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Abstract. The three dimensional interface problem is considered with the homogeneous Lamb system 
in an unbounded exterior domain and some quasistatic nonlinear elastic material behavior in a bounded 
interior Lipschitz domain. The nonlinear material is of the Mooney-Rivlin type of polyconvex materials. 
We give a weak formulation of the interface problem based on minimizing the energy, and rewrite it 
in terms of boundary integral operators. Then, we prove existence of solutions. 

1. Introduction 

This paper is concerned with interface (or transmission) problems in three dimensional 
solid mechanics which consist of a nonlinear elastic problem in a bounded (non-empty) 
Lipschitz domain 52 = S Z ,  and the homogeneous linear elasticity problem-subject to 
Sommerfeld’s radiation condition-in the unbounded exterior domain S Z ,  := lR3\0,. On 
the interface r:= 0, fl O2 we have continuity for the displacements and tractions defined 
as traces of SZj for j = 1,2. 

We start giving some notations concerning the interior and exterior problem in $ 2 
and $ 3, respectively. In $ 4 we give a weak energetic formulation of the interface problem 
incorporating ideas of [6] for the linear exterior part and [l] for the nonlinear interior 
part. Using the Calderon projections we rewrite the exterior problem in terms of bound- 
ary integral operators related to the Poincare-Steklov operator. This yields a non-local 
boundary condition for the interior part which can be included in the polyconvex stored 
energy framework and results in a nice additive term. Due to the properties of this 
perturbation we can modify Ball’s arguments and prove existence for the interface prob- 
lem at hand in $ 5 .  

Although we only study the Mooney-Rivlin material we remark that the proofs also 
work for the other polyconvex materials considered in [l, 4, 10, 121. 
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2. The interior problem 

In this paper we consider the Mooney-Rivlin material behavior in SZ as an example 
of the class of polyconvex materials [I, 4, 10, 11, 121 which became important in ap- 
plications since Ball's existence theorem in [l]. 

let A,, adj A and 
det A denote its component in the i-th row and j-the column, its adjugate, and its de- 
terminant, respectively. Let I be the 3 x 3 unit matrix. R3x3  is a Hilbert space with 
respect to the product ":" defined by A :  B:= 

We need some notations concerning 3 x 3 matrices. For A E IR3 

1 A i j . B i j ;  write IAI2:=A:A. 
i , j =  1.2.3 

Let q:  (0,co) -, IR be a continuous and convex function with 
lim+ q ( x )  = + co 

x-0 (1) 
and such that there exist a > 0 and 1 < s < co with 

(2)  
for all x E (0, a). 

material through 

q ( x )  2 a * xs 

Define the stored energy function e(F)  with F : =  I + grad u for the Mooney-Rivlin 

e(F):= P ( F ,  adj F, det F )  
where there exist a constant co and positive constants c1,c2 with 

The nonlinear material behavior in SZ and the equilibrium condition with the body 
forces f ~ ( H ' ( l 2 ;  IR3))* and surface tractions t E H -  '"(I'; IR3) are given by minimizing 
the energy functional 

(3) P(F, H ,  d):= co + c1 IF12 + c2 * IHJ2 + cp(d). 

HxH-'I2(r;IR3) -+RU {a} 
(u, t)w j e ( l  + grad u)dQ - fudD - <t ,yu) ,  .( R R 

Here, y : H'(SZ; W3) -+ H'12(r; lR3) is the trace of I', (,) is the (extended) Lz(T; IR3)-duality 
between H"2(T;lR3) and its dual H -  '''(I'; IR3), and 

lH:={u~H~(SZ;IR~)ladj(l+ g r a d u ) ~ L ~ ( S Z ; l R ~ " ~ ) ,  
det (I + grad u) E L"(S2; R), det(I + grad u) > 0 a.e. in SZ} , 

1 < s < co (cf. (2)). 

Definition 1. Given ~E(H'(SZ;R~))* and t E H- l12(T;lR3), the interior problem consists 
in finding u E lH with 
(4) E(u,t)=min{E(u,t):u~H}. 

Remark 1. Other polyconvex materials can also be included in the considerations 
of the paper; we restrict ourselves to the Mooney-Rivlin material in order to be explicit 
and to simplify notations. 

Remark 2. If the solution of the minimization problem was smooth its Frechkt de- 
rivative would vanish giving a weak form of equilibrium, namely the Euler-Lagrange 
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equations, cf. [4, Theorem 4.1-11. From this we see that f is the applied body force 
and t is the surface force. 

