finite-dimensional 
subspace of H with the orthogonal complement X h ,  see [26, Theorem 62.F] for 
proofs. We remark that X o  = (0) if r. has positive surface measure, in general, we 
allow r. = 0. 
In order to prove (23), assume that it is false. Then, for any positive integer n, there 

exists u, = v, + w, E H with 11 u, 11 = 1, v, E X o ,  w, E X k  and 

Because of (24) and EU, = EW,, (25) gives 
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Since v, is a bounded sequence in the finite-dimensional space X o ,  we have a subsequ- 
ence (again denoted as (u,)) which converges, i.e. there exists u E X o ,  with 

lim u, = lim v, = u, whence (1 uJIH = 1. 
n-. m n+ m 

By (25), the convergence of (a subsequence of) (u,) in H implies yu = 0. Because u E X o  
is a rigid-body motion and the interface has positive surface measure, ulr = 0 implies 

0 
Since A is positive-definite, the lemma implies that &*A& + S is invertible. Hence, we 

u = 0. This contradicts ( J v I J H  = 1. 

are now in the position to define 

A := A + ql - A&(&*A& + S ) -  ' &*A E 9 ( L ;  L )  (26) 
and 

g : = A & ( & * A & + S ) - ' b E L .  

Using 
(S+;k - & * A )  E Y ( H  x L;  H* x L), 

- A + qI 
d := 

define also the bilinear form 

and the linear form 

Note that (17) is equivalent to 

u = (&*A& + S ) -  ' (b + & * A p )  E H 

Theorem 2. The following statements for u E H and p E L are equivalent. 
(i) (u, p) E H x L solues problem (P). 

(ii) p E L solves 

9 E J P  + M P  - P o )  

and u is given by (31). 

(iii) p E L solves the variational inequality 

(JP - 914 - P + P 0 ) L  + A 4 )  -i(P - P o )  2 0 for dl 4 E L  
and u is given by ( 3 1 ) .  

(iv) u E H and p E L solve the variational inequality 

(32) 

(33) 
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Proof: (i)o(ii): Assume that (u, p) solves problem (P). Then, substitution of (31) in (18) 
yields (32) using the definitions (26) and (27). Conversely, if p solves (32) define u by 
(31). Then, the same substitutions as in the first part of the proof show that (u, p) solves 

(ii) e (iii): The equivalence of (33) and (32) follows directly from the definition of the 

(iii) e (iv): For any (u,  4) E H x L there holds, using (29) and (30), 

(PI. 

subdifferential. 

= ( ( S  + &*AE)U - &*Ap - b, u - u)H 

+ ( ( A  + V I ) P  - A w 4  - P + PO)L + j ( q )  - i ( ~  - P O ) .  

Let q = p - p o  and let u E H be arbitrary and, conversely, let u = u and let 4 E H be 
arbitrary in the last expression to prove that (iv) is equivalent to (31) and 

( ( A  + rlm - 
equivalent to (31) and (33). 

4 - P + P 0 ) L  + A 4 1  -i(P - P o )  2 0 
for all 4 EL. Substitution of u from (31) in the last inequality shows that (iv) is 

0 

5. Existence and uniqueness of solutions 

Using convex analysis we prove that the interface problem (IP) has a unique 
solution. As a crucial point it remains to show that Â  is positive-definite. The proof 
given here is different from that of [20, Lemma 2.l(a)]. 

Lemma 6. a given in (26) and d given in (28) are positiue-dejnite. 

Pro05 Using 

&*A& + S & * A ) (  ;), (;)) (( A& A H x L  

= (SU, U)H + ( A ( E u  + p ) ,  (EU + p ) ) L  2 0 
and 

I - ( E * A E + S ) - ' E * A  
Z 

I 
- A&(&*A& + s)-1 I 

0 i - v I  = + 
(0 and I denote zero and identity in different spaces), one concludes that Â  - ?I is 
positive-semi-definite. Thus, Â  is positive-definite. 

The same considerations with 

(E*:A+ES - & * A )  
A 

prove that d is positive-definite. 0 
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Following [16, 20, 221, existence and uniqueness of the solution of the interface 
problem (IP) will now be concluded with standard arguments from convex analysis. 

Theorem 3. The interface problem (IP) as well as the equivalent problems introduced in 
Theorems 1 and 2 have unique solutions. 

