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Summary. Using the argument principle higher order methods for simultaneous 
computation of all zeros of generalized polynomials (like algebraic, trigonometric 
and exponential polynomials or exponential sums) are derived. The methods can 
also be derived following the continuation principle from [3]. Thereby, the unified 
approach of I-7] is enlarged to arbitrary order N. The local convergence as well as 
a-priori and a-posteriori error estimates for these methods are treated on a general 
level. Numerical examples are included 
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1. Introduction 

Let f be hotomorphic in an open set D of the complex plane IE having exactly 
n simple zeros ~1 . . . . .  r For simultaneous computation of these zeros, let 
x l , . . . ,  x, s D be given simple approximants, sufficiently close to the zeros 
o f f .  

Following the continuation process from [3], assume that there exists a 
holomorphic function Q: D--* IE having exactly the simple zeros x~ . . . . .  x, 
in D. In the particular cases of algebraic, trigonometric and exponential poly- 
nomials Q is easily obtained explicitly. In general, Q can be defined as the 
remainder of the interpolation of f using a n-dimensional Chebyshev space U 
and the knodes x~ . . . . .  x.. 

Provided the function Q is known, for N > 2, one step of our method (Mr), as 
derived in Sect. 2, reads (xl, �9 �9 �9 x,) ~-, (xl . . . . .  )2,), where 

(1) (MN): ~ j : = x i +  ~ - - . R e s  j E { I  . . . . .  n}.  
v = l  ~ z = x j  
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For  instance, one step of method (M2), (M3), (M4) explicitly reads 

(M2): ~):--- x j - f o  

(M3): 2i:= xy - 2fo + fo f l  - f 2 q 2  

(M4): ~i:= x~ - 3fo + 3fofl - f o f ~  + 3 f2 f lqz  - f g f 2  - 3fgq2 + f3q3 - 2 f3q  2 , 

respectively, where, suppressing the index j �9 { 1 . . . . .  n}, 

fk := f(k)(xj) Q(R)(xj) 
k!Q'(xy)' q*:= k!Q'(xj) 

for k = 0, 1, 2 . . . .  and j = 1 . . . . .  n. We mention that the higher order methods 
(Mu) can be easily obtained by formal algebraic computations with power series of 
f a n d  Q. 

In Sect. 3, it is proved that (Mr) is locally convergent with Q-order N. 
Moreover, in each component, the convergence is superlinear. 

It will be shown in Sect. 4 that (M2) is method (M) from [7]. Moreover, (Mr) is 
a natural generalization of the continuation process in [3] of order N which was 
firstly considered for algebraic polynomials in [-5]. For n = 1, the so-called Euler- 
methods are obtained. 

In Sect. 5, a-priori and a-posteriori error estimates are derived based on 
Rouch6's theorem following [-4]. Finally, Sect. 6 presents some illustrating 
numerical examples. 

2. Lagrangian interpolation and method (MN) 

Recall that f � 9  H(D), i .e.f  is holomorphic in an open set D of the complex plane 117, 
a n d f  has the simple zeros ~1 . . . . .  ~,. Let xl  . . . . .  x, �9 D be given approximants, 
sufficiently close to the zeros o f f  In particular, we assume that Xl . . . . .  x, are 
pairwise distinct. 

In addition let U c H(D) be a n-dimensional complex Chebyshev-space. Then, 
there exists a unique interpolant p:= l,U, x ] p f � 9  U such that the remainder 

(2) r := [U, x] r f:= f - [U, x] p f  �9 H(D) 

vanishes in xl . . . . .  x,. Hence Q(x):= r satisfies the assumptions of Sect. 1. The 
restriction to a complex Chebyshev-space is only for convenience of notation and 
can be relaxed; cf. Remark (iii) below. 

Of course, choosing any base bl . . . .  , b, of U, I-U, x ] p f  can be computed 
solving a certain linear equation, i.e. 

[ U , x ] p f = ( b ~ , . .  bn)'(bj(Xk)lk= 1 . . . . .  -1 ( f (xx)  1 
�9 , 1 ,  ' , n )  �9 " �9 \:&)/ 

Frequently, we take the so-called dual basis dl := dl (x) ..... d. := d.(x), depending 
on x = (xl ..... x.) with 

dk(Xy) = 6y, k j, k ~ {1 . . . . .  n},  
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where 6i, k = 1, 0 i f j  = k, j # k, respectively, is Kronecker 's  6. Consequently, 

(3) [ U , x ] p f =  ~ f ( x v ) . d , ( x ) .  
v = l  

It is not hard to see that 

�9 ~ k = l  " ' ' , n )  �9 (bi(xk)lj=2:. , ,  -1 .  
d. (x) / 

Thus, dl ( x ) , . . . ,  d.(x) is analytic in x, provided the components  x l , .  � 9  x.  �9 D of  
x are pairwise distinct. 

