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QD-Type Algorithms for the Nonnormal 
Newton-Pad  Approximation Table 

B. Beckermann  and C. Carstensen 

Abstract. It is well known that solutions of the rational interpolation problem or 
Newton-Pad6 approximation problem can be represented with the help of continued 
fractions if certain normality assumptions are satisfied. By comparing two interpolating 
continued fractions, one obtains a recursive QD-type scheme for computing the required 
coefficients. In this paper a uniform approach is given for two different interpolating 
continued fractions of ascending and descending type, generalizing ideas of Rutishauser, 
Gragg, Claessens, and others. 

In the nonnormal case some of the interpolants are equal yielding so-called singu- 
lar blocks. By appropriate "skips" in the Newton-Pad6 table modified interpolating 
continued fractions are derived which involve polynomials known from the Kronecker 
algorithm and from the Werner-Gutknecht algorithm as well as from the modification 
of the cross-rule proposed recently by the authors. A corresponding QD-type algorithm 
for the nonnormal Newton-Pad5 table is presented. Finally, the particular case of Pad6 
approximation is discussed where--as in Cordellier's modified cross-rule--the given 
recurrence relations become simpler. 

1. I n t r o d u c t i o n  

Throughout  this paper  we will represent  rational interpolants with the help of  continued 
fractions 

A1 1+ A3 
(1.1) B 0 +  B[--~l ~ 2 2  + ABe33 + - . . ,  

where A 1, A2 . . . .  and B0, B1 . . . .  are complex-valued polynomials .  It is well  known that 
the numera tor  pj and the denomina tor  qj of  the j t h  convergent 

A l l  A21 ~ 3 3  A j l  = 8 ~  + + r s j  

satisfy the three-term recurrence relat ion (for j = 1, 2, 3 . . . .  ) 

p j  = B j  . p j - I  + A j  . p j _ 2 ,  

q j  = B j  " q j - 1  + A j  " q j - 2 ,  
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together with the initializations P-1 = 1, P0 = Bo, q-1 = 0, and qo = 1 (see, e.g.~ [13, 
Chapter 1]). For these basic recurrence relations we will use the shorter notation 

(1.2) ( P J ) = B j . ( P J - I ~ + A j . ( P J - 2 ~ .  
qj \ q j - 1 /  \ q j - 2 /  

Note that the numerator and denominator of a convergent are only unique up to scaling, 
i�9 up to multiplication with a common factor. Switching to a different scaling cor- 
responds to an equivalence transformation of the continued fraction. Obviously, for a 
continued fraction to be nonterminating we have to suppose that Aj 5~ 0 for all j or, 
equivalently, that two succeeding convergents have to be distinct�9 

For Pad6 approximation (i.e., rational interpolation at a single confluent knot), 
Rufishauser proposed to consider the following interpolating continued fraction 

Ck+lxk+ll-- q~ k+l)x l-- el(k+i)x ] . . . .  , 
(1.3) co + . . .  + ckx +1 

1 I 1 L 1 
i 

where co, cl, c2 . . . .  are the coefficients of a given power series. The quantities qff) and 

ejk  are usually displayed in the so-called QD-table 

eo (1) 
(i) 

ql 
e(o 2, el l) 

q~2) 

(3) el2) e 0 
q~3) 

e(04) �9 el3) 

(i) 
q2 

e~ 1) 

q~2) -.. 

�9 e2(2) 

(k) These coefficients can be computed simultaneously for all indices k according to e 0 = 0, 

q~k) = Ck+l/Ck, 

_(k) e~k+l) 
e~k) (k+l) q(k+i) _(k) and qe+l 

- -  e e - 1  = e - -  6/s (k-l-e) - -  (k) 
qe ee 

(k, s = 1, 2, 3 . . . .  ) which justifies Rutishauser's notion "Quotienten-Differenzen-Algo- 
rithms" or, simply, QD-algorithm [21 ]. This method is well established in numerical anal- 
ysis, and we may refer to standard literature for proofs and further interesting properties 
of  the algorithm. In particular, the convergents of (1.3) are equal to the entries 

(1.4) Tde~c: rk,O, rk+l,0, rk+l,1, rk+2,1, rk+2,2, rk+3,2 . . . .  (k = O, 1, 2 . . . .  ) 

of the Pad6 table, which lie on a descending staircase. 
Generalizations of  the QD-algorithm to the Newton-Pad6 case (rational interpola- 

tion with arbitrary knots) using various scalings were given in [7], [17], and [24]. An 
ascending QD-type algorithm was stated in [16] and was generalized to Newton-Pad6 
approximation in [8]. It yields rational interpolants on an ascending staircase 

(1.5) TkaSC: rk,0, rk-I,0, rk-l,1, rk-2,1, rk-2,2, rk-3,2 . . . . .  rO,k (k = 1, 2 . . . .  ). 
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In the first part of the paper we briefly review both types of interpolating continued 
fractions using a uniform approach. It is shown that the entries of a so-called b-table, 
which is computed by a QD-type algorithm, enable us to construct simultaneously all 
Tfl esc, k > 0, and T~ asc, k > 0. The resulting interpolating continued fractions include 
those from [8] and [16], but we use a scaling different from that in (1.3) (and its general- 
izations [7], [17], [24]), which is the same as in the descending interpolating continued 
fraction due to Thiele. 

All QD-type algorithms mentioned above obviously require the regularity assumption 
that any two neighboring rational interpolants (i.e., successive convergents in any T~ esc 
or T~ asc) are distinct. This is called the normal case. In the second part of this paper we 
consider the more general nonnormal case where singular blocks might occur, which 
leads to various difficulties. In [2] and [3] the authors generalized Claessens' cross-rule 
to the nonnormal Newton-Pad6 approximation table so that the question "How to modify 
the above continued fractions then?" appears naturally and is solved in this paper. 

An appropriate modification for interpolating continued fractions seems to be straight- 
forward. The main idea here is to consider a (maximal) subsequence of interpolants from 
T flesc or Tk asc such that two successive approximants are distinct, i.e., we "skip" singular 
blocks along diagonals and antidiagonals, respectively. Descending continued fractions 
modified in this way are obtained by, e.g., the method of Werner [23] and its generaliza- 
tions due to Gutknecht [18], or by the Viskovatov method (see, e.g., [13, p. 89] and [1, 
I, p. 129 ff]). 

The skips on ascending staircases are implicit in the recurrence relation of the modified 
Kronecker algorithm [1, Part II]. However, for these methods we fix k and consider only 
one continued fraction, hence they are not efficient if one is interested in more than one 
interpolating continued fraction. 

As far as we know, for the nonnormal case, QD-type schemes connecting neighboring 
staircases T~ r and Tdesc have only been given for Pad6 approximation [9], [14], [19], ~k+l 
and [20]. In [9], horizontal and vertical skips are suggested leading to quite complicated 
recurrence relations. Moreover, Draux mentioned [14, p. 167] that in addition to the 
proposed three basic relations one has to apply 14 other rules in order to cover all 
singular cases. 

The paper is organized as follows. In Section 2 we fix the notation and give Froebenius 
identities of type (1.2). These yield the interpolating continued fractions T~ esc and Tk asc, 
k > 0, for the normal case discussed in Section 3. All required scalar coefficients 
au,~ = bu,~ are displayed in the b-table introduced in Section 4, where we propose a 
new QD-type algorithm closely connected to Claessens' cross-rule [6]. 

