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Summary. This paper concerns the combination of the finite element method
(FEM) and the boundary element method (BEM) using the symmetric coupling.
As a model problem in two dimensions we consider the Hencky material (a cer-
tain nonlinear elastic material) in a bounded domain with Navier-& aiiffer-

ential equation in the unbounded complementary domain. Using some boundary
integral operators the problem is rewritten such that the Galerkin procedure leads
to a FEM/BEM coupling and quasi—optimally convergent discrete solutions. Be-
side this a priori information we derive an a posteriori error estimate which allows
(up to a constant factor) the error control in the energy norm. Since information
about the singularities of the solution is not available a priori in many situation
and having in mind the goal of an automatic mesh-refinement we state adaptive
algorithms for theh—version of the FEM/BEM-coupling. Illustrating numerical
results are included.

Mathematics Subject Classification (1998pN35, 65R20, 65D07, 45L.10

1. Introduction

The mathematical justification of the "mariagda mode” proposed by engineers
started in the later seventies by Brezzi, Johnson, Nedelec, Bielak, MacCamy and
others. Further progress in the analysis of the coupling of finite elements (FE)
and boundary elements (BE) concerns Lipschitz boundaries, systems of equations,
and nonlinear problems cf. e.g. [5, 8, 9, 12, 13, 18, 27] and the literature quoted
therein.

In order to get asymptotically a good convergence but also when dealing with
a few degrees of freedom, we need a good mesh in particular when singularities

* The work is partly supported by DFG research group at the University of Hannover
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188 C. Carstensen et al.

appear. If the nature and the position of a singularity are known a priori, the mesh
refinement can reflect on this. Otherwise one requires the information we may
achieve from an analysis of the discrete solution. Nowadays the main topics in the
adaptive feedback steering of mesh refinements, usually based on the residuals,
are mathematically understood for the finite element methods — we refer only to
the pioneering works [1, 11], to [19, 25] for nonlinear problems, and to [26] for
a recent review. Comparably little is known for the boundary element method
— cf. e.g. [2, 23, 24, 29, 30].

In this paper adaptivén—versions of the symmetric FEM/BEM—coupling
are presented for linear and nonlinear interface problems. They are based on
an a posteriori error estimate which gives a computable error estimate up to a
multiplicative constant. Then, following the approach of Eriksson and Johnson
(elaborated for the finite element method) we present an adaptive feedback algo-
rithm for the mesh refinement of the coupling procedure and report on numerical
experiments.

We consider a model problem for the FE and BE coupling in two dimensional
elasticity described in the sequel. L€tbe a bounded Lipschitz domain in the
plane with boundary” and complemenf. := R?\ 2. Neglecting the functional
analytic framework (outlined in Sect. 2) we havefiha displacement field, a
strain fieldeu, and a stress field satisfying the elasticity material behaviour

(1) o = A(eu) in 2

which reads for the Hencky material (in components= 1, 2)

@) oy = (= W) 6 div U+ 2r(W)ei (u),
with &; = 1iff i =j andd; =0iff i #j,

. 1 0ui ou
®) (5= 5 * o)

and~(u) := deveu : deveu with

1
dev(:=(—tr¢, tr(:=Cu+le (EREE

In (2), x is a constant bulk modulus andis a certain function (cf. Example 1
below).
Given a volume forcé the equilibrium equations read' = o and

4) dive+f =0 in 0.
The exterior problem consists of the Navier-L@aeguations
(5) 0=—A%U:= —upAu — (A2 + puz)grad divu in (2

and a radiation condition of the form [15, 16]
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(6) D*(u — a)(x) = O(|x|~17%), a=01 (x| = )

whereD = 0/0x anda € R? is a constant vector.

The two problems are coupled on the interfaCewhere we have in the
simplest case continuity of the displacements and equilibrium of the tractions,
ie.

