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Abstract.

Durand-Kerner’s method for simultaneous rootfinding of a polynomial is locally second order
convergent if all the zeros are simple. If this condition is violated numerical experiences still show linear
convergence. For this case of multiple roots, Fraigniaud [4] proves that the means of clustering
approximants for a multiple root is a better approximant for the zero and called this Quadratic-
Like-Convergence of the Means.

This note gives a new proof and a refinement of this property. The proofis based on the related Grau's
method for simulianeous factoring of a polynomial. A similar property of some coefficients of the third
order method due to Bérsch-Supan, Maehly, Ehrlich, Aberth and others is proved.
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1. Introduction.

One of the most efficient methods for simultaneous approximation of all the zeros
{iov oy of a polynomial

() PO =2"+a 2" '+ .+ ozt =~ )M =0 = G

was indicated by Weierstrass in 1891 and much later proposed independently by
Durand Kerner and others, see [8] and the related references therein. Provided
simple zeros, i.e. 1 = py = ... = y,, and m = n, Durand-Kerner’s method with the
iteration formula (in total-step mode)

H
) A= 2 W, W= PEY T @ — ),
Jj=1,j#i

i=1,...,mv=012,...,
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yields locally quadratic convergence.

As noted in [ 1], [6], numerical experiences show convergence of the method also
towards multiple zeros in the correct multiplicity but with slower convergence and
lower accuracy. P. Fraigniaud proved in [4] that in this case Durand-Kerner’s
method has the property of Quadratic-Like Convergence of the Means, i.e. for
sufficiently good initial values, for a suitable subset I < {1,...,n} of indices and
ie{l,...,m} there holds

Z_Iz(yvkl)
A3) {i — = ———=0| max |o,—2z* ) v— o0,
card [ kelt....n}
where (wq,...,0,): =, {1, L20enn.. ,(m) 1S the vector of the n zeros of

f counting multiplicities. This property, denoted as QLMC, is proved in [4]
generalizing a similar result from [7].

Using the related Grau’s method [5] this note presents a simple new proof giving
more detailed information about QLMC for Durand-Kerner’s method. Moreover,
the open problem from [4] whether a similar result holds for the method from
Borsch-Supan, Maehly, Ehrlich and Aberth is treated; see, e.g., [8] for the related
references. This method reads (in total-step mode)

@) z§v+*>:=z§v>-m‘ﬂ/[1+ x> %‘”)/(z?’—z?’)} i=1Lo.,mv=012...
j=1,j#i

and is locally cubically convergent if all the roots of P are simple. We note that the
right hand side of (4) is equal to

v P’(ZSV)) - v V)~ !

J=1,d#1

The proofis left to the reader (use Lagrange-interpolation of Pat z{, . . ., z{” to write
P in terms of W™’s, then one obtains the required expression for P'(z{)/P(z{)).

Using a related third order method for factoring a polynomial from [3], the
question of a third-order-like convergence of the means of (4) can be solved. Method
(4) does not have the analogous property, but a simple modification of it, does.

The paper is organized as follows: In Section 2, the methods for simultaneous
factoring of a polynomial from [2], [3], [5] are described. The connection to the
method (2) and (4) is given in Section 3. Using this, the QLMC property is treated for
method (2) and (4) in Section 4 and 5, repectively, illustrated by numerical examples.
Some remarks in Section 6 conclude this note.

2. Simultaneous factoring of a polynomial.

In this section some results from [5], [2] and [3] are summarized. We refer to
these papers for motivations, proofs and details. There, the methods (2) and (4) are
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generalized for simultaneous factoring of a polynomuial.
Consider a factorization of the given polynomial P,

G P(z) = pi(z) ... pr(2),

where the factors p¥, . . ., pft are pairwise relatively prime monic polynomials. In this
factorization we do not care for the n = » 7», p; zeros of P; we are only interested in
the coefficient matrix

6) (@fli=1,....mj=0,... ,4—1)eC"

defined via

) pHz) ="+ a¥, -, 2T L+ af,.

Given sufficiently good approximations

(8) (@;;li=1,....mj=0,..., 4~ 1)eC"

of the exact coefficients (6) the approximating factors py,. .., P,

) pilz) =z2" 4 a2 o=z = Gg) (2= G

are also pairwise relatively prime such that the sets of the related zeros
{Eitse- s Epytses{Cmtse s mp, ) are pairwise disjunct. Here, & y,..., &5, are
the zeros of p; counting multiplicities with arbitrarily chosen order.

