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Abstract 

In this note we present a numerical method to approximate some relatively prime factors of a polynomial simul- 
taneously. Our approach gives methods of arbitrary order; Grau’s method (Carstensen, 1992; Grau, 1971) is obtained as 
the second order method which is Durand-Kerner’s method when we have linear factors. For linear factors our approach 
yields the simultaneous methods introduced in Sakurai et al. (1991). We prove local convergence and estimate the 
R-order of the total step version as well as the single step version of the methods. We derive an algorithm and present 
numerical examples which confirm the convergence behavior theoretically predicted. 

Keywords: Polynomial zeros; Factorization of polynomials; Simultaneous methods; Single step methods; Rational 
approximation 

1. Introduction 

One of the classical topics in numerical analysis is the computation of polynomial roots. The 
theory of simultaneous computation of all the zeros of a polynomial, see [16] and the references 
quoted there, started with Weierstrafl in the last century and is highly influenced by using interval 
arithmetic nowadays. The disadvantage of such methods lies in the fact that they work only for 
simple roots or for the academic case when we have multiple zeros with a known exact multiplicity. 
In the presence of clusters, the restrictions on the local convergence results for such methods made 
the methods useless, i.e., the required accuracy for the starting values to guarantee convergence is 
so high that we are not interested in improving these approximations in practice even if we have 
clusters of simple zeros. 
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Table 1 
Related methods 

9 Point method Factoring method 

jr 
Cl31 Cl01 
Cl51 Cl81 

Sj L-171 WI 

For example, assume that we use a simultaneous method (like Durand-Kerner’s) which is 
developed to compute all the polynomial roots if they are simple. Imagine that we have a poly- 
nomial with multiple zeros. Then, the simple approximants cluster near the multiple zero such that 
their mean is an higher-order approximant of the exact multiple zero [ 1,5,8, 111. However, the 
quadratic convergence order of the approximants cannot be observed numerically in this case but 
we usually see some slow (linear) convergence. One tool for improving the convergence is 
introduced in [S] and based on the quadratic convergence of the means [S, 8). Hence, if we have 
a cluster of zeros, the method in [S] will improve the convergence of the means of the clustering 
approximants but not the approximations to the zeros. 

An alternative tool is the use of simultaneous numerical factorization [4,6,9] (see also [S, 
Section 61). Given a cluster of zeros [j’, . . . , cy of a polynomial consider the corresponding factor 

p; (2) = (z - [j’ ) ... (z - [,“j) (1) 

of degree degp; = kj. Then compute approximants of the coefficients of pT with respect to some 
polynomial base (which may be fixed or change in any iteration step, cf. [4]) instead of computing 
the approximants of the zeros directly. After one has obtained good approximations for the 
coefficients of pj* one can simply compute or estimate the approximations of the zeros of pi*. 

This note extends Grau’s method for simultaneous factoring [9] to arbitrary order by generaliz- 
ing the method for simultaneous computation of simple polynomial roots [17] and the method for 
the computation of a single factor [18] which is based on rational approximation of f/g, f being 
the given polynomial and g being some other polynomial. 

To set the method (M) of this paper in an appropriate frame, Table 1 classifies related methods: 
f is the given polynomial, while f/g is to be approximated. g and some references (of course not 
a complete list) for the single point method as well as for the factorization method resulting from 
this approach are shown in Table 1 (using notations from below). 

The point methods with g = 1 or g =f’ compute a single approximation and a second technique 
for deflation is required to compute all the zeros or factors successively. The other methods in 
Table 1 compute all the approximants simultaneously. Method [lo] belongs to a different class of 
simultaneous methods than [ 181 or (M) which are suited here (see [3]). 

Note that Newton-Raphson’s and Halley’s method are particular cases of [13], the Durand- 
Kerner (or WeierstraD) method and Aberth’s method [l] are particular cases of [17], and Grau’s 
method [9] is a particular case of method (M) presented in Section 2. 

The rest of this paper is organized as follows: In Section 2 we introduce the method (M) and 
prove its local feasibility. Asymptotic error estimates are shown in Section 3 which give local 
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convergence of Q-order M + 1. The single step mode of the method is also under consideration 
there. In Section 4 we derive an algorithm to evaluate the methods numerically. Some numerical 
examples in Sections 5 and 6 confirm our theoretical results with a combined method taking into 
account the problem “How to find initial values” ? A few remarks in Section 7 conclude this paper. 

