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Abstract - -  Znsammenfassung 

A Posteriori Error Estimate for the Symmetric Coupling of Finite Elements and Boundary Elements. 
In this note we study a posteriori error estimates for a model problem in the symmetric coupling of 
boundary element and finite elements methods. Emphasis is on the use of the Poincar6-Steldov 
operator and its discretization which are analyzed in general for both a priori and a posteriori error 
estimates. Combining arguments from [6] and [9,10] we refine the a posteriori error estimate 
obtained in [9,10]. For quasi-uniform meshes on the boundary, we prove some inequality of a 
reverse type using techniques from [5] and [36]. This indicates efficiency of the new estimate as 
illustrated in a numerical example. 

AMS Subject Classifications: 65N38, 65N15, 65R20, 45L10. 

Key words: Coupling of finite elements and boundary elements, a posteriori error estimates, adaptive 
mesh-refinement, efficiency. 

A posteriori Fehlerabsch~itzung flit die symmetrische Kopplung von Finiten Elementen und 
Randelementen. In dieser Arbeit werden a posteriori Fehlerabschfitzungen •r ein Modellproblem 
der symmetrischen Kopplung yon Finiten Elementen und Randelementen untersueht. Dabei wird 
die Rolle des Poincar~-Steklov Operators und seiner Diskretisierung hervorgehoben, die fiir a priori 
und a posteriori Fehlerabschgtzungen analysiert wird. Die a posteriori Fehlerabschfitzungen aus 
[9,10] werden verbessert mit Argumenten aus [6] und [9,10]. Fiir quasiuniforme Randnetze k6nnen 
mit [5] und [36] Abschgtzungen in der umgekehrten Richtung bewiesen werden. Dieses und 
numerische Beispiele zeigen die Effizienz der Absch~itzung. 

1. I n t r o d u c t i o n ,  M o d e l  P r o b l e m  

In  recen t  decades  adap t ive  mesh  refining seemingly  b e c a m e  of  high pract ica l  
i mpor t ance  in numer ica l  analysis of  pa r t i a l  d i f ferent ia l  equa t ions  and  in tegra l  
equat ions .  W e  m e n t i o n  only [1,18,19, 20, 25, 30, 31, 36, 38, 39]. The  f r amework  of  
adapt ive  me thods ,  i n t roduced  by  Er iksson  and  Johnson  [18,19] for  finite ele-  
ments ,  is s tud ied  in [5 ,7-10]  for  b o u n d a r y  e l eme n t  m e t h o d s  and  its coupl ing 
with  finite e l emen t  methods .  H e r e  we p re sen t  a new a pos te r io r i  e r ro r  es t imate  
for  the  coupl ing  of  f inite e l emen t  and  b o u n d a r y  e l e me n t  me thods  in the  
fol lowing m o d e l  p r o b l e m  and  analyze its efficiency. 

In  a b o u n d e d  two-d imens iona l  Lipschi tz  d o m a i n  g2 with  b o u n d a r y  F =  0g2 and 
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exterior domain 12c -'= R 2 \ ~  we are given a possibly nonlinear mapping 
A:L2(12) 2 ~L2(12) 2 and a right hand side f~L2(12)  and look for a function 
u ~Hllc(12 U 12c)and real constants a and b satisfying 

-divA(Du) =f in ~2 (1.1) 

Au=O in12c (1.2) 

u(x) =a . log (x )  + b  +o(1 )  aslxl--, o~ (1.3) 

ul~=u[ac on F (1.4) 

A(Dul ).n on r .  (1.5) 

Here, D denotes the gradient and zl denotes the Laplacian; o(1) is the Landau 
symbol with limlx I ~ = o(1) = 0; n is the unit normal of F pointing into 12c- 

Remark 1.1. The model situation could be modified to other operators, e.g., to 
linear elasticity, or other dimensions (with other radiation conditions (1.3)). 
Moreover we might add Dirichlet, Neumann or mixed boundary conditions and, 
furthermore, also could analyze the case that J2 c c N2 \  ~ is a (e.g., multiply 
connected) bounded domain. Finally, we could prescribe the jumps of displace- 
ments of tractions in (1.4) or (1.5) or add a right hand side in (1.2) leading to a 
modified right hand side below. But we restrict ourselves to the above assump- 
tions for notational simplicity. 

In the discretization, the exterior problem (1.2), (1.3) is rewritten using integral 
operators and then treated with a Galerkin scheme leading to the boundary 
elements on F. The interior problem (1.1) is considered in its standard weak 
form so that a Galerkin scheme on 12 can be performed with finite elements (cL 
Section 2 for details). This 'mariage fi la mode' was initiated by engineers. Its 
mathematical justification started in the later seventies with papers by Brezzi, 
Johnson, Nedelec, Bielak, MacCamy among others. Quasi-optimal a priori error 
estimates for the coupling of finite and boundary elements were then obtained 
for Lipschitz boundaries, systems of equations, and nonlinear problems (ap- 
proximated by finite elements), e.g., in [13,17, 22, 23, 24, 37] (see also the litera- 
ture quoted therein); the symmetric coupling, under consideration here, was 
introduced mathematically by Costabel in [13]. 

To improve the convergence behavior, the h-, p- and hp-version of the coupling 
were developed [11, 25] still using a priori information. Recently, self-adaptive 
mesh refinement strategies and a posteriori error estimates have been es- 
tablished in [9,10] for the same purpose. 

In this paper we treat the model problem [9, 23] and refine the a posteriori error 
estimate in [9]. For this sharper estimate we prove efficiency in case that the 
mesh on the interface is quasi-uniform. 

The paper is organized as follows. For convenience of the reader we sketch the 
weak form in Section 2 and recall its discretization in Section 3. In contrast to 
descriptions in [13,17,22-24,37], we stress the role of the Poincar6-Steklov 
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operator (see below). Since this approach is successful in nonlinear interface 
problems (see, e.g., [2, 3] for variational inequalities and time dependent prob- 
lems) we study general estimates for this operator and its discretization in some 
detail in Section 4. Thereby we reveal a simple proof for the a priori estimate 
found formerly in [9,17, 22, 23]. 

In Section 5 we use the refined a posteriori error estimate from [6] to improve 
the a posteriori estimate in [9]. In some sense, the estimate obtained here gives 
a more natural adaptive error indicator than that from [9]. In order to prove 
efficiency of this a posteriori error estimate we prove some reverse estimates in 
Section 6 combining arguments from [5] and [36]. A numerical example in 
Section 7 illustrates the results of this paper. 

We use the following notations. H~(O)  denotes the usual Sobolev spaces [28] 
(s ~ R) with the trace spaces Hs-1/z(F) (s  > 1 / 2 )  for a bounded Lipschitz 
domain O with boundary F.  ][-]]H~(,o) denotes the norm Hk(o~) for w __ O and 
an integer k. The duality ( . , -}  between HS(F) and H-~(F) is given by 
extending the scalar product in L2(F);  so H~ and H'(F) is the 
dual of H-~(F) for s < 0. 