(7) Ulp =U|p, and on=Tyu|n,) onl’

whereo is the stress field if2, n is the unit normal vector o’ pointing from
£2 into (2, andT; is the conormal derivative related to the LamaperatorA*,

To(Uu) := 2u20,U + Aondiv u + pen x curlu

with the normal derivativé),.

In this paper we consider the transmission problem (1)—(7) and extend re-
sults in [3] in three aspects at least: regarding the &aystem instead of the
scalar Laplacian; allowing more general nonlinearities; using a different and more
general coupling (zero means for the discrete tractions need no assumptions on
the size of the domain).

This paper is organized as follows: In Sect. 2 we give a functional analytic
framework and rewrite the exterior part equivalently using boundary integral op-
erators (as in [28]). Then, we discuss the resulting weak form of the transmission
problem and prove existence and uniqueness of solutions. The numerical approxi-
mation of the problem is given in Sect. 3 via the coupling of boundary and finite
elements. As an a priori result we prove quasi-optimal convergence estimates
while we prove a posteriori error estimates in Sect. 4. These error estimates can
be used to derive an adaptive algorithm for an automatic mesh—refinement as
performed in Sect. 5. In order to give numerical examples we explain computa-
tional details and study a class of examples with singular solutions as well as a
more practical example in Sect. 6. Thereby we prove efficiency of our adaptive
algorithms and illustrate that tHe-method yields efficient solutions.

We finally emphasize that this model problem combines the advantages of
the two methods (FEM for nonlinear problems, BEM for simple problems in
unbounded domains) but can be used also as a model for generally combining
FE and BE where many subdomains are discretized via FEM or BEM also for
bounded domains.

2. A nonlinear transmission problem

We use the following notationdd 5(£2) denotes the usual Sobolev spaces [20]
with the trace spacellS~Y%(I") (s € R) for a bounded Lipschitz domaif
with boundaryI. || - [J4kw) and| - |yx,) denote the norm and semi-norm in
H¥(w) for w C 2 and an integek.
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In 2 we have the non-linear elastic Hencky material [22, 32] determined by
a stress strain relation (1) where

e HY(2:R?) = L2(2;R%2), uw— ;(gradu +gradu)

sym/s

maps the displacementsto the (linear) Green’s straingi, o € L2({2; ngxnf

denotes the stress field and
A L2, RE2) — LA(12; RE2

sym sym

describes the elastic material behavioRis the 3-dimensional real vector
space of real X 2 symmetric matrices.

Example 1.For example lefA be the derivative of a mapping
M : L% R5%) — R
with
M — 1 )\ 2 d . d L2 Q R2><2
Q) = A+ Wr(Q)” + pp(dev( s deve), ¢ € L2 Rym),

where ), 1. are the positive La# constants and the functign: [0,00) — R is
a C2 map withp(0) = ”(0) =0 and

® asdM<l b<M<0 <O+ 0 <n

for all t € [0, c0) and constants, b > 0 and a natural numbaer. Thus,

l/A@rch - /{O+MNNOU@)
N N

+2u’(deve:deve) - devé:dev(} d2
(€,¢ € LX(2; RE:D)).
It is proved in [32, Sect. 62] thaA is uniformly monotone and Lipschitz
continuous.

In the sequel we provide the weaker assumptions that L — L*,
L := L%(s2; ngxnf) is strongly monotone and Lipschitz continuous for bounded
arguments, i.e. there exists a convex function

9) a ' [0,00) — [0, 0)
with

0 =tIirB1+a(t)/t, oo = tIim a(t)/t, «a(t)/t strongly monotone in t

such that for any, ¢ € L = L?(12; R:7
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(10) /Q A©) — AQ) - (€~ O d2 > a(l€ — ¢[l)

and there exists a functioa : [0,00) — [0, 00) such that for any > 0 and
&,¢,p e L we have

leluliclo<r = /Q<A(o CAQ)-pd2 <a)e — il ol

The quasi—static equilibrium condition is (4) in the sense of distributions
wheref e L2(2; R?) is a given body force. Due to Green’s formula and the
symmetry ofo = A(eu) the equilibrium yields the weak form

(12) /A(eu)~ev dQ=/f~de+/ on-vdof2
2 [0} o8

for any test functiony € H(£2; R?).