Remark 3. We remark that (instead of 52, =.8) we may allows that 52 = Ql\Gf0 for 
some Lipschitz domain 52, lying compactly in 52,. Then, we may have Dirichlet, 
Neumann, or mixed boundary conditions on X2,. This causes only obvious modifica- 
tions of the present analysis. 

3. The exterior problem 

The exterior problem is the homogeneous Lam6 system of linear elasticity [6,7] 

with d = div grad denoting the Laplace operator and p,, A ,  being the positive Lame 
constants [4]. 

Due to the trace lemma u, I r  E H1IZ(T; R3) whenever U, EH~,,(SZ,; R3), H:,,(62,; IR3) 
denoting the displacements of locally finite energy. 

The traction T,(u,) Ir is the conormal derivative defined (for smooth u,) by 

d*u:= -pzAu-(Az+pz)graddivu=O in 52, 

TZ(uZ):= 2p2a,u, + A,n div u2 + p2n x curl u 2 .  
3, denotes the normal derivative, n being the unit normal pointing into 52,. In Sobolev 
spaces the traction can also be defined via the First Green formula [6, 71. In order to 
do this, we introduce the following notation 

d i j  = 1 for i = j  and a,, = 0 for i # j .  The strain tensor E ( U )  is defined by 

( ~ ~ , ~ ) : = ( u ~ , ~ ) ~ , ~ = , , ~ , ~ : = g r a d u .  Let the brackets ( . , a )  denote duality between H1/'(r;lR3) 
and its dual H-'/'(r;IR3). Then, for u, EH:,,(~~,;IR~) with A*uz~L~,,(52,,IR3), 
T,(u,) 1,- E H -  '/'(r; R3) is defined by 

(5) 

for any u E H'(Q2; IR3) with compact support and 

J A*uzvdQz = (Tz(uz) Ir, u Ir> + @z(uz, u)  
R2 

3 

~ Z ( u 2 ,  u) = j C a i j k l E k l ( u 2 )  E i j (u )  dQ2 * 

Rz i j k l =  1 

Thus, for any u ~ E H : , ~ ( ~ ~ ~ , R " )  with A*u, = 0 its Cauchy data are 

( ~ 2  Ir, T ~ ( u , )  lr) E H1"(T; R3) x H -  "'(r; R3). 

Following e.g. [2, 6, 7, 8, 91 we consider solutions which are regular at infinity, i.e. (in 
three dimensions) u,  satisfies the Sommerfeld's radiation condition 
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Definition 2. The exterior problem consists in finding u, E Y;, 

(7) 
subject to some interface conditions concerning the Cauchy data (u, Ir, T2(u2)) of u,. 

G, for the Lam6 operator A* has the kernel G,(x, y),  the Kelvin-matrix, 

9, := {u, E H~,,(SZ,; R3): u, satisfies (6) and A*u, = 0 }  , 

In order to rewrite the exterior problem we follow [2,6,7]. The fundamental solution 

I is the unit matrix and denotes the transposed matrix. Since G is analytic in lR3 x lR3 
without the diagonal we may define its traction 

Tdx, Y):= T,,y(G,(x, YNT, x # Y * 

Due to Green's formula we have the following Somigliana representation formula 
for x €IR3\r 
(8) uz(x) = (TAX, *I, u> - (G,(x,  .), 4 )  
which is proved for Lipschitz domains in [5]. Differentiation of (8) gives a representation 
formula for the stresses T,(u,). By using the classical jump relations for x --f r and 
inserting the Cauchy data into these formulas one obtains on r 

with the Calderon projector W, being defined via 

(V,Cp)(x) = <Gz(x,*),4), (D,u)(x)  = - Tz*x(<Tz(x,.)9~)), 

(&)(x) = (T,(x,*),v), ( 4 4 ) M  = - ~z,A~Gz(x , - ) ,4 ) ) ,  

(x E r). V ,  : H -  '/'(r;IR3) -+ H'"(r; IR3) is the single layer potential, 
A 2 :  H'"(r; lR3) -+ H'/'(r; IR3) is the double layer potential with its dual 
A; : H -  '/'(r; IR3) + H -  '/'(r; IR3), and D, : H'/'(T; IR3) 3 H -  '/'(r; IR3) is the hypersin- 
gular operator. It is known from [5,  71 that these operators are linear and bounded 
and that D, is symmetric and positive semi-definite and V ,  is symmetric and positive 
definite. 