2. Weak Form of the Model Problem 

In order to rewrite the exterior problem, we need some boundary integral 
operators. Given v ~ H1/2(F) and 4) ~ H-1/2(F) we define for z ~ F 

1 
(wg~)(z) := - 2---~ f ~ (  ~ ) l o g l z  - ~ldsc 

1 0 
(Kv)(z) -  fF( )5-41oglz- 

1 0 
( K ' ~ ) ( z )  := ~-gfr~(C)~nloglz-Cldsc 

1 o 3 
( wv)( z) .- 2~ Jn; f r (  C ) 7~n~ l~ - tldsc" 

This defines linear and bounded boundary integral operators when mapping 
between the following Sobolev-spaces [14], for s ~ [ - 1 /2 ,1 /2 ] ,  

r ) HS+ r ), i ( :w +  r ) HS+ r ) ,  

K':HS-~/~(r)-~H~-'/:(r),  W:H*+I/~(r)-~H~-V~(r). 
The single layer potential V is symmetric, the double layer potential K has the 
dual K' and the hyper singular operator W is symmetric. V and W are strongly 
elliptic in the sense that they satisfy a G~rding inequality (in the above spaces 
with s = 0) [14]. Assuming that the capacity of F is smaller than one, the single 
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layer potential V is positive definite, W is positive semi-definite and its kernal is 
~. We refer, e.g., to [9,14, 21, 32, 34, 35] for proofs and more details. 

Remark 2.1. For a definition of the capacity of F,  we refer, e.g., to [32] and 
mention here the sufficient condition that ~2 lies in a ball with radius less than 
1. Thus, this condition on F can ahvays be achieved by scaling [21, 32] and hence 
may and will be assumed throughout this paper. 

Since V is positive definite it is invertible and we may consider the Poincar& 
Steklov operator S:H1/2(F)--+ H-1/z(_F), defined as 

S := W+ ( K ' -  1 / 2 ) V - I ( K  - 1/2) ,  

which is linear, symmetric and positive definite [9]. S is a Dirichlet-Neumann 
map as shown in the following known lemma (see, e.g., [2,15-17]). For unique- 
ness of solutions we may prescribe one of the constants a and b in (1.3) and we 
prescribe a = 0 in the sequel. 

Remark 2.2. The condition u(x) bounded as Ix[ + oo leads to fix b = 0 which 
is equivalent to fvDu[r.nds=O [15]. As a consequence we require that 
f a f  dx = 0. Therefore, this case b = 0 can be easily adopted from the case 
a = 0  analyzed here by replacing the space H-1/Z(F) with Hol/2(F)  
:= (c~EH-X/2(IU):fFqb ds = 0} (and modifying the discrete subspaces corre- 
spondingly). 

Lemma 2.1. Let u ~ Hl~oc(12c) satisfy (1.2) and (1.3) with a = 0, then 

Du[r'n = - S u i t .  (2.1) 

Conversely, for w ~ H~/z( F ) there exists a unique function u ~ Htloc( O~) satisfying 
(1.2), (1.3) (with a = O) and 

u]r=w and ( D u . n ) [ r = - S w .  (2.2) 

The function u is given by the representation formula, for x ~ Oc, 

1 1 O 
u( x) - - ~  "r f ( Sw)( z) .log[x - zlds~- ~ f w( z) �9 77-_ log [x -  z[ds z. 

on z 
[] 

(2.3) 

Using Lemma 2.1 (to replace the traction on the interface) and standard 
arguments one gains the weak form of the interface problem (1.1)-(1.5): Given 
f ~  L2(O) find u ~H1(s satisfying 

f # ( D u ) . D r l d x + ( S u [ c , r l [ r ) = f J ,  rldx (~7 ~ H X ( a ) ) .  (2.4) 

In addition to the assumptions in Section 1, we consider A:L2(~ '~)  2 --) L2(~-2) 2 to  

be uniformly monotone and Lipschitz continuous, i.e., there exists positive 
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constants c a and C A with 

CA II o ' - -  rll .(m2 <_ f - A ( r ) )  ( o" - r ) d x  

IIA(~r)--A(r)llL.(a)~<CAIl~r--rllg2(m~ (o-, r ~ L2(g2)2). (2.5) 

The problems (1.1)-(1.5) and (2.4) are equivalent in the following sense. 

Theorem 2.1. I f  u ~Ht~oc(Oto ,(2 c) is a solution of (1.1)-(1.5), then ula solves 
(2.4). Conversely, if u ~ H I ( O )  is a solution of  (2.4), then u can be extended by 
using the representation formula (2.3) to a function u ~ H~oc( O U g2 c) which solves 
(1.1)-(1.5). 

Proof: The proof is based on standard arguments and the use of Lemma 2.1. We 
refer to [9] and [2,17, 23, 24] for details and related results. [] 

The left hand side in (2.4) defines an operator B as 

B ( u ) ( r / )  := foA(Du) "Dr~ dx + <Suit ,  r/Iv ) 

which maps Hi(S2) into its dual H i ( o )  *. Then, Equation (2.4) reads 

B ( u )  = f  

where f is regarded as an element in H i ( O )  *. Since S is bounded and positive 
definite, B inherits monotonicity and Lipschitz continuity from A. Hence, from 
standard results in the theory of monotone operators, we gain existence and 
uniqueness of solutions in our model problem. 

Theorem 2.2. The operator B is uniform monotone and Lipschitz continuous. The 
problems (1.1)-(1.5) and (2.4) have unique solutions. [] 

3. Discretization 

For simplicity, we assume that /2 is a polygon and consider finite partitions Yhh 
of /2, 

~ =  U r E.yh ~ 

such that T ~Yhh is (the interior of) a triangle with angles greater than c o > 0 
and diameter h T > 0. (Co is a global constant and independent of Yhh). We 
assume that two non-identical triangles or so-called finite elements in ~ share 
at most a common edge or a common vertex. 

With any partition Jhh we associate the piecewise linears $1(g2), i.e., continuous 
functions which are affine on each triangle T in Yhh. The element sides 

go h := {E:E  open edge of T ~ }  

(an open edge is an edge without the nodes) consist of interior elements sides 
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or of boundary sides 

For each E �9 ~h = ~h(0 )  U ~h(F)  let h e denote the length of E. Let 

hr, m a x  : =  max{he: E ~ ~h( F )}, 

hr,min := rain{hE :E e ~ h ( / ' ) } ,  

ho,ma x := max{ h~. :T ~Jhh}" 

For each E E ~h(O) we choose and fix some orientation of a unit normal vector 
n e on E while n E = n for E ~ ~h(F),  i.e., we choose the exterior unit normal on 
the boundary. 

In order to discretize the boundary integral operators, we associate the discrete 
function spaces of piecewise linears S~( / ' )  and piecewise constant S ~  to the 
partition ~ h ( / ' )  of the boundary, i.e. S~(F)  (resp. S ~  consist of continuous 
(resp., in general, discontinuous) functions on F which are affine (resp. con- 
stant) on each so-called boundary element E in ~h(F) .  

Remark 3.1. The boundary element method is related to S~(F) and S ~  
which are defined with respect to the same mesh as the finite element trial space 
S~(g2). This is by no means necessary. However, since it might yield a conve- 
nient data handling and since it simplifies notations, we restrict the model 
problem to this special case. 