To derive method (Mu), it is essential to assume that there exist nonoverlapping 
discs D1 . . . . .  D. and B1, �9 � 9  B,, respectively, lying compactly in D with 

( ~ I , . . . , ~ n ) � 9  x B n ~ - D l x  . . .  x O ,  

such that for any x �9 B 

[ U , x ] p f  < 1.  
(4) q :=  [ U , x ] r f  oo,oo ...... ~o. 

Here, t]" It oo,s denotes the supremum-norm on a set S _c D and it is assumed that the 
denominator  is nonzero on c3Dx u . . .  u OD,. 

The following lemma shows that these assumptions can always be satisfied for 
nonoverlapping D~ . . . . .  D,, taking Bj as a sufficiently small neighbourhood of 
the zero ~ �9 Dj of f .  

Lemma 1. Let  D1 . . . . .  Dn be open discs in D, havin9 a positive distance from each 
other and from OD, with ~j �9 D j for  any j E {1 . . . .  , n}. Then, there exist open discs 
Bx ~- D~ . . . . .  B ,  ~_ D. satisfyin9 (4)�9 Moreover, there exists a constant C > 0 such 
that for  any x ~ B 

[ U , x ] p f  <- C .  max I ~ - x ~ l -  
(5) [ U, x]  r f  o~,oo . . . . . .  oo, - ~ = 1 . . . . . .  

Proof. S i n c e f  is nonzero in D \{ r  . . . . .  3,}, 

ml := min{If(z)] lz �9 ODl w . . . u OD,} > O. 

discs D~ . . . .  , D, have a positive distance from each other and Because the 
from ~3D, 

M 2 : =  sup{[[dj(g)Hoo,onvlZEOl •  x D , , j , v � 9  {1 . . . . .  n}} < ~ . 

On  the other hand, s incef(r  = 0, the mean value theorem gives 

[f(xj)l < M3"I~j -x j l ,  M 3 : =  Ilf'llo~,n . . . . . .  n. .  

Altogether, for z �9 OD i, 

[ [ U , x ] p f ( z ) l  < ~ If(xv)l . ld~(x)(z)[ < n . M 2 . M 3 ,  max 
v = l  V=l . . . .  , n  
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IEU, x]rf(z) l  ~ I f ( z ) l -  tEU, x]pf(z) l  ~ ml - n .  M 2 . M 3 .  max [ ~ v -  x~]. 
v = l , . . . , , q  

Choosing, e.g., B1 . . . . .  B, c D to be the discs having the centers ~ . . . . .  4, and 
the radii less than or equal to r such that 

1/2.mi > r . n .  M2 " M  3 

leads to 

[ U , x ] p f  < n. M z . M 3  
= max I ~ v -  xv[ 

[U, x] r f  o~,oo, n. M2 �9 M3.  r v= 1 . . . . . .  

< 1/r max [ ~ - x v l <  1, x e B .  [] 
v = l , . . . , n  

Remarks. (i) Lemma 1 shows that ~/, defined in (4), tends to zero if (x, Iv 
{1 . . . . .  n}) tends to (~lv  ~ {1 . . . . .  n}). Therefore, it is no essential restriction to 
assume that r/is sufficiently small. 

(ii) Due to Rouch6's theorem (see, e.g., [2]), (4) implies that Dj contains one 
zero of r, namely x~, as well as one zero of f , j  ~ { 1 , . . . ,  n}. Since there are only 
n zeros of f i n  D, f a n d  r have exactly one zero in Dj, j ~  {1 . . . . .  n}. 

(iii) For convenience of notation, Lemma 1 is formulated only in the complex 
case whereas it applies for real Chebyshev systems as well. Provided f as well as 
the elements of U are real valued analytic functions they may be continuated 
to an open set D containing the real zeros. Choosing B1 . . . . .  B, as real 
intervals, the proof of Lemma 1 remains true. Note that in this case x ~ 1R" implies 
~ IR". 

In the sequel, this argument applies as well so that the complex case carries over 
to the real one. [] 

The method (MN) is based on the following theorem which gives a series 
representation of the exact zeros. Taking the first N - 1 terms in Eq. (6) gives the 
new approximant ~ ,  cf. (1). 

Theorem 1. Let the discs Ba . . . . .  B,, D1 . . . . .  D,, Bj ~ Dj, satisfy (4). Then, for 
any x ~ B 

(6) ~ j - - x ~ =  ~ (--1)v R e s ( [ ~ - P f ( z ) ' ]  ~ 
,=1 v z ~  2~-f~/" 

Proof The residue theorem (see, e.g., [2]), applied t o f a n d  r := [U, x] rf, proves 

1 f ' ( z )  
= ! z dz {7) r Y~i~, " f - ~  

1 r'(z) 
= ! z . - ~ d z .  (8) xj ~ i ~  
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Therefore and by partial integration, 

1 [ f ' ( z )  r'(z) '~ d 

1 , f ( z )  
- d z  

1 ( p(z)~dz 
- 2~i  ~!, log 1 + r(z)  / " 
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Due to the residue theorem (see, e.g., I-2]), this implies (6). 