In particular, p E L solves (32) ifi p is the unique minimizer of the functional 

cp:L -b R 4 - <f& - 91 q>L. + A 4  - P o ) .  (35) 

u E H and p E L solve (34) iff (u, p - p o )  minimizes the functional 

Proc$ Note that cp is convex and its subdifferential is equal to 

%J(P)  = ’-b - 9 + W P  - P o )  

(for a proof cf. e.g. [25, Section 47.5ffl for the sum rule and the relation to the Gateaux 
derivative). Since cp is strictly convex, continuous and coercive (because Â  is strictly 
positive), cp has a unique minimizer (for a proof cf. e.g. [24, Theorem 25.E]). 

It is well known from convex analysis (cf. e.g. [25, Proposition 47.123) that p E L 
minimizes cp iff 0 E &p(p) which is equivalent to (32). According to Theorems 1 and 
2 this implies that the interface problem has a unique solution. 

The same arguments used for the calculation of acp prove that 0 E aJ (u, p - p o )  is 
equivalent to 

1 - d( ) € W P  - Po) ,  
P - Po 

which is (34). 0 

The following lemma is used in the proof of Theorem 4 and proved in 116, Theorem 
2.11 for S = 0. The proof works verbatim for the present case. 

Lemma 7.  l f ( u ,  p) solves problem (P) then there exists a multiplier A E L wirh 111 < 1 
and A . ( p  - p o )  = ( p  - pol a.e. in R such that for any (v, q )  E H x L 

6. Numerical treatment 

The discretization of the problem (P) is described in this section, leading to the 
coupling of FEM and BEM. Let 

( H h  X L h  X H i 1 ” :  h E Z )  

be a family of finite-dimensional subspaces of H x L x H-”’ ,  where h may be re- 
garded as the size of a finite element mesh; I E (0, 00 ) with 0 E 7. Note that H h  and Lh 
correspond to a triangulation of $2, while H h  lI2 corresponds to a triangulation of the 
interface r. We assume the approximation property, i.e. for any (u, p ,  t )  E H 
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x L x H - lI2, we have 

denote the canonical imbeddings with their duals it E L ? ( H * ; H t ) ,  jt E 9 ( H 1 1 2 ;  
( H h 1 I 2 ) * ) ,  !t E L ? ( L ; L h ) .  

Remark 4. A natural discretization of problem (P) is obtained taking, for instance, the 
variational inequality (34) and replacing H x L by H h  x L h  . This requires the numer- 
ical calculation of s h  : = it Sih and hence the numerical computation of V ;  I .  Since an 
explicit representation of V ;  ' is not known, we are led to approximate V;  ' as well 
introducing a discrete subspace H i  'I2 for the tractions on the interface. 

In order to approximate s h ,  we define 
I 

Sh := i:')'*Dz')'ih + it')'*(+ - A ' ) j h ( j t  V Z j h ) - ' j t ( +  - I\)?&,. 

The computation of $, requires the numerical solution of a linear system with 
a symmetric, positive-definite matrix V2h : = ( j f  v z j h ) .  In general, f h  z it Si,, , which 
causes additional difficulties in the convergence analysis of the numerical treatment of 
the interface problem [lo]. 

Define the bilinear form 

( H h  L h )  ( H h  L h )  -+ R, 
ah: L h ,  pk 9 ("") q k  < A h ( g ) 9 ( i : ) ) H h X z ! + ?  

by 

A - + &* ql ">- &gh:=(gh+;cA& 

Let POh := n h p o ,  n h  being the orthogonal projection in L onto L h .  

Definition 3. Given h E I problem ( P h )  consists in finding (Uh ,  P h )  E H h  x L h  with 



Interface Problem in Holonomic Elastoplasticity 83 1 

The first crucial point in the convergence analysis is the following result. 