Given Jhh, define discrete operators 

V h := i~ Vi h, K h := i~Kj h, 

K ~ ' - ' *  *" = K * "--Jh K th ( h )  , Wh :=j~Wjh, 

A h:=khD* ,~Dkh, B h:=A h + S  h, 

Sh:= W h + (K~ - - �89  

which are well defined as mappings between the appropriate discrete spaces 
indicated by the canonical embeddings 

i h : = S ~  ~--~H-1/2(F) 

jh := s (r) H' /2 (r )  

:= s (a) H*(a)  

and their duals "* "* * lh ~ Jh ~ kh" 

Remark 3.2. We note that Tkh =Jh where y :=  "Iv is the trace operator. For  
example, for w ~ H 1/2(F), we have thw'* E S ~  )* with (i~ w)(v h) = fr w. v h ds. 

The discrete problem reads: Find u h ~ ShX(12) satisfying 

Bh(u h) = k ~ f  (3.1) 

(i.e., (Bh(uh))(V h) = f ( v  h) for all v h e S~(O)). 
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The discrete problem (3.1) is described in different notations in [17, 22, 23]. In 
the present notations it is easily seen that B h inherits the Lipschitz and 
monotonicity properties of B. A simple proof of the following a priori error 
estimate is given by Section 5. 

Theorem 3.1 ([17,23]). There exist positive constants c o and h o such that for all 
partitions Jhh with h < h o the discrete problem (3.1) has a unique solution u h and 
there holds 

]lu - uhllHl(~) _< c o �9 (distH~(a)(u; S~( ~2 )) + distH-1/2(r)( Sulr ", Sh ( F ) ) ) . o  

(dist x (w; Y) denotes the best approximation error in the norm of  X when approxi- 
mating w ~ X with functions in Y )  

4. A Posteriori Error Estimate 

While we considered a priori estimates so far we present an a posteriori error 
estimate in this section and sketch an adaptive feedback procedure for auto- 
matic mesh refinements. To describe the computable upper error bound we 
need further notation. 

Given a partition Yhh of g2 as in Section 3, we define n e to be the exterior unit 
normal vector for E ~ Nh(F) and chose some fixed unit normal n e for E 
g~ Let u h c $1(g2) be a (discrete) solution of (3.1). Then we define 

o'h:=A(Duh) and ~)h:=Vhl(Kh 1 . , .  - ~ h ; h ) U h l r  

as the discrete analogs of 

o-:=A(Du) and 4~:= V - I ( K  - 1 /2 )u l r .  

Note that Duh and q5 h are piecewise constant. We assume that O'h]r ~ C~ 
and divo-h[r~LZ(T) for any T ~ .  On E ~ g ' h ( F ) ,  [~rhn E] is defined as the 

o jump of the discrete tractions o-hn e across the common element edge E. Let 
denote the derivative with respect to the arc-length (at least in the distributional 
sense). 

Then, for each triangle T we may define a non-negative real number ~Th(T) as 

�9 2 rlh(r) 2 := h2. l l f+  dw~rhllr2(r ~ 

1 
- o-hng]llL2(e ) + 2 E he" [l[ 2 

Ec3T, E~'h(K2) 

+ E he'llo-hne + Wuhlr+ ( g ' -  1/2)  4~hl12~(E) 
Ec3T, E~'h(F) 

O 
+ E he'l[-~s(gd~ h - ( g -  1/2)uhlr)ll2~ce). 

EcoT,E~'h(F) 
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Remark 4.1. The first two terms in the definition of ~h(T) are well established in 
residual based a posteriori error estimates for the finite element method. The 
third term is the residual on the interface F caused by tractions coming from 
the finite elements and by tractions resulting from the related boundary integral 
operators. Its sum, related to o'hn + ShUhlF , is a residual of o-n = - S u i t .  The 
last contribution in ~h(T) is caused by the approximation g h  I to g -1 giving the 
residual Vd~h - ( K -  1/2)Uh[r (cf. Vq~ - ( K -  1/2)u[r  = 0). 

The following a posteriori error estimate is proved in Section 5. 

Theorem 4.1. There exists a constant c > O, which depends only on 0 and Co, c A 
and CA, such that 

\ 1/2 

Ilu - uhlIH (m + I I 4 -  4hlIH-lJ2; ) -< c" F, , h (T )  
r c ~  ! 

(4.1) 

Remark 4.2. We emphasize that ~h(T) can be computed--at  least approximated 
numerically--once the discrete solution u h is known; see [9,10] for details in 
the implementation. 

Remark 4.3. The estimates in [9, 10] differ from (4.1) only in the last contribution 
in rib(T) related to the Vc~ h - ( K -  1/2)u h. The right hand side in Theorem 4.1 
includes the corresponding summand 

h E .r~_ 

o �88 where r e := I]~;( ~h - ( K -  1/2)Uhlr)[lr2(E ). Using its upper bound 

in Theorem 4.1 we gain the estimate in [9] (and similarly [10]). In this sense, 
Theorem 4.1 refines [9,10]. 

Based on Theorem 4.1 we may define an adaptive algorithm for automatic 
mesh-refinements following the literature. The heuristic idea is first to regard 
~'lh(T) as (an approximation to the unknown) local error related to the element 
T and secondly to refine T if rib(T) is comparably large. Here, the refinement is 
steered by a parameter 0 with 0 _< 0 < 1. 

Algorithm (A 0) 

(a) Start with a coarse initial mesh ~0 .  Put k = 0. 
(b) Solve the discrete problem Uhk with respect to the actual mesh ~ .  
(c) Compute ~hk(r) for each r in ~ .  
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(d) Compute the upper bound (4.1) and decide to stop (then terminate compu- 
tation) or to refine (then go to (e)). 

(e) Refine (e.g., halve the largest edge of) T ~ provided 

~lh~(T) > O" max 71h~(T'). (4.2) 
T r E ~ k  

(f) Refine further triangles to avoid hanging nodes. This defines a new mesh 
Jhhk+ 1" Replace k by k + 1 and go to (b). 

Remark 4.4. The parameter 0 affects the mesh-refinement such that for small 
0 ~_ 0 we expect a global almost uniform refinement (0 = 0 means quasi-uniform 
refinement) and for 0 ~ 1 near 1 we expect a local refinement of only some 
triangles. The value 0 = 1/2 lead to a good performance of the algorithm. 

Remark 4.5. Adaptive algorithms similar to Algorithm (A  o) are considered in 
[9,10]. We remark that the refinement step (4.2) (for the quantities ~/(T) given 
here) reads more natural and appears to be more consistent than the related 
step in [9,10]. 

Remark 4.6. Though the constant in (4.1) is known in principle, it might be 
expansive or even difficult to compute an accurate reliable upper bound. Hence, 
the constant may be unknown in step (d) where we have to decide whether our 
approximant is accurate enough or not. However, in this case one can estimate 
the relative improvement comparing the computed upper bound in the first step 
with the present upper bound (neglecting the constants). This gives a hint to 
some relative improvement during the computation and suggests a termination 
criterion. 

5. Proofs 

The aim of this section is a proof of Theorem 3.1 and 4.1 where emphasis is on 
the role of the Poincar6-SteMov operator S and its discrete counterpart S h. We 
define another related operator Sh:S~(F) --~ H - 1 / 2 ( F )  by 

Sh := WJ'h + ( K ' -  1 /2 ) ihVhl (Kh  _ ~ZhJh) 

We put stress on S and S h by first proving quite general estimates of auxiliary 
character and secondly showing how these estimates can be used to control 
certain typical terms which arise naturally in an a priori and a posteriori error 
analysis. 