(ii) 

(iii) 

Lemma 1 ([6, 71). (i) If u , E ~ , ,  then ( 8 )  holds for u:=u2 Jr~H1/'(T;lR3) and 

For any u E H'/'(r;lR3)and Cp E H - ' l 2 ( r ; I R 3 )  the uector field u, defined uia(8) belongs 
d:= T , ( U , ) I ~ E H - ' / ~ ( ~ ; I R ~ ) .  

to 9, and its Cauchy data are given by  W, 

For (u, Cp) E H'I2(T;R3) x H-'/'(r;lR3) the following statements ( a )  and (b)  are 
equiualent : 
(a) (u, 4) are Cauchy data of some u2 ~9,, i.e. u = u, I r ,  4 = T,(u,) Ir for some 

E 9 2 ;  
(b) (v, 4) satisfies (9). 

. (3 
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Since I/, is positive definite, whence invertible, we may define the PoincarBSteklov 
operator (sometimes called Dirichlet-Neumann map) 

which is linear, bounded, symmetric, and positive semi-definite. It is proved in [2] that 
S, is also positive definite. 

S , : = D ,  + (1/2 - A>) V,l(l/2 - A2):H”2(r;IR3)  + H-”2(r;IR3)  

Lemma 2 ([3]). u2 solves the exterior problem (i.e. u2 E 9,) if and only if its Cauchy 
data (v, #):=(u, Ir, T,(u,) l r )  satisfy # = - S2v and ( 8 )  is valid. 

Proof.  Using Lemma 1, short calculations show the assertion, cf. [2, Proof of 
Theorem 11, [3]. 0 

In order to define the energy of displacements in the unbounded exterior domain 
SZ,, let B, denote the ball in IR3 with center 0 and assume the radius R > 0 sufficiently 
large such that SZ, c B,. Then, define 

3 

@ 2 R ( u 2 ,  ’2):= a i j k l & k l ( u 2 ) E i j ( ~ 2 )  dSZ2. 
RznBR i j k l =  1 

Lemma 3. Given u2 E 9, and u2 EH~,,(SZ,;IR~) with u2(x) = 0 - (1x1 + 00) there holds (3 
R - w  lim 42du2, v2)  = (S2u2 lr, u2 If> - 

Proof .  Since u2€-!Z2 and from Lemma 2 we have (8) which additionally leads to 

(1x1 -+ co). Hence, using Greens formula (compare (5) )  in Q, n B,, grad u2(x) = 0 

we have from A*u,  = 0, 

because the boundary integrals on aB, are 0(1/R) * O(l/R2).  O(R2) = o(1). Letting 
R + m we obtain existence of the limit and the claimed equality. 

(lxi ) 
@ 2 R ( u 2 ,  ~ 2 )  + (T~(u.2) Ir, ~2 Ir> = o(1) 

0 

4. The interface problem 

We start with an energetic description of the interface problem and prove an equivalent 
formulation. 

Definition 3. The interface problem consists in finding (ul,  EL, 
L:= {(vl, Y,) E lH x H~,,(SZ,;IR3): u1 I r  = v2 I r ,  v2 satisfies ( 6 ) } ,  

with 
1 1 

E ( u , , O ) + - @  (u u )=min{E(u,,O)+-@ (v v ) : ( u l , v 2 ) ~ I L )  2 2 ’ 2  2 2 2 y 2  

1 
Remark 4. E ( v l ,  0) + cP2(v2, v,) is the sum of the interior and exterior part of the 

18 Math. Nachr.. Bd. 163 
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energy in the interface problem where we only prescribe continuity of the displa- 
cements in IL, i.e. only the essential interface conditions, at the interface r. In par- 
ticular t, as introduced in the definition of E, is an applied surface force in the in- 
terior problem but not in the interface problem and consequently t does not occur 
explicitly here. We consider homogeneous interface conditions on r for simplicity 
and because of physical relevance. Inhomogeneties can be simply included as in the 
linear case [6]. 

The natural interface condition, namely the equilibrium of the stresses, i.e. 
t = T2(u2) I T ,  will be a property of any solution of the interface problem, compare 
Remark 7 below. 

1 
2 

Remark 5. Note that, in view of Lemma 3, the exterior energy - 4(u2, u 2 )  E [0, co] is 
finite for u2 with compact support as well as for u2 E g2. 

