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Abstract. 

Durand-Kerner's method for simultaneous rootfinding of a polynomial is locally second order 
convergent if all the zeros are simple. If this condition is violated numerical experiences still show linear 
convergence. For this case of multiple roots, Fraigniaud [4] proves that the means of clustering 
approximants for a multiple root is a better approximant for the zero and called this Quadratic- 
Like-Convergence of the Means. 

This note gives a new proof and a refinement of this property. The proof is based on the related Grau's 
method for simultaneous factoring of a polynomial. A similar property of some coefficients of the third 
order method due to B6rsch-Supan, Maehly, Ehrlich, Aberth and others is proved. 
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1. Introduction, 

One of the most efficient methods for simultaneous approximation of all the zeros 
~1 . . . .  , ~m of a polynomial 

(1) P(z)  = z" + a t z  " -1  + . . .  + a , - l z  + a ,  = ( z  - ~ 1 ) " 1 ( z  - ~ z ) U 2 . . . ( z  - ~,,)u., 

was indicated by Weierstrass in 1891 and much later proposed independently by 
Durand Kerner and others, see [8] and the related references therein. Provided 
simple zeros, i.e. 1 = / ~  . . . .  = #,, and m = n ,  Durand-Kerner ' s  method with the 

iteration formula (in total-step mode) 

(2) - w , ( " ' : =  e (z? ' ) ) /  ( I  - 
j = 1 ,j¢ i 

i = 1,. . . ,n;v = 0, 1,2,.. . ,  
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yields locally quadratic convergence. 
As noted in [1], [6], numerical experiences show convergence of the method also 

towards multiple zeros in the correct multiplicity but with slower convergence and 
lower accuracy. P. Fraigniaud proved in [4] that in this case Durand-Kerner's 
method has the property of Quadratic-Like Convergence of the Means, i.e. for 
sufficiently good initial values, for a suitable subset I _~ {1, . . . ,  n} of indices and 
i ~ { 1 . . . . .  m} there holds 

C~ v "(~+1) ( ) 
/ J ~ J  = 0  max ICOk--z(~)I2 ; V- - ,~ ,  

(3) card I \ke{t . . . . . .  } 

where (col . . . .  ,co,):= ((1 . . . . .  (1,(2 . . . . . . . .  (m) is the vector of the n zeros of 
f counting multiplicities. This property, denoted as QLMC, is proved in [4] 
generalizing a similar result from [7]. 

Using the related Grau's method [5] this note presents a simple new proof giving 
more detailed information about Q L M C  for Durand-Kerner's method. Moreover, 
the open problem from [4] whether a similar result holds for the method from 
B6rsch-Supan, Maehly, Ehrlich and Aberth is treated; see, e.g., [8] for the related 
references. This method reads (in total-step mode) 

(4) _~ - W~ (') W,(V)/(z <') )) = 1, = 0, 1, 2, . . .  
j= t , j e i  

and is locally cubically convergent if all the roots of P are simple. We note that the 
right hand side of (4) is equal to 

z l , , -  _ (zl ,>-  4"')-'  L e(z?)) j . , , j . ,  

The proof is left to the reader (use Lagrange-interpolation of P at z(~ ") . . . .  , z(, ") to write 
P in terms of Wit')'s, then one obtains the required expression for P'(z}')/P(zl'))). 

Using a related third order method for factoring a polynomial from [3], the 
question of a third-order-like convergence of the means of (4) can be solved. Method 
(4) does not have the analogous property, but a simple modification of it, does. 

The paper is organized as follows: In Section 2, the methods for simultaneous 
factoring of a polynomial from [2], [3], [5] are described. The connection to the 
method (2) and (4) is given in Section 3. Using this, the Q L M C  property is treated for 
method (2) and (4) in Section 4 and 5, repectively, illustrated by numerical examples. 
Some remarks in Section 6 conclude this note. 

2. Simultaneous factoring of a polynomial. 

In this section some results from [5], [2] and [3] are summarized. We refer to 
these papers for motivations, proofs and details. There, the methods (2) and (4) are 
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generalized for simultaneous factoring of a polynomial. 
Consider a factorization of the given polynomial P, 

(5) *z • * z  P(z) = Pl ( ) " " ' P , (  ), 

where the factors p~, . . . ,  p* are pairwise relatively prime monic polynomials. In this 
factorization we do not care for the n = ~"= ~/~ zeros of P; we are only interested in 
the coefficient matrix 

a *  . - -  (6) ( ~ , j l i = l , . . . , m ; j = O , . .  ,/~z 1)eC" 

defined via 

(7) p*(z) = z u~ + a* . z u, - l  a* ~,m-1 + " "  + i,o. 