Proposition 5.1. There exist positive constants C1, C2, C3, C 4 (depending only on F )  
such that 

C l ( l l ~  - 2 2 

(5.1) 
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for arbitrary , ~ H 1 / 2 ( F )  and vh ~ S l ( F )  letting O : = V - * ( K - 1 / 2 ) v , O ~ ,  := 
V - I ( K  - 1 /2)v  h in H - 1 / 2 ( F )  and Oh "- -1 . ,  . -  V~ t h = V~I i~(K - 1/2)v h in S~  

Furthermore, for any ~h ~ S~  there holds 

(V(r - Off), Sh - 0 )  = (V(0h - 0h~), nh -- 0 )  (5.2) 

I]0h -- Oh* ItH '/~(r) <- C2" d iS tH-~: ( r ) (O~;S~  

< C3" distn-~:(r)( 0;  S~ F )) + C 4 �9 I1 v - vhllHVZ(r> (5.3) 

Proof: Using the notation of the proposition we calculate 

( S (  v - Vh),V -- Vh) = ( W (  v - vh) ,v  - oh) 

+ < V V - I ( K  - 1 / 2 ) ( .  - Vh) ,V-I(K - 1 / 2 ) ( .  - Vh)> 

= <w(v - .~),. - vh> + <v(o- O;~), O- O~'> 
and 

, - -  - -  2 1 h J h )  h ,  ( ( S _ S h ) V  h v _ v h ) = ( V - l ( K _ l / 2 ) v h  V i l ( K h  1. , .  v 

( K -  1 /2 ) (v  - vh)) 

= (v(o~, - O h ) , V - I ( K  - 1 / 2 ) ( v  - Vh)) 

= <v(0~  - ~ h ) , 0 -  0~>. 

Combining the two identities, one verifies 

(Sv  -- ~,,"h," -- "h) + (V (  Oh -- O,* ), g'h -- O> 

= ( W ( " - - v h ) , " - - " h > + ( V ( O - - O h ) , O - - O h > .  (5.4) 

Note that V is positive definite on H - 1 / 2 ( F ) ,  and W is positive definite on 
H1/Z(F )/• .  We may identify H -  i / 2 ( F ) / •  with H o i /2 (F  ) where 

H ~ ( F )  := {v ~ H * ( F ) : M .  = 0}, M .  := IF1-1 s  

IF I is the length of F and M .  is the integral mean of v. Define P := I - M ,  I 
being the identity. Then, P and M are projectors and establish a decomposition 
of 

H ' (  F )  - U ~ (  r )  . R. (5.5) 

In particular, the norm in H * ( F )  is equivalent to (IM-IZ + [[P.I]2~,(F)) 1/2. 

From (5.4) and the definiteness of W and V, we infer existence of c 1 > 0 such 
that 

Cl(]I 0 -- 0h[[~/-1/2(F) -}-][PD -- P.h]]g1/2(F)) 
< ( S v - - & , h , V - - O h ) + ( V ( O h - - O ~ ) , O h - - O ) .  (5.6) 

Since 1 e S ~  obtain (1, V(0~' - Oh)) = 0 and hence, using ( K -  1/2)1 = 
--1, 

(1, V( 0 -  0h)) = (1, V( 0 -  0~/* ))  = ( ( K ' -  1 / 2 ) 1 , .  - v h )  

= - I V l ( M . - M . h )  + ( ( K ' -  1/2)I,Pv -Pvh). 
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Therefore and since the boundary integral operators are bounded we verify 

IMv - Muhl 2 <_ @ ( (  g '  - 1/2)1 ,  Pv - Pvh}l  2 + c31(V1, ~p - I ~ h > ]  2 

<- c4[IPv - PvhlI~a.(r ) + csll 0 -  0hll~/-iJ2(r) 
for positive constants c l , . . . ,  c s. Note that this is bounded by the lower bound in 
(5.6) as well. Thus, we have proved that IIq,-0hll~-~-(r), ]Mv-MVh[ 2 and 
IlPv 2 -PvhlIHo~/~(r ) are, up to a constant factor, upper bounded by the right hand 
side in (5.1). According to the decomposition (5.5) and equivalence of norms, 
this concludes the proof of (5.1). 

To verify (5.2) we notice that, for all "Oh ~ S~ VhOh "* * = t h V~,~, i.e., for all 
"Oh ~ S~,(F), (VOh, "Oh> = (V0~, "Oh}" Hence (5.3) follows from Cea's lemma and 
the triangle inequality. [] 

We now illustrate that Proposition 5.1 is a useful tool in proofs of a priori error 
estimates. 

Proof of Theorem 3.1." Let v h ~ $1 (0 )  (resp. "Oh C S~  be defined as the best 
approximant of u (resp. qS). If  we subtract (2.4) and (3.1) we obtain, for any 
wh e S~(O), 

fa( A( Ou) - A (  Ouh) )Ow h dx + < S u i t -  S~huhlr,whlr } = O. 

According to the uniform monotonicity of A and Proposition 5.1 this shows, 
with ~b~' := V - I ( K -  1/2)Vh ,  

Cl][U - Uhl121(~) + c2l] ~b - 'bhll,~-,/z(~,-< f ( A ( O u )  - A ( D u h ) ) ( O u  - D u h ) d x  

-t- ( Su[F- -  Shl, th[V, UlF-- Uh[ F > 

= f ( A ( D u )  - A ( D u h ) ) ( D u  - Dvh) dx 

+ <Sulr- Shuhlr, ulr -  vhlr > 
+ (V( 4, h - ~b~' ), 4, h - ~b}. (5.7) 

According to Proposition 5.1 and Lipschitz continuity of A, this and the identity 

<Sulr -  ShUhlr, ulr -- Vhlr } 

= <W(u - uh) l r ,  (u - Vh)lr } + (d  o -- (oh, ( K -  1 / 2 ) ( u  - Vh)] r > 

prove, with positive constants c I . . . .  , cs, 

qllu 2 2 - uhllHl(a ) + czllqb- cbhl[~i-i/2(r ) 

-< c3llu - Uh[[HI(a)I[U -- Dh][HI($2) -~- C4[1~ --  6hllH ~/2(r)llu -- vhllH~(m 

+ csll6- ,bhll~ 1-(r)llq~- "OhIIH-~'W). 
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Then, a standard application of Young's inequality concludes the proof. [] 

A posteriori error estimates for the boundary integral equations can be obtained 
from the following result [6]. 

Theorem 5.1 ([6]). Assume f ~ H i ( F )  has at least one zero in each of  the elements 
in ~'h( ff ). Then, 

( t IlfllHv2(r~---c(log(1 + K)) 1/2 E hE'll-~sfllg2(~) 
EE~'h(F) 

where the constant c > 0 is independent of Jh and K is the largest quotient of  
neighbouring element sides on F. [] 

To be self-contained and to give a simpler proof under the present assumptions, 
we state and prove the following weaker but more explicit modification of 
Theorem 5.1. Note that K is h-independently bounded because of the angle 
condition (c o is a global bound). 