2. The method 

Let f be a manic complex polynomial of degree n having the zeros 

r:,...,r:l,i~,...,r~,...,i~m, 

withk, +kZ+ .e. +k,=n,m,ki ,..., k, being natural numbers, m 2 2, such that 

{ii?.., ii”i}n{[j’,..., [jj}=@ (i,j=l,..., m;i#j). 

Note that, with pi* from (l), 

(2) 

f=p:...p,* (3) 

and, due to (2), p:, . . . , pi are pairwise relatively prime. For convenient notations with upper and 
lower indices let 

I:= {(i,j): i = l,..., m;j = l,..., ki) 

denote the admissible index pairs. 
In order to approximate the exact factors p;C, . . . , p,* (cf. (1)) assume that we are given approxi- 

mating factors pl, . . . , pm with exact degree, i.e., pj is a manic polynomial of degree kj (j = 1, . . . , m). 

Remark 2.1. Imagine that the zeros of pi* (as defined in (1)) define the jth cluster such that 

namely the smallest distance between two different clusters, is much greater than the greatest 
diameter, 

max Ici - [:I, 
(i,j),(i,k)E 1 

of one cluster. Note that (2) is satisfied in this case that this represents the practical situation in 
which we have a perturbed or exact multiple root. As is explained in Section 1, some complex 
simultaneous methods give a cluster of approximants which define an approximating factor pj. pj is 
the manic polynomial with the clustering approximants as zeros (counting multiplicities). 

One step of the presented method of order M + 1, M being a natural number, consists in 
computing a manic polynomial $j of degree deg$j = kj. fij is determined such that bjj/Gj is the 
Rational Hermite Interpolant of f/gjp gj:= n,?! 1, izj pi, gj being a polynomial of degree 
deg& < kj. (M - 1) - 1 (for M 2 2, (ij = 1 if M = 1) where the interpolation points are the M. kj 
zeros of p,?, counting multiplicities (j = 1, . . . , m). 
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In order to be more precise we introduce further notations. Let P be the vector space of all 
polynomials and let Pk be the subspace of all polynomials of degree less than or equal to k while 
P rnic denotes the manic polynomials with degree k, k being a nonnegative integer. For any 
polynomial p(z) = a0 + alz + ..f + akzk let 

IIPII := max bkl 
i=O,...,k 

be the norm of p. Hence (P, 11. I/ ) is a normed linear space. In this note all polynomials have 
bounded degrees such that any other norm in P is essentially equivalent to 11.11. Thus, @ is 
a neighborhood of a polynomial p E 5’yic in lPyniC if there exists E > 0 with 

{q E IP~iC: HP-411 <E} s 42. 

We start by proving that method (M) is feasible. 

Lemma 2.2. Assuming that f E Epic satis$es (l)-(3) for any M 3 1 and for any j E { 1, . . . , m} there 
exists some neighborhood @j of pf in Prnic such that (i)-(iii) holds. 

(i) For any (pI, . . . , p,) E aI x e.. x 4Y,,, the polynomials pl, . . . , pm are pairwise relatively prime 
and there exist unique polynomials $j E Pyic and&suchthatdeg&<(M-l)*kj-lifMa2and 
~j z 1 if M = 1, and 

qj*f=fij’ fi pk (mod 
k = 1,k #j 

py) (j= l,...,m). (4) 

>Osuchthatforall(pI,...,p,)E%lx .a. x%,,,wehave (ii) There exists a constant cl 

crl Y..., Gil nx”=,lk+ipki 6 Cl f&j) E 0 

where [[!, . . . , ii] h denotes the divided diflerence of h with respect to the knots cl, . . . , [! and ([i: 
(i, j) E I) are the zeros of f (cf. (1) (3)). 

(iii) There exists a constant c2 > 0 such that for all (pI, . . . , pm) E 4!ZI x a.+ x @,,, we have 

)I ?j\I < C2 * max IIP* -Pill (j = L...,mL 
i= I,...,m;i#j 

where Lj is a polynomial uniquely determined in (i) by 

(jj.f_fij. ; pk=$j.pjM. 
k = I,k #j 

Proof. Since the zeros of a polynomial depend continuously on its coefficients and we have (2) we 
conclude that for sufficiently small neighborhoods of p:, . . . , pz the polynomials pl,. . . , pm are 
pairwise relatively prime. This proves (ii) as well. 