Note  that (4) guarantees that the principal value of log(1 + p/r) is holomorphic in 
a neighbourhood of ODj and can be developed into a power series, whence 

1 oo (_l)~+,(p(z)~dz 

(-')" , 

[] 

3. Convergen ce  

It is proved that method (MN) is locally well-defined and of convergence order  N. 
Moreover,  method (MN) is Q-superlinearly convergent in each component ,  see (10). 

We remark that if D is a disc then rad D and mid D denote the radius and 
midpoint  of D, respectively. 

T h e o r e m  2. Under the assumptions of Lemma 1, let mid Bi --- Cj and 

qN 
(9) radDj  N(1 - q) < rad B~, j e  {1 . . . . .  n} . 

Then, method (MN) is feasible, i.e. for any x ~ B, ,~ as defined in (1) also lies in B. 
Method (MN) is locally convergent having Q-order N. In addition, there exists 
a constant C > 0 such that for any x ~ B 

(10) I~j-~cjl~CN.l~j-x~l. max I ~ - x , ]  N-l ,  j = l  . . . . .  n .  
v = l , . . . , n  

Proof. From (1), Theorem 1 and the related considerations, 

, ( ( lydz. 
v=N ~ j 

To verify i e B, note that, using (4), 

(11) [~j - xjl < radDj ~/v < rad Dj 
v=N v N(i- - -  t/) 

- -  < rad B~, 
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by (9). To prove (10), let 

a := f(xj),  dj(x), h := [U, x] p f -  a 

and note that h/r is holomorphic in Ds, while, in general, a/r has a pole in xs. Since 
p = a + h ,  

eoj \ r(z) J on, \ r ( z )  + r(z) J 

= i (~) ~ (a(z)/r(z)) u'(h(z)/r(z)) v-~'dz" 
la = 0 d D  1 

Due to the residue theorem, in the last sum, the summand for /~ = 0 is zero. 
Therefore, 

l !  (P(Z)~Vdz < ~ (~u) ~ [a(z)/r(z)lU'lh(z)/r(z)]V-UIdzt" 
, \ r (z)]  = . = ,  ~oj 

As in the proof of Lemma 1 we estimate 

[]a/rl[ o~.ov, <= C1" [~s - xs[ 

Ilh/rllo~.oD, < C2" max I r  
v = l , . . . , n  

where CI, C2 depend only on DI . . . . .  D,, BI . . . . .  B., f and U. This proves 
(10). [] 

Remark. I f f ~  H(D) has n distinct zeros in D and U ~_ H(D) is a n-dimensional 
complex Chebyshev-space the assumptions of Lemma 1 can always be satisfied. 
Thus, by Theorem 2, there exist neighbourhoods B1 . . . . .  B, of the zeros of f such 
that choosing initial values in B~ x . . .  x B, method (MN) generates a sequence of 
approximants converging towards (~i . . . . .  ~,) having the order of convergence at 
least N, i.e. method (MN) is locally convergent of order N. 

4. Continuation process, unified method, Euler methods 

This section discusses three relations to other methods. Firstly, the continuation 
method of [3] is sketched which gives method (MN) using the Taylor method of 
N-th order for solving a certain initial value problem. 

Secondly, it is proved that (M2) is method (M) in the unified approach of [7] 
which is Newton-Raphson's method for a certain system of nonlinear equations. 

Finally, the case n - 1, U being the space of constant functions, is con- 
sidered which gives the sometimes called Euler-methods; in particular, (M2) is 
Newton-Raphson's method for a single equation. 

4.1 Continuation process 

Following [3], let f and Q as in the first section and consider the homotopy 

(12) H:[0 ,  1] • D --* IE, (t, z) w* (1 -- t). Q(z) + t . f(z).  
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By assumption (4), using p = f -  Q, r = Q, there holds 

]H(t, z) - Q(z)l = I t l . l f ( z )  - Q(z)l < lQ(z)] 

for all z e ODi, t e [0, 1]. Hence, by Rouch6's theorem, for any t e [0, 1] there exists 
one and only one zero z~(t) of H(t,  �9 ) in Dj. Then, the identity t ~ H(t,  z~(t)) = 0 
can be differentiated leading to the system of n ordinary differential equations 

(13) 
Q(zi(t)) - f ( z j ( t ) )  

~(t) = (1 - t ) .Q'(z~(t))  + t . f ' ( z j ( t ) ) '  j = 1 . . . . .  n .  