Remark 1.For Lipschitz domains we may use Green'’s formula (used in (11)) to
defines - n € H=Y2(I"; R?) as well as the conormal derivativle (cf. [9] in 3
dimension or e.g. [6] for the general case).

Definition 1. The transmission problenhas the datd < L%(2;R?), uy €
HY2(I";R?), and ty € H~Y2(I;R? and consists in findingug,uy) €
H(2; R?) x HL.(2; R?) satisfying

(12) div A(eu) +f =0 in 2

with u = u; and (5), (6) with replacingl by u, and the interface conditions

(13) Uup=Ux+uUg and Aeup)n =To(up) +1to onr.

Remark 2.Although the physical interpretation of inhomogeneous transmission
dataup andtp is not already clear, the present formulation is more general than
(7) which is included byug = 0 =t,.

In the sequel we recall definitions and some properties of boundary integral
operators yielding the rewritten form of the transmission problem of Definition
1 following a particular case of the general description in [17, 28].

Definition 2. For anyu in

%> = {ue€HL(2:; R? : there exists a constant vectarsuch that
u satisfies (6) and (5)

let (u|r, To(u)| ) denote itsCauchy data.
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Remark 3.Due to the trace lemmau|r € HY2(r; RZ) wheneveru, €
HI.(2; R?), H.(26 R?) denoting the displacements of locally finite energy.
The brackets< -,- > always denote the duality betwedh/2(I"; R?) and
H-Y2(I";R?) = (HY2(I"; R?)* such that forv € HY2(I;R?) and w €
LX(I"; R?)
<w,v>=/w-vdf.
r

Then, the Cauchy data of € H2 (¢, R?) with A*u, = 0 satisfy (cf. e.g. [9])

(U], To(W)| 1) € HYA(I; R?) x H=Y(I; R?).

For the Lang operator the fundamental soluti@ with the kernelE(x,y)
—called Kelvin—matrix— is well-known,

A2 + 3u { g 1 .|+>\2+ﬂ2 (x—y)(x—y)T}
AT (N2 + 2p12) X —y| A2+3u2 X —yl|? '

| is the 2x 2 unit matrix and’ denotes the transposed matrix. Sifces analytic
in R? x R? without the diagonal we may define its traction

T(Xay) = TZ,y(E(Xa y))Ta X 7& y.

As itis derived e.g. in [15, 16, 17] we have the following Betti representation
formula forx € (2.

(14) U(X) =< T(X,),v > — < E(X,-),¢ > +a

E(x,y) =

for all u, € %, with v = Uy|r, ¢ = To(U2)| .

Remark 4.Note that< T(x,-),v > — < E(X, ), ¢ > +a satisfies (6) if and only
if < ¢l1>=0=<¢%1> [16], i.e.¢ € Hy V2(I) = { € H-Y2(I";R?) :
<yl 1>=0=<¢? 1>}

For anyx € (2, (14) can be differentiated giving a representation formula
for the stressed,(up). By using the classical jump relations far — I" and
inserting the Cauchy data into these formulas one obtains on

v \_o [V
(15) <¢)“2 <¢>

where the Caldé@n projector

1+K -V
(B %)
-w 1K

is defined by
Vo)) = <E(X,), 9>
(Ko)x) = <T(x,:),v>
Wo)(x) = —Tax(< T(X,),v>)
(K'9)x) = -Tox(<E(X,),0>) (X€T).
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V is the single layer potentiaK is the double layer potential with its dull’,
andW is the hypersingular operator.