Note that (4) is equivalent to the linearized rational interpolation condition where the data 
function f/gj, writing gj := H,?! ,, i + j pi, is interpolated by a rational function with the polynomials 
fij and 8j with degfij < kj and deg Qj < (M - 1) kj - 1. The Mkj interpolation knots are determined 
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as the zeros of p,!, counting multiplicities. Note that we have already seen that f /gj has no pole at 
the zeros of #. The normalization used is that the leading coefficient Of $j is equal to one. It is well 
known that a rational interpolant of this type always exists (Mkj interpolation conditions for 
kj + (M - 1) kj coefficients) but the normalization and the uniqueness have to be treated with 
a brief look at the linearized rational Hermite interpolation problem, i.e., the Newton-Pade 
approximation problem. 

For the moment let m’ := kj and n’ := kj(A4 - 1) - 1 and let to, . . . , &,,, +,,’ be the Mkj zeros of #, 
counting multiplicities, ordered such that &.,,,‘, . . . , &+ ljmT - 1 are the zeros of pj (I = 0, . . . , M). Let 
clc,” denote the divided difference of f /gj with respect to the knots ra, l,+ r, . . . , l, if p d v and 
c c,V:= 0 if p > v, and define c_~~ E Ppic by ok(z):= (z - &,)...(z - &_r). 

We refer, e.g., to [7, Eq. (3.16)] which shows that the interpolation conditions are equivalent to 

5 Cfl,,bp = a, (v = 0 )...) m’), (5) 
p=o 

i c&$=0 (v=m’+l,...,m’+n’) (6) 
/l=o 

and $j = a0 + UlOl + a.. + a,,,,~,, and dj = bo + blur + ..* + b,,,~,,. 
We have a closer look at (5), (6) with pl, . . . , pm replaced by ~7, . . . , p,*. Note that, in this case, 

f /Sj = Pj* gives C,, y # 0 iff v = ,u + m’. Then, (5), (6) are equivalent to b,, = ..’ = bI = 0 and 
a0 = ..* =a,,_l =Oanda,, = bo. Thus, we have unique polynomials @j E @j and gj as provided 
in (i). For convenient reference below let 07 denote the polynomial Coj in the present case where 
5 &I,+,, 0, a’*, are the zeros of (pj*)“. 

Next we return to the general case and assume that cl,. . . , E, are small, 

&i:= (IJ+j$I) (i= l,...,m). 

Note that f/gj as well as (c,, y) depend continuously on pl , . . . , pm such that (5), (6) are equivalent to 

(b o ,..., b,,)T=(uo ,..., a,,,0 ,..., O)T, 

where I is the (n’ + 1) x (n’ + 1) unit matrix and the Landau symbol o(1) is a matrix of sufficient 
dimension (which is not always the same although it is frequently used) with coefficients which tend 
towards zero if E := max {cl, . . . , E, > tends towards zero. Hence, choosing E sufficiently small we get 
that (5), (6) leads to a solution (unique by a normalization b. = 1, say) with bi = o(1) for i = 1, . . . , n’ 
and ai = o( 1) for i = 0, . , . , m’ - 1 while a,,,, = 1 + o(1). Observe that Oi depends also on pl, . . . , pm 
and that 11 Oi - o$ )I = o(1). Dividing by a,,,, we get unique @j E +Yj and Qj satisfying the conditions 
in (i). 

By definition of ;j we have degfj < n - kj - 1 (also for A4 = 1). Consequently, a polynomial 
interpolation where the knots are the zeros of gj, counting multiplicities, is exact. This leads to 
polynomials Gj,i E pki_ 1 uniquely defined by 

~j = 1 Gj,i . fl PP. 
i= l,i#j p= l,i#P#j 
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Let xl, . . . . xf’ be the zeros of pi. Then, for (i, k) E I with i # j we have 

[x1 ) . . . ) x”] Gj,i * 
( 

fi 
p=I,i#p#j 

Pp) = Cx!,...,xikl(P*gi*‘~j/Pr). 