Since z~(0) = x i is the given initial value and z j(1) = ~j has to be computed, any 
method for the numerical treatment of ordinary differential equations may be 
applied to obtain better approximants for the zeros of f 

By application of Taylor-approximants  of (N - 1)-th order  x~ c) is obtained 
from 

~ 1  z(y~T " 
_ ( c ) . _  z~(O) + (0),  j = 1, . ,  n .  ~j = zj(1) ~ ~j . . . .  

V=I 

As seen in the following lemma, this yields method (MN). 

Lemma 2. - (c) ~ = ) 2 j ,  j =  1 . . . .  , n .  

Proof. By (13) and the residue theorem, 

1 ! Q ( z ) - f ( z )  d z ,  
~3(t) = 2~i~ ~ (1 -- t).  Q(z) + t . f ( z )  

since the denominator  has exactly the zero z = z~(t) in Dj. Therefore, for any v > 1, 

( - 1 ) * ( v -  1)! S ( f ( z )  - O (z) ~ d z .  Z~V) (t) 
2~i 0v~ (1 - t ) .Q(z)  + t . f ( z ) /  

For  t = 0, z j(0) = x j, the residue theorem gives 

zj(t)(~)(0) = (--1) ~ _ .  Res ( f - ~ )  ~ 
V! V z=x~ 

which proves the lemma (cf. (1)). [] 

In [3], [9] and [7] only (M2) is considered and convergence is proved only for 
particular cases. We stress that Theorem 2 gives convergence for all methods 
simultaneously and also for all methods of higher order N. 

4.2 Unified approach 

The unified approach [7] is Newton-Raphson 's  method applied to 

F: B1 x . . .  x B ,  --. U,z~--~ ~, f ( z ~ ) . d v ( z ) ,  
v = l  
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where dl . . . . .  d, belongs to the dual base as introduced in Sect. 2. Assuming that 
the inverse exists, one step of Newton-Raphson's method reads 

X ( N R )  "-~- X - -  DE(x)-1 [F(x)] 

and yields method (M) from [7]. 
As seen in the following lemma, (M2) is [7, method (M)]. 

Lemma 3. I f  N = 2 then x tNR) = ~. 

Proof Differentiation of d~(x)(xj) = 6~.~ with respect to xu, v, /l, j e  {1 . . . . .  n}, 
gives 

(14) ( ~---~u d~(x))(xj) = - 6s.u.dv(x)' (xj) . 

The new approximant x ~um = x + y in Newton-Raphson's method is defined by 

(15) DF(x)[y] + F(x) = 0 ~ U 

with the (Frech&-) derivative DF(x)[y] of F at x evaluated at y. Using (14) and 

DF(x)[y] = ~ y j f '  (xg)dj(x) 
j ~ l  

j = l  v = l  # = 1  

(15) is equivalent to 

0 = f (x j )  + f '  (xj)'y.i -- 

Because of (2) and (3) this is 

concluding the proof. [] 

f(Xv).yi.dv(x)'(Xs) j ~  {1 . . . . .  n} . 
v = l  

O = f ( x g ) + y j . Q ' ( x g )  

The lemma shows that the unified approach [7] is included in the considera- 
tions of this note and that (M2) converges quadratically. Moreover, by Theorem 2, 
we proved superconvergence in each component. 

We finally remark that our notation of method (M) is slightly different from the 
original notation in [7]. There, some finite dimensional function space V, including 
f is endowed with some normalizing linear functional l ~ V'. In this note, we 
consider U := Ker I. 

4.3 Relation to the Euler-method 

If n = 1 and U is the space of constant functions on D, then [U, x] pf(z) = f ( x l )  
and hence 

(16) ~, = x, + ~ ( -  1)v- Res . 
, :1  v . . . .  \ f ( z )  i f ( x 1 ) /  
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On the other hand, [U, x]  rf(z) = f(z)  - f ( x l )  has a simple zero (see Remark (ii) in 
Sect. 2) at z = x~. Therefore, f ' (x~)  # 0 and there exists an open disc Vwith xl  e V 
such that f is injective in a neighbourhood of V. For  the inverse function 
g : f ( V )  ~ V we have the integral formula 

1 [ z f ' ( z )  
(17) 9(w) = ~ 0~zf ~ S w  dz ,  

which follows directly from the residue theorem. Then, the Euler-method of order N is 
the Taylor development of the root (cf. [10, Sect. 14]) and reads x~ ~ x~ E~, where 

N- i g(V) 
(18) x~El:= ~ ( f ( x l ) )  ( - f ( x l ) Y .  

v=O V! 

L e m m a  4. / f n  = 1 then x~ E) = ~q. 