For the convenience of the reader, we give a description of singular blocks in the 
nonnormal Newton-Pad6 table and review some results from [2], [3], [5], and [18] in 
Section 5. Then, in Section 6, the computation of the nonnormal b-table is discussed. 
Using some technical lemmas proved in Section 7, we treat the modification of the as- 
cending continued fraction in Section 8. Here--similar to the reliable modification of 
Claessens' cross-rule [2], [3J--the Kronecker polynomials a are essential. The modi- 
fication of the descending interpolating Thiele fraction in Section 9 leads to different 
polynomials /~ related to Werner polynomials [23], as already studied by Gutknecht 
[18]. In Section 10 we derive recurrence relations for these polynomials where again 
the coefficients bu,v are required. Connections between the Kronecker and the Werner 



310 B. Beckermann and C. Carstensen 

polynomials are pointed out in Section 11. In Section 12 we study the particular case of  
nonnormal Pad6 approximation where many formulas simplify. Some conclusions and 
a summary of the results of  this paper are given in Section 13. 

2. Notation 

Let (z0, zl, z2 . . . .  ) be a sequence of (not necessarily distinct) knots in the complex 
plane. Let f be a function, sufficiently smooth in a neighborhood of these knots. For 
integers m, n > 0 the rational interpolation problem consists in finding polynomials 
Pm,n and qm,n with degrees bounded by m and n, respectively, such that f - Pm,n/qm,n 

has at least the zeros z0 . . . . .  Zm+., counting multiplicities. We consider the Newton-Pad~ 
approximation problem which is the linearized rational interpolation problem, i.e., we 
demand that q,~,n �9 f - Pm,n has the above zeros. Claessens [4] showed that there exist 
unique polynomials Pro,n* and qm,n* of minimal degree deg P~,n - < m, deg q*m,n -< n, q~n,~ 
being a monic polynomial, such that q~,n" f - P~,, has the zeros zo . . . . .  Zm+n, counting 
multiplicities, andany  other solution of this linearized rational approximation problem 
is of the form s - p~,~ and s �9 q * ,  with an arbitrary polynoimal s of  suitable degree. 
In particular, for any solution Pm,n and qm,, of  the linearized rational approximation 
problem the meromorphic function 

Pm,n P* m,n 
rm,  n . - -  

qm ,n * qm~n 

is the same. It is known (see, e.g., [1], [4], and [13]), that, in general, the minimal poly- 
nomials P'm,, and q~*,~ might have common, possibly multiple zeros called unattainable 
points that are members of  (z0 . . . . .  z,n+~). Moreover, the rational interpolation problem 
is solvable (with the unique solution rm,n) iff there are no such unattainable points. 

In this paper we consider the computation of the table (rm,n: m, n = 0, 1, 2 . . . .  ), 
called the Newton-Padd table~ or some finite part of it. This problem is well studied if 
the table is normal, i.e., if two neighbors are distinct: 

rm,n+l ~& r . . . .  # r,~+l,, (m, n = O, 1, 2 . . . .  ). 

It is well known (see, e.g., [3]) that in the normal case the degrees of  the numerator and 
denominator are maximal, deg Pro,n* = m and deg qm,n* ~ n. 

In the context of QD-type algorithms the numbers 

(2.6) am,n := leading coefficient of p~,. ,  bm,n : =  lim z n-m " rm,n (Z), 
Z--~ O~ 

will play an important role. The quantity am,n ~ C\{0} is called the leading coefficient of 
r.,,~ since the leading coefficient of  q~,,~ always has to be 1. The asymptotic coefficient 

bm,~ takes one of the values am,n, 0, ~X~ from the extended complex plane C; in particular 
bm,n = am,n if and only if deg p,~,~ - deg q,~,,, = m - n. 

Note that the tables (a,n~n: m, n = 0, 1, 2 . . . .  ) and (b,~,~: m, n = 0, 1, 2 . . . .  ) (shortly 
called a-table and b-table, respectively) coincide exactly in the normal case. 

For simplicity, we assume that there are no singularities at the border of the Newton-  
Pad6 table. Then 1 / f  has a Newton series, and we find the coefficients ao,j and aj,o 
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in  
o~ 

(2.7) f (z) = Z aj,o " COo,k (z) 
j=0  

o r  

1 ~ 1 
(2.8) -- ~ - -  �9 , O)o j (Z ) 

f (z) j=0 ao, j 

using the polynomials o)i,i(z) := 1 and for i < j 

(.Oi,j(Z) := (Z -- Z i ) '  (Z - -  Z/+I)  . . . . .  (Z -- Zj--I). 

As mentioned in Section 1, a continued fraction is determined by the three-term 
recurrences (1.2). The recurrences corresponding to T~ esc and Tk asc are given in the next 
theorem. These Froebenius identities are well known from Pad6 approximation (see, 
e.g., [15, p. 359 f] or [1]) and have a natural generalization to the normal Newton-Padd 
case [22]. 

Theorem 2.1 (Froebenius Identities). Assuming that the Newton-Padd table is normal, 
we have for m, n > 0 

�9 p* 
(2.9) o (m,n+l'~ 

q* �9 ~ m,.+l/] 

( ? )  0 P ,n+l 
(2.10) * * \qm,n+l  "l 

(** ) �9 �9 P,,,+1,~+1 (2.11) 
o \qm+l,n+l .] 

(2.12) * o 

(:2) = (Z--Zm+n+l)"  __ am,n ( m+l,n~, 
q* am+l,n • m+l,n,] 

= P* _ . P* ( m+l,n+l'~ a m + l , n + l  ( m + l , n ~ ,  
q* q* 

m+l ,n+l  J am+l,n \ m+l,nJ 

Pm,n 
= am+l,n+lam,n " (Z -- Zm+n+l)" \qm,n,  ] .  

( -~- I am+l,n+l ( m , n + l ~ ,  
am,n ~,q*,n+l ] 

P + l ,n+ l  = (Z -- Zm+n+l)" 
\qm+l,n+l I 

p* _1_ (am+l,n+l am,n ~ .  ( m+l,n'~ 
q* k am+l,n am+l,n/ \ m+l,n,] 

Proof.  As an example, we give the proof of (2.9). Let 

P* = (Pm,n+l )  __ (Z__Zm+n+l).  (Pm,n~ 
~ )q*  \qm,n+l / k, qm,n ] '  

then degq* < n (since the denominators are monic) and deg p* = m + 1. Moreover, 

* * ) - -  Z * " * P* - f "  q* = (Pm,n+l - f "  qm,n+l (Z -- m+n+l)(Pm n -- f qm,n)' 
and therefore (p* - f .  q*) has the zeros z0 . . . . .  zm+n+l. Consequently, (p*, q*) solves 
the linear rational approximation problem and, by definition of the minimal polynomials, 
is a scalar multiple of (P*+l,n, q*+l,n). The factor -am,n/am+l,,, is found by comparing 
the leading coefficients of p* and P*+l,n" �9 

A different way to prove Theorem 2.1 is based on so-called Padd determinants, which 
are also useful for nonnormal tables (see Section 7). 
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3. Continued Fractions in the Normal Newton-Pad~ Approximation Table 

From Theorem 2.1 we immediately obtain the following interpolating continued frac- 
tions. In Theorem 3.1(a) we use- - in  contrast to [7], [17], [21], and [24J--the same 
scaling as for the Thiele continued fraction whereas the scaling in (b) coincides with that 
in [8] and [16]. 