It is known (cf. e.g. [5, 6, 9]) thatZ (X;Y) denotes the real Banach space
of bounded linear operators mappiXginto Y,

V € LHYVATRY)HYA(I;RY)
K e ZHY;RY):HYAI;R?)

K' e ZHYXI;RY)H YT RY)
W € Z(HYAI;R%);H VAT, RY).

W andV are symmetricK’ is the dual oK, W is positive semi—definite and
is positive definite orHO_l/z(F), i.e. there exists a constapt > 0 such that for
all v e HY4(I"; R?) and all¢ € HY2(I"; R?) with < ¢',1 >= 0 =< ¢, 1 >

there holds
(16) <Wo,0>>0 and < ¢,Vé>> |6l 1erra

This may be proved as in the three dimensional case in [9] since we assume the
radiation condition (6).

As it is already proved for transmission problems concerning the Laplacian
or the Navier-Laré equations in three dimensions (cf. e.g. [7, 9]) the Céalder
projector is a projection iH ¥/2(I"; R?) x H ~Y/2(I"; R?) onto its subspace of
Cauchy data of weak solutions.

We summarize this briefly reviewing descriptions of the exterior problem.

Theorem 1. For any(v,t) € HY3(I'"; R?) x Ho’l/z(l“) there exists L H2.(f2)
solving(5) and (6) and having Cauchy dat@, t) if and only if (15) holds. In this
case the solutionuof the exterior problem is unique and given by the right hand

side of the representation formu{a4).

Remark 5.Note T,(uy) € Hol/z(F) and (13) lead to the further assumption

(17) /fdx+/tods:0
(9} r

(cf. (12)) which will be used in the sequel.

Remark 6.We note that for any rigid body motion withwe have

(18) Wr=0 and Kr =—;r.

Remark 7.1t should be emphasized that in related works (e.g. [8, 9, 13, 18])
the rigid body motions in elasticity in the interface problem are prevented by an
additional Dirichlet boundary inside of the interior domain. It is shown in this
paper that this technical restriction is not necessary. Instead with one salytion
in £2, up in 2. any u; + ¢, Uy + ¢ with a constant vectot is a solution as well.

We need some subspaces in order to treat the constant displacements.
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Definition 3. Let

Ho—l/Z(F) — {¢€ H—l/Z(F;RZ) < ¢1’1>:0:< ¢2,1>}
HYA(N) = {v e HYA(IR?) i< v}, 152 0 =< 0,1 >}
i) = {ueHY2RY:ulr € YD)

and defineP : H/2(I"; R?) — Hy/%(I") by Pv := v —vo wherev € H/2(I"; R?)
andvg € R? is defined byl =< o, 1>/ < 1,1 >. With the integral operator
V, W we have the continuous mappings

Vo= PV|, w2 Hy */2(I") — HY'A(D)

-
and

S =W+ (; - K') vy P (; — K) HY/A(I) — Hy YA(ID).

Lemma 1. The operators Yand S are well defined, linear, bounded, symmetric
and positive definite.

Proof. SinceP : HY(I";R?) — H{/*(I') is linear and bounded; is well
defined, linear, and bounded as a composition of linear and bounded operators.
According to (16),V, is positive definite, hence invertible, aMg]’l is bounded

and positive definite as well; (the symmetry \é&f follows from that ofV). By

(18) we have for €= (1,0) and & = (0,1), v € HY(I"; R?), ¢ = (1, ¢?) €
H-Y4TI;R?), andj = 1,2

<Wv,g >=<v,Wg >=0
and
) 1\ . , 1 )
— <P 1 >=< 1), Kf2 d >=< (K — 5 P, e >
Thus K’ — L) mapsH, “/*(I") into itself andW mapsH,’?(I") into Hy /().

Thus, S is well defined, linear, and bounded.
The symmetry of, follows from

1 1 1 1
—K' )V (=K =<V;WP(_-K)u,P(.-K
<<2 ) 0 <2 >U,w> < Vp (2 )v, (2 >w>

since< Vg *P(} — K)v, & >=0 for anyv, w € Hy'*(I).