Theorem 5.2. Let the norm in H1/2(F) be (equivalently) defined by complex 
interpolation and recall hr, max --= max{he:E ~ ~"h(F)}. Assume f ~ H I ( F )  has at 
least one zero in each of the elements in gh( F). Then, 

IlfllH~/2(r)<(1 + K)1/2.(1 +4h~,max) 1/4" ~ h j "  f--Tf 2(r: ) 
j=l 

Proof: Let yj denote the zero of f in Fj where F 1 . . . . .  F N is the partition 
~'h(F) of the boundary such that Fj is a neighbour of Fj+ 1 for j =  1 . . . . .  N, 
FN+ 1 = F 1. For j = 1 , . . . , N  define fj on r by fj(x) = f ( x )  if x ~ F belongs to 
the subarc with start point yj and end point Yj+I, YN+I :=Yl and let fj = 0 
otherwise. By construction, fj is continuous at yj_ 1 and yj and equals piecewise 
an absolute continuous function. Furthermore, the derivative f '  belongs to 
LZ(F),  so that fj belongs to H I ( F ) .  But, as used, e.g., in [20,29,33] functions 
with disjoint support satisfy 

jZ1 2H1/2(F) IlffllH~/:(r> (5.8) 
j=l 

where C = 1 if we use complex interpolation to define H~/2(F). Moreover, by 
complex interpolation, 

2 
[IfjllH1/2(r) < Ilfjllc~(r)llffllHl(r). (5.9) 

According to the fundamental theorem on calculus and H61der's inequality, one 
verifies 

IlfjllL2(r> -< ( hj + hj  + l )llffllL2( r ~ (5.10) 
using essentially the fact that fj has a zero on F s and F~+I; hj-'= I~1. By 
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definition of the Hl (F ) -no rm,  (5.9) and (5.10)yield 

2 1/2 t 2 
[I f j l121/2(r)<(hj+hj+l) ( l+(hj+hj+l) )  Ilfj I[L~(r). (5.11) 

By definition of K we have hj + hi+ 1 < (1 + K) min{hj, hi+ 1) and, with hr,max := 
max{h 1 . . . . .  hN}, (5.11) leads to 

2 1/2 t 2 
[]fjllH~/2(r ) 2  < (l  +4.hr,max) min{hy, hj+l}(l +K)[lfjHL2(r). 

Using this in (5.8) we conclude the proof. [] 

We will prove Theorem 4.1 by combining Proposition 5.1 and Theorem 5.2 with 
arguments from the finite element literature on a posteriori error estimates. 

Proof of Theorem 4.1: Let us define e h :=  U - -  U h. We start as in the proof of 
0 Theorem 3.1 and obtain as in (5.7), for all v h ~ S~(O) and ~?h S h ( F ) ,  

2 2 clllehlIHl(m + c2114~ -- < --  h)(Oe. ov ) dx 

+ (Su i t -ShUh l r ,  eh l r -  Vhlr } + (V(q~h -- q~),  "Oh - -  6}" 

Using B(u) = f  we obtain that the upper bound is equal to 

f J ( e h  -- Vh) dX-- f G (  Deh -- Dvh) dX 

- -  ( S h u h [ r ,  eh l r -  vhlr ) + (V(  G - q~) ,  Wh -- 4'). 

The first three terms are treated as in finite element a posteriori analysis: By 
using integration by parts on each element 

f o f ( e  h - V h ) d x -  fo~rh(De h -- D V h ) d x -  (ShUh[r,ehlr - Vh] r ) 

= T ~ f T ( f + d i v o ' h ) ( e h - - v h ) d x +  ~, f j o 'h 'nE] (eh - -vh )  ds 

- (O-hn + ShUh]r, ehlr-- Vhlr). 

As it is well-established, one can construct an approximant v h ~ $1(Y2) to e h 
with the following properties: 

[[e h - -  VhIIL2(T ) < C l h T l [ e h l l H ~ ( J r h ( T ) )  ( 5 . 1 2 )  

1/2 lie h - Uh[ILZ(E ) <__ C2h e [lehllH~(~(e)) (5.13) 

for all T ~Yhh, E ~ Fh(O). Here, ~h(T) (resp. Xh(E)) is the union of T and at 
most [2~r/c o] other elements which share a common node with T (resp. the 
union of at most two elements which share E as a common side). The constants 
C 1, C 2 > 0 in (5.12), (5.13) depend only on c o but neither on h nor on u - u h. 
For a proof of (5.12) and (5.13) we refer to [12]. Using (5.12) and Cauchy's 
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inequality we gain 

T~a~hfT(f -l- diwrh)(e h - Vh) dx < C3l[h.(f  + div(rh)llL2(~)llehllHl(a ) (5.14) 

where we used that the number of elements in Sh(T)  is smaller than [67r/c o ]. In 
(5.14), h is regarded as the piecewise constant function with hi t  = h r  for T ~ .  
Similarly, 

f e [ . ' n e ] ( e h - - V h )  ds<-- C4( ~_. hEll[.'nE]l[Zc~(m)l/21lehlla~(a). 

(5.15) 

In the same way we get (h is the above defined piecewise constant function on 
and on F as well) 

--< O'hrt + Shuh[r,ehlr-- vhlr> _< CsIIh(o-hn + Shuhlr )llc2(r)llehll,~(m. (5.16) 

Combining (5.14)-(5.16) we obtain, with Young's inequality, 
2 2 

c31lehllH~(m + C4114 -- GIIH-~/2(r) 
_<[Ih ( f +  " 2 . dlVO.h)L2(O)llehllHl(a) + ~_. hell[ Crh 2 "nE]llL2(m (5.17)  

+ IIh(  n + - - 
* It remains to apply an a posteriori error estimate to (V(q5 h - ~b h ), ~h -- 4)) from 

Theorem 5.2. Since ~h is arbitrary, R := V ( b h -  b~) is L2(F)-orthogonal  to 
S~ Thus, the integral means of the continuous function R vanish for each 
element and so R has at least one zero on each boundary element. Hence, by 
Theorem 5.2, 

(V(  gOh -- d~ ),rlh -- b )  = (V(  4h - 4)~ ), 4)h - 4)) <--[[Rllu~/~(r)llgah -- 4'11// ~/~(r) 
OR 

<_ csllhl/2-~s llL~(r)lI~ h - 4,llH-~,(r). 

Using (5.18) in (5.17) one concludes the proof with Young's inequality again. 
[] 

6. Efficiency 

To study the sharpness of the a posteriori error estimate, we start proving a 
local estimate of a reverse type. We follow [36] and include ideas from [5]. To 
employ the analysis of [36, w we assume that o- h is piecewise constant for 
simplicity. 

Remark 4.1. The assumption o- h E Sh~ is satisfied, e.g., if A : L 2 ( ~ )  2 --> LZ(g2) 2 
is local in the sense that there is an appropriate function a : ~  x Nz ~ R2 with 

(A ' r ) ( x )  =a(x ,~ - ( x ) )  for a.a. x in ~ 0 " ~ L 2 ( a )  2) 
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and a(., z) is piecewise constant for a fixed "r ~ R z (notice Duh E S~ for a 
proof). 