Given sufficiently good approximations 

(8) (al,j ] i = 1 . . . . .  m;j = 0,...,/~i - 1) e C" 

of the exact coefficients (6) the approximating factors Pt . . . . .  P,,, 

(9) pi(z) = z "~ + ai.,,-1 "z ~"-1 + . , .  + ai,o =:(z - ~i . t ) ' . . . . (z  - ~i,u), 

are also pairwise relatively prime such that the sets of the related zeros 
{~x,1,..., ~ , , , } , , . . ,  {~,,,1 . . . . .  ~,,,,,.} are pairwise disjunct. Here, ~i,1 . . . . .  ~i,,, are 
the zeros of pi counting multiplicities with arbitrarily chosen order. 

To improve these approximating factors, we describe two methods theoretically 
using the zeros of the approximating factors. We stress that there exist other possible 
descriptions and algorithms to compute the new approximants p~, . . . ,  p~ for Grau's 
method [5], [2], and p f  . . . . .  p~ for the method from [3]. 

For i e {1, . . . ,  m} let G~(z) be the Lagrange-interpolating polynomial of 

(10) P(z) pj(z) 
/ j =  l , j ~ i  

with respect to the interpolating points ~i,1 . . . . .  ~.~, and let H~(z) be the Lagrange- 
interpolating polynomial of 

(11) P(z)/[( l + k=~Lk,i Gk(z)/pk(Z))'j=~lj~:ipj(z)l 

with respect to the interpolating points (~.1 . . . . .  ( i , , .  Then, define the improved 
approximating factors by 

(12) p ~ : = p ~ + G ~  and p f : = p ~ + H ~ ;  i = l  . . . . .  m. 

The related coefficients converge locally of order two and three, respectively. 
Moreover, the following is proved in [2, Theorem 4.1] and [3], respectively. 

THEOREM 1. Provided the factors from (5) are pairwise relatively prime there exists 
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a neighbourhood U of(6) in C n and a positive constant K such that for any coefficient 

vector (8) in U and any i t  {1 . . . . .  m} the following holds. 
(a) The denominators in (10) and (11) are non-vanishing at ~i,1, . . . , ~i,~, such that the 

Lagrange-interpolating polynomials GI and Hi exist uniquely. 
(b) For the impoved approximating factors 

G pp(z) = z u~ + ai ,u~ l 1 [ z ~i  - 1 + } a G " ' "  i,O 

= z"' + aL ,  1 z"' ' + + a "  • " "  i , 0  

(given in (12)) there holds 

max lai,~ - ai*kl < K'e i"  max ei 
k = O , . . . , # i  - 1 j =  1 , . . , , m , j ~ : i  

max t a ink - -a i* l<K 'e~"  max ej 
k = O, . . . , l~i--  1 j =  1 , . . . , m , j ~ i  

where 

e s : :  max las,k - aj*kl 
~=o,...,~71 

denotes the max-norm error in the coefficients of  the j-th factor from (8),j ~ { 1 , . . . ,  m}. 
Note  that  for linear factors, i.e. m = n and #l  = . . .  =/~,,  = 1, the methods reduce 

to (2) and (4), respectively; (here, the change in some signs is caused by the plus sign in 
pi(z) = z + ai,o). 

3. Connection to Method (2) and (4). 

In this section one step of the above methods for simultaneous factoring will be 
compared with terms of method (2) and (4). We retain the notat ions of the previous 
section. Assume that  the zeros ¢i,j of the approximating factors (9) are distinct and 
that  they are approximants of the zeros of P. Then, using these initial values, one step 
of method (2) reads 

(13) 

I [D " 7 W/,j:= P(~i,j) I-I (~i,x - ~k,t) ; 
I = 1  

(k,l) q~ (i,3) 

i = 1 . . . . .  m; j  = 1,. . . , /~i,  

and one step of method (4) takes the form 

I[ z "  } (14) ~i,~ :=  ~,,s - Wi,s 1 + • VVk,U(~ij -- ~k.t) - 
k = l  /=1 

(k ,O @ 6 J )  
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LEMMA 1. For any ie  {1 . . . .  ,m} there holds 

(15) _ a.~ w 
k = l  

(16) - a. H , , . , - 1  = ~i,k - t + ~ . 

