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Summary. Using the argument principle higher order methods for simultaneous
computation of all zeros of generalized polynomials (like algebraic, trigonometric
and exponential polynomials or exponential sums) are derived. The methods can
also be derived following the continuation principle from [3]. Thereby, the unified
approach of [7] is enlarged to arbitrary order N. The local convergence as well as
a-priori and a-posteriori error estimates for these methods are treated on a general
level. Numerical examples are included.
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1. Introduction

Let f be holomorphic in an open set D of the complex plane € having exactly
n simple zeros &y, ..., ¢&,. For simultaneous computation of these zeros, let
Xy,...,X,€D be given simple approximants, sufficiently close to the zeros
of f.

Following the continuation process from [3], assume that there exists a
holomorphic function Q: D — € having exactly the simple zeros xq, ..., x,
in D. In the particular cases of algebraic, trigonometric and exponential poly-
nomials Q is easily obtained explicitly. In general, @ can be defined as the
remainder of the interpolation of f using a n-dimensional Chebyshev space U
and the knodes x;, ..., x,.

Provided the function Q is known, for N = 2, one step of our method (My), as

derived in Sect. 2, reads (xq, ..., X,) (X, ..., X,), where
o - (= ) @) -0\ .
()  (My): x:=x ; R x1< 00 ) je{l,...,n}.
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70 C. Carstensen and M. Reinders

For instance, one step of method (M,), (M), (M,) explicitly reads

My): X;=x;—fo

(Ms): %= x; — 2o + fofy — f§42

(My): %= x; = 3fo + 3ofs —fof + 3f8f1q2 — f3f> — 3f3q. + f345 — 2f343 ,

respectively, where, suppressing the index je {1, ..., n},

k) oWy
=ty T o)

fork=0,1,2,...and j=1,..., n. We mention that the higher order methods
(M y) can be easily obtained by formal algebraic computations with power series of
fand Q.

In Sect. 3, it is proved that (My) is locally convergent with Q-order N.
Moreover, in each component, the convergence is superlinear.

It will be shown in Sect. 4 that (M) is method (M) from [7]. Moreover, (My) is
a natural generalization of the continuation process in [3] of order N which was
firstly considered for algebraic polynomials in [5]. For n = 1, the so-called Euler-
methods are obtained.

In Sect. 5, a-priori and a-posteriori error estimates are derived based on
Rouché’s theorem following [4]. Finally, Sect. 6 presents some illustrating
numerical examples.

>

2. Lagrangian interpolation and method (My)

Recall that fe H(D), i.e. f is holomorphic in an open set D of the complex plane C,
and f has the simple zeros &, .. ., &,. Let x,, . .., x, € D be given approximants,
sufficiently close to the zeros of f. In particular, we assume that x, ..., x, are
pairwise distinct.

In addition let U < H(D) be a n-dimensional complex Chebyshev-space. Then,
there exists a unique interpolant p:= [U, x]pfe U such that the remainder

@ = [U,x]rf:=f— [U, x]pfe H(D)

vanishes in x4, ..., x,. Hence Q(x):= r satisfies the assumptions of Sect. 1. The
restriction to a complex Chebyshev-space is only for convenience of notation and
can be relaxed; cf. Remark (iii) below.

Of course, choosing any base by, ..., b, of U, [U, x]pf can be computed
solving a certain linear equation, i.e.

ftx1)
[U,x1pf= (b1, ..., by)-(b(x)521 )™ )
S(xa)

Frequently, we take the so-called dual basisd, := dy(x), . . . , d,:= d,(x), depending
onx=(xy,...,x,) with

dk(xj)=5j,,‘ j,ke{l,...,n},



Simuitaneous rootfinding of generalized polynomials 7

where J;, = 1,0if j = k, j # k, respectively, is Kronecker’s 6. Consequently,

3 [U.x1pf= 3 f(x)-dy(x).
yv=1

It is not hard to see that

d;(x) /bx
N el (2178 S SOSS IR I §
dy(x) \b,.
Thus, d,(x), . . . , d.(x) is analytic in x, provided the components x, ..., x, €D of

x are pairwise distinct.
To derive method (My), it is essential to assume that there exist nonoverlapping
discs Dy, ...,D, and By, ..., B,, respectively, lying compactly in D with

(&y,...,¢)eB=B;x...xB,cD;x ... xD,
such that for any x € B

[U, x1pf
LU, x1rf

Here, || - || s denotes the supremum-norm on a set S © D and it is assumed that the
denominator is nonzero on dD; v ... U dD,.