1 
2 

Remark 6. An alternative approach could be to minimize E(u l a , ,  0) + - @(u I R 2 ,  u In2)  
with respect to UEH~(IR~;IR~) ,  where (6) does not appear. If we did not assume 
(6) we would need the boundedness of (Iu I a 1  (l&a2;R3@(u I R 2 ,  u In2) to guarantee co- 
ercivity. Since (Iu (n211&a2;Rs)/@(u lO2, u In2) is in general not bounded we have to work 
in other spaces. 

We have the following equivalent minimization problem. 

Theorem 1. (u l ,u2 )~IL  solves the interface problem if and only if u1 EM satisfies 

and u2 E g2 is defined by  (8) with (u,  Ir, - S2ul Ir) replacing (u, 4). 
Proof.  Assume that (u, ,  u,)EIL solves the interface problem. 

r]  E C:(Q2; R3) 
Then, we have for any 

L 

and hence, 

@@2,u2)  I @(%,U2)  + 2@(% u2) + @ ( r ] ,  r ] )  * 

Since r]  is arbitrary, this inequality shows +2(uz, r ] )  = 0 for all r]  E C:(s22; IR3) which 
is d*u2 = 0 in the distributional sense (compare (5)). Thus u2 €Y2 and Lemma 3 
gives 

Given u1 E lH define u2 by (8) with (u2, u1 Ir, - S2u, Ir) replacing (u2, u, 4). Then, u2 E Y2 
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(cf. Lemma 1) and (u, ,v , )EIL by Lemma 2. Lemma 3 gives 

1 
2 

E(w,,O) + -@2(~2,~2):(~1,~2)~IL 
1 

= E(u1,O) + 2 @,(u,, u2).  

This and (1 1) prove (10). The claimed properties of u2 are proved below at the end of 
this proof. 

For the moment assume conversely that u1 EM satisfies (10). Then, define Cz E =!Z2 
by (8) with (C,,u, Ir, - S,u, If replacing (u2,u, $) so that (u, ,f i ,)~lL. Lemma 3 gives 

1 

(12) 

= E(u,,O) + 5 @z&, u"2) 

Given ( u l ,  u2) EL define C2 E LY2 by (8) with (C2, 0, Ir, - S2ul lr) replacing (u2, u, $). Thus 
Cz E =!Z2 and (u , ,  C2) EIL (cf. Lemma 1 and Lemma 2). Note that (u2 - C2) Ir = 0 so that 
Lemma 3 yields @2(C2, u2 - C2) = 0 which gives 

and hence 
(13) 
By (lo), (13), and Lemma 3, we have 

0 I O2(U2 - C2, u2 - C2) = !D2(uz, u2 - I7J = @2(v2, u2) - @2(C2, C2) 

@Z(u"Z, v"2) I @ Z ( b  02) E [O, 001 * 

2min  E w l , - - S  w I : w , E M  { (  :4 I 
This and (12) show that (u,, C2) solves the interface problem. 

Finally it remains to prove that for any solution (u,,u2) of the interface problem 
there holds u2 = G2 where C2 is defined as above. If (ul, u2)  solves the interface problem 
then, as we have already proved, (u,,C,) solves the interface problem as well where 
C2 E =!Z2 is defined by (8) with (C2, u1 Ir, - S2u1 I r )  replacing (u2, u, 4). Therefore, we have 

Arguing as above (with (u,, u2, C2) replacing (ui, u2, C2) in the proof of (13)) we see that 
(14) implies 0 = QZ(u, - ti2, u2 - u2), i.e. u2 - C2 is a rigid body motion. Since, by con- 
struction, (u2 - C2)  Ir = 0 this rigid body motion is zero, i.e. u2 = C2. 

(14) @z(u"z, C2) = @2(u,, u 2 )  * 

0 
18' 



276 Math. Nachr. 163 (1993) 

Remark 7. Arguing as in the proof of Theorem 1 one shows that the interface problem 
is equivalent to the following problem: Find (u,, u2) EIL such that u2 E Y2 and u1 EM 
satisfies (4) with t replaced by T2(u2) Ir. 

Hence, any solution (ul, u2) of the interface problem satisfies u,  I r  = u2 1,- (by definition 
of L) and t = T2(u2) I r  which is equilibrium of the stresses on r;  compare Remark 2. 