Proof. Differentiating (17) v times with respect to w gives for v => 1 

v! zf '(z)  
gt~'(w) = ~-~ ~v ( f ( z ) = w )  ~+1 dz 

(v - 1)! ~ 1 dz 
= 2rd ~, ( f ( z ) -  w) ~ 

o 

By w = f(x~ ) and application of the residue theorem, we prove that the right hand 
sides of(16) and (18) are equal. [] 

5. Error est imates  

In this section, we prove a-posteriori and a-priori error estimates giving upper 
bounds both for xj - Cj and ~j - ~j,j  ~ {1 . . . . .  n}, in terms of the data xl  . . . .  , x,  
and f ( x l )  . . . . .  f (x , ) ,  using the technique from [4]. 

Let Dj be a disc with center xj and radius Rj lying compactly in D such that 
Dj contains exactly one zero, namely xj, of Q = [U, x]  rf, j e {1 . . . . .  n}. Define 
meromorphic  functions 11 . . . .  , I, on D by 

(19) /j(z):= dj(x)(z) j E {1 . . . . .  n} . 
[U, x] rf(z) '  

Each lj is holomorphic  in a neighbourhood of b~ u . . .  w /9 ,  save for a simple 
pole at z = xj. Thus, there exists a constant mj > 0 such that 

for z e D 1  w . . .  w D, a n d j e { 1  . . . .  , n } .  
mj 

(20) Ilj(z)l <~ I z ~ x j l  

Fix j ~ {1 . . . . .  n} and let 

ej:= m i n { I x j -  x,I tk ~=j},  

6j := ~ - I f ( x j ) l  

crj:= ~ mklf(Xk)l 

ke j  
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If  ~ + ~ < 1 then define 

R j : =  �89 + 6 t - a i - .,,/(1 + 6j - at) 2 -- 46j) > 0 

(,/4,+ ,/4,) 
R-It):= et 'V/~J N(1 - (x/'~J + v/Ti) 2) (N = 2,3 . . . .  ) .  

Theorem 3. I f  x/~j + ~ < 1 and R_t < R t then the disc with center x t and radius 
R_j contains exactly one zero {J. 

I f  in addition, 

< Rj 
,/4,+,/-4, 

then the disc with center Sc t, which is the new approximant after one step of  method 
(Ms)  using the initial values x, and radius R_} m contains exactly one zero ~ .  

Proof  For  z e D t, 0 < [z - xtl = r < R i < ej, there holds 

[ U , x ]  pf(z)  lk(z)f(xO 
[ U , x ] r f ( z )  =lk~=l 

< If(x~)[ + If(x~)P 
k = l  tx~  - - 7 ~ I  - r 
k * j  

< 6ie t aj 
+ - -  =: ~o(r). 

r 1 -- r/~ i 

If  q~(r) < 1 then Rouch6's theorem states that  f a n d  Q have the same number  of  
zeros in the disc with center x t and radius r. To ensure tp(r) < 1, consider the 

condition ~ + ~ < 1 which is equivalent to (1 + 6 t - at) 2 - 46 t > 0. There- 
fore, some computa t ions  show that tp(r) < 1 holds for r e (r, r--), where 

e t 
r := ~ .  (1 + fit - at - ~/(1 + 6 t - at) z - 46~), 

8j 
~:= -~-(1 + 6 t - a t + x/(1 + 6 t -- gj)2 _ 46j) " 

If  we let r tend to r, we get the first assertion. 
Using the inequality (11) in the proof  of  Theorem 2 with the disc D t having the 

center x t and the radius r and with ~/< q~(r) there follows, analogously, 

r(~o(r)) N 
(21) I~j -- )~t[ < N(i- ~-~-~)) " 

Some calculations show that the convex function ~o has in the interval (r, r-) 
a minimum value of 

v,/a;, + , /g, ,  
Substituting this value in (21) concludes the proof. []  
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Remarks .  (i) For algebraic polynomials Theorem 3 is due to B6rsch-Supan [4]. In 
this case m r = 1 and numerical examples show good estimation of the exact errors. 

(ii) In general, the estimation of mj may be labourous. An example for trigo- 
nometric polynomials is given below in Lemma 5 where m r may become large so 
that the estimates of Theorem 3 may be very large. 

6. Applications, examples 

This section discusses the particular cases of algebraic, trigonometric, exponential 
polynomials and exponential sums in Subsects. 1, 2, 3 and 4, respectively. Some 
numerical examples are presented. 

6.1 Algebraic  polynomials  

Let f be a monic algebraic polynomial of degree n having the simple zeros 
~1 , . .  �9 4, e D = C. Let U denote the space of algebraic polynomials of degree less 
than or equal to n - 1. Then, the remainder of Lagrange interpolation w.r.t U and 
the nodes x~ . . . . .  x,,  which approximate ~1 . . . . .  ~,, is well-known, namely 

Q(z) := [ u , x ] r f  = (z - x l ) ' .  . . . ( z -  x , )  . 