The following lemma shows that these assumptions can always be satisfied for
nonoverlapping D, . .., D,, taking B; as a sufficiently small neighbourhood of
the zero &;e D; of f.

<1.
©,0Dyw ... udD,

4 n= '

Lemma 1. Let Dy, . .., D, be open discs in D, having a positive distance from each
other and from 0D, with ;€ D; for any je {1, . . ., n}. Then, there exist open discs
By € Dy, ..., B, € D,satisfying (4). Moreover, there exists a constant C > 0 such
that for any x€ B

LU, x]1pf
LU, x1rf

Proof. Since f is nonzero in D\ {4, ..., &},
my = min{{f(z)|lzedD; v ... VID,} >0.

£C- max &, — x,].
oc,0D, U ...udD, v=1,..., n

&)

Because the discs Dy, ..., D, have a positive distance from each other and
from oD,

M2:= sup{”d](z)”w,ﬁDvleDl X...X Dn,j,VE {1, PR ,n}} < O .
On the other hand, since f(£;) = 0, the mean value theorem gives
) < M3+ — xj, Mi=|flxp 0. v, -
Altogether, for z e 6Dj,'

U, <TG S 3 1) 1@] S neMye M+ max 6 —x,

v=1 v=1,..., n
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while

LU, x1rf(2)] 2 1/ = [[U,x] pf(2)| 2 my —n-M5-M;- max [{, — x,].

Choosing, e.g., By, ..., B, © D to be the discs having the centers &, . . ., &, and
the radii less than or equal to r such that

1/2:m; >r-n-M,-M;

leads to
U M, M
~[ , X1pf < n 2 3 . max &, — x,
[U’x]rf «,dD, n'MZ'M3'r v=1,..., n
<1l/r max [&, —x,| <1, xeB. O
v=1,..., n

Remarks. (i) Lemma 1 shows that #, defined in (4), tends to zero if (x,|ve
{1,...,n}) tends to (&,|ve {1, . .., n}). Therefore, it is no essential restriction to
assume that # is sufficiently small.

(i)) Due to Rouché’s theorem (see, e.g., [2]), (4) implies that D; contains one
zero of r, namely x;, as well as one zero of f,je {1,.. ., n}. Since there are only
n zeros of fin D, fand r have exactly one zero in D;, je {1, ..., n}.

(iii) For convenience of notation, Lemma 1 is formulated only in the complex
case whereas it applies for real Chebyshev systems as well. Provided fas well as
the elements of U are real valued analytic functions they may be continuated
to an open set D containing the real zeros. Choosing B,,..., B, as real
intervals, the proof of Lemma ! remains true. Note that in this case x € R" implies
teR",

In the sequel, this argument applies as well so that the complex case carries over
to the real one. [

The method (My) is based on the following theorem which gives a series
representation of the exact zeros. Taking the first N — 1 terms in Eq. (6) gives the
new approximant x;, cf. (1).

Theorem 1. Let the discs By, ...,B,, Dy, ...,D,, B; € Dy, satisfy (4). Then, for
anyx€ B

a (— ' r LU, x1pf@)Y
© R ([U, )
Proof. The residue theorem (see, e.g., [2]), applied to fand r := [U, x]rf, proves
_ 1 @)
7 Sl e -
@®) xX; = —1—_ (27D

Tl 4p, r(z)
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Therefore and by partial integration,

Lt (B _re
& = X ‘21:13{,12( @) r(z))dz

1 12
2 g log r(z dz

1 p(z)
- %gxlog(l +Fz—)>dz .