Adopting notation from Section 4 we define, f r  ~ SO(/2) and t r ~ S ~  for 
T ~ ,  E E ~ h , t  := - S u L r (  = oh), 

f r :=[Tl-~" f f d x  and te :=lEl-~ ,  f tds, 

where IT[ (resp. IEI) is the two dimensional (resp. one dimensional) Lebesgue 
measure of T (resp. E). 

The first estimate shows that the error indicator ~h is locally bounded by a 
constant times local error terms and local approximation error of the data f and 
the boundary stresses t. 

Proposition 6.1. Assuming ~r h ~ S~ there is a constant C > 0 which depends 
on c o only such that for each T ~ Yhh 

1 
- - .  _ o'h l[ L2(:rh(r~) C ~h(Z)2 < I10"-- 2 

h 22 - -  + II r ( f - f r ) l l L  (xh(r)) + [IhaZ2( t te)l122(r n or) 

+ [[hg2W(u[c-  Uhlr)IlZ2(r n or) 

II/ . ,1/2 [ ,rZP _ + "'*E k '"  1 , / 2 ) ( 4  ~h)l[2Z(-rnoT) 

2(F + v ( * -  n 

22(r hl/Z O-ff-( K - 1 / 2 ) ( u l r -  
+ E 3S N aT) 

Proof: Arguing as in [36, Eq. (2.15)] we estimate [Ih "fzllL~r and obtain 

3/2V~-[[h "fr I[/&r~ -< I lhz( f - f r ) I Ir2(r~  + cs "11o-- o-h I[L~(r ). (6.1) 

The constant c s > 0 depends only on c o (see [36, Lemma 1.3]). 

For E c Eh(/2) let A/h(E) =: T 1 U T 2 he the union of two triangles T1, T 2 ~Yh 
sharing the common side E. Define b e := 4At, 1. hr~,~ on T~, i = 1, 2 and b e = 0 
on /2\JKh(E). Here, At, l, At,2, At, 3 are the barycentric coordinates of T~Yhh 
and Ar~,I and hr~,2 are such that b e is nonzero along E. As in [36,Eq. (2.19)] 
one proves 

2 / 9  1 / 2  2 "like [ne" o'h ]llc~(e> 

2 2 <- c4]lhr" (f-fr)IIL~c~(E)~ + C4C 6 -II o - -  O'h]] L2(~rh(E) > (6.2) 

The constants c4, c 6 > 0 depend only on c o (see [36, Lemma 1.3]). 
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To estimate the third term in the definition of ~qh(T), let E ~ g ' h ( F )  and 
consider, with t = - Su[r and the triangle inequality, 

herE[O- h .n e + ShUhlrl ads 

<_2hefElO-h.nE--tlv[2ds+2hefE[ShUh[r--Su[rl2ds. (6.3) 

The first term on the right hand side in (6.3) might be estimated exactly as in 
[36, Eq. (2.23)] which results here in 

2he felo'h "ne -- tlrl2 ds < 13he fEIt - @2 ds 

2 2 27c4 c62 [[ cr - 2 2 + 27c4heHf--fT[[L2(T) + O'hllL (T). (6.4) 

The second term on the right hand side in (6.3) may be rewritten by using 
4) = V - I ( K  - 1/2)u]r,^ 4)~ = V-I (K - 1/2)uh[r , and 4)h = Vh-1 th., V4)h, in the de- 
finition of S and S h, 

2he fEl4Uh[V-- Su[r[ 2 ds = 2he fEIW(u]r-  uh[r ) - ( K ' -  1/2) (  4) -  4)h)] 2 ds 

<_ 4hE fEIW(ulr-- Uhlr)[ z ds 

+4he~fE[(K'- 1 / 2 ) ( 4 ) -  4)h)] 2 ds. (6.5) 

The fourth term in the definition of ~?h(T) is estimated, for E ~ gh(F),  with the 
triangle inequality and the identity V4)= ( K -  1/2)U[r, 

E" -~S ) 2LZ(E ) "-~s(V(4)h 2LZ(E ) h a (V4)h -- ( K -  1/2)Uhlr < 2h E - 4))) 

3 2 
+ 2 h e "  - ~ s ( ( K -  1 / 2 ) ( U l r - u h l r ) )  L=(e)" 

(6.6) 

Gathering the estimates (6.1)-(6.6)we obtain the assertion (note divo'hlr = 0). 
[] 

From Proposition 6.1 we infer a reverse inequality to (4.1). We recall hr,~a x -'= 
max{he:E ~ g~h(F)} and hv,mi n := min{he:E ~ gh(F)}. 

Theorem 6.1. Assuming o" h ~ S~ g2 ) there & a constant C > 0 which depends on c o 
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only such that for each T ~Jhh 
1 

- -  h 22 2 �9 E ~h(T) 2 - < I] r ( f - - fT) l lL  (~) + 1[o-- ~hllL2(m 

+ hr'maXhr,mi------ 7" ([l(u - Uh)]rt121/:(r, + I1r - d?hll2-~/2(r)) 

+ h2,maxhF,rni_~__ ~ �9 (diStH'(r)(u;Sl( F ) ) 2 +  distc2(r)(Sulr;S~ 

(6.7) 

Proof: Let C > 0 be a generic h-independent constant in this proof. We consider 
the sum over all elements T in Proposition 6.1 and obtain 

1 
- - "  E ~' /h(Z) 2 -< Iio-- 2 ~hllL2(m 
C r ~  

lez + I [ h r ( f - f r )  IL (o)+hr,m,xl l t  - @[22(r) 

+ hr ,m,x l lW(ulr-  uhlr)ll2~(r) 

+ hr,maxlt(K' - 1 / 2 ) ( 6  - q~h)lJ~2(r) 

0 
+hr,m~xl l -~sV(r  qSh) [l~2(r ) 

0 
+ h r , m J l ~ s ( g -  1 /2 ) (U]r -  Uhlr)ll~=(r). 

Since t e is the L2(F)-projection of t =  r  onto S~  l i t- t~llL~(r)= 
distz~(r)(Sulr; S~  and it remains to consider the other boundary terms: For 
example, let us estimate h~r/~=~llW(ulr - 2 uhlr)llL~(r ). According to mapping 
properties [14], we have 

hr ,mJiW(u[  r 2 _ Uhlr)llr2(r) <hr,m.~Cijujr_ Uhlr 2 - I IH~(r)  ( 6 . 8 )  

Let u e ~ S~(F) be some approximant to u, e.g., let u e be the nodal interpolant 
of u with respect to the mesh on F. Then, by the triangle inequality, 

[ lu l r -  2 2 2 U h l r  IIH~(r) < 2 l lUlr -  + 21lu E (6.9) - ue[IH~(r) - uhlr l l~(r) .  