To improve these approximating factors, we describe two methods theoretically
using the zeros of the approximating factors. We stress that there exist other possible
descriptions and algorithms to compute the new approximants p§, .. ., py, for Grau’s
method [5], [2], and pY, ..., p2 for the method from [3].

Forie{l,...,m} let G,(z) be the Lagrange-interpolating polynomial of

(10) P(z)/ M 2o
Jj=1,j%i

with respect to the interpolating points &; 5,...,¢; ,, and let Hi(z) be the Lagrange-
interpolating polynomial of

a P(2) / [(1 n i Gk(zypk(z)) ﬂ p;(z)]
k=1k%i =10

with respect to the interpolating points &; y,...,&;,,. Then, define the improved
approximating factors by

(12) pSi=p+G;and pfli=p,+H; i=1,...,m
The related coefficients converge locally of order two and three, respectively.

Moreover, the following is proved in [2, Theorem 4.1] and [3], respectively.

TuEOREM 1. Provided the factors from (5) are pairwise relatively prime there exists
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a neighbourhood U of (6) in C" and a positive constant K such that for any coefficient
vector (8) in U and any i€ {1,...,m} the following holds.

(a) The denominators in (10) and (11) are non-vanishing at §; 1,. .., ¢; ,, such that the
Lagrange-interpolating polynomials G; and H; exist uniquely.

{b) For the impoved approximating factors

DL G i~ 1 G
plG(Z) = Z”' + ai”“_l 'Zul + PR + ai’o

: i—1 "
Pl =z +al,_, 2 P+ ... +al

(given in (12)) there holds

max |af, —afl <K-'g max g
k=0,...,p:—1 J=1.., m,j#i

max |afy —ahl<K-g- max g

k=0,..,pi—1 J=1.,mj#i

where
gi= max l|aj; — af

denotes the max-norm error in the coefficients of the j-th factor from (8),j€{1,...,m}.

Note that for linear factors,i.e.m = nand g, =... = u, = 1, the methods reduce
to(2) and (4), respectively; (here, the change in some signs is caused by the plus sign in
pilz) =z + a;0)-

3. Connection to Method (2) and (4).

In this section one step of the above methods for simultaneous factoring will be
compared with terms of method (2) and (4). We retain the notations of the previous
section. Assume that the zeros £; ; of the approximating factors (9) are distinct and
that they are approximants of the zeros of P. Then, using these initial values, one step
of method (2) reads

(13) &= &y — Wiy
m,j:=P(§£,j)/[H H (f,; ‘fk,l)jl; i=1L...mj=1...,u,
k=1 [=

(k, l)*(l 7

and one step of method (4) takes the form

(14) fji= &ij— ;;/[1 + Z Z Wil ; — fk,t):]-

(k f}?(l J)
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LemMma 1. Foranyie{l,...,m} there holds

(15) - tm 1T Z'f

16 =% (& !

ProOF. Define the polynomials

B

Zi,k(Z) = l_[ (Z - ii,n)a

k=1,x%k

ie{l,...,m}, ke{l,...,u;}. Then, by Lagrange-interpolation and some minor
calculations

i
= Z WE,;« : Ii,x(z)
x=1

Hi(Z) B kgl ‘/Vi‘k ti'k(z}/[l * Z y f1 kT i} k]

J=1j#Fin=1

which implies the lemma. |

Note that the left hand side of (15) is the sum of the related new approximations of
Durand-Kerner’s method. Note also that (16} s, in general, not the sum of the related
new approximations (14) of method (4).

4. Higher-order-like convergence of the means in Durand-Kerner’s method.

Using the results of the two previous sections, the QLMC property of Durand-
Kerner’s method (2) is proved and refined in this section.

For the polynomial (1) let method (2) generate approximations (z{,...,z\") for
v = 1,2,3,.... Therefore, assume that for any v, (z9",...,z%) are distinct. Finally,
assume that

im (20, .,z = sl e ) (17)
vr 00 e, e R g—
231 Hm
To describe the quadratic-like convergence of the means, identify the following
vectors which have distinct indices
(18) VL2 2 Lz, Ji= (20,2,

and define the means of all approximants of the zero {; in step v
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i
(19) XM= (1m) 3, =)
j=1

foranyi=1,...,mandv =123 ...

The following theorem states that, in the method of Durand-Kerner, the order of
theerror of a certain meanin step v + 1is greater than twice the order of the errors of
the approximants in step .

THEOREM 2.