Note that (4) guarantees that the principal value of log(1 + p/r) is holomorphic in
a neighbourhood of dD; and can be developed into a power series, whence

e U (Y,

2nl oD, v=1 v r(z)
(- 1)v 1 p(z)
§ v omig, ( (z))

Due to the residue theorem (see, e.g., [2]), this implies (6). O

Il

3. Convergence

It is proved that method (M) is locally well-defined and of convergence order N.
Moreover, method (M y) is Q-superlinearly convergent in each component, see (10).
We remark that if D is a disc then rad D and mid D denote the radius and
midpoint of D, respectively.
Theorem 2. Under the assumptions of Lemma 1, let mid B; = &; and
N
9) rad D;- N(l— )<radB,-, je{l,...,n}.

Then, method (My) is feasible, i.e. for any x € B, X as defined in (1) also lies in B.
Method (My) is locally convergent having Q-order N. In addition, there exists
a constant C > 0 such that for any x€ B

(10) lﬁj—fjlécN'lfj“le’ max ]fv“xleﬂl, j=1...,n.

Proof. From (1), Theorem 1 and the related considerations,
] (p_(z_)) dz
a0, \T(2)

. ot radD n¥
(11) ‘éj—‘le _S_v;N <radD1N(1~ )<radBj,

1Gi—=% < Y 5—

To verify £ € B, note that, using (4),
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by (9). To prove (10), let

a=f(x;)-d;j(x), h:=[Ux]pf—a
and note that h/r is holomorphic in D;, while, in general, a/r has a pole in x;. Since

p=a+h,
p@Y . . (e k@)
g <ﬂ> =1 (ﬂ * r<z>> &

3 () | @@/r@) - (hiz)/r(z)*de

u=0 D,

#

Due to the residue theorem, in the last sum, the summand for y = 0 is zero.

Therefore,
p(z)
a'£> : < r(2) )

As in the proof of Lemma 1 we estimate

la/rllw oo, £ Ci-1&; — xjl

v

< Z ) [ la@/r@)1* - |h(@)/r(2)]"™* | dz| .

oD,

”h/r” ,8D, é CZ' max liv - xv' s
where C,, C, depend only on D,,...,D,, B;,...,B,, fand U. This proves
(10. O

Remark. If fe H(D) has n distinct zeros in D and U € H(D) is a n-dimensional
complex Chebyshev-space the assumptions of Lemma 1 can always be satisfied.
Thus, by Theorem 2, there exist neighbourhoods By, . . ., B, of the zeros of f such
that choosing initial values in B, x . .. x B, method (M) generates a sequence of
approximants converging towards (¢, . . ., £,) having the order of convergence at
least N, i.e. method (My) is locally convergent of order N.

4. Continuation process, unified method, Euler methods

This section discusses three relations to other methods. Firstly, the continuation
method of [3] is sketched which gives method (M) using the Taylor method of
N-th order for solving a certain initial value problem.

Secondly, it is proved that (M,) is method (M) in the unified approach of [7]
which is Newton-Raphson’s method for a certain system of nonlinear equations.

Finally, the case n = 1, U being the space of constant functions, is con-
sidered which gives the sometimes called Euler-methods; in particular, (M,) is
Newton-Raphson’s method for a single equation.

4.1 Continuation process

Following [3], let fand Q as in the first section and consider the homotopy
(12) H:[0,1]xD - C, t2)—~ 1 —0-0@) +t-f(2).
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By assumption (4), using p = f — Q, r = Q, there holds

H(t, 2) — Q(2)] = lt]-1f(2) — Q)] < 1Q()}

for all z e 6D;, t € [0, 1]. Hence, by Rouché’s theorem, for any ¢ € [0, 1] there exists
one and only one zero z(t) of H(t, -} in D;. Then, the identity ¢t — H(z, z;(t)) = 0
can be differentiated leading to the system of n ordinary differential equations

(13) Z.j(t) _ Q(Zj(t)) _f(zj(t)) , ] - 1’ C.n.