Theorem 3.1. Assume that the Newton-Padd table is normal. Then the following holds. 

(a) For fixed k > O, the (2j)  and (2j  + 1)th convergent of the continued fraction 
rk deSC 

k 

f (z) = E aj,o " Coo,j(Z) 
j=0 

+l o~o,~+,(z)l+ I z - z ~ + ,  L+ z-z_~+~ ] 
llak+l,0 ak+l,1 -- ak,o [ 1/a~+2,1 -- llak+l,0 

OG 

E +  + 
j=~ I a~+j,j - a~+j-,,j-1 I 1/a~+j+l,j - 1/a~+i,j-1 

is equal to rk+j, j and rk+j+l,j, respectively, j = O, 1, 2 . . . . .  
(b). For fixed k >_ 1, the (2j)  and (2j  + 1)th convergent of the continued fraction T~ s~ 

k 
ak,O " O)O,k(Z) J 

f ( z )  = E a j , o . w o  j ( z ) - -  f 
' I 1 j=0 

+ 

_ aO,k-1/al,k-1 I 

a - -  Zk 

ak-l,O/ak,O j_  ak-l,1/ak-l,O [ 
[ a - z ~  I 1 

ak-j,j/ak-j,j-1 
[ 1 

is equal to r~_),j and rk-j=l,j, respectively, j = 0, 1, 2 . . . . .  

Proofi To show (a) one can easily verify that (1.2) and the corresponding initial con- 
ditions yield the partial numerators and denominators 

:= P* (Pk+2j~ (k+j , j '~  and . -  q* . 
\qk+2j/  \q~+j,j/I \qk+2j+l/ ak + j + 1, j \ k4-j-f-l,jJ 

Here, the initialization is obvious and the three-term recurrence relations follow from 
(2.11) and (2.12). 

Similarly, in (b) the partial numerators and denominators 

p* 
(P,+2j~ :=  ( k-j,j~ and := 
\qk+2j/ \q;_j,j,] \qk+2j+l/ \q~- j - l , jJ  

are determined using (2.9) and (2.10). [] 
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R e m a r k  1. The connections between the coefficients bm,n : am,n and the reciprocal 

dif ferences are pointed out in [13, p. 144]. 

R e m a r k  2. The polynomial identities of  Theorem 2.1 are also valid in the upper half 
of  the Newton-Pad6 table; therefore, descending continued fractions can also be given 
for values k < - 1 .  This follows already from a more general duality principle: 1/rm,n 

is the (n, m)-rational interpolant of  1 / f  with leading coefficent 1/am,~ and asymptotic 
coefficient 1/b  . . . .  

4. The Normal b-Table 

Claessens' e-algorithm [6] allows us to compute the values of  the normal Newton-Pad6 
table with the cross-rule 

1 ' / 
(4.13) 

Z - -  Zm+n r m , n - l ( Z )  - -  rm,n(Z)  r m - l , n ( Z )  - -  rm,n(Z)  

1 I } 
Z -- Zm+n+l rm+l,n(Z) -- rm,n(Z) rm,n+l(Z) -- rm,n(Z) 

which yields a recursion for rm,~+l. Supposing the normal case, we can use the cross-rule 
to compute the coefficients am,n = bm,n as described below. For initialization only the 
coefficients of  the (formal) Newton series (2.7) are required. Note that (4.13) as well as 
the QD-type algorithm of Theorem 4.1 are invariant with respect to the duality principle 
of  Remark 2. 

Theorem 4.1. Let  am,n be the leading coefficient o f  p*  ~, and let, in addition, a - l , j  :=  
O, aj,-1 :=  ~ f o r  j : O, 1 . . . . .  Then 

(4.14) am,______~n § a m - l , n  __ am,n § am,n+l § Zm+n+l - -  Zm+n. 

a m , n - I  am,n am+l,n am,n 

Proof. The initialization is the same as for (4.13) in [6]. In order to prove (4.14) multiply 
(4.13) with (z - Zm+~) �9 rm,~, consider the asymptotic series of  the negative powers of  z 
for z ~ oc ,  and compare the coefficient of  z -1. First, note that 

rm..(Z)  

rm,n-1 (Z) -- rm'n (Z) 

rm,n(Z) 

rm+l, . (Z)  -- rm, . (Z)  

Similarly, we obtain the asymptotics 

rm,n(Z) 

rm,n+l(Z ) -- rm,n(Z ) 

rm,n(Z) 

rm- l , , (Z)  -- rm,n(Z) 

Z - -  Zm+n 

Z --  Zm+n+l 

: Z_  1 am,n § O(Z_I) ' 
am,n-1  

: Z_  1 am,n § 
am+ l,n 

= - 1  + rm,n+l(Z) = --1 - -Z  - lam'n+l  § 
rm,n+l (Z) - -  rm,n(z) am,n 

= - 1  + rm-l,n(z) = - 1  - z  - l a m - l ' n  §  
rm--l,n (Z) -- rm,n (Z) am,n 

: 1 + Z--I(z,~+n+I -- Zm+~) + O(Z--1). 

Consequently, (4.13) implies (4.14). 
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Table 1. Singular block in the Newton-Pad6 table. 

ru, ~ v = - 1  0 1 2 3 4 5 

oo oo oG 00 (x) 00 

0 NEo NE1 NE2 NE3 
0 SWo C C C NE4 
0 SWI C C C NE5 NE6 
0 SW2 C C C C NET 
0 SW3 SW4 SW5 C C NE8 
0 SW 6 SW 7 SW 8 

0 
1 
2 
3 
4 
5 

5. The Nonnormal Newton-Pad~ Approximation Table 

In the previous section we considered the normal Newton-Pad6 approximation table 
where "neighbors" are pairwise distinct. In this section we drop this assumption and 
assume that some neighbors are equal to rm,n = :  C. Then the set of  coordinates (/z, v) 
with ru,~ = rm,n = C is called a singular block. Claessens described the structure of the 
singular block with starting point (m, n) as a union of  squares forming a symmetric tail 
along the diagonal through (m, n). This is illustrated in Table 1 with (m, n) = (1, 1). 

This block property, proved, e.g., in [5] and [18], can be formulated as follows. A 
starting point (m, n), 1 _< m, n, is characterized by rm,n =:  C and rm-l,n ~ C ~ rm,n-1. 
Then all interpolants lying in a square with upper left comer (m + l, n + l) and lower 
fight comer (m + l + k - 1, n + 1 + k - 1) are equal to C, i.e., 

(5.15) C = r,n+l+K,n+l+X (tO, L = 0, 1 . . . . .  k - 1), 

p r o v i d e d  tha t  rm+k+l-l,n+l = C or  rm+l,n+l+k-1 : C fo r  any  i n t e g e r s  l ,  k. 

In order to choose notation along the antidiagonals m + n = j - 1, j _> 0, let kj 
describe the number of occurrences of C on this antidiagonal. Then k0 = 0 and there 
exists a positive integer p (or p = c~ if the block is infinite) with kl . . . . .  k2p-1 > O, 

k2p = O. Note that the upper left comer of the square (5.15) (induced by the equal 
interpolants on the antidiagonal m +  n + j - 1) must take the form (m + lj , n + lj ) with 
an integer lj > O. Consequently, on the antidiagonal rn + n + j - 1 we have 

(5.16) S W j  : :  rm+lj+kj,n+lj_ 1 ~ C 

= rm+lj+kj-l,n+l j = rm+lj+kj-2,n+lj+ 1 = . . . = rm+lj,n+lj+kj- 1 

= C ~ rm+lj-l,n+lj+k i -----: N E j ,  

compare Table 1. The notation is as in [2] and [3], and we remark that indeed j = kj +2t j ,  
so that one of the variables j ,  kj, lj could be neglected. 