C,-—Xﬁ”*“:O(é?’- max 63”); i=1,...,mv— o
ji=1

=1,..., m,j# i

where
(20 o= max [} — ().

ProoF. Let the approximations (z,...,z!") be generated by Durand-Kerner’s
method. Fix the iteration index v and consider Theorem 1 for the polynomials

Q) p@=pP @)= +al) 2+ a =z =)z = 2D

i

Here, according to (18), z{}is defined with the elements of (z{",. . ., z{"). Assume that
v is sufficiently large so that according to (17) we have @i=1,....m
j=0,...,p4— DeU. Since ¢; = O(éff)), g; being defined in Theorem 1, we find

22 L+ af /= 0<5§”- max 5§~”’)
i=1

=1,..., m,j# 1

where af; is a coefficient in p{ which is defined in (12) for p; = p®®. On the other hand,
Lemma 1 shows that for the fixed index v with &; ;:= z{") (cf. (9), (13))

23) ~ a1 /p = Zé = XY,
Using (23) in (22) proves the theorem. ]

ReMARK. Theorem 2 improves (3), i.e. the result from [4, Proposition 1].

We conclude this section with a closer look at the QLMC property of Durand-
Kerner’s method (2) improving the results from Theorem 2 as well as [4, Proposition
1].

Under the assumptions of Theorem 2 let 6 denote the max-norm of the error in
step v given in (20), i.e.

(24) 8% := max &M,

The following theorem states that the means of some clustering approximants for
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multiple zeros behave in two steps of Durand-Kerner’s method like having second
R-order of convergence.

THEOREM 3. If 8%+ Y = O(6™) for v — oo, then there holds for k = 1 and k = 2
(= X0 = 0((6™)*);, i=1,...,mv— 0.

Proor. Fixie{l,...,m} and v sufficiently large. Then, the assertion for k = 1 is
implied by Theorem 2.

Itismentioned in [ 2] that it is not necessary to consider the approximating factors
in Grau’s method in the form of a finite power series developed at zero as above, cf.
(6), (9). Indeed, any other (fixed) basis can be changed to deal with coefficients (8)
such that Theorem 1 holds. Therefore, we may consider the approximating factor
p™ in the form of a power series developed at {;, i.e.

POE) = BE + Bz — L) o+ bz — L 2~ L)

=@z -z ... (z—z2))
Note that the related coefficients b¥; of pf(z) = (z — {;)* (i.e. the coeflicients in the
power series developed at {;) vanish, je{0,...,u; — 1}. Therefore, since
[ — 20 < 6 is small, there holds

b{;l - b:‘j} = 0((5§v+1))”i_j); J = 07* e 7,u'i - 1

Using the assertion for k = 1 of the theorem forj = y; — 1 and the last estimate (with
K-8Y = §"*Y)for j < y; — 1 we obtain
(25) b7 — b= 0™, j=0,....m— 1.

Recall that the polynomials p* are generated by Durand-Kerner’s method. The first
application of Theorem 1 and Lemma 1 for the iteration step v proved (25). A second
application of Theorem 1 for the iteration index v + 1 using (25) gives

b2 = b1 = 0(™)Y)
and with Lemma 1 the proof is concluded. ]

The next example illustrates the assertion of Theorem 3.

ExampLE 1. Consider the polynomial P(z) = z(z — 1)*(z + 1)® of degree n = 6
which is discussed in [4]. Letting 2%} := 0.1, 25} := 1 + 0.1, 24} := 1.2 — 0.li and
Q= —1 4+ 014,20 1= —1.2,28% 1= —1.1 = 0.lim =3,y = Ly, = 2,43 = 3,
according to (18), Durand-Kerner’s method (2) generates a sequence (zM,..., 2z,
v =1,2,3,.... Theerrors 6} of the approximants defined in (20) as well as the errors
of the means X{” (defined in (19)) are shown in Table 1.

It is mentioned generally in [1] and can be also observed numerically from

Table 1 that the errors 8¢ (defined in (20)) for the multiple zeros tend linearly
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Table 1. Example for method (2).
The values of | X — &,| are equal to 6, v = 1(1)5.

v 5(;) oy 5(3») X9 — {4 |X(3v) — (sl

1 3.76731072 8.35161072 1.7921 1071 4.4808 1073 1.55331072
2 2.75621073 4.04701072 9.9629 1072 1.21261074 8.60501074
3 311261075 2.02281072 555761072 1.929210°7 1.0330107%
4 6.76321078 1.01181072 3.3426 1072 9.0998 10~8 7.9425108
5 3.279010 11 5.05971073 2.11741072 5.3545107° 3.5783107°

towards zero. Consequently, 60" = 0(6™), with 6 defined in (24), and hence
Theorem 3 implies

XEH2 L] = 0@ J =23 oo,

This can be confirmed by the numerical results in Table 1 for large v, such that, in the
example, the “QLMC property” looks more like a “fourth-order improvement of the
means”.