(=0 Q') + 1-f(2,(0)
Since z;(0) = x; is the given initial value and z;{1) = &; has to be computed, any
method for the numerical treatment of ordinary differential equations may be
applied to obtain better approximants for the zeros of f.
By application of Taylor-approximants of (N — 1)-th order x{© is obtained
from

N1 o)
&=z() ~xO=z,0) + ¥ %(0), i=1,...,n.
v=1 .

As seen in the following lemma, this yields method (My).
Lemma 2. x{© =%,,j=1,...,n

Proof. By (13) and the residue theorem,
1 02 —f(2)

éj(t) = T dZ >

27 5p, (1 — 0)-Q(2) + t-f(2)

since the denominator has exactly the zero z = z;(t) in D;. Therefore, for any v = 1,

(=)'tv-1 | ( f2)—0(@) )”dz
2mi a, \(1 —0)-0(2) +t-f(2) ’

For t = 0, z;(0) = x;, the residue theorem gives

5000 _ (=1 o f_—g)v
y! Ty

zZ=Xjy

() =

which proves the lemma (cf. (1)). O

In [3], [9] and [7] only (M) is considered and convergence is proved only for
particular cases. We stress that Theorem 2 gives convergence for all methods
simultaneously and also for all methods of higher order N.

4.2 Unified approach

The unified approach [7] is Newton-Raphson’s method applied to

F:Bix...xBy> Uz Y f(z)d),

v=1
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where dy, . . ., d, belongs to the dual base as introduced in Sect. 2. Assuming that
the inverse exists, one step of Newton-Raphson’s method reads

xWR = x — DF(x)" ' [F(x)]

and yields method (M) from [7].
As seen in the following lemma, (M) is [7, method (M)].

Lemma 3. If N = 2 then x®® = 3.

Proof. Differentiation of d,(x)(x;) = §, ; with respect to x,, v, g, je {1,...,n},
gives

a r
(14) (a— dv(x))(xj) = — 0, dy(x) (x;) .

xl‘

The new approximant x™® = x + y in Newton-Raphson’s method is defined by
15) DF(x)[y] + F(x) =0e U
with the (Frechét-) derivative DF(x)[y] of F at x evaluated at y. Using (14) and

F(x)[y]l = Z yif' (x;)d;(x)

+ i i i yjf(xv)( x)) (Xu)d (X)E U.

j=1v=1pu=1

(15) is equivalent to
0=fx)+f (x)p— X )y d@)(x;) je{l,....n}.
v=1

Because of (2) and (3) this is
0 =f0x;) + y;-Q'(x)
concluding the proof. O

The lemma shows that the unified approach [7] is included in the considera-
tions of this note and that (M) converges quadratically. Moreover, by Theorem 2,
we proved superconvergence in each component.

We finally remark that our notation of method (M) is slightly different from the
original notation in [7]. There, some finite dimensional function space ¥, including
f, is endowed with some normalizing linear functional /e V". In this note, we
consider U:= Ker L

4.3 Relation to the Euler-method

If n = 1 and U is the space of constant functions on D, then [U, x] pf(2) = f(x,)
and hence

- 1)v ENRY
(16) = ; (M)
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On the other hand, [U, x]rf(z) = f(z) — f(x,) has a simple zero (see Remark (ii) in
Sect. 2) at z = x;. Therefore, f'(x,) + 0 and there exists an open disc ¥ withx, e V'
such that f is injective in a neighbourhood of V. For the inverse function
g:f (V) — V we have the integral formula

1 zf'g)
2ni avf(z) —-w

which follows directly from the residue theorem. Then, the Euler-method of order N is
the Taylor development of the root (cf. [10, Sect. 14]) and reads x; — x'¥, where

(17) g(w) = dz ,

N-1 (v)

(19) ALY
v=0

Lemma 4. If n = 1 then x® = %,.