The characteristic numbers lj, kj determining the shape of the singular block (see 
Figure 1) can be described with the help of  interpolating properties of  rm,n : Let A (resp. 
U) denote the set of  indices j 6 {0 . . . . .  2p - 1} such that rm,n interpolates (does not 
interpolate) the function f at knot zm+~+j. Then lj + kj (resp. l j) equals the number of  
elements smaller than j in A (resp. U), which, in fact, coincides with the number of  
attainable (resp. unattainable) knots of  r,~+tj +kj - 1,n+lj in (Zm+ . . . . . .  Z,~+~+j- 1 ), counting 
multiplicities. This follows from the well-known representation [5] and [18] for the 
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I I I I  I I I I I I I I 1 ,  

0 0 0 0 0 

I ~ o 0 0 

0 0 0 0 0  

�9 lj 

0 

0 

l j  

0 

0 

o ] kj o /  
^ = 

m 

0 0 0 0 J 

0 0 

0 

0 

0 

0 

Fig. 1. A singular block with characteristic numbers (the circles characterize neighbors). 

corresponding minimal solution of the linearized problem 

P *  ~ * (5 .17)  ( m+ljwkj-l-i,n+lj+i~ I--I (Z--ZmWnq-v)" (Pm,n),  
qm+lj+kj-l-i,n+lj+i J v<j,veU \qm,n] 

f o r 0 <  j < 2 p ,  0 < i  < k j .  
As proved in [2] and [3] the neighbors of a singular block are connected by cross-rule 

type identities. Let c~j be a meromorphic function such that 

1 1 I-IiEu,i<j(Z -- Zm+n+i) qm,n* 2 
(5 .18)  SWj - C NE)-------~- ~ -- Olj �9 l_ii~z,i<j(Z __ Zm+n+i) am,n "O-)O,m+n" 

Note that, by (5.18), any recurrence relation for o~j leads to an identity in the nonnormal 
Newton-Pad6 approximation table and vice versa. 

Theorem 5.1 (See [2] and [3]). ct0, cq, ct2 . . . .  are monicpolynomials o f  degree ko, k], 
k2 . . . .  called Kronecker polynomials. There holds Oto = 1 and for  any j > 0 

ctj+l(z) = otj(z) . (z - zm+n+j) - cj i f  j c A,  

Olj(Z) = Otj+l(Z ) �9 (Z --Zm+n+j) --Cj+I i f  j E U, 

where 

b m , n  bm+lj-l,n+lj+kj 
(5.19) cj = bm+lj+kj,n+lj-I q- bm,n ~ C .  
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R e m a r k  3. If  we have a trivial block containing only (m, n), i.e., if rm,n is different from 

rm+l ,n , rm ,n+l , rm- l , n ,andrm,n - l , t henko  = k2 = l0 = ll = 0, kl = 12 = 1,~0 = oe2 = 1, 
and from Theorem 5.1, after eliminating Otl, we obtain c2 = co + Zm+n - Zm+~+l or 

am,n bm- l,n am,n bin,n+1 
(5.20) - -  + - -  - - -  + + zm+~+l - z,,+~, 

bm,n-1 am,n bm+l,n am,n 

which generalizes Theorem 4.1. 

In the sequel, we say that the coordinate (/z, v) lies at the northern border of  a block 
induced by rm,, if ru,~ = rm,, but rl,_l,~ r rm,~; we will use the short notation (# ,  v) = 
C N .  Similarly, we will write C W ,  C S ,  and C E  for coordinates at the other borders 
and note that cases like C N  = C E ,  etc., can occur. In addition, coordinates in the 
neighborhood of a singular block will be denoted by N, W, S, and E, e.g., E = (/z, v) 
is an eastern neighbor if ru,~ ~ rm, n but r~,~_~ = rm,n. Finally, for two coordinates 
C1 = (/zl, vl), C2 = (/z2, v2) lying in the common singular block induced by rm,,, 

~1 :=/~1 + vl - m - n < ~2 :=  ]/,2 + 1)2 - -  m - n, we will use the short notation 

o)UI,c2 (Z) = I - I  (Z- -  Zm4-nq-i), (-OcAI ,C2 (Z) = I - I  (Z -- Zm+n+i), 
~ <i <82,i EU 6~ <i <a2,i EA 

such that, for instance,  

(5.21) Pb2 : cOU * CI ,C2 " p c  I , 

and if 

(5.22) 

q~2 : ('OU * c,,c2 " qc, , 

~1 E A: w v �9 co A CI ,C2  C I , C 2  ~ O)]Zl-t-1)l,/s 1 . 

Remark 4. If  (m, n) is a starting point of a singular block, i.e., rm_ 1 ~k rm, n ~k rm,n_i, 

then necessarily deg p* , ,  = m and deg qm*,n = n holds (see [3, Theorem 1 ] or Lemma 7.2 
below). From (5.17) we can conclude that the degrees of  the numerators p~,,~ all have 
maximal degree /z  for (# ,  v) = C N ,  C E ,  W ,  S, and the degrees of  the denominators 
q**,~ all have maximal degree v for (/,, v) = C W ,  C S ,  N ,  and E.  

6. The Nonnormal  b-Table 

Of course, the asymptotic coefficient bu,~ introduced in Section 2 is also well defined 
in the nonnormal case, but now it might take one of  the values 0, e~ different from the 
leading coefficient au,~. A singular block in the table of  Newton-Pad6 approximants 
(ru,~) with starting point (m, n) canonically leads to a related "singular block" in the 
b-table with the same coordinates. From deg P~,,n = m and deg qm*,n = n (see Remark 4) 
and (5.17) we can conclude that the nonvanishing complex number bm,n = am,n can be 
found on the diagonal of the block through (m, n) while all other entries corresponding 
to the singular block are zero or infinity. The b-table related to Table 1 is given in 
Table 2. 

Note that due to Remark 4 the coefficients b~,~ are different from zero for (/z, v) = 
CN,  C E, W, and S and different from infinity for (#,  v) = C W, C S, N, and E. Therefore 
we are able to determine singular blocks uniquely if the b-table is (partly) known. Also, 
the nonnormal a- table  is determined by the b-table: The leading coefficient au,~ with 
(#,  v) lying in a singular block with starting point (m, n) is given by a,,~ = b . . . .  
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Table 2. Singular block in the b-table. 

blz,v v = - 1  0 1 2 3 4 5 

# = - 1  oo {x) ~ oo oo oo 

1 0 #0  al,1 ~x~ ~ r  
2 0 7(=0 0 al,l oo 7&oo 5&oo 
3 0 r  0 0 a l l  oo :/=~ 
4 0 r  7~0 r  0 al,I :/:cx~ 
5 o r r r 
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Theorem 6.1. Using the initializations and recurrence relations of Theorem 4.1 and 
5.1, the nonnormal b-table as well as the corresponding Kronecker polynomials can be 
computed without any a priori information about singular blocks. 