With the abbreviation W j : =  f ( x j ) / I - I ~ =  l , , , , ( x j -  x0,  one step of method (M2), 
(m3), (M4) reads (using the expressions of Sect. 1 and some additional 
computations) 

( m 2 ) :  ~ j : =  x j -  W j  

k = ~,k*j Xj Z X k  

k = l , k , j X j - - X k  k = l , k 4 : j X j - - X k J  f 

n 
+.# 

~= , , j ( x i  - - x O  ~ " 

Note that the required derivatives of f a r e  computed using the interpolation 
representation 

j = l  

We mention that (M2) is Durand-Kerner's method, [1, 5-8, 1 l] while (Ma) is 
closely related to the third order method of Mahley, Ehrlich, Aberth [1, 11], i.e. 

Xj :~  Xj --  

k= 1,k*j Xj -- X k 
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and (M4) is related to the Nourein type fourth order method [11] 

X j  :=  X j  - -  
w, 

k = l,k :~ j X j  - -  W j  - -  Xk 

These relations are seen by developing the last two methods (using the geometric 
series) and neglecting higher order terms in W:= maxk=l . . . . . .  L Wki (of order 3, 
4 . . . .  and 4, 5 . . . . .  respectively). 

We finally notice that the slightly different methods [7, (4.2)] and I-7, (4.3)] can 
be treated analogously. 

6.2 Trigonometric polynomials 

Let y, ~1 . . . . .  ~2n ~ [--re, + n) be pairwise distinct and let the real trigonometric 
polynomial 

(22) f(t) = bo + ~ (aj.sin(jt) + bj.cos(jt)) 
j = l  

of degree n, denoted by feg - - ,  have the simple zeros ~l . . . . .  ~2,. Let 
xl . . . . .  x2, e I - n ,  +n)  be distinct approximants for the zeros r . . . . .  r not 
equal to y. Define 

1 f t - y ~  2 . .  f t - -Xk~  
(23) dj(t) := - .  S inc j  t ) - - ~  " k= I-Ii,k,S sin t ~ )  ' 

C j ' =  sin " H S l n l ~ ] .  
k = 1,k, j 

Then, some (omitted) calculations show that dl . . . . .  d2n is a dual basis, dual with 
respect to x, of 

U:= {h~3-.ih(y) = 0} . 
Consequently, 

r := [ U , x ] r f : = f -  [U,x]p f  

equals Q(t) as defined by 

sin( ) 
1 2 .  t - -  xj 

(24) Q(t) = c" j-=q.]-[ sin 2 ' c := " 
f (y )  

(For a proof notice that h := r - Q ~ ~7- has 2n + 1 zeros, namely y, xl . . . . .  x2,. 
Since Y-. is a Chebyshev-space over [ - ~ ,  + ~) this implies h = 0, i.e. Q = r.) 

Therefore, method (Ms) is convergent of order N by Theorem 2. Using the 
formulas of the first section and 

fo  := 
2c " f (xi) 

. 

n ='nt  ) 
k = l , k 4 : j  
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f l  "= 
2c "if (x,) 

2n . ( X j _ _  XkX~ 

smt--  ) 
k=l,k4=j 

f 2  :~  
c "f"(xl)  

2n . / X j _  Xk" ~ 
Yl s'nt, ) 

k=l ,k#: j  

q2:= 1/2 ~ c o < [ ~ )  
k=I,k#~j 

2. 2. (x~- x~ .(x~- x,~ ) 
q3 := 1/4 1/2. 2 2 c o t ~ , ~ j . c o t ~ j - ( n - 1 / 3 )  

k=l,k~: 3 I=I,k:~l~:j 

the methods (M2) , (M3) and (M4) are explicitly determined. Method (M2) is known 
from [3] where the second order of convergence is proved explicitly. We stress that 
our  general results give a convergence proof  of  higher order methods as well. 

Example. Let f ( t )  = I ~ =  a sin k _ ~  with 41 = - 1.7, 42 = 0.3, 43 = 0.5, 44 = 1.7. 

As in [3, (3.2)] we consider the initial values x] ~ = - 1.5, x~ ~ = 0, x~ ~ = 0.7, 
xt4~ = 1.4, y = 1. Table 1 gives the absolute errors of the approximants  
x]  ~) . . . .  , x~ v) in step v using method (M2), (M3) and (M4) respectively. (As in the 
following examples, the numerical calculations were done on a personal computer  
with 18 decimal digits.) [] 

We continue with an application of the error estimates of the previous section. 
Since the dual basis d l , . .  �9 d, as well as the remainder Q is given in (23) and (24), 
we focus on the estimation of mj in (20). D~ is the disc with center x~ and radius Ri, 
j ~ { 1 , . . . ,  n}. Then, Ij as defined in (19) reads 

lj(z) = 
. / ~ -  xA"  c, s'n 

Recall that y, xl  . . . . .  x2, ~ [ - r t ,  ~) are distinct such that for sufficiently small 
radii R1 . . . . .  R2, 

1 
e := ~ -- ~ max (Ixj -- Xkl + Rk) 

j , k = l , . . . , 2 n  
is positive. 