Proof. Differentiating (17) v times with respect to w gives for v = 1

oy _ V20
) = am  FE - w
_ =1 1

= L TH—w

By w = f(x,) and application of the residue theorem, we prove that the right hand
sides of (16) and (18) are equal. O

5. Error estimates

In this section, we prove a-posteriori and a-priori error estimates giving upper
bounds both for x; — ¢;and X; — &;,je {1, . .. ,n},interms of the data x;, ..., x,
and f{x,;), ..., f(x,), using the technique from [4].

Let D; be a disc with center x; and radius R; lying compactly in D such that

D; contams exactly one zero, namely xj, of Q =[U,x]rf,je{l,...,n}. Define
meromorphlc functions I, . .., I, on D by
d;(x)(2)
19 l(z)= —L1———, L,...,n}.
1) = o €
Each [; is holomorphic in a neighbourhood of D,y ... uD,save for a simple

pole at z = x;. Thus, there exists a constant m; > 0 such that

20) (2 = forzeD;u ... uD,andje{l,...,n}.

[ _xJ]

Fixje{l,...,n} and let

32
Il

;o= min{|x; — x| [k #j},
@:Tﬁﬂmu
_ i mi| f (xi)l

k=1 1% — xk\
k+j
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If \/3; + /o; < 1 then define
) 2N-1
RY = g;- /5, (/% ++/2) = (N=23,...).
N( = (/3; + /)

Theorem 3. If \/5—, + \/;j < 1 and R; < R; then the disc with center x; and radius
R; contains exactly one zero ¢;.
If, in addition,

€ ,\/5‘
NN
then the disc with center X;, which is the new approximant after one step of method

M) using the initial values x, and radius R\™ contains exactly one zero ¢&;.
—J y J

Proof. For ze D;, 0 < |z — x;] =r < R; £ ¢, there holds

U, x]pf (@)

n

RSB kg (2) £ ()
S5+ 21 l—ka],——lf(xk)l
k#j
<UL Ty,

r 1 —r/g;
If (p(r) < | then Rouché’s theorem states that fand Q have the same number of

zeros in the disc with center x; and radius r. To ensure ¢(r) < 1, consider the

condition \/—5 + \/a_ < 1 which is equivalent to (1 + &; — ¢;)> — 46; > 0. There-
fore, some computations show that ¢(r) < 1 holds for re(r, 7), where

=8’ (A +8,—0,—JA+0,— 0, —43,),

Fim (46— o+ T+ 8, 0)f —45).

If we let r tend to r, we get the first assertion.
Using the inequality (11) in the proof of Theorem 2 with the disc D; having the
center x; and the radius r and with n £ ¢(r) there follows, analogously,

A< r(o(r)"
HENIC-eM)

Some calculations show that the convex function ¢ has in the interval (r,7)
a minimum value of

(fff>—(ﬁ+\/‘)2<1—<p o(F) .

Substituting this value in (21) concludes the proof. O

@ 1&; —
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Remarks. (i) For algebraic polynomials Theorem 3 is due to Borsch-Supan [4]. In
this case m; = 1 and numerical examples show good estimation of the exact errors.

{ii) In general, the estimation of m; may be labourous. An example for trigo-
nometric polynomials is given below in Lemma 5 where m; may become large so
that the estimates of Theorem 3 may be very large.

6. Applications, examples

This section discusses the particular cases of algebraic, trigonometric, exponential
polynomials and exponential sums in Subsects. 1,2, 3 and 4, respectively. Some
numerical examples are presented.

6.1 Algebraic polynomials

Let f be a monic algebraic polynomial of degree n having the simple zeros
E1,...,& €D = C. Let U denote the space of algebraic polynomials of degree less
than or equal to n — 1. Then, the remainder of Lagrange interpolation w.r.t U and
the nodes x, ..., x,, which approximate &, ..., &,, is well-known, namely

Q@) =[u,x]rf=(z—x1)...-(z—x,).