Proof. By applying (5.20) we are able to detect a singular block in the b-table and to 
determine its shape and all western, southern, and some of its northern neighbors. The 
process is similar to the strategy described in [3] for computing the values in the nonnor- 
mal Newton-Pad6 approximation table along antidiagonals via the reliable modification 
of Claessens' cross-rule. Using Theorem 5.1, we obtain the first Kronecker polynomials 
aj for j e A. Again Theorem 5.1 yields the missing polynomials aj (for j e U) together 
with the eastern neighbors bE of the singular block considered. For details we refer to 
[31. �9 

Instead of giving a complete algorithmic description, let us illustrate the preceding 
theorem by the following example where the singular block of Tables 1 and 2 is discussed. 
The entries of the nonnormal b-table and the Kronecker polynomials will be required 
for the modification of the continued fractions of Theorem 3.1 in Sections 8 and 9. 

Example 6.1. Taking the coordinates as described in Table 1, we suppose that all 
western and southern neighbors bswj, j = 0, 1, 2, 4, 5, 7, 8 and the northern neighbors 
bNE~ for j = 0, 1, 2 have already been computed by Theorem 4.1 or by a singular 
rule with respect to another singular block. Hence the shape of the singular block (with 
A = {0, 1, 2, 5} and U = {3, 4, 6, 7}) as well as the quantities co, cl, c2 of (5.19) are 
known. By Theorem 5.1 we may initialize or0 = 1 and compute a i ,  a2, a3. Moreover, 
~4, a5 are also completely determined since 3, 4 6 U. This gives c4, c5 and by (5.19) 
we obtain bNe: for j = 4, 5. Theorem 5.1 enables us again to compute or6, ~7, as = 1 
and c7, c8 leading to bNEj for j = 7, 8. 

The missing quantities bNe: for j = 3, 6 can be obtained by applying Theorem 4.1 
or (for j = 6) by recognizing that bNE5 = 0 implies that bNE4 and bNE~ induce a new 
singular block and hence blvE, = bNE,. 
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7. Tools 

The following two simple lemmas are useful tools. U, V, W e N 2 denote coordinates 
in the Newton-Pad6 table. 

Lemma 7.1 (See [9]). We have 

( P u ' ]  : det[U, W].  ( P ~ ' ]  - d e t [ U ,  V] .  (P~v'] det[V, W] .  \q{z , 1 \q~" J \q~r 

Proof.  Expand 

det[U, V] := det ( P b  P) '~ 
~,q~ q~,]"  

{P~ P)  P~v'~ {P~  P~ P~v~ 
0 = d e t l q •  q~ q~v |  = d e t l q b  q~ q~v |  

\ P b  P)  P w ]  \ q b  q~ q~v,] 

with respect to the last row. 

Lemma 7.2 (See [9] and [13]). Let m, n, Iz, v c No with m + n < tz + v. Then there 
exists a unique polynomial ot of degree less than or equal to max{/~ - m - 1, v - n - 1} 
with 

 0m+.+l det[(m, n), (/z, v)] = det kq*, .  qu,~.] 

Moreover,/fdeg p,~,. + deg q~,~ - deg p~,~ - deg qm*,. > 0 (resp. < 0), then the leading 
coefficient of  ~ is equal to am,. (resp. equal to au,~). 

Proof.  The polynomial 

p* q* - p *  * �9 ( , _ * ) _  * ( * _ . 
m,n U,v #.vqm,n = qiz,v Pm,n f qm,n Pm,n P~z,v f qu,v) 

has at least the zeros z o , . . . ,  Zm+n, counting multiplicities (due to the interpolation 
conditions of  the linearized problem), and is of degree _< max{m + v, n +/z}. This yields 
the lemma. �9 

8. Reliable Modification of  the Ascending Continued Fraction 

In this section we consider the ascending continued fraction Tk ~sc of Theorem 3.1 (b) [8], 
[16] which determines ( rk ,0 ,  rk-l,0, rk-l, I, rk-2,1 . . . . .  rO,k) for any integer k > 0. 

Let (5.16) hold for some integers m, n, kj, lj >_ 0 and suppose that both SWj and 
NEj  lie on the ascending staircase Tk asc and that the successor of  SWj in T~ asc is equal 
to C. Note that this situation covers a singular block (where we want to skip from C to 
N E j )  as well as a normal case (kj = 0, lj = 0, 1) in the antidiagonal (m + n + j - 1) 
( j  := kj + 2lj). 
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Table 3. Notation in Theorem 8.1. 

N CE E 
CN 

CS �9 
W CW S 

(a) (b) 
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We have to distinguish between the two cases ( S W j ,  N E j )  = (rw,  rN) and 
( S W j ,  N E j )  = (rs,  rE) as illustrated in Table 3. In case (a), the singular block be- 
comes wider while going from antidiagonal (m + n + j - 1) to (m + n + j ) ,  and hence 
j ~ A, whereas in (b) it becomes narrower while going from antidiagonal (m + n  + j - 2) 
t o ( m + n + j - 1 ) ( j - 1  E U ) .  

Theorem 8.1. Suppose that  (5.16) holds. 

(a) Let  rm+lj+kj,n+lj : C and define (see Table 3) C W = (m + lj + kj ,  n + l j ) ,  C N : 
(m + l j ,  n + l j  + k j ) ,  W : (m + l j  + k j ,  n q-lj  - 1), N : (m + l j  - 1, n + l j  + k j ) .  

Then, 

( P*N) ( P * c w )  _ ac___w . ( P ~ v )  
q ~ ]  = OtN,W. \ q b w ]  aw \ q ~ v ]  

with OtN, W being equal  to the Kronecker  polynomial  ~j of(5.18). 
(b) Let  r,~+l~+kj-l,~+t~-I = C and define (see Table 3) C S = (m + lj + kj - 1, n + 

# - 1 ) , C E  = ( m + I j  - 1,n +l~  + ~j - 1), S =  (m +l~ + k j ,  n +t~ - 1 ) ,  
E = (m + l j  - 1, n + l j  + k j ) .  Then, 

( P ' E )  ( P ~ s )  oc____ss.(P*s) 
, =OtS, e ' ( Z - - Z m + n + j - 1 ) ' \ q c s ] - -  as  * " 

qE * qs 

with as,  e being equal  to the Kronecker  polynomial  otj of(5.18). 

Proof.  We will only show the assertion of case (a) since a proof of  (b) can be given 
using the same methods. From Remark 4 and Lemma 7.2 we know that 

det[W, C W ]  = aw �9 WO,m+n+j and det[CN, N] = a c w  �9 wo,m+n+j 

and that we may define a (monic) polynomial aw.s  by 

det[W, N] = aw . aW, N �9 WO,m+n+j. 

Moreover, by assumption we have P~w = PCN* and qcw* = qcs* since the coordinates 
C W  and C N  lie on the same antidiagonal in the singular block. Hence the given identities 
for numerators and denominators follow from Lemma 7.1. It remains to prove aW, N = aj 
where aj satisfies (5.18). We get 

1 1 r N  - -  rw 

S W j  -- C N E j  - C (rN -- rCN) �9 (rw -- r c w )  

det[W, N] 

= q c u  " q c w  " det[CN, N] �9 det[W, C W ]  

qCN " qCW 
~ W , N  " 

a C W  �9 O)O,m+n+ j 
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Consequently, comparing qcu* = qCW* and qm,n* with the help of (5.17) completes the 
proof of  (a), �9 

9. R e l i a b l e  M o d i f i c a t i o n  o f  T h i e l e ' s  F r a c t i o n  

In this section we modify the Thiele-type fraction of  Theorem 3.1 (a) by deriving some 
relations for the minimal polynomials on the descending staircase. Similarly, as in the 
last section, we have to distinguish between two cases: We can enter a singular block at 
the western or the northern border. Note that if the last interpolant before the singular 
block has the local coordinates SW/ = rw and N E i  = rlv, then we always leave the 
singular block at interpolants S W j  = rs and N E j  = rE, respectively, with k i = kj and 
li < lj (and i c A, j - 1 6 U), since they must lie on the same diagonal. 