Since, u e - u  h [r ~ SI(F) ,  we obtain from the well-known inverse inequality (cf., 
e.g., [5, 371), 

I[Uh[ F - -  uellH~(r ) < Chr,~2~lluh[r - UE[IH1/Z(I .  ) 

1/2 < Chr,mi~lluhlr- ulrllH~/~(r) + Chlr/~i~[lulr- uellH,/'~(r). 
(6.10) 

By interpolation in Ha/2(F)  and approximation property of us,  we achieve 

I lu l r -  uz[Izz~/~(r) <- Cllulr - uellL~(r)[lulr- uellH~(r) 

<_ Chr,m~xllU[r- uel[~(r  ). (6.11) 
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Putting (6.8)-(6.11) together, we conclude 

- h r  max 2 
h r  maxllW(u F-- Uhlr )[lL2(r) < uhlr[IHl/2(r) 

F,min 

+hr, maxllUIr- uEl[~/l(r)). (6.12) 

The arguments used in (6.8)-(6.12) apply to the remaining boundary terms as 
well and conclude the proof of (6.7). [] 

To illustrate Theorem 6.1, we discuss (6.7) in a model situation where f is 
assumed to be (piecewise) smooth such that 

2 (6.13) Ilhr(f -fr)llc2(a) < Cha . . . . .  

ha, max := max{hr:T ~ } .  

In the exterior domain the solution is arbitrarily smooth, so we may choose 12 
so large that u is smooth near the interface (and then scale g2 into a unit circle 
to obtain positive definiteness of the single layer potential). Then, it is a natural 
choice to have a quasi-uniform mesh on the boundary, i.e., to assume 

hF, max 
1 < - -  < C ( 6 . 1 4 )  

-- hF,min 

with an h-independent constant C >  0. Still assuming that u[c and q5 are 
smooth we obtain 

1/2  �9 . 1 /2  �9 0 _ (-~/a 3 /2  hr,maxdlStH,(r)(u ,  S~( F ) ) + hr,maxdlStL2(v)( Su l r  ; S h ( IF' ) )  < "~"O,m.x" 

(As seen below, this regularity and approximation assumption could be 
weakened.) 

For a quite large class of meshes, we might generically expect 

cho,ma x ~ ] 1 o - -  o-hllL2<o) + II(u - Uh)lVllH1/z(v) + 1195 -- q~hllH 1/2(F)" 

Altogether, in the present situation, Theorem 4.1 and 6.1 verify 

c_lllu Uhllt41( m <__ ~_~ ~ ) h ( T ) 2  < C l l u  2 - - UhIIH~(O), (6.15) 
TeJhh 

i.e., the a posteriori error estimate is sharp (for meshes being quasi-uniform on 
F) .  

Remark 6.2. Following the technique in [5], one can replace the assumption that 
Ulr and ~b are arbitrarily smooth by a typical behaviour of corner singularities 
(cf. [16] for relevant regularity results). Moreover, in this special case, one could 
even neglect the terms distH~(r)(u; SI(F)) and dist/&r)(Sul r ;  S~ in (6.7). 
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7. Numerical Example 

To illustrate the theoretical results we consider a numerical example on the 
L-shaped domain /2 c R 2 where F =  0/2 is the polygon that connects (0,0), 
(1, 0), (1,1), ( -  1,1), ( -  1, - 1), (0, - 1) and (0, 0). The interior problem is linear, 
A(Du) = Du, and the right hand side f is zero; while, on F,  we prescribe jumps 
of u and uc (instead of continuity) and jumps of the stresses (instead of 
equilibrium) such that u and u c are known to equal 

u(x,  y) = ~ { ( x  + iy) 2/3} in ~2 

U c ( X , y ) = N ( l o g ( x + � 8 9  in g2c. 

We refer to [9, 10] for further computational details where this example (treated 
with different estimators) is also under consideration. Note that this example fits 
in the above assumptions and the minor modifications needed to include the 
jumps u l r - U c l r  and 0 ~ [ r -  0,~on r are straight forward. 

For uniform meshes we obtained numerical results as shown in Table 1. We 
computed the upper  bound b N of the a posteriori error estimate and, since the 
solution is known, the error in the energy norm e N by 

~ 1/2 
bN= E ~I(T) z) 

T ~ Y  h 

e N = ]]U - -  UN]]HI(,.C2.) -}-I]OnlA - -  ~N]]H-1 /2 ( j ' )  

Table 1. Numerical results for uniform meshes 

en N e N b N 

16 0.63636 2.4960 0.2550 
19 0.60685 2.0679 0.2935 
37 0.42442 1.6991 0.2498 
49 0.38701 1.3376 0.2893 
97 0.27670 1.1036 0.2507 

145 0.24931 0.8637 0.2894 
289 0.17789 0.70868 0.2510 
481 0.15919 0,55277 0.2880 
961 0.12030 0.45182 0.2663 

1729 0.10114 0.35165 0.2876 

where N is the degree of f reedom for the discrete problem at hand. From Table 
1 we infer that the error is decreasing as the upper  error bound. Of  certain 
interest is the quotient e~ which is proved to be bounded f rom above in 

b N  

Theorem 4.1. From Table i we observe that this is the case and, moreover,  that 
seems to be bounded below a well which verifies that the estimate is sharp in 
harmony with the discussion in Section 6. 
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Finally, we applied the Algorithm ( A 1 / 2 )  i n t r o d u c e d  in Section 4. The meshes 
show a certain refinement towards the singularity of the solution at the origin as 
might be expected; see Fig. 1 for the final mesh and two magnifications of the 
mesh near the origin. The errors and bounds are shown in Table 2. Again, the 
errors and upper bounds are decreasing as N increases. The quotients ~ are 
bounded from above and sufficiently bounded below indicating that the upper a 
posteriori error bound is reasonably sharp. 

~~ / "  /_~_< 
\ \ /  

\ / "  / \  
/ \ ~  , X 

. /X  .w.,N 
\ /  X "~ 

x •  
/ / X  

/ \  \ /  

\ \ /  

/"/X 

/ 

X X / \ /  
X •  

mesh (no scaling) 

: ",4/ t " x /  mesh near corner point 
magnified 10 times 

mesh near corner point 
magnified 100 times 

Figure 1. Mesh generated by algorithm (A1/z)  

Table 2. Numerical results for adapted meshes 
generated by Algorithm (A a/2) 

eN 
N e N b N b--u 

16 0.63636 2.4960 0.2549 
19 0.60685 2.0679 0.2935 
23 0.47838 1:8632 0.2568 
27 0.43429 1.5545 0.2794 
32 0.34192 1.3723 0.2492 
36 0.32110 1.2134 0.2646 
45 0.26198 1.0724 0.2443 
57 0.23503 0.94526 0.2486 
66 0.19794 0.85006 0.2329 
79 0.17396 0.70325 0.2474 
92 0.14849 0.63112 0.2353 

100 0.14401 0.59589 0.2417 
139 0.11496 0.50475 0.2278 
156 0.10811 0.46686 0.2316 
199 0.08965 0.40986 0.2187 
226 0.08250 0.36940 0.2233 
287 0.06996 0.32042 0.2183 
328 0.06449 0.29169 0.2211 
491 0.05064 0.23577 0.2148 
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Efficiency of the adaptive scheme is supported, e.g., by comparing the computer 
effort used to obtain b N < 0.35, that is, by comparing the effort to handle 
N > 1729 degrees of freedom in case of a uniform mesh with the effort to 
handle N < 287 degrees of freedom in case of a mesh generated automatically 
by Algorithm (A1/2). 

Acknowledgement 

The author thanks D. Zarrabi for performing the numerical example. 

References 

[1] Babugka, I., Miller, A.: A feedback finite element method with a posteriori error estimation. 
Comp. Meth. Appl. Mech. Eng. 61, 1-40 (1987). 