Because of (ii) and because 11 Qj 11 is bounded for E being sufficiently small (as seen above) this proves 
by induction on k = 1,2, . . . , ki that 

[x! ) . . . ~xf]Gj,i=O([~/,...,~f]pT) 

is bounded uniformly for any pi,. . . , pm in a small neighborhood of pf, . . . , pz. We used the 
Landau symbol 0( *) defined by hi = 0(/r,) iff lhr l/lh21 is bounded uniformly for all 
(P l,...,Pm)E%l x .a* x4?,. Since 11 p* - pi (1 = Ei we also have that [xi, . . . , x!] Gj, i = 0(&i) 
(k = l,..., ki), whence 

II Gj,i II = o(Ei)- 
Using this in the above interpolation representation of Lj proves 

Pj = 0 max Ei . 
> 

Cl 
i= l,...,m;i#j 

We are now in the position to state our method (M). 
Total step method (M). Assume that f E lPyic satisfies (l)-(3) and that %i, . . . , +i& satisfy (i)-(iii) of 
Lemma 2.2. Then, for M 2 1 and for any (pl, . . . , pm) E +Yl x ... x %&, one step of method (M) reads 

(P l,...,P,)~(~1,...,~,), 
where ( fil, . . . , j$,,) has to be computed in total step mode (TS) with $j satisfying the condition (i) in 
Lemma 2.2. 

Remark 2.3. If M = 1 the method (M) is due to Grau [9] and the results of this note generalize the 
results of [4] (for M = 1 only) to arbitrary order M + 1. 

3. Local convergence 

The asymptotic convergence is estimated in the following theorem. The case M = 1 was treated 
in [4]. 

Theorem 3.1. Under the assumptions of Lemma 2.2 there exists a constant c3 > 0 (depending only on 
@ 1, . . . , +2,,,) such that for one step of method (M) holds 

IIPj* -fijII QC3’llPT -Pjll”’ max IIPSPAI (j= L.44. (7) 
k= l,...,m;k#j 

Proof. Fix(p, ,..., p,,,)E9& x ... xC&,andfixjE (l,..., m}. From (4) we have a polynomial ?j with 

4j’f - Pj”;j _ A 

Si 
- Pj, 



C. Carstensen, T. SakuraifJournal of Computational and Applied Mathematics 61 (1995) 165-I 78 171 

where fir= ,,k f j pk :== gja Letting gT := nk”= 1,k +j Pk* =f/pT, this gives 

fij - p; = pj* (&$_l)-Eg. 
Let cc,‘, . . . , [j”] h denote the divided difference 

kj), (c/: (i, j) E I) being the zeros off, cf. 
of h with respect to the knots [f , . . . , l$, 

kE(l,..., Cl), (3). Then, 

Let sj:= 11 pj* - pj I). Using Leibniz’s rule we have to deal with three kinds of divided differences 
cl;, *f * , (j”]. First, 

crf:, . . . , ijklp; = cc;, . ..) ii] (pj - pi*)” = 0(&r). 

Secondly, because of Lemma 2.2(iii), 

cij, * *. , [J] tj = 0 
( 

max E, . 
p=I,...,m;p#j > 

Thirdly, because of Lemma 2.2(ii), 

cij, f*. , ifI (l/Sj) = O(l). 

Thus, 

[ii’, . . . , [T](pj*-$j)=O EM’ 
( 

max E, , 

p=l,...,m;p#j > 

which concludes the proof. 0 

Remark 3.2. By Theorem 3.1 we have that, given sufficiently good approximating factors 
Pl, ..f 3 pm, the method (M) is feasible, i.e., any generated vector of approximating factors lies in 
@?I x ... x a,,, as well, and the iterative process is convergent with Q-order M + 1. Moreover, we 
have Q-order M in each factor which means that if the initial approximating factors are sufficiently 
good then the iteration in which only k of the m factors are improved is locally convergent of 
Q-order M. 