With the abbreviation W;:= f(x;)/[];_ 1i4+;(X; — xi), one step of method (M),
(M3), (M4) reads (using the expressions of Sect. 1 and some additional
computations)

(Mz): Jej'= x_i— WJ
n Wk
(M):)€=x—W<1— )
3 ’ ! ! k:lz;c*jxi_xk
n W, n W 2
(My): x;=x;— W, <1— y k +< Y u ))
k= Lk+jXj— Xk k=tk+j % — Xk
d W,
+w? ¥ u

k=Tk+s (X — xe)?

Note that the required derivatives of f are computed using the interpolation
representation

f(z)=Q(z)-{1+i Wi }

=127 Xj

We mention that (M,) is Durand-Kerner’s method, [1, 5-8, 11] while (M3) is
closely related to the third order method of Mahley, Ehrlich, Aberth [1, 11], i.e.
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and (M) is related to the Nourein type fourth order method [11]
W

i

Xj =X f P 7% .
T

k=Tk+; X — Wj— X
These relations are seen by developing the last two methods (using the geometric
series) and neglecting higher order terms in W:= max,-, »1 Wil (of order 3,
4,...and 4,5, ..., respectively).

We finally notice that the slightly different methods [7, (4.2)] and [7, (4.3)] can
be treated analogously.

.....

6.2 Trigonometric polynomials

Let y, &4, . .., ¢ e[ —m, 4+ 1) be pairwise distinct and let the real trigonometric
polynomial

(22) f(t)=by + En: (a;-sin(jt) + b;-cos(jt))

j=1

of degree n, denoted by feZ, have the simple zeros £,,...,¢&,,. Let
Xy, ...,X,€[—m, +7x) be distinct approximants for the zeros &, ..., &,, not
equal to y. Define

23) -dj(t):=%-sin<%l>- f] sin(t;xk>,

k=1k+j
2n
. Xj—y . (xj - xk>
¢; = sin . sin .
! < 2 ) k =I11 +j 2
Then, some (omitted) calculations show that dy, . . ., d,, is a dual basis, dual with

respect to x, of
U:= {he T,lh(y) =0} .

=[U,x}rf==f—[U,x]pf

2n
- Y X;
H sm( 5 )

1 2n . . L
(24) 00 =11 s‘“t_zﬁ’ e
j=1

(For a proof notice that h:== r — Q € 7, has 2n + 1 zeros, namely y, Xy, . . . , X25.
Since 7, is a Chebyshev-space over [ —n, + =) this implies h =0, ie. @ =r))

Therefore, method (My) is convergent of order N by Theorem 2. Using the
formulas of the first section and

Jo= 2n X f();‘)_ X
H sin <JT")

k=lk+j

Consequently,

equals Q(t) as defined by
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2¢c- 'x,-
f11= on f(x‘)_x
I1 sin(—’———i>
k=1lk+j 2
c-f"(x)
f2:= 2n . — x
11 sin(—’——5>
k=1k+j 2
2n X; — Xg
qg2=1/2 Y cot|~
k=Tk+j 2
2n 2n xj_xk xj“‘xl
g;=1/411/2- Z Z cot . cot —(n—1/3)
k=lLksgl=tksi+j 2 2

the methods (M, ), (M) and (M) are explicitly determined. Method (M) is known
from [3] where the second order of convergence is proved explicitly. We stress that
our general results give a convergence proof of higher order methods as well.

25" with &, = — 1.7,&, =03, &, = 0.5, &, = L.7.