Remark 8. Theorem 1 holds without any particular properties of the function e in 
the definition of E .  We have only used that the interior problem is written as a mini- 
mization problem where an applied surface load t leads to the additive term - ( t ,  yu,)  
in the energy functional. Hence the nonlinear interface problems under consideration 
in [7, 81 dealing with the nonlinear Hencky material are included in the framework of 
this note. Since S ,  is positive definite, the Dirichlet boundary conditions (cf. Remark 3 
with, e.g., u l a R o  = 0) needed there can be omitted. 

5. Existence of solutions 

According to Theorem 1, the following result shows existence of solutions of the interface 
problem. Define 6: M + R U  { CO> by 

1 
2 

(e(Z + grad u) - f u )  dS2 + - (S,yu, yu) , 
R 

yu = u Jr,u EM. 

Theorem 2.7'he interface problem has solutions, i.e. the functional 6 attains its minimum 
in M for some UEM. 

The proof below follows Ball's notions [l] as described in, e.g., [4,10, 121. Unfortu- 
nately, the formulations in [4,10,12] do not allow an explicit application to 8. Therefore, 
we give a simple sketch of the main idea first in Lemma 4 and then we verify the technical 
hypothesis in Lemma 5 ,  6,  7 and 8. 

Lemma 4. Let X be a real reflexive Banach space and let I :  D -+ R U  { m} be a weakly 
sequential lower semicontinuous functional defined on the nonempty subset D of X .  Assume 
(i), (ii), (iii) : 
(i) co > inf I ( x )  > - CO; 

(ii) For any sequence (x,) in D with lim llxnllx = 00 there holds lim I(x,) = CO;  

(iii) For any sequence (x,) in D which is weakly convergent to x E X ,  (x,) - x, there holds 

Then I attains its minimum in D,  i.e. there exists at least one x* E D such that 

XED 

n+ m n+ m 

x E D provided lim I (xn)  exists as a real number. 
n-1m 

Z(x*) = inf I ( x ) ,  
XED 

Proof.  The simple proof is given only for completeness. Since D is not empty and 
by (i) there exists a sequence (x,) in D with 

lim Z(x,) = lo:= inf Z(x). 
n-+W XED 
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Because of (ii), the sequence (x,) is bounded in the reflexive Banach space X .  According 
to the Banach-Alaoglu theorem there exists a subsequence which converges weakly in 
X .  Thus, without loss of generality, we may assume that (x,) converges weakly towards 
x E X ,  (x,) - x. According to (15) (holding also for a subsequence (x,)) and (iii) we have 
X E D ,  whence I ( x )  2 I , .  On the other hand I is weakly sequential lower semicontinuous 
which implies 

I ( x )  4 lim inf I (x , )  = I , .  

Altogether, I ,  = I(x),  i.e. x is a minimizer of I .  

n- tm 

0 

Remark 9. The abstract conditions of Lemma 4 have the following interpretations. 
D # 8 and (i) are natural conditions for minimization problems. The weakly sequential 
lower semicontinuity of I as well as the coercitivity condition (ii) are usually required 
in convex analysis. The last condition (iii) seems to be technical and generalizes the 
weak closedness of D. Indeed (iii) is just needed to ensure that bounded minimizing 
sequences in D having a weak limit have a weak limit in D. 

We will apply Lemma 4 in the following situation. 

Definition 4. Consider the reflexive real Banach space 
X:=H'(Q;IR3)XL2(Q;IR3X3)XL~(Q;IR3X3)XLs(SZ;IR), 

1 < s < 00, and its subset 
D:={(u,F,H,d)EX:I+gradu=F, H=ad jF ,  d=detF,  d > O  a.e. in Q}.  

D is nonempty since, e.g., (O , I ,Z ,   ED. 
Consider I :  D + IR defined for any (u, F ,  H ,  d )  E D  by 

s 1 
I (u ,  F ,  H ,  d):= P ( F ,  H ,  d) dQ + - ( S ~ Y U ,  Y U )  - f u  dQ . 

(16) s 2 
R R 

Note that b ( u )  = Z(u, F,  H ,  d) for any (u, F ,  H ,  d )  ED. Thus, in order to prove Theorem 
2, it remains to verify the conditions in Lemma 4. This can be done modifying some 
proofs given in the literature [I, 4, 12, 101. The proof are listed here for completeness. 

Lemma 5. I is weakly sequential lower semicontinuous. 