Theorem 9.1. Let  m,  n, i, j >_ 0 be integers and let (5.16) hold both f o r  j and f o r  j 

replaced by i with kj = ki, li < lj (i --  2Ii + ki < j = 21j + kj) .  

(a) Define W = (m + l i "q- ki,  n + li -- 1), C W  = (m + li d- ki,  n + li) , C S  : 
(m + lj + kj  - 1, n + lj - 1), S = (m + lj + k j ,  n + Ij - I) belonging all  to the same 

descending staircase, as shown in Table 4(a). Assume  rw r r c w  = C = rcs  # rs 
so that C W  and C S belong to the same singular block. Then there exists a unique 

polynomial  flw, s o f  degree less than lj - li, cal led the Werner  polynomial ,  with 

* _ W c w ,  cs  , ,fP~w'~, (9.24) 1 ( P s ~  A ( P ~ v ~  _]_ j~W,S .  

as  \ q s ]  aw \ q ~ v ]  k, q c w /  

1 1 * * q c w  ' qc s  (9.25) --  flw, s " 
rs -- C rw - -  C (.OO, m + n + j _  1 " 

(b) Define N = (m -~- Ii -- 1, n + Ii q- ki) ,  C N  = (m § ti, n + 1 i + ki) , C E  = 
(m +lj  - 1, n +l j  + k j  - 1), and E = (m +lj  - 1, n +l j  + k  j )  belonging all to the same 

descending staircase, as shown in Table 4(b). Assume  rN 5 & rCN = C = rCE 5 ~ rE 
SO that C W  and C S belong to the same s ingular  block. Then there exists a unique 
polynomial  fiU, E o f  degree less than lj - li, called the Werner polynomial ,  with 

(9.26) ( P ' e )  A (P*N~  _}_ ~N,E  . ( P ~ N ~  
q~ = 0 9 C N ' C E "  \ q*N/  aCN \ q ~ N ] '  

| 1 * * qCN " q c ~  (9.27) - -  - -  flU, E �9 
r N -- C rE -- C a2N �9 ( . O 0 , m + n + j _  1 " 

Table 4. Notation in Theorem 9.1. 

W CW 

(a) 

N 

c s  
s 

CN 

CE 
(b) 
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Proof. As in the proof of Theorem 8.1 we get from Remark 4 and Lemma 7.2, together 
with (5.21), (5.22), 

det[W, C W ]  = aw �9 WO,m+n+i, 
(o)U ~-1 det[S, C W ]  = det[S, CS] . (wVw,cs )  -1 = as " WO,m+n+j-1 " CW, CSJ 

A 
a S �9 O)O,m+n+ i . O)CW, C S 

(note that i ~ A), and we may define a polynomial/SW, N of degree less than lj - li by 

det[W, S] = aw �9 as  �9 fiw, s " Ogo,m+~+i. 

Then the identities for numerators and denominators follow from Lemma 7.1. In addition, 

1 1 det[W, S] 

rs - C rw - C q~w "q~w " det[S, C W ]  �9 det[W, C W ] '  

which gives the rest of assertion (a). The proof of (b) is similar; we omit the details. �9 

10. Recurrence Relations for Werner Polynomials 

The following theorem gives recurrence relations for the polynomials 15 required in 
Theorem 9.1. 

Theorem 10.1. 

(a) In addition to the definitions in case (a) o f  Theorem 9.1 let W = (m + li + ki + 

1, n -}-li - 1), C W  = ( m  + l i  + k i  + 1, n + l i ) ,  C S  = (m + l j  + k j  - 1, n + l j  - 2 ) ,  
and-S  = (m + lj + kj ,  n + lj - 2) such that, i f  W ,  C W ,  CS ,  and S belong to 
the staircase T~ esc, then W ,  C W ,  CS ,  and -S belong to the descending staircase 
Tk desc' Table  5(a). +1 ' s e e  

Assume  r W # r-dw = r c w  = rcs  = rug # r-g so that C W ,  C W ,  CS ,  and C S  
belong to the same s ingular  block. Then we have the Froebenius identities 

" "  ( P w )  a_.__~_W.(Z__Zm+n+i).(P~v ~ a w  ( P * c w ) ,  
(10.28) o qw = aw \q~v, I  -- -~w " \ q ~ w , ]  

�9 (Ps~ a-s.(p-s) a-s (P~s~ 
(10.29) o �9 \ q s j  = as q~ - - ~ s ' \ q b s , l '  

and the recurrence relation 

Table 5, Notation in Theorem 10.1. 

W C W  
W C W  

CS CS 
-g s 

(a) 

m 
C N  C N  

(b) 

CE E 

CE  E 
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B 
(b) In addition to the definitions in case (b) o f  Theorem 9.1 let N = (m + li - 1, n + 

li + ki + 1), C N = (m + li, n q- li q- ki -t- 1),  C E = (m + lj - 2, n -]- lj + kj  - 1),  

and E = (m + lj - 2, n + lj + kj)  such that, i f  N ,  C N ,  C E ,  and E belong to 

the staircase Tf  esc, then N ,  C N ,  C E,  and-E  belong to the descending staircase 

Tf_~]c; see Table 5(b). 

Assume r-ff ~ r-6-- ff  = r c N  : rCE : r - ~  5~ ~ SO that C N ,  C N ,  C E ,  and C E  

belong to the same singular block. Then we have the Froebenius identities 

( 1 0 . 3 1 )  �9 o P f f  = ( Z -  Z m + n + i ) ' \ q ~ r  ] aCN ~ q C N . ] '  
�9 q N  * 

(10.32) 
o P-f = Pe  _ __bE . P c e  

�9 �9 q q*e a c e  \ q c e , I  

and the recurrence relation 

(10.33) ~ N, E 1~-~,-~ A 
= _ bN e- ,ce + be o- ,cE. 

Proof.  As before, we only show (a) since (b) follows analogously or by a duality 
argument, see Remark 2. If  rw = r u  and consequently bw = o0, then identity (10.28) 
holds trivially. But from rw 5~ r u  we can conclude that all rational interpolants involved 
are distinct, and hence (10.28) follows from (2.9). Identity (10.29) can be proved using 
the same arguments. With the new notation W, S, C W ,  and CS,  (9.24) becomes 

P-g A PW + fl_ff_g P-C-W" 
a T ~  cs  a W , 

Replacing Ps  and Pw with the help of  (10.28) and (10.29) leads to 

1 , 1 , ~ [ 1  , 1 , "~ 
- -  " Ps - " Pcs  " ~ W  " (Z  - -  Z m + n + i )  " Pw - " P c w  as -~s c w, c s -~w ) 

+ 

which after rearranging and using (5.21) gives 

P_..SS = A . 
as w:Uffw-6-g (z - Zm+,+i) " P~Vaw 

(~_~U A __1 ) ,  
+ " C~ - az~-ff,-Ug" bw + fl-~'-g " Pcw" 

Comparing this equation with (5.15) leads to (5.18) since with (5.22) we have coA~,c--g �9 

Z due to i 6 A, j - 1 6 U, and O).  A - -  ogZ--- due to (Z -- Zm+n+i) ~ O)CW, C S CW,CS CW,CS 

j 1 c U, and u co u due t o i + l  ~ A .  �9 -- O)CW, CS "= CW,CS 

R e m a r k  5. Note that the Froebenius identities (10.28) and (10.29) of  Theorem 10.1 (a) 
hold as well if we have the trivial case i = j - 2 and with S = W,  C S  = C W ,  and 
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CS, CS  being undefined. Hence comparing (10.28) and (10.29) with (9.24) gives the 
initialization for constant/~ (since lj - l i  - 1 = O) 

1 1 
(10.34) flws - if C W  = CS. 

bs bw 
Similarly, from (10.31) and (10.32) we obtain 

(10.35) ~ N E  = be - b N  if C N  = CE.  