Note § is positive semi—definite (cf. (16)). In order to prove positive defi-
niteness ofS let us assume that this is false, i.e. there exists a sequepge (
in H(£2) with

[l yun ||H01/2(r):1 and 0<< Sun,uy, ><1/n, n=2123,....

It is known form the analysis in [9] (performed for three dimensions which
works also in this case according to (6)) th&t is positive definite on
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HY2(r; Rz)/KerW and KerW are the rigid body motions. Therefore, we may
write u, = vn + 1, wherew, € HY2(I; Rz)/ Ker W andry, is a rigid body mo-

tion. Because ok Wun, vy ><< Svn, vnp >< ; we obtain that 4,), tends in
HY2(r; Rz)/ Ker W towards 0. Sincerf) is a bounded sequence in a finite di-
mensional normed space we may and will choose a subsequence, also denoted by
(rn), which converges strongly il %/2(I"; R?) towards some rigid body motion

r. By assumption and the strong convergence we have

(19) 1= nano]o ” YUn |||.|01/2(p) = H r ||H01/2(p)

and < Sr,r >= 0. By (18) this implies< Voflr,r >= 0, i.e.r = 0. This
contradicts (19)O

We are now in the position to reformulate the transmission problem of Defi-
nition 1.

Definition 4 (Problem (P)).
@0) [ Aew-epdee < Wiir + (K~ )61l >
N
=/ Fopd 2+ < to+Wipnlr > (€ HA())
0N

(21) <, Vo+ (; — K) ulp >=< 1, (; - K) U > (¢ € Hy Y3(I)).

The transmission problem of Definition 1 and problem (P) are equivalent;
compare also [8, 9, 13, 18] for related results.

Theorem 2. The transmission problem and problem (P) are equivalent in the
following sense.

(i) If (ug, u) € H(£2; R?) x H..(2; R?) is a solution of the transmission problem
stated in Definition 1 then let € R? be a constant vector with @ u;+c € H3(£2)

and lete := To(Uy). Then(u, ¢) € HE(£2) x Hy /2(I") solves problem (P).

(i) If (u, ¢) is a solution of problem (P) then for any@ R? let u; = u +a and
define y € HL.(12; R?) by (14) with replacingv by w |, — up on the right hand
side of(14). Then(us, u) solves the transmission problem.

Proof. The proof is based on arguments concerning (14) and (15) and quite
similar to the proof in [3]. Hence we omit the details.
We rewrite the problem (P) using some forBsandL.

Definition 5. Define the continuous mappirg : (HX(12) x Hy 74(I))?> — R
and the linear forni : H(12) x Hy “*(I') — R by
B(D.() = [ A evde
+ <WU|F+(K/—1/2)¢7,'U|F>
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+

<P,V +(1/2—K)u[p >

L(%) food2+ <, (1/2— K)up >
2

+ <to+Ww,v|p >
for any (U, ¢), (v, 1) € HE(82) x Hy Y*(I).
Remark 8.Problem (P) is equivalent to finding (¢) € H&(£2) x Hy ~/*(I") with
(22) B((4), () =L,
i.e. for any ¢,4) € Hi(12) x Hy *(I") there holdsB((Y), (4)) = L(}).

In the case thaA is a linear mapping, the following result proves that the
bilinear formB satisfies the Baliika—Brezzi condition.

Theorem 3. There exists a constamt > 0 such that for all(u, ¢), (v,v) €
HA(12) x Hy “*(I") we have withy from (9)

(23) a(” €U — €v |||_2(Q;R§;<m2)) + 6” (;u_:p’w) H|2-|1/2(F;R2)><H*1/2(F;R 2)
< B((): (5-8) — B((3): (5-%)
with 2 := ¢+ Vg P (3 — K)u|r, 26 := 1+ Vy 1P — K)o € Hy "/2(I).