P r o  of. P :  IR3 x lR3 
(cf. [l, 4, 12, lo]). Hence, 

x (0, co) -+ IR, as defined in (3), is continuous and convex 

L2(Q; I R 3  x lR3 3) x LS(Q; (0,oo)) -+ IR 
( F ,  H ,  4 - f P(F,  H ,  4 dQ 

R 

is weakly sequential lower semicontinuous (cf. e.g. [4, Theorem 7.3-17). Since 
(S,y, y)  : H'(Q; lR3)  + IR is convex and continuous we have that 

I :  H1(Q;IR3) x L 2 ( Q ; I R 3 x 3  x W X 3 )  x L"(Q;(O, 00)) + IRU {a), 

as defined in (16), is lower semicontinuous. 0 
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Lemma 6. 00 > inf I ( x )  > - 00. 

Proof.  Let c3, ..., c l0  denote constants. Note that, by (2), infcp2O so that 

X E D  

Z(U, F ,  H ,  d )  2 c3 * YU) - fud9 .  s 
D R 

Since S, is positive definite, we conclude for any x = (u, F ,  H ,  d )  E D 
I@, F ,  H, d )  
2Cq.(llz+graduIlt2(~;~3x3)+ I / ~ ~ / ~ H ' / ~ ( ~ ; R ~ ) - ~ ) - C S I I Y U / I H ~ ( R ; R ~ ) .  2 

By the generalized PoincarC's inequality (cf. e.g. [4]) and since S, is positive definite 

This yields c7 > 0 with 

(18) 
which tends to infinity whenever / / u / / ~ , ( ~ ; ~ )  + co. This and infZ(x) I Z(O,Z,Z, 1) < co 
gives the lemma. 0 

~ ( u ~ F , ~ ~ d ) 2 ~ , I I ~ I I ~ ' ( R : R ) - ~ * I I ~ I I H ' ( R : W )  - C g  2 c10 

xeD 

Lemma 7. For any sequence (x,) in D with lim /Ix,/IX = co there holds lim Z(x,) = co. 

Proof .  We conclude from (18) and (17) that Z(u,F, H,d)  tends to infinity whenever 

n-* m n 4  m 

lIuIlH'(R;R3) + 
or IIFIILZ(R;IR3"3) -+ 00. From 

I (u ,  F ,  H ,  d )  2 CO + JH: H + J q ( d )  d o  2 co + /IHl/&(n;~3 x 3) + ~ 1 1  IldllZqa;~) 
R R 

(which is obtained using (2)) we conclude that Z(u, F, H ,  d )  tends to infinity whenever 
IIHIIL2(R;R3x3) -+ co or Ild/lLs(R) -+ co as well. This proves the lemma. 

Lemma 8. For any sequence (x,) in D which is weakly convergent to x E X ,  (x,) - x ,  
there holds X E D  provided lim I (x , )  exists as a real number. 

n-m 

Pro  of. Let (x,) =: (u,, F,, H,, d,) be a sequence in D converging weakly towards 

Let id: 9 + IR3, X H  x be the identity in 9. Note that u, - u in H'(9;IR3)  implies 
x = (u, F ,  H ,  d )  in X such that Z(x,) is bounded. It remains to prove that x E D .  

F ,  - Z = grad u, -grad u in L'(9; IR3 3). Since 
F ,  - F in L2(9;  lR3 3, 

we have F = I + grad u. From [4, Theorem 7.6-11 and 

adj(Z + grad u,) - H in L'(SZ; R3 3, 

det(Z + grad u,) - d in L3(Sl;lR) 
we obtain H = adj (I + grad u) and d = det (I + grad u). 

be proved as in [4, p. 374f.l. 

id+u,-id+u in H ' ( 9 ; l R 3 )  

It remains to prove that d > 0 a.e. in C2 which is based on (1) and Z(x) < 00 and can 
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Proof of Theorem 2. Recall that I(u,  F ,  H, d) = b(u) whenever (u, F ,  H, d )  E D, and 
(u, F ,  H, d) E D corresponds bijectivly to u E IH. Hence any minimizer of I in D is a mini- 
mizer of 8 in M and vice versa. Since the hypotheses of Lemma 4 are satisfied, I has 
a minimizer. This implies the existence result of Theorem 2. 0 

Remark 10. Note that, for any solution (ul, u2)  of the interface problem, u2 E =Y2 is 
uniquely determined by Theorem 1. But, in general, we cannot expect uniqueness or 
regularity of solutions, cf., e.g. [4, Section 7.101 and the references cited there. 
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