Hence Theorem 8.1 (for kj = 0) and Theorem 9.1 (for i = j - 2) together imply 
Theorem 2.1 as a particular case .  

Remark  6. Due to the block structure, the polynomials oA--- = ~ a  and 
CW,CS CN,CE 

coY---- = co e occurring in (10.30) and (10.33) all have degree l j  - -  l i  - -  1 ,  whereas 
CW,CS CN,CE 

~w,s, ~N,E and/3-ffw,~,/~u,2 have degrees bounded by lj - li - 1 and lj - li - 2, respec- 

tively~ Hence the coefficients of z tj-t'-I in ~w,s and ~N,E are 1/bs - 1/bw and bE - b N ,  

respectively (as already shown for the trivial case i = j - 2 in Remark 5). 

Remark  7. In the notation of Theorem 10.1, the following recurrence relations of 
Theorem 5.1 hold: 

acw bN 
Ol-~,-~ : Olw, N �9 (Z - -  Zm+n+i)  

b w  a C W  ' 

acw be 
Ol-~,~ = OlS, W �9 (Z - Z m + n + j - 1 )  

bs acw 

(also valid if W = S and N = E). This can be shown following the ideas of the proof 
of Theorem 10.1. 

Using the initializations of Remark 5 and the recurrence relations of Theorem 10.1 
the required polynomials fl in Theorem 9.1 can be calculated from the b-table. The 
computation may be organized along diagonals with increasing degrees as illustrated in 
the following example. 

Example  10.1. Taking the coordinates as in Table 1, we can initialize the polynomials 
~sw2,sw4, ~sws,sw7, ~Ne2,Ne4, and fiNes,NeT as in Remark 5. Afterwards, we may compute 
r by (10.30) and ~IVe~,Nes by (10.33). Knowing ~sw~,sw7 enables us to determine 
15SWo,SW8 by (10.30). We then require a formula connecting ~sw,,sw~ with flSWl,SW5 
and ~sws,sw7 (and similarly for the north-eastern coordinates) which will be derived in 
the next theorem. Note that such situations do not occur for the special case of Pad6 
approximation since these singular blocks always have the shape of a square. 

T h e o r e m  10.2. Let the assumptions of  Theorem 9.t be true for  two pairs (i0, j0) and 
(il, j l )  with jo = il. 

(a) As in Theorem 9.1(a), we obtain two tuples of  coordinates Wo, CWo, C So, So and 
W1, CW1, CS1, $1 with So = W1 all belonging to the same descending staircase, 
see Table 6. Then there holds the recurrence relation 

A U 
( 1 0 . 3 6 )  tWo,S, = ~Wo,So "O)cwi,cs] -[- ~Wl,Sl " WCWo,CWI" 
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Table 6. Notation in Theorem 10.2�9 

Wo CWo 

CSo 
So C Wt 

Case (a), here W! = So 

ca1  

$I 

No 
CNo 

C E0 Eo 
C N I  

CE1 E1 

Case (b), here Nl = Eo 

(b) As in Theorem 9.1(b), we obtain two tuples o f  coordinates No, C No, C Eo, Eo and 

N1, C NI ,  C E1, E1 with Eo = N1 all belonging to the same descending staircase, 

see Table 6. Then there holds the recurrence relation 

(10.37) flNo,EI = t~No,Eo " 09A 09U CNI,CEI "JC flNI,EI " CNo,CNI" 

Proof. Applying Theorem 9.1 three times for (i, j )  equal to (i0, j0), (i~, j l) ,  and (i0, j l)  
gives the identities 

P So A P wo , 
- -  = COcwo,cso - -  + 3Wo,So �9 " Pcwo, 
a so a wo 

P's1 * A Pw1 
- -  = C~ " + 3w~,s~ " Pcw~* , 
as) aw~ 

and 

(.0 A PWo , 
CWo,CS~ + 3wo,s~ . . . .  PCwo" 

as~ awo 

Similar identities can be derived for the denominators q*. Since So = W1 we obtain--  
after elimination of $1 and So with (5.21)-- 

o)A P~V0 , 
cwo,csj " + ~wo,s, �9 Pcwo 

awo 

= o)A . o)A PWo 
CWt,CSI CWo,CSo " 

awo 
A * U * 

+ OJcw~,cs~ �9 3Wo,So Pcwo + 3w~,s~ �9 Pcwo �9 . O)CWo,CW 1 

and again a similar relation for the denominators�9 Since rcwo ~ rwo, we may compare 
coefficients; this leads to (10�9149 Similarly, one can show (10�9149 �9 

11. Connections Between Kronecker and Werner Polynomials 

In this section we fix (i, j )  as in Theorem 9.1 and use the notation from Theorem 8.1 (b) 
and from Theorem 8.1(a) with i replacing j (see Table 3). Then the neighbors N, W, E, 
and S form a particular Cordellier rectangle, which is illustrated in Figure 2. Relations 
between the polynomials c~ and 3 are given in the next theorem. 
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Fig. 2. The Cordellier rectangle. 
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T h e o r e m  11.1.  W i t h  t h e  a b o v e  n o t a t i o n  

A 
Ols, E . ( .Ocw,  c " (Z  - -  Z m + n + j - l )  - -  ClW, N " O)CW, C S = ~ W , S  " a c w  ~-  --.flN'e 

a c w  

Proof .  From Theore m 8.1(a),  (b) and the equation (5 .18)  w e  have 

1 1 * * qCN " q c w  
r w  - C r N  C - -  OIW'N " - -  a C W  �9 O)O,m+n+ i 

1 1 q ~ s "  q~E " (z  - Zm+n+j-1) 

rs  C rE C - -  ets, E .  - - a c w  " O)O,m+n+j--1 

Subtracting the first equation from the second gives  with (9 .25)  and (9.27) 

1 1 1 1 
_ _  . q l -  _ _  

r s -  C r w -  C r N - -  C r e  - C 

q c N  " q c w  q c s  " q c e  " (Z -- Z m + . + j - l )  
~_ - - O l w ,  N �9 -~- Ol s,  E . 

a C W  �9 O)O,m+n+ i a c w  �9 ( .O0 ,m+n+j_  1 
�9 * $ ~r 

q c w  " q c s  qCN "qce 
= ~ W , S  " "~- f N , E  " 

0 9 0 , m + n + j - 1  a 2 N  �9 O ) O , m + n + j _  1 " 

A U and * * etc.,  the assertion o f  the Since  ( D m + n + i , m + n + j _  1 ~ ( .Ocw, c S . O)CW, C S qCN = q c w '  

theorem fo l lows  after s o m e  simplif ications.  [] 

R e m a r k  8. Theorem  11,1 also covers  the case  kj  = k i = 0 ,  i .e.,  N ,  W and S, E 
are neighbors  o f  the north-western and the south-eastern corner o f  the singular block,  
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respectively. From Theorem 5.1 we know that in this case O/W,N = O/S, E = 1 and therefore 
Theorem 11.1 gives 

~w,s " a c w  + t~N'E --  H ( Z  -- Zm+n+v) -- H ( Z  -- Zm+n+v). 
a c w  veu* ~' vsA* ~" 

12. The Pad6 Case  

Let us have a closer look at the Pad6 approximation problem which is included as the 
particular case of  confluent knots (z0 = zl . . . . .  0). 