So far we considered the total step mode of the method (M). Next we consider its single step mode. 
Single step method (M). Assume that f E lF’rnic satisfies (l)-(3) and that G&, . . . , a,,, satisfy (i)-(iii) of 
Lemma 2.2. Then, for M 2 1 and for any ( pl, . . . , p,) E 4YI x .a. x 22,,, one step of method (M) reads 

(P l,...,P,)~(fil,...,Bm), 

where@,..., $,,J has to be computed in single step mode (SS) with $j satisfying the condition (i) in 
Lemma 2.2 with (4) replaced by 

j-l 
4j.f Gfij*kylfik* fi pk(modpy) (j= l,...,m). (8) 

k=j+l 

Thus fir, . . . . fij- 1 has to be computed before $j. 
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Table 2 
M + Prn,M for some m and M 

m\M 1 2 3 4 5 

2 2.618 4.000 5.302 6.561 7.791 
3 2.324 3.521 4.671 5.796 6.904 
4 2.220 3.353 4.452 5.533 6.603 
5 2.167 3.267 4.341 5.401 6.451 
6 2.134 3.214 4.273 5.321 6.361 
7 2.112 3.179 4.228 5.267 6.300 
8 2.096 3.154 4.196 5.229 6.257 
9 2.085 3.135 4.171 5.201 6.225 

10 2.075 3.120 4.153 5.178 6.200 

We refer to e.g. [14] for the definition of the R-order of convergence. Since we only know that the 
R-order of the total step mode is (at least) M + 1, the next theorem predicts a faster convergence of 
the single step mode as in [2]. 

Theorem 3.3. Assume that f E [Wynic satisfies (l)-(3) and that we have suficiently good initial 
approximating factors pl, . . . , pm. Then, the single step mode of method (M) is feasible, i.e., any 
generated vector of approximating factors lies in +Y1 x .a. x @,,, us well, and the iterative process is 
convergent with R-order of convergence 

where P,,,~ > 1 is the unique positive root of p” - p - M = 0. 

Proof. By Theorem 3.1, the assertion follows from [16, Theorem 2.41. ??

Some values for the bound of the R-order of convergence M + pm,M of Theorem 3.3 are given in 
Table 2 (truncated to four digits) for varying values of M (increasing with the columns) and 
m (increasing with the rows). 

4. Practical realization aspects 

For the calculation of the new approximating factors jl, . . . , fi,,, from the given approximating 
factors p1 , :. . , pm, we need some algorithm which calculates the rational Hermite interpolant $jj/gj 
of f /gj. We refer to [18] for such an algorithm. When M = 1, the algorithm to calculate fij is 
sJightly modified because jj/dj satisfying (4) with M = 1 is not the rational Hermite interpolant. let 
hj be the interpolant for f/gj of which the interpolation points are kj zeros of pj+ Then jj = pj + Kj 
satisfies (4). 
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Note that gj is given by the product of pi, i.e., gj := ni _+j pi, and expansion of this product causes 
large computational costs. Thus we use the Hermite interpolant dj such that 

gj := fi pi E 81 (modp,?) 
i= l,i#j 

instead of gj. 
We now summarize the algorithm. 

Step 1: Calculate the Hermite interpolant Jj of gj = fly! l,i zj pi such that 

gj G Jj (modpjy) and degaj < M.kj - 1. 

Step 2: Calculate the Hermite interpolant Gj of hj:= f /dj such that 

f~~j*&(modp~) and degGj<M*kj-1. 

Step 3: In case of y = 1, let $j:= pj + Lj. In case of A4 2 2, calculate the polynomial remainder 
sequence of p,! and hj until the degree of the remainder polynomial is equal to kj. By using the 
extended Euclidean algorithm, we can get the polynomials fij, (ii and $j which satisfy 

jj.P,” + e.i;i = bj, 

degjj = kj, deg$j < deg# - degbj - 1. 

By computing these steps for j = 1, . . . , m, we get the next approximating factors bl, . . . , $,,, . For 
the single step mode, gj is replaced by 

j-l 

gj:= n fii* fi pia 

i=l i=j+l 

5. First numerical examples 

The examples of this section confirm our theoretical results for the total step and single step 
modes. The calculations were performed in Mathematics with long-precision arithmetic. Note that 
real polynomials require only real arithmetic. 