Proof. The proof is similar to that in [3] and given here for completeness. Some
calculations show

B(Y), (4~2) — B(}), (“=2)
/ (A(eu) — A(ev)) (U —v)dR2
(9]

1 1
2<W(u—v),u—v>+2<So(u—v)7u—v>

1
5 < Vol —).6 = >

+

+

SinceA is strongly monotone and by the definitenessspandVy we have that
the right hand side is bounded below by

Cl 2
off eu — ev |||_2(_(2;R2><2)) + 4 [yu —~v ||H1/2(1";R2)

sym
CZ 2
oy &=V lG-varre
with constantscy, ¢, > 0. This proves (23)J

In caseA is linear, Theorem 3 and continuity of the forrBg-,-) and L(-)
give with the Lax—Milgram lemma give existence and uniqueness of solutions
of the transmission problem (unique up to constant displacements) as well as of
the rewritten problem (P) (due to Theorem 1 and 2).
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Theorem 4. The problem (P) has a unique solution.

Proof. Note (21) is equivalent to

(24) ¢ =—Vg 'P(1/2~ K)(u|r — Uo)

which may be used to eliminatg in (20). This leads to the problem of finding
u € Hg($2) with

(25) AU)(m) =L'(n) (1 € Hg(52)).

Here,L’ is some bounded linear functional. The operator

Au)(n) = /Q Aeu) - end @+ < Sulrnlr > (U1 € HA(2)

mapsH 1(£2; R?) into its dual, it is continuous, bounded and strongly monotone.
From the main theorem on monotone operators [31] we obtairﬁthabijective.
This yields the existence af satisfying (25). Lettingy as in (24) we have that
(u, ¢) solves Problem (PLJ

Remark 9.We emphasize the different meanings<ois,1 >=0, ( = 1,2) and

< #,1>=0,( =12 for ¢ = (¢*¢%). ¢ € Ho_l/Z(F) guarantees that we
consider solutions of the exterior domain having a correct physical relevance,
namely finite energy, whereas the constraiosu!,1 >= 0 =< u?,1 > for

u € H(2; R?) just fix an (otherwise undetermined) additive constant which
may also be chosen in another way (compare Remark 7).

3. The discrete problem py,)

In this section we treat the discretization of problem (P) in the form (22).
Let (Hy x H, % 1 h € 1) be a family of finite dimensional subspaces of

HE(£2) x Ho’l/z(l“). Then, the coupling of finite elements and boundary elements
consists in the following Galerkin procedure.

Definition 6 (Problem (Py)). Forhel find (un, ¢n) € Hn x H, /% such that
(26) B((5), (o)) =L,
for all (vn, vn) € Hn x Hy 2.

In order to prove a discrete Baka—Brezzi condition ifA is linear, we need
some notations and a discrete analogue of the positive definite op&sator

Assumption 1. Let | C (0,1) with 0 € | and for any he | let Hy, x Hh_l/2 -
HA(12) x Hy /3(I"). Let us assume that for arfy, 1)) € HE(£2) x Hy “/*(I") and

h € | there exist{uvp, ¥n) € Hy X Hh_l/2 with

Aim 1@ = on, ¥ = n) gy 2 = O
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Definition 7 (Notations). Let iy, : Hy < HZ(12) andjp : Hy "% < Hy Y3(I)
denote the canonical injections with their dugfs: H(£2)* — H, andj; :
Hy/2(I") — (H, “/?)* being projections. Let : H}(£2) — Hy/*(I'") denote the

trace operatoryu = u| for all u € Hg(£2), with the dualy*. Then, define
(27) Vh Z=erth7 Kh Z=jﬁK’7ih, Wh = iﬁ'y*W’yih, thn = iﬁ'y*K*jh

and, sinceV,, is positive definite as well,
. 1 * / -1 1 . *
(28) S =W, + 21h — Ky |V, 21h —Kp ) i Hy — H;

with 1 :=j~ip and its dual §.