Lemma 5. I f  e > 0 then (20) holds with mj given by 

21c[ "(n - e) 
- max 

(25) m s -  ]Ql.sin(~) k=l . . . . .  2, cosh (RR/2) . 
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Table 1. Examples for tr igonometric polynomials 

v Method (M2) 

I x ? '  - ~ 1  Ix~" - G~[ Ix~ ~ - G I  Ix~, ~' - G,I 

1 9.62 10- 2 1.68 10-1 1.20 10-1 1.53 10- i 
2 2.38 10 -2  6.31 10 -2 5.20 10 -2 4.10 10 -2 
3 1.83 10 -3  1.31 10 -2 1.23 10 -2  3.31 10 -3 
4 1.89 10 -5 8.23 10 -4  8.11 t0 -4  3.34 10 -5 
5 8.59 10 -9  3.70 10 -6 3.69 10 -6 1.36 10 -8 
6 1.66 I0 -14 7.59 10 -1l  7.59 10 -11 2.28 10 -14 
7 0 2.71 10 -20 5.42 10 -2~ 0 

v Method (M3) 

]x~ ~' - Gx[ Ix~" - Gel [x~3 v) - G3I Ix~ ~) - G4[ 

1 4.77 10 -2  1.03 10 -1 8.10 10 -2 8.06 10 -2  
2 1.02 10 -3 1.21 10 -2 1.17 10 -2 1.92 10 -3 
3 7.82 10 -a  7.51 10 -5 7.51 10 -5 1.34 10 -7 
4 1.21 10 -~6 2.37 10 -11 2.37 10 -11 1.56 10 -16 
5 0 0 0 0 

v Method (M4) 

I x ? '  - Gll Ix~ ~' - Gel tx~ v~ - G31 lx~ v~ - ~,1 

1 2.42 10 -2  6.87 10 -2 5.89 10 -2 4.32 10 -2 
2 1.81 10 -5 2.34 10 -a  2.33 10 -3 3.48 10 - s  
3 3.74 10 -14 1.96 t0 -a  1.96 10 -8 4.94 10 -14 
4 0 0 0 0 

Proo f  U s i n g  s i n l z [  < [ s i n  z[  < c o s h  Im(z ) ,  z ~ C ,  w e  f i r s t ly  a c h i e v e  fo r  z e Dk 

s i n ( ~ - - ~ )  ~ c o s h ( R k / 2 ) ,  k e { 1  . . . . .  n } .  

B y  d e f i n i t i o n  o f  e, we  h a v e  f o r  z ~ Dk 

I z -  x~]/2 =< ]Xk -- x y 2  + Rk/2  < ~ -- e 

a n d  t h e r e f o r e  

A l t o g e t h e r ,  (20) h o l d s  w i t h  m r g i v e n  in  (25). [ ]  

s i n e  ]z - xj[ 

n - e  2 

6.3 Exponent ia l  polynomials  

L e t  f b e  a r ea l  e x p o n e n t i a l  p o l y n o m i a l  o f  d e g r e e  n, i.e. IK = IR a n d  

f ( t ) =  ~ a k ' e x p ( k t ) ,  t , a _ ,  . . . . .  a n , ~ l R .  
k = - - n  
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Le t  f h a v e  t he  m = 2n s imp le  rea l  ze ros  r < r < �9 �9 - < ~,,. As  m e n t i o n e d  in ['3] 
a n d  ['7] t he  e x p o n e n t i a l  p o l y n o m i a l  f c a n  a lso  be  w r i t t e n  in the  f o r m  (22) w h e r e  sin 
a n d  cos h a s  to  be  r ep l aced  by  sinh a n d  cosh, respect ively .  

T h u s  we m a y  r e p e a t  the  p r e v i o u s  s u b s e c t i o n  r e p l a c i n g  all  t r i g o n o m e t r i c  func-  
t i o n s  by  t he i r  c o r r e s p o n d i n g  h y p e r b o l i c  f u n c t i o n s  (up  to  s o m e  s igns  in s e c o n d  
de r iva t ives )  to  a p p l y  m e t h o d  (MN). 

T h u s ,  the  c o n v e r g e n c e  o r d e r  for  m e t h o d  (MN) is N,  w h i c h  is p r o v e d  expl ic i t ly  in  
[ 9 ]  for  N = 2, 3. 