The example is taken from [9, Example l] for comparison. The coefficients of the polynomial are 
given in [9, Table 11, the polynomial is given by 

.I-(4 = P:*P:*P:-Px*P:? 

where 

p; = z2 + 19z + 90, p; = z2 + 15~ + 56, p3* = z2 + llz + 30, 

pf=z2+7z+12, p;=z2+3z+2. 
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Table 3 
Error in total step model 

M 

1 

2 

3 

V el e2 e3 e4 e5 

0 - 2.00 -2.00 - 2.00 - 2.00 - 2.00 
1 -1.61 - 2.45 -2.58 - 3.00 -4.19 
2 -3.98 - 4.42 -4.90 - 5.86 - 7.99 
3 -8.82 -9.09 - 10.00 - 11.86 - 15.34 

0 - 2.00 - 2.00 - 2.00 -2.00 - 2.00 
1 - 2.98 -3.31 -3.76 -4.47 -6.08 
2 - 10.34 - 10.49 -11.70 - 13.79 - 17.93 
3 - 33.02 - 33.06 - 36.20 -42.37 - 50.05 

0 - 2.00 -2.00 -2.00 - 2.00 - 2.00 
1 -4.42 -4.56 -5.19 -6.16 -8.32 
2 - 19.69 - 19.79 - 22.05 -25.71 -32.87 
3 - 82.07 -82.14 - 89.97 - 102.26 - 123.62 

Table 4 
Error in single step mode 

M V el e2 e3 e4 e5 

1 0 
1 
2 
3 

2 0 
1 
2 
3 

3 0 
1 
2 
3 

-2.00 - 2.00 -2.00 -2.00 -2.00 
-1.61 - 1.95 - 2.47 - 3.37 - 5.01 
- 5.39 - 6.70 - 7.25 - 8.25 -12.19 

- 12.35 - 14.38 - 16.68 - 20.38 -26.37 

- 2.00 -2.00 -2.00 -2.00 - 2.00 
- 2.98 -3.52 -4.29 - 5.89 -9.70 

- 11.04 - 12.46 - 14.62 -21.06 - 33.97 
-38.15 - 42.26 -51.83 -76.51 - 109.69 

- 2.00 
-4.42 

- 20.36 
-87.85 

- 2.00 
-5.12 

- 22.77 
-97.85 

- 2.00 
- 6.22 

-26.41 
- 118.32 

- 2.00 
- 7.67 

-37.37 
-181.24 

-2.00 
- 14.20 
-68.25 

- 297.95 

The initial factors were obtained by adding small perturbations to the coefficients of the factors, 

pj = pj* + 0.01 + 0.012 (j = 1, . . . , 5). 

The errors 

ej:=lOg~~IIpj-pj*II (j=1,...,5) 

in step v are shown in Tables 3 and 4 for the total and single step modes, respectively. 
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6. A combined method 

To emphasise practical relevance we describe a combined method dealing with a polynomial 
which results from a polynomial with multiple zeros by perturbing its coefficients (cf. Section 1 and 
[S, Section 61). The polynomial is given by 

where 6 = 10ek, k = 1, 3, 5,7,9, is a small real parameter 

p; = (z + 1)2 + 6(1 + z), p2* = (z + i)3 + 6(1 + z + z2), 

p3* = (z + 5i)2 + 6(1 + z), p4* = (z - 5i)2 + S(1 + z). 

Note that the zeros are clustering such that theoretically we have simple zeros but any root- 
finding algorithm which requires simple zeros or zeros with (known) exact multiplicity is expected 
to fail. 

Using a good starting value method (M) behaves well as in the previous example. But how to get 
good initial values in practice? To give some ideas to this we performed three stages combining the 
single point methods (i.e., m = n, kj = 1, in the above notation; there are more efficient but 
mathematically equivalent formulae in the literature, see, e.g., [16] and the references quoted there) 
with the factorization method (M) as follows. 

Initial values for the point method. Use Aberth’s initial values (cf. [l, 111): zj = 
go + r*exp(2xi(j - 1)/n + 1/(2n)) where go:= - 0.22 - 0.33i, r = 10.53, n = 9, and set pj(Z) := 
Z - Zj* 

Perform the single point method (M). Compute iteratively new linear factors pj(z) = z - Zj 
by method (M) which is mathematically equivalent to Durand-Kerner’s or 
WeierstraB’ method (M = 1) or to Aberth’s method (M = 2) until the following termination 
criterion is satisfied. 
Stopping criterion for the first stage. Terminate the previous computation once the actual approxi- 
mating factors satisfy 

IIf (modpj)II <~~*Ilfll forallj=l,...,n, 

where cl > 0 is small - but not too small (we set cl = l/100). 
Form clusters for the second stage. Let pj(z) = z - zj be the factors satisfying the stopping criterion 
for the first stage. Then partition the related distinct approximating zeros zl, . . . , z, in m sets 
Zj’,..., zj”j(j= l,...,m)such that 

(For simplicity, we implemented a procedure which gives maxy, 1 max? “= 1 IzJ - z; I < 3.) Set 

pi(Z):=(Z-Zf)‘*‘(Z-Zy) forallj= l,...,m. 