PROOF. Define the polynomials 

tti 

h,~(z) = H ( z -  ~i,~), 
r = l , ~ ¢ k  

i e{1 , . . . ,m},  ke{1, . . . ,#~}.  Then, by LagrangeoJnterpolation and some minor 
calculations 

I-l~(z) : 

which implies the lemma. 

K=l 

k=l  j=_, j~i t¢=l  

II 

Note that the left hand side of(15) is the sum of the related new approximations of 
Durand-Kerner's method. Note also that (16) is, in general, not the sum of the related 
new approximations (14) of method (4). 

4. Higher-order-like convergence of the means in DnrandoKerner's method. 

Using the results of the two previous sections, the QLMC property of Durand- 
Kerner's method (2) is proved and refined in this section. 

For the polynomial (1) let method (2) generate approximations (z] v) . . . . .  z~, v)) for 
v = 1, 2, 3, . . . .  Therefore, assume that for any v, (z] ~) . . . . .  z~ ~)) are distinct. Finally, 

assume that 

lim (z]V),..., z~ '~) = (~1,- ~., (1,~ ~., (m,. o., ~,~)- (17) 

gI #m 

To describe the quadratic-like convergence of the means, identify the following 
vectors which have distinct indices 

I.Z"l,1, ~1 .2 ,  " , ~ l , . u l ,  z"2,1' 'Z 'm,p.J:= ( Z(v)' 7(v)] 

and define the means of all approximants of the zero (i in step v 
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(t9) X ~ : =  (1/#,) ~ z (.~.~ LJ 
j=l  

for any i = 1 . . . . .  m and v = L 2, 3 , . . . .  
The  following theorem states that, in the method  of Durand-Kerner ,  the order  of 

the error  of a certain mean  in step v + 1 is greater than twice the order  of the errors of 
the approximants  in step v. 

THEOREM 2. 

(~-__~ • max  6 ) ; i = 1 . . . . .  m;v ~ 
j = l  . . . . .  m , j ¢ i  

where 

(20) 6~) := max %k 
k = 1 , . . . , ~ j  

PROOF. Let the approximat ions  (z(l~),..., zl~ ~) be generated by Durand-Kerner ' s  
method.  Fix the i terat ion index v and consider Theorem i for  the polynomials  

,,(v) (21) pi(z) = p~)(Z) : = Z" + 'n,u~-1" zu~ -1 + • • • + ~i,0 "~) : = (Z -- Z ~)~'i,lj . . . .  "(Z -- z ~-~),,u~,. ~ 

Here, according to (18), zl, ~) is defined with the elements of (z~) . . . . .  z~)). Assume that  
v is sufficiently large so that  according to (17) we have ~)" (aijlt = 1, . . . ,m; 
j = 0 . . . .  , g~ - 1) ~ U. Since ej = 0(6~)), ej being defined in Theorem 1, we find 

6 ( v )  v)) (22) (i + ai,n-a/t~i = 0 hl " max 6~ 
j = 1 , . . . ,m , j  ¢ 1 

where a~j is a coefficient in p~ which is defined in (12) for Pl -- Pl ~). On  the other  hand, 
Lemma  1 shows that  for the fixed index v with ~ i j : =  z~.~! (cf. (9), (13)) --t~J 

#i 

(23) - a q  ~/ttl ~ ~ ~(~+~) 
j = l  

Using (23) in (22) proves the theorem. 

REMARK. Theorem 2 improves (3), i.e. the result from [4, Proposi t ion 1]. 
We conclude this section with a closer look at the Q L M C  proper ty  of  Durand-  

Kerner 's  me thod  (2) improving the results from Theorem 2 as well as [4, Proposi t ion  
1]. 

Under  the assumptions of Theorem 2 let 6 ~) denote the max-norm of the error  in 
step v given in (20), i.e. 

(24) ~ ) ' =  max ~I v~. 
i= l , .~. ,m 

The following theorem states that  the means of some clustering approximants  for 
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multiple zeros behave in t w o  steps of Durand-Kerner ' s  method  like having second 
R-order  of convergence. 

THEOREM 3. If30'+1) = O ( 6 " ) )  f o r  v ~ ~ ,  t h e n  t h e r e  h o l d s  f o r  k = 1 a n d  k = 2 

( i  - j ( ! ~ + k )  = O( (6 (~ ) )2k ) ;  i = 1 , .  , m;  v - - ,  o o .  
~ - t  " "  

PROOF. Fix i E { 1 . . . . .  m} and v sufficiently large. Then, the assertion for k = 1 is 
implied by Theorem 2. 