6.4 Exponential  sums 

Let  2 ~ , . . . ,  2 ,+  ~ be  rea l  a n d  d i s t i nc t  a n d  c o n s i d e r  a n  e x p o n e n t i a l  s u m  f e  V, 

} V : =  b j . e x p ( 2 j . t ) t b j  e IR , 
t . j = l  

h a v i n g  n s i m p l e  a n d  rea l  ze ros  ~ , . . . ,  r C h o o s i n g  s o m e  n - d i m e n s i o n a l  s u b s p a c e  
U m e t h o d  ( M u )  (as de f ined  a b o v e )  is loca l ly  c o n v e r g e n t  of  o r d e r  N. M e t h o d  ( M 2 )  is 
d u e  to  F r o m m e r  I-7] w h e r e  the  fo l l owing  e x a m p l e  is cons ide r ed .  

Table 2. Examples for exponential sums 

v Method (M2) 

Ix~ ~) - ~1[ Ix~ ~) - ~2[ ix~ ~) - ~31 Ixk ~ -  ~41 

1 8.63 t0-1 9.34 10-1 8.21 10- i ~, 3.48 10-1 
2 5.99 10 - I  7.70 10 - I  4.21 10 -1 6.27 10 - 3  
3 2.64 10 -1 4.25 10 -1 1.39 10 -2 7.89 10 -4 
4 5.14 10 -2 7.12 10 -2 1.52 10 -3 1.48 10 -5 
5 1.76 10 -3 2.14 10 -3 2.39 10 -5 2.89 10 -s  
6 1.81 10 - 6  2.23 10 - 6  9.95 10 -9 1.95 10 -12  
7 1.92 10 -12 2.35 10 -12 4.48 10 -~s 4.34  10 - 1 9  
8 3.17 10 -17  5.20 10 - l s  1.20 10 - l s  2.17 10 - 1 9  

v Method (M3)  

Ix~ "~ - r Ix~ ~ - ~1 Ix~ v' - ~31 I ~  ~ - r 

1 7.48 10 -1 8.71 10 - l  6.59 10 -1 1.12 10 -1 
2 2.62 10 -1 4.27 10 -1 4.07 10 -3 1.56 10 -3 
3 1.34 10 -2 1.52 10 -2 5.33 10 -5 5.23 10 - 7  
4 1.43 10 -6 1.45 10 - 6  4.78 10 -1~ 1.12 10 -13 
5 3.25 10 -1~ 6.83 10 - : s  1.16 10 -~s 3.25 10 - 1 9  

v M e t h o d  (M4) 

]xtx v ) -  ~1] Ix~2 v) -- ~2] ]x~ ~) -- ~31 ]x~ ) -- ~4[ 

1 6.52 10 - l  8.10 10 -1 5.15 10 -1 t.12 10 -2 
2 9.79 10 -2 1.54 10 -1 1.94 10 -2 2.81 10 -s  
3 9.67 10 -5 9.34 10 -5 3.84 10 - 6  1.76 10 - 1 3  
4 7.81 10 -17  5.29 10 -17 1.38 10 - :8  0 
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Example. Let n = 4, 21 = -  2, 22 = -  0.5, 23 = 0, 24 = 0.7 and )-5 = 2. The 
coefficients of f were determined such that b5 = 1 and f has the zeros ~1 = - 4 ,  
4 2 =  - 2 , ~ 3 = 0 a n d 4 4 = 2 .  Let 

0 t 
j = l  

With the initial values x~ ~ = - 5, x~ ~ = - 1, x~ ~ = 1, x~ ~ = 3 Table 2 shows the 
absolute errors of  method (MN) for N = 2, 3, 4. F rom this, the convergence order 
N = 2, 3, 4 of method (MN) can be observed. Note  that the methods converge 
al though the initial approximations were chosen far from the zeros of f to illustrate 
the wide domain of convergence of  method (MN). [] 

Remark. Note  that, in contrast  to the previous examples, the remainder [U, x]  rf 
is not  known a-priori. It is known from [12] that a factorization of f as in the 
previous examples is not always possible. Consequently, the interpolant [U, x] pf 
has to be determined numerically by solving a linear system of equations of 
dimension n. This requires O(n 3) operations while the computa t ion  of an addi- 
tional derivative o f f  and Q at any approximant  xl . . . . .  xn only needs O(n 2) 
arithmetic operations. 

Since the application of  method (MN) for higher order N = 2, 3,4 . . . .  causes 
only solving one linear system of equations in each step this dominates the 
computat ional  cos t s  O(n 3) q- NO(n 2) for one step of (MN). Thus, provided N ,~ n, 
method (MN) becomes more efficient for increasing N = 2,3,4 . . . .  such that 
higher order methods of  the considered class (MN) become of interest. 
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