[2] Carstensen, C.: Interface problem in holonomic elastoplasticity. Math. Meth. Appl. Sci. 16, 
819-835 (1993). 

[3] Carstensen, C.: Coupling of FEM and BEM for interface problems in viscoplasticity and 
plasticity with hardening. SIAM J. Numer. Anal. 33, 171-206 (1996). 

[4] Carstensen, C.: Adaptive boundary element methods and adaptive finite element and boundary 
~ element coupling. In: Boundary value problems and integral equations on non-smooth domains 
(Costabel, M., Dauge, M., Nicaise, S., eds.), pp. 47-58. New York: Marcel Dekker. 

[5] Carstensen, C.: Efficiency of a posteriori BEM-error estimates for first kind integral equations 
on quasi-uniform meshes Math. Comp. 65, 69-84 (1996). 

[6] Carstensen, C.: An a posteriori error estimate for a first kind integral equation; Math. Comp. 
accepted for publication (1996). 

[7] Carstensen, C., Stephan, E. P.: A posteriori error estimates for boundary element methods. 
Math. Comp. 64, 483-500 (1994). 

[8] Carstensen, C., Stephan, E. P.: Adaptive boundary element methods for some first kind integral 
equations. SIAM J. Numer. Anal. accepted for publication (1995). 

[9] Carstensen, C., Stephan, E. P.: Adaptive coupling of boundary elements and finite elements. 
Math. Modelling Numer. Anal. 29, 1-39 (1995). 

[10] Carstensen, C., Funken, S., Stephan, E. P.: On the adaptive coupling of FEM and BEM in 
2-d-elasticity. Numer. Math. accepted for publication (1996). 

[11] Carstensen, C., Stephan, E. P.: Coupling of FEM and BEM for a nonlinear interface problem: 
the h-p Version. Numer. Meth. Partial Diff. Eq. 111, 539-554 (1995). 

[12] Clement, P.: Approximation by finite element functions using local regularization. RAIRO S6r. 
Rouge Anal. Nmn6r. R-2, 77-84 (1975). 

[13] Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. 
In: Boundary elements IX, Vol. 1, (Bretia, C. A., ed.), pp. 411-420 Heidelberg New York 
Tokyo: Springer 1987. 

[14] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. 
Math. Anal. 19, 613-626 (1988). 

[15] Costabel, M., Stephan, E. P.: Boundary integral equations for mixed boundary value problems 
in polygonal domains and Galerkin approximation. Banach Center Publ. 15, 175-251 (1985). 

[16] Costabel, M., Stephan, E. P.: A direct boundary integral equation method for transmission 
problems. J. Math. Anal. Appl. 106, 367-413 (1985). 

[17] Costabel, M., Stephan, E.P.: Coupling of finite and boundary element methods for an 
elastoplastic interface problem. SIAM J. Numer. Anal. 27, 1212-1226 (1990). 

[18] Eriksson, K., Johnson, C.: An adaptive finite element method for linear elliptic problems. Math. 
Comp. 50, 361-3883 (1988). 

[19] Eriksson, K., Johsnon, C.: Adaptive finite element methods for parabolic problems I. A linear 
model problem SIAM J. Numer. Anal. 28, 43-77 (1991). 

[20] Faermann, B.: Lokale a-posteriori-Fehlerschfitzer bei der Diskretisierung yon 
Randintegralgleichungen. PhD-thesis, University of Kiel, FRG (1993). 

[211 Gaier, D.: Integralgleiehungen erster Art und konforme Abbildung, Math. Z. 147, 113-129 
(1976). 



322 C. Carstensen: A Posteriori Error Estimates 

[221 Gatica, G. N., Hsiao, G. C.: On a class of variational formulations for some nonlinear interface 
problems. Rendieonti di Mathematica Ser. VII 10, 681-715 (1990). 

[23] Gatica, G. N., Hsiao, G. C.: On the coupled BEM and FEM for a nonlinear exterior Dirichlet 
problem in R 2. Numer. Math. 61, 171-214 (1992). 

[24] Han, H.: A new class of variational formulations for the coupling of finite and boundary 
element methods. J. Comput. Math. 8, 223-232 (1990). 

[25] Heuer, N.: hp-Versionen der Randelementemethode. PhD Dissertation, University of Hannover, 
(1992)~ 

[26] Hsiao, G. C., Wend[and, W. L.: The Aubin-Nitsche lemma for integral equations. J Integr. Eq. 
3, 299-315 (1981). 

[27] Johnson, C., Hansbo, P.: Adaptive finite element methods in computational mechanics. Comput. 
Meth. Appl. Mech. Engin. 101, 143-181 (1992). 

[28] Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and applications, Vol. I. 
Berlin Heidelberg New York: Springer 1972. 

[29] von Petersdorff, T.: Randwertprobleme der Elastizit~tstheorie fiir Polyeder - Singularit/iten 
und Approximation mit Randelementmethoden. PhD-thesis, TH Darmstadt, FRG (1989). 

[30] Rank, E.: Adaptive boundary element methods. In: Boundary elements 9 (Brebbia, C. A., 
Wend[and, W. L., Kuhn, G., eds.), VoL 1, 259-273. Berlin Heidelberg New York Tokyo: 
Springer 1987. 

[31] Saranen, J., Wend[and, W. L.: Local residual-type error estimates for adaptive boundary 
element methods on closed curves. Appl. Anal. 48, 37-50 (1993). 

[32] Sloan, I. H., Spence, A.: The Galerkin method for integral equations of the first kind with 
logarithmic kernel: theory. IMA J. Numer. Anal. 8, 105-122 (1988). 

[33] Stephan, E. P., Suri, M.: The hp-version of the boundary element method on polygonal domains 
with quasiuniform meshes. Math. Modell. Numer. Anal. 25, 783-807 (1991). 

[34] Stephan, E. P., Wend[and W. L.: Remarks on Galerldn and least squares methods with finite 
elements for general elliptic problems. Manusc. Geod. 1, 93-123 (1976). 

[35] Stephan, E. P., Wend[and, W. L., Hsiao, G. C.: On the integral equation method for the plane 
mixed boundary value problem of the Laplacian. Math. Meth. Appl. Sci. 1, 265-321 (1979). 

[36] Verfiirth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. 
Teubner Skripten zur Numerik. Stuttgart: B.G. Teubner 1996. 

[37] Wend[and, W.L.: On asymptotic error estimates for combined BEM and FEM. In: Finite and 
boundary element techniques from mathematical and engineering point of view (Stein, E., 
Wend[and, W. L., eds.), pp. 273-331. New York: Springer 1988. 

[38] Wend[and, W. L., Yu, D.: Adaptive boundary element methods for strongly elliptic integral 
equations. Numer. Math. 53, 539-558 (1988). 

[39] Wend[and, W. L., Yu, D.: A posteriori local error estimates of boundary element methods with 
some pseudo-differential equations on closed curves. J. Comput. Math. 10, 273-289 (1992). 

C. Carstensen 
Mathematisches Seminar II 
Christian-Albrechts-Universit~t zu Kiel 
Ludwig-Meyn-Str. 4 
D-24098 Kiel, Federal Republic of Germany 
e-mail: ec@numerik.uni-kieI.de 