5. Third-order-like convergence of the modified means in method (4).

This section clarifies the open problem from [4] whether a quadratic-like conver-
gence of the means can be proved also for method (4). Using the technique of the
previous section this question is solved: A similar result for method (4) is false but
modified means can be defined having a third-order-like convergence.

For the polynomial (1) let method (4) generate approximations (z,. .., z{") for
v=1,2,3,.... As in the previous section we assume that the approximants are
distinct and convergent, i.e. assume {17). We also use the notations of (18) and
instead of (19) we define the modified means

Ri . m Ui
0O Y= () 3 (“— W / [1 5 S moe - ) D
i=t

k=1{=1
k#i

Y;**1 ig related with the right hand side of (16) and, even in the present case of
method (4), it is not the means of all approximants of step v or v + 1 for the zero {;.

The following theorem states that, in the method (4) due to Borsch-Supan,
Maehly, Ehrlich, Aberth and others the order of the error of ¥** Y is greater than
three times the order of the errors of the approximants in step v.

THEOREM 4. For any ie{l,...,m} there holds

¢ — Y}”“:O(é‘i”z- max (55“)); v — 0.

j=1,..mj#i
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Proor. The proof is similar to that of Theorem 2 so we only sketch it. Fix the
iteration index v sufficiently large. Apply Theorem 1 using the polynomials (21).
Then, similarly as in (22) we have

max

it afly o/ = 0(«%")2' 5?))'
=1, mj#i
Since Lemma 1 gives —af, _,/p; = Y,**"), this concludes the proof. | ]

The following example illustrates the third-order-like-convergence of the modified
means of method (4) in Theorem 4 in comparison with the behaviour of the means.

ExampLE 2. Using the data from Example 1 we applied method (4) and obtained
a sequence of approximants for the zeros of (1). Table 2 shows the errors 85" of the
approximants (given in (20)) as well as the errors of the means X" (defined in (19))
and, in addition, the errors of the modified means YV (defined in (26)).

From Table 2, the “third-order-improvement of the modified means” Y™ can be
observed whereas the means X" have minor accuracy.

REMARK. For good approximations (18) we have W, = 0(5") and therefore
YOrD = X0 D 4 ("), Thus, according to Theorem 4 we have only
quadratic-like convergence of the means for method (4).

Table 2. Examples for Method (4). The values of
X — (| and |Y? = (| are equal to 6.

o) o o1
&7 24 %

-

LB B e

53270107
2.72871078
2.7869 1077
1.3458 10733
2.9182107%

6.1769 1672
1.8526 1072
595091073
1.95921073
6.503910°*

9.7469 1072
50364102
251251072
1.22551072
601021073

<

X9 — 4l

1X§ -l

Y =&l

1Yy — Gl

[V N O S

12221102
1.3413 1073
148241074
1.6448107°
1.827010~°¢

3.8746 1072
1.26361077
3.1409 107°
7.21521074
L6773107%

4.4769107*
9.1029 109
370131078
1122110710
3.1421 10743

3.0075107%
2.9012107°
3.43031077
2.3707107°
1.3753 10" 11
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6. Conclusion.

In this note the QLMC property from [4] of Durand-Kerner’s method (2) was
proved by a connection to Grau’s method for simultaneous factorization of a poly-
nomial. A similar idea can be applied to method (4) due to Borsch-Supan, Maehly,
Ehrlich, Alberth and others. It proves a third-order-improvement not for the means
themselves but for some modified means (given in Theorem 4). A more detailed
analysis of Durand-Kerner’s method in the case of multiple roots suggests numeri-
cally a “fourth-order improvement of the means”.

These properties facilitate a modification of the considered methods in the
presence of multiple roots as given in [4]. However, in the case of multiple roots, the
author proposes the application of the method for simultaneous factorization. The
advantage of the preferred factoring methods [5] and [3] is that the same conver-
gence behaviour can be expected also in the presence of clusters of zeros and not only
in the particular case of an exact multiple zero.
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