It is well known that singular blocks in the Pad6 table always have the shape of a square, 
hence with the notation of  the former section, j ~ {p + 1 . . . . .  2p} and necessarily 
i = 2 p - j ,  which implies N = ( m -  1 , n + 2 p - j ) ,  W = ( m + 2 p - j , n -  1), 
S = (m + p, n + j - p - 1), and E = (m + j - p - 1, n + p). Cordellier [10] showed 
that 

1 1 1 1 
(12.38) - -  + - -  - -  -- 0. 

r S -- C r W - C r N -- C rE - C 
From (5.18) we may conclude that 0~W,N = O/S,E (confer [2] and [3]) and by Theorem 11.1 
also ~w,s �9 a c w =  --flN, E/aCW. In view of Remark 6, this yields the simple Cordellier- 
type formula for the nonnormal Pad6 case 

a c w  bN a c w  bE 
(12.39) - -  + - - -  -I- - -  

bw a cw  bs acw  

generalizing (5.20). Obviously, by identity ( 12.39)--the "limiting analog" of  ( 12.38)--  
we obtain a direct QD-type algorithm for computing the nonnormal b-table without 
necessarily computing any auxiliary polynomials or applying Theorem 5.1. Moreover, 
from Theorems 5.1 and 9.1 the following explicit formulas for the Kronecker and Werner 
polynomials are immediate: 

2 p - j - l  t i am.n 2 bm l,n+i ~ 
OtW, N ( t )  = O/S,E(t) = t 2 p - j  § ~ �9 + 

i=O \ bm+i,n-1 am,n ] 

J 

f lN ,E( t )  = - f l w ,  s( t)  �9 (am'n)2 = Z ti--p--I " (bm+'t'-p-l,n+p -- bm- l , n+2p- i ) .  
i = p + l  

Consequently, due to the simplicity of  the resulting QD-type algorithm, our scaling seems 
to be preferable to that used in the computational schemes proposed by [9] and [14]. 

13. S u m m a r y  and Conclus ion  

The recurrence relations of  Theorems 8.1 and 9.1 enable us now to write down explicitly 
the modified interpolating continued fraction T~ c and 7)~ de~c for the nonnormal Newton-  
Pad6 approximation problem. 

Let V0, Vi, V2 . . . .  denote the coordinates belonging to T desc (resp. to T~SC), enumerated 
in the natural order. We define the two subsequences (Xj)j>_O and (Yj)j>_~ of (Ve)~_>0 by 
X 0 = V 0 , s  a n d f o r j  > 1 

X] = Ve(y), Yj = V~(j)-I, where rve(j_,) = rve( j_ , )+l  = . . . .  rv~(j)_, 7 A rve(;). 
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Note that by construction all X2j belong to the diagonal k and all X2j+I to diagonal k + 1 
(antidiagonal k and k - 1). For the sake of simplicity, we assume that there is no singular 
block in the first column of the Newton-Pad6 table so that e(1) = 1, e(2) = 2, i.e., 

X0 = Y1 = (k, 0), X1 = Y2 = (k + 1,0) and X2 = (k + 1, 1) 

(resp., X0 = I11 = (k, 0), X1 = Y2 = ( k - 1 ,  0), and X2 = ( k - 1 ,  1)). Then the modified 
descending continued fraction T~ esc reads 

k ~x~ o)A 
(13.40) f ( z )  : j=o~aJ'~ COo,j (z) +[ wo,/~+l(Z)l/ak+l,O l+ j--~2[ /3Yj-2,xjxJ-~'r/ 

and the modified ascending continued fraction T~ asc reads 

k ak,0. ] (13.41) f ( z )  : Z a j , o  w o j ( z ) -  
j=0  ' I 1 

+ 
- -  I ( z -  z~). otr2j 2,x2j -1 otr2j_,,x2j+, j=l 

We conclude the paper with some computational remarks. 

Remark 9. It is a well-known fact that a knot which once has been an unattainable 
point cannot later become attainable (i.e., Zm+n+i = Zm+n+j, i C U, i < j implies j ( A )  
[5, Theorem 4], Hence with the notation of Theorem 10.2, the polynomials ~OAw~,cs~ and 

Wc~wo, r cannot have a common zero. Consequently, given/~N0, e~, we are able to compute 

both t~No,Eo and/3Ni,e~ by (10.37) since degflNo,Eo <_ degOYNo,CN~ -- 1 = ljo - -  lio - -  1 
and deg/3u,.e, < d e g  ogAu,,CE, --  1 = Ij, - -  li, - -  1. 

In addition, by (10.33) (see Remark 6) we can determine the quantities/5-~N,2 and bE 
supposing that/3N,E and bu are given. 

Finally, if N and E are neighbors of a north-eastern corner of the singular block and 
b N ,  flN, E are given, then we obtain be by the initialization (10.35). 

Taking Remarks 8 and 9 into account we see that there are essentially two strategies to 
compute the polynomials/3 required for the modifed descending interpolating continued 
fraction. 

As proposed in the former sections, we could first compute the nonnormal b-table of 
asymptotic coefficients together with the polynomials Otw, u and as, E, then compute the 
polynomials/3w,s with the help of (10.34) and (10.30), and finally compute/3N, e along 
diagonals with decreasing degrees by Theorem 11.1. 

Alternatively, we can compute directly first the bw, bs, some of the bN and the shape 
of the block by (5.20) (or a singular rule with respect to another block), afterward ~w,s 
with the help of (10.34) and (10.30) along the diagonals with increasing degrees, and, 
finally, simultaneously the/3N, e, be, and the other bN along diagonals with decreasing 
degrees using the equation of Remark 8 and the ideas given in Remark 9. 

Let us finally raise the important question of numerical stability of the algorithms 
mentioned above. It is well known that the QD-algorithm and its generalizations are nu- 
merically unstable. Our method also has this disadvantage and hence should preferably 
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be applied if exact arithmetic is available such that tests for zero and the detection of 
singular blocks are unambiguous. There are some approaches to overcome these numer- 
ical difficulties. For a class of  rhombus-type algorithms in the sense of [11] including 
Claessens' e-algorithm and therefore the cross-rule (4.13), Cordellier gave a reliable and 
stable implementation [ 12, Annexe 6]. It seems, however, that his methods do not extend 
to QD-type algorithms. Another approach was proposed by Gutknecht [19] and [20] for 
Pad6 approximation where, roughly speaking, one skips not only singular blocks but 
also blocks corresponding to "not well conditioned" interpolation problems. Here, the 
connection between two neighboring descending staircases is specified as a matrix recur- 
rence relation. A stable and efficient QD-type algorithm for Newton-Pad6 approximation 
will be a subject of  further research. 
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