Lemma 8. There exist co > 0 and ho E I such that for any h E I with h < ho and any 
U h  E H h  there holds 

( f h u h ,  U h ) H  2 CO IIYuh 1 1 ~ 1 , 2 *  (41) 
Proof. Assume that (41) is false. Then there exists some parameter sequence (A,) in 
I with h, = 0 such that for any n there exists u, E H h n  with I( yu, ) l H l f 2  = 1 and 

(42) 
- 1 

n ( S h . U n ,  u n >  < - *  

As shown in [lo, Lemma 4.53, D2 is positive-semi-definite and a compact perturbation 
of a positive-definite operator. Thus, the kernel X : = ker D2 has finite dimension and 
hence is complemented in H1I2, i.e. there exists a subspace Y of H'12 with 
X@ Y = H"'. Let yu, = u, + w, with u, E X and w, E Y. Since D 2  is positive-definite 
on Y and ( fhmh.u, ,  u , )  2 (D2yu, ,  yu,), one concludes from (42) that limndm w, = 0. 
Since X is finite-dimensional, there exists a subsequence (again denoted by (u, ) )  which 
converges towards some u E X. Thus, 

lirn yu, = u E X, whence 11 u l lHl !2  = 1 .  (43) 

y, := jh*,x, E ( H h ,  112 ) * and z, := V,;Y,, E Hc1l2.  
n-m 

Define x, : = (1 - A2)yu, E 
Since A2 is continuous, we get 

lim x,  = x := (4 - A2)u. 
n-+ m 

On the other hand, according to the definition of S h ,  (42) implies that 

0 = lirn (y,, V i t y , )  = lim ( V22,,, z,). 
n-+ m n-+m 

Since V2 is positive-definite this yields 
pendent of h), 

z, = 0. Because V 2 h  is bounded (inde- 

lirn y,, = lim V & Z ,  = 0. 
n-+m n-+ w 
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Define Y,, := jh*,x E (HL1I2)*. Then, by lim,,,oox,, = x,  

0 = lim )I Y,, - y I) (45) 
n-co ( H i " " * ) * .  

Let 4 E U h e ,  H;1/2. Then, because of (38), there exists some no such that 4 E HC1/' 
for any n 2 n o .  Therefore, (45) and (44) lead to 

0 = lim (4, Y,, - y,,) = ( 4 , ~ ) .  
n-m 

Since U h s r H ; 1 / 2  lies dense in (H'12)* = H - ' l 2 ,  this shows x = (4 - A2)u = 0. 
Thus, according to the definition of S 2 ,  we get S 2 u  = 0. Since S 2  is positive-definite 

(cf. Lemma 4), u = 0, which contradicts (43). 

The second crucial point in the convergence analysis is the following estimate 
concerning f h  - S.  

Lemma 9. There exists a constant c > 0 such that for all h E I and for all O h ,  u h  E H h  and 
u E H there holds 

( $ h u h - - h * S U , O h - U h ) H h  < C . l I V h - U h l I H  

- ( d i ~ t , - ~ ~ ~ ( V ; ~ ( 1 / 2  - A ~ ) Y u , H ; ~ ' ~ )  + ( ) U h  - U l l ~ ) .  (46) 

(47) 

Proof. Firstly, following the notion of [lo], we prove 

11 ( S h  - g h )  Oh [IH: < C1 * d iS t~ -  I!Z( v; (1/2 - A z ) Y U h ,  H i  1 / 2 )  

for a constant c 1  which is independent of h. Setting f := (1/2 - A2)yuh a n d h  :=j ,*J  
one obtains 

II (Sh - g h ) v h  11 < 11 (1/2 - A2) It . I1 v;' f - V;,'h IIH- 112. (48) 
Note that y : = V ;  f is the exact solution of the equation V 2 y  = f; while y h  : = V;,' fh 
is the solution of the related Galerkin equations v 2 h y h  = j , *  f. Since V2 is positive- 
definite, Cia's lemma yields the quasi-optimal error estimate 

(49) (1 y - y h  (1 < C2 ' d i S t d y ,  Hk ' I 2 ) ,  

which proves (47). 
Using (47) and boundedness of S, one gets 

( g h  uh - i t  su, u h  - u h  ) H h  

G I I S h u h  - ih*SUl l~:  /l'h - U h l l H  

G IIUh - u h  11H'(11 shuh - 

< C ~ I ( U ~ - U ~ ( I H ' ( ~ ~ S ~ H - I ~ ~ ( V Z ~ ( ~ / ~ - I \ ~ ) Y U ~ , H ~ ~ ' ~ )  + I l u - u h I ( ~ )  

< c 4 I I u h  - Uh(IH.(diStH-112(v;~(1/2 - A ~ ) Y u , H ~ ~ ' ~ )  -k I(u - U h I ( H ) ,  

S V h  I I q  + 11 S(u - U h )  I I H ; )  

where the constants c3 ,  c4 are independent of h and we use 
dist(f; H i  ' I 2 )  G dist(g, H i  ' I 2 )  + / I f -  g ~ ~ H . l , 2 ( J  g E H-'12) .  This proves the 
lemma. 