As in 3, (3.2)] we consider the initial values x{¥ = — 1.5, x{ =0, x{® = 0.7,
x@ =14, y=1. Table 1 gives the absolute errors of the approximants
xM, ..., x¥ in step v using method (M,), {M3) and (M) respectively. (As in the
following examples, the numerical calculations were done on a personal computer
with 18 decimal digits.) [

Example. Let f(t) = [ ];_, sin

We continue with an application of the error estimates of the previous section.
Since the dual basis d4, . . . , d, as well as the remainder @ is given in (23) and (24),
we focus on the estimation of m; in (20). D; is the disc with center x; and radius R;,
j€{l,...,n}. Then, I; as defined in (19) reads

sin —
2

c
WA=y
! sin( 3 ’)

Recall that y, x, ..., x;,€ [ —7, m) are distinct such that for sufficiently small
radii Ry, ..., Ry,

1
g:=m—3  max (Ix; = xkl + Ry)
is positive.
Lemma 5. If ¢ > 0 then (20) holds with m; given by

=2—Iﬂu max cosh(R,/2).
fcjl-sin(e) y=y,..., 2n

(25)

J
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Table 1. Examples for trigonometric polynomials

v Method (M,)

[x§ — &4l %8 ~ &1 [x§ —~ &| [x§ — &4l
1 9.6210°2 1.6810°! 1.2010°! 1.53107!
2 2381072 6.311072 5201072 4101072
3 1.8310°3 1.311072 1231072 3311073
4 1.8910°°% 8.23107% 8111074 3341073
5 8.5910°° 37010°% 3.6910°° 1.36 1078
6 1.66 10~ 14 7.59 101! 7.59 101! 228 10714
7 0 2.7110°2° 54210720 0

~

Method (M;)

X = &l (%8 — &l 1% — &) [x§ — &l
1 4771072 1.0310°! 8.101072 8.06 1072
2 1.021073 1.2110°2 1.171072 1.921073
3 7821078 7.5110°3% 7511073 1.34 1077
4 1.21 1076 23710711 2371071 1.56 10718
5 0 0 0 0
v Method (M,)

[x§ = &1l (%8 — &, (%9 — &l [x§ — &l
1 2421072 6.87 1072 5891072 4321072
2 1.811075 2341073 2331073 3481075
3 3.74 10714 1961078 1.96 108 494 10714
4 0 0 0 0

Proof. Using sin|z| £ [sin z| £ cosh Im(z), z € C, we firstly achieve for z € D,

. fz—y
sm( > )

By definition of ¢, we have for ze D,
lz —x1/2 S X = xl/2+ Ri/25m—¢

. Z— Xj
sm< > )_

Altogether, (20) holds with m; given in (25). [

S cosh(Ry/2), ke{l,...,n}.

and therefore
sing |z — x;]
m—e 2

v

6.3 Exponential polynomials

Let f be a real exponential polynomial of degree n, i.e. K = R and

fO= Y ay-expkt), t,a_,,...,a,,eR.

k=-n
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Let f have the m = 2n simple real zeros &; < &, < ... < £,.. As mentioned in [3]
and [7] the exponential polynomial f can also be written in the form (22) where sin
and cos has to be replaced by sink and cosh, respectively.

Thus we may repeat the previous subsection replacing all trigonometric func-
tions by their corresponding hyperbolic functions (up to some signs in second
derivatives) to apply method (My).

Thus, the convergence order for method (M) is N, which is proved explicitly in
[9] for N =2, 3.

6.4 Exponential sums

Let 4, ..., 4,4+ be real and distinct and consider an exponential sum fe ¥,

V= {nil bj-exp(4;-t)|b; e IR} R

i=1

having n simple and real zeros &, . . ., &,. Choosing some n-dimensional subspace
U method (M) (as defined above) is locally convergent of order N. Method (M,) is
due to Frommer {7] where the following example is considered.

Table 2. Examples for exponential sums

v Method (M)

[x§ — &l %8 — &1 [x§ — & [x¥ — &l
1 8.63107* 9.34107! 8211071 , 348107!
2 5991071 7701071 4211071 6271073
3 2641071 4251071 1391072 7.89 107¢
4 5141072 7.121072 1521072 1481073
5 1.76 1073 2141073 23910°° 2.8910°8
6 1.81107¢ 223107 9.9510°° 19510712
7 19210712 23510712 4.48 10713 434107
8 31710717 52010718 12010718 2171071°

Method (M3)