It is ment ioned  in [2] that  it is not  necessary to consider the approximat ing  factors 
in Grau ' s  method  in the form of a finite power  series developed at zero as above, cf. 
(6), (9). Indeed, any other  (fixed) basis can be changed to deal with coefficients (8) 
such that  Theorem 1 holds. Therefore,  we may consider the approximat ing factor 
p~) in the form of a power series developed at (i, i.e. 

W)(z)  1.,) h(~>~ I,(. ~) ~(z ~)" = ~'~,o + ~ ,~ ,~t -  - ( 3  + + - + ( z  - (~)~' 

- ( z  - ~ ( , h .  . ( z  - z ! ~ ) ~  
- -  z ' i , l ]  " " " ~ , , u l , '  

Note  that  the related coefficients b.*. of p*(z )  = (z - ( i)  u' (i.e. the coefficients in the t , J  

power series developed at (~) vanish, j e { 0 , . . . , # ~ - l } .  Therefore,  since 

t(i - z~,~l _< 5~ ~) is small, there holds 

b ~+l  - b.*. = 0((5}~+1))~"-J); j = 0 . . . .  # 1 -  1. 
i , j  ~ , J  

Using the assertion for k = 1 of the theorem for j  = #, - 1 and the last estimate (with 

K.5(~) > 5(~+1)) f o r j  < #i - 1 we obtain 

(25) h! ~+~) -- b*. = 0((3(~))2); j = 0 . . . .  #~ -- 1. 

Recall that  the polynomials  p!~) are generated by Durand-Kerner ' s  method.  The first 
applicat ion of Theorem 1 and Lemma  1 for the i terat ion step v proved (25). A second 
applicat ion of Theorem 1 for the i teration index v + 1 using (25) gives 

b(~ + 2) _ b* = O((~(~)) 4) 
i , ~  - 1 i,,u~ - 1 

and with Lemma 1 the proof  is concluded. • 

The next example illustrates the assertion of Theorem 3. 

EXAMPLE t. Consider  the polynomial  P(z )  = z ( z  - -  1)2(z + 1) 3 of degree n = 6 
z(O). 1 .7(o) ~ ( o )  which is discussed in [4]. Lett ing 1 1 :=  0. :=  1 + 0. li, :=  1.2 - 0. l / a n d  , *~ ~ 2 . t  ~ 2 , 2  

• -(% --1.2,z(3°)3:= --1.1 O.l i ,  m = 3 , # 1  1 ,#2  ~(o )  . _ _ 1 + 0 .  l i ,  a a z : = - -  = = 2 ,  # 3  = 3 ,  
z , 3 , 1  • - -  , , 

according to (18), Durand-Kerner ' s  me thod  (2) generates a sequence ~ , ,.../z(~) , z(6~)), 
v = 1, 2, 3 , . . . .  The  errors 5} v) of the approximants  defined in (20) as well as the errors 

of the means X} ~) (defined in (19)) are shown in Table 1. 
It is ment ioned generally in [1] and can be also observed numerically from 

Table 1 that  the errors 5} ~) (defined in (20)) for the multiple zeros tend linearly 
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Table 1. Example for method (2). 

The values of  [X] ~ - ~1[ are equal to ~]*), v = 1(1)5. 

71 

g?~ <S<2 ~> a~s ~ IX~ ~ - QI IX <~> - (31 

3.7673 10 - z  8.3516 10 -2  1.7921 10-  l 

2.7562 10 -3  4.0470 10 - 2  9.9629 10 . 2  

3.1126 10 -5  2.0228 10 -2  5.5576 10 -2  

6.7632 10 -8  1.0118 10 -2  3.3426 10 -2  

3 .279010 -11 5.059710 -3  2 .117410 -2  

4.4808 10-  3 1.5533 10-  2 

1.2126 10 '-~ 8.6050 10 - 4  

1.929210 -7  1.0330 10 - s  

9.0998 10 -8  7.9425 10 ' s  

5.3545 10 -9  3 .578310 -9  

towards zero. Consequently, ,~Y+ 1~ = O(bt~)), with 6 <~) defined in (24), and hence v 2 

Theorem 3 implies 

IX} ~'+2) - ~;J = 0((6~'))4); J = 2,3; v ~ oo. 

This can be confirmed by the numerical results in Table I for large v, such that, in the 
example, the "QLMC property" looks more like a"fourth-order improvement of the 
means". 