Because of the approximation property of the discrete spaces, the next error 
estimate proves quasi-optimal convergence of the Galerkin procedure. 
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Theorem 4. There exist some co > 0 and ho E I such that for any h E I with h < ho 
problem ( P h )  has a unique solution ( u h ,  p h ) .  I f  (u, p )  E H x L is the solution ofproblem (P) 
then there holds 

< co * { dist(u, Hh)2 + dist( V ;  (1/2 - A2)yu, H; ' I 2 ) '  

Pro05 Using Lemmas 8 and 6 for the discrete spaces H h  x L h  x H i  ' I 2  for h E I ,  h < ho, 
one concludes that d h  is positive-definite. Moreover, the related constant c1 > 0 is 
independent of h < ho, i.e. there exists c1 0 such that for any h E I with h < ho and 
for any (Uh,  4 h )  E Hi, X L h  there holds 

As in Theorem 3 this leads to the existence and uniqueness of a solution ( u h ,  p h )  of the 
discrete problem ( P h ) .  

Let u h  := nHhu, nu,, being the orthogonal projection in H onto Hh. Then 
(1 u - oh I I H  is bounded above by the right-hand side of (50). Therefore, and because of 
(51), for the proof of (50), it suffices to show that 

is bounded above by the right-hand side of (50). This will be done in the sequel. 

arbitrary gives 
Addition of (34) with (u ,q )  = ( u h ,  p h  - P O h )  and (39) where = nHhu and q h  is still 

(54) 

(55)  

Using the triangle inequality j ( p  - po  - q h )  = j ( q h  - p + p o )  j ( q h )  - j ( p  - po), 
one obtains that (55)  is less than or equal to zero. According to Lemma 7, (53) is equal 
to 

+ j ( q h )  - j ( p  - PO) - j ( q h  - p + PO). 

j ( q h  - P + Po) + In k l ( p  - Po - 4h)dO, 
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which is less than or equal to 

2 j ( q h  - P + P O )  < 2 k 2 .  IlP - PO - q h  I I ~ l ( n ; ~ b ; 3 ) *  

In view of the above inequality concerned with (53)-(53, we may add these terms to 
(52)  and obtain a new upper bound of (52) which can be rewritten as - 

2 k 2 1 1 P - P 0 - 4 h 1 1 ~ 1 ( n ; w S . 3 ) +  rim ( S h o h - S U , o h - U h ) H ; 1 f 2  

+ ( & * A & ( V h  - u), o h  - U h ) H  + (A&(U - o h ) ,  P - PO - P h  + P 0 h ) L  

+ ( A E ( U - u h ) , q h - P + P O ) L  

+ ( ( A  + qZ)(P - P O  - q h ) ,  P - PO - P h  + P O h ) L *  

Using Lemma 9, the boundedness of some operators and (51), the above estimate of 
(52)  leads to 

+ ~ C ( ~ ~ S ~ H - I ~ Z ( V ; ~ ( ~ / ~ - A . Z ) Y U , H ~ ” * ) +  l ( U h - U I ( H ) 2 ,  

where we used ( [ o h  - u h  [I& < (Iu - u h I ( &  = (Iu - u h  11; + ( I u h  - o h I I & .  From this one 
concludes (50). 0 

Remark 6. Theorem 4 extends the error estimate [16, Equation (3.4)] for the interior 
problem to the non-linear interface problem. There, the estimate (50) is applied to 
particular trial spaces assuming a certain regularity of the solutions. These consider- 
ations apply also in the present case. 

Remark 7. The discrete problem ( P h )  must be solved by an iterative procedure like e.g. 
Uzawa’s algorithm. For a discussion of regularization procedures one is referred to 
[16, 203. 

Remark 8. Using the extended discrete problem (40), one can also consider the 
error of the tractions. From the proof of Lemma 9 it can be observed that 
114 - $h),Ilj& 10 is also bounded by the right-hand side of (50). 
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