<

P~ &4l [x§ — &2l %8~ &3l [x§ — &l
1 748 107! 8.71107! 6.59 107! 1.12107*
2 2621071 42710°! 4071073 1561073
3 1.341072 1521072 5331073 5231077
4 14310°¢ 14510°¢ 4781071 1.1210713
5 32510717 6.83 1018 1.16 10718 3.251071°
v Method (M4)

[x§ — &4l 1x§ — &2l 1x§ ~ &l 1x@ — &al
1 6.52107! 8101071 5151071 1121072
2 9.79 102 1.54 107! 1.94 1072 2.8110°°
3 9.67 10 % 9.3410°° 3.8410°¢ 1.76 10712
4 7.81 1077 52910717 13810718 0
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Example. Let n=4, J;, = —2, 1, =—05, A3 =0, 44, =0.7 and A5 =2. The
coefficients of f were determined such that bs = 1 and f has the zeros &; = — 4,
= —2,¢3=0and & =2. Let

5
U= { b;-exp(4;-t)|b;e R, bs =0},

j=1
With the initial values x{? = — 5, x = — 1, x'¥ = 1, x{® = 3 Table 2 shows the
absolute errors of method (My) for N = 2, 3, 4. From this, the convergence order
N =2, 3, 4 of method (My) can be observed. Note that the methods converge
although the initial approximations were chosen far from the zeros of f to illustrate
the wide domain of convergence of method (My). [

Remark. Note that, in contrast to the previous examples, the remainder [U, x] rf
is not known a-priori. It is known from {12] that a factorization of f as in the
previous examples is not always possible. Consequently, the interpolant [U, x] pf
has to be determined numerically by solving a linear system of equations of
dimension n. This requires O(n*) operations while the computation of an addi-
tional derivative of f and Q at any approximant x,, ..., x, only needs O(n?)
arithmetic operations.

Since the application of method (My) for higher order N = 2,3,4, . . . causes
only solving one linear system of equations in each step this dominates the
computational costs O(n*) + NO(n?) for one step of (My). Thus, provided N < n,
method (My) becomes more efficient for increasing N = 2,3,4, ... such that
higher order methods of the considered class (My) become of interest.

References

1. Alefeld G., Harzberger J. (1974) On the convergence speed of some algorithms for the
simultaneous approximation of the polynomial roots. SIAM J. Numer. Anal. 11, 237-243
. Alfors, L.V. (1953). Complex Analysis. McGraw-Hill, New York
. Angelova, E., Semerdzhiev, K. (1982): Methods for the simultaneous approximate derivation
of the roots of algebraic, trigonometric and exponential equations. U.S.S.R. Comput. Math,
Math. Phys. 22, 226-232
4. Borsch-Supan W. (1970): Residuenabschétzung fiir Polynom—Nullstellen mittels Lagrange-
Interpolation. Numer. Math. 14, 287-296
5. Docev, K. (1962): An alternative method of Newton for simultaneous calculation of ail the
roots of a given algebraic equation [Bulgarian]. Phys. Math. J. Bulg. Acad. Sci. 5, 136-139
6. Durand E. (1960): Solution Numérique des Equations Algébrique, tom 1. Masson, Paris
7. Frommer, A. (1988): A unified approach to methods for the simultaneous computation of all
zeros of generalized polynomials. Numer. Math. 54, 105-116
8 Kerner LO. (1966) Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von
Polynomen. Numer. Math. 8, 290-294
9. Makrelov, I, Semerdzhiev, K. (1985): On the convergence of two methods for the simultan-
eous finding of all roots of exponential equations. IMA J. Numer. Anal. 5, 191-200
10. Ostrowski, A.M. (1960): Solution of equations and systems of equations. Academic Press,
New York
11, Petkovi¢, M.S. (1989): Iterative Methods for Simultaneous Inclusion of Polynomial Zeros.
Lecture Note 1387. Springer, Berlin Heidelberg New York
12. Ritt, J.F. (1927): A factorization theory for functions ZL , @€~ Trans. Amer. Math. Soc. 29,
584-596

w N