Perform the factoring method (M). Compute iteratively new factors pj by method (M) until the 
following termination criterion is satisfied. 
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Table 5 
Single point method: CPU time in msecs (number of iterations) 

M\6 10-3 10-5 10-7 10-9 

1 131(27) 151(32) 164 (32) 175 (32) 
2 112(18) 129 (21) 133 (19) 144(19) 
3 119(13) 138 (15) 149(15) 161 (15) 

Table 6 
Combined method: CPU time in msecs (number of iterations) 

M\6 10-3 10-S lo-’ 10-9 

1 116 (20) 118 (20) 118 (20) 118 (20) 
2 lOl(11) lOl(l1) lOl(11) lOl(11) 
3 119 (10) 120 (10) 120(10) 120(10) 

Stopping criterion for the second stage. Terminate the previous computation once the actual 
approximating factors satisfy 

IIf(modpj)II <sJF (modPj)I) for allj= l,...,m, 

where .s2 > 0 is small (we set s2 = lo- i2) and the polynomials F and Pj are given by f and pj taking 
the corresponding moduli of the coefficients instead of the coefficients themselves: if f(z) = z” + 
a,_r.z”-l + a.. + a0 and pj(z) = Zkj + bkj-l’Zkj-’ + a** + bo then F(Z):= Z" + l~,,-ll+~"-' 

+ *** + 1~01 and Pj(Z):= Zkj - Ibkj_lI'zkjel - .** - Ibol. 

The combined method and the single point method were performed in FORTRAN on 
Macintosh with IEEE double precision with about 16 decimal digits. Table 5 shows the 
CPU time in milliseconds and in parentheses the related number of iterations used until 
termination of the single point method with M = 1,2,3 for a varying polynomial f, 
i.e., for various parameters 6. 

One observes from Table 5 that the smaller the perturbation of the zeros in the cluster are the 
larger is the computer time of the single point method which affirms considerations in the 
literature, e.g., in [l, 5, g]. 

Table 6 shows the corresponding values for the combined methods (l), (2) and (3) and 
proves that 6 has no practical influence on the computer effort required - as predicted by 
Theorem 3.1 because there is no difference in the underlying concept of a cluster or a multiple 
root. The computer time used for stage 2 of the combined method is about 20%. For example, for 
6 = lo-‘, M = 1, 17 and 3 iteration steps are performed in stage 1 and 2, respectively. Moreover, 
comparing Table 5 with 6, the combined methods are more efficient if we have multiple zeros or 
a cluster of zeros. 
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7. Comments 

For which A4 is method (M) the most efficient? This question is hard to answer because 
the arithmetical costs depend on kr, . . . , km; for the linear case k1 = .a. = k, = 1, 
see [16]. We measured computer time in Section 6 and found that all methods are 
comparable. Which method is the most efficient in the example depends on the details in 
the computer realization. 

The use of the Euclidean algorithm for polynomials of high degree causes numerical instability. 
Hence, if one observes stability problems (e.g., the convergence rate is not as expected, etc.) one 
should use exact arithmetic and keep the degrees of the polynomials involved as small as possible, 
i.e., use Grau’s method, A4 = 1. 

One advantage of simultaneous methods is that they avoid deflation, i.e., the division of 
polynomials by some well-approximating factor. Moreover, one might expect that the simulta- 
neous methods are more robust with respect to poor initial data - for the linear case it is still 
conjectured that Durand-Kerner’s method is almost globally convergent [ll]. The combined 
methods, as introduced in Section 6, seem to be an appropriate tool for the practical computation 
of all polynomial roots. Nevertheless, the stopping criterions are expensive and the forming of 
clusters should be performed more flexibly and more adaptively, in particular using more informa- 
tion on multiplicities from the first stage (see, e.g. [l, 5, 8, 11, 121). 

We finally mention that a posteriori error estimates may be obtained, e.g., via an interpretation 
of Grau’s method (M = 1) using companion matrices (cf. [4, Section 31). 
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