5. Third-order-like convergence of the modified means in method (4). 

This section clarifies the open problem from [4] whether a quadratic-like conver- 
gence of the means can be proved also for method (4). Using the technique of the 
previous section this question is solved: A similar result for method (4) is false but 
modified means can be defined having a third-order-like convergence. 

For the polynomial (1) let method (4) generate approximations (z]~),..., z~, ~) for 
v = 1, 2, 3 , . . . .  As in the previous section we assume that the approximants are 
distinct and convergent, i.e. assume (17). We also use the notations of (18) and 
instead of (19) we define the modified means 

y<~+l) is related with tile right hand side of (16) and, even in the present case of 
method (4), it is not the means of all approximants of step v or v + 1 for the zero (i. 

The following theorem states that, in the method (4) due to BSrsch-Supan, 
Maehly, Ehrlich, Aberth and others the order of the error of Y~<~+ 1) is greater than 
three times the order of the errors of the approximants in step v. 

T H E O R E M  4.  For any i e {1 . . . . .  m} there holds 

j =  1 , . . . ,m , j~  i 

~ "--~ 00.  
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PROOF. The proof is similar to that of Theorem 2 so we only sketch it. Fix the 
iteration index v sufficiently large. Apply Theorem 1 using the polynomials (21). 
Then, similarly as in (22) we have 

~ + a~,~_ ,/t*~ = 0(6,  ~)~" max 3,~)). 
j =  1 . . . , m , j # i  

Since Lemma 1 gives - a g  ~/#i = Y~ + 1), this concludes the proof. [] t,l~i -- 

The following example illustrates the third-order-like-convergence of the modified 
means of method (4) in Theorem 4 in comparison with the behaviour of the means. 

EXAMPLE 2. Using the data from Example 1 we applied method (4) and obtained 
a sequence of approximants for the zeros of (1). Table 2 shows the errors ~') of the 
approximants (given in (20)) as well as the ~-~J errors of the means _~ (defined in (19)) 
and, in addition, the errors of the modified means Y)~+ 1) (defined in (26)). 

From Table 2, the "third-order-improvement of the modified means" Y)~) can be 
observed whereas the means X~ ~) have minor accuracy. 

REMARK. For good approximations (18) we have Wi (~) = O(~ ~)) and therefore 
Y~+~)=X~+x)+O(6~)~). Thus. according to Theorem 4 we have only 
quadratic-like convergence of the means for method (4). 

Table 2. Examples for Method (4). The values of 
]X~ ') - ~11 and IY~ ~ = ~11 are equal to 6(1 ~. 

5.3270 10 - 4  6 .1769 10 - 2  9 ,7469  10 - 2  

2 .7287 10 - 8  1.8526 10 - 2  5 ,0364 10 2 

2 .7869 10 17 5 .9509 10 - 3  2 .5125 10 - 2  
1.3458 10 -35  1.9592 10 - 3  1.2255 10 - 2  

2 .9182  1 0 -  54 6 .5039 10 - 4  6 .0102  10 - 3  

1.2221 10 -2  3 .8746 10 - 2  

t . 3413  1 0 -  3 1.2636 1 0 -  z 
t . 4824  1 0 - 4  3 .1409 1 0 -  3 
1.6448 10 - 5  7 ,2152 10 - 4  
1 .8270 10 - 6  1.6773 10 - 4  

4 .4769 10 - 4  3 .0075 10 - 3  

9 ,1029 10 - 6  2 .9012 t 0 -  5 
3 .7013 t 0  - 8  3 .4303 10 - 7  

1,1221 10 - 1 °  2 .3707 10 - 9  
3.1421 10 -13  1.3793 10 - i t  
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6. Conclusion. 

73 

In this note the QLMC property from [4] of Durand-Kerner's method (2) was 
proved by a connection to Grau's method for simultaneous factorization of a poly- 
nomial. A similar idea can be applied to method (4) due to B6rsch-Supan, Maehly, 
Ehrlich, Alberth and others. It proves a third-order-improvement not for the means 
themselves but for some modified means (given in Theorem 4). A more detailed 
analysis of Durand-Kerner's method in the case of multiple roots suggests numeri- 
cally a "fourth-order improvement of the means". 

These properties facilitate a modification of the considered methods in the 
presence of multiple roots as given in [4]. However, in the case of multiple roots, the 
author proposes the application of the method for simultaneous factorization. The 
advantage of the preferred factoring methods [5] and [3] is that the same conver- 
gence behaviour can be expected also in the presence of clusters of zeros and not only 
in the particular case of an exact multiple zero. 
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