Lemma 2. There exist constantg ¢ 0 and hy > 0 such that for any ke | with
h < hg we have

< Sl Un >> Co - [[YUn [|Z1/2p2 for all un € H.

Proof. The proof is quite analogue to that in [3] and is included for complete-
ness. Assume that the assertion is false. Then one can construct a sequence of
functions (in,)n=1,2,3,... in H3(¢2) with

1
Un, € Hih,, 70, lnvzrirsy =1, < Sng, Un, ><

(n = 1,23,...), and limh_. h, = 0. Due to the Banach—-Alaoglu theo-
rem we may assume that a subsequenceugfif{)n-123, . (also denoted as
(Un, | r)n=1.2.3...) converges towards somec H,/*(I") weakly inHg'?(I’). Then,
by definition of §,, we firstly conclude thak Wu, |r,un,|r > tends towards
zero so that (by weak convexity 6f W-,- >) < Ww,w >= 0, i.e.w|r is a
rigid body motion. A decomposition af, | = vn + wp With vy, € Hol/Z(F) and
wy a rigid body motion shows additionally thatnjn-123 ... tends towards zero

strongly in Hol/z(l“) so that we have also strong convergenceugf|{)n=123,...
towardsw in Hol/ 2(I“).
On the other hand we have 0 = imy, < Vz, 2z, > with z, 1=V, *(¢n) €
HoV2 o yol/2 ik —1/2\4 =1 1/2
by C Hy "°(I), ¢n =0 Yn € (Hy )" Y 1= 5Un, — Kun, € Hy" ().

Thus, 0 = liM— o || Zn ||, ~1/2,~ Whence 0 = liM_ || ¢n ||, -1/2,.. Because of
Hy /3(I) H %
(Un, | PIn=1,23,... — w we get §n)n=123.. — w strongly in Hol/z(F) (compare
(18)). Hence, sincd w [|y1/2rr2) = liMn oo | YUn, [[41/2(R2) = 1 we findr, €
Hh:1/2 with limp_ o || n — w||H071/2(F) = 0. (cf. Assumption 1). Then, since
[I'Tn ||H071/2(F) is bounded, we obtain
0= lim < ¢pn,ry >= nIim < V¥Yn, M >=< w,w >,
— 00

n—oo

a contradiction]
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Theorem 5. There exist constants, > 0 and hy > 0 such that for any he |

with h < hy we have that for anfun, ¢n), (vh, ¥n) € Hn x H, /2

— 2
O‘(” €U — €vn ||L2(-Q;R§yxmz)) * B0 1 G ™ Bvarraycn -2

<B((), GrZa —B((), Gr=a)
with 2nn = ¢n +Vh71(;1h - Kh)uh, 26n = n +Vh71(§1h - Kh)vh S thl/Z'
Proof. The proof is quite analogue to that of Theorem 3 dealing now with
the discrete operators (27) and (28). All calculations in the proof of Theorem 3
can be repeated with obvious modifications. Due to Lemma 2 the corresponding
constants are independenttofso thatg, does not depend on < hy; we omit
the details]

Theorem 6. There exist constantgc> 0 and Iy > 0 such that for any he |
with h < hg the problem (R) has a unique solutiofun, ¢r) and, if (u, ¢) denotes
the solution of (P), there holds with constaats> 0in (9) and 5 > 0

Oé(H €U — €l ||L2(Q;R§;<m2)) +ﬁ : || (z)li_(z):ur] Hal/z(l—';Rz)fol/z(Iﬂ;R 2)

< Co- inf {a* (COH eu — ev ||, 2 OR2X2 )
(Uhﬂ/Jh)GHthh_l/z L2( 'Rsym)

YU—=7vny (12
+H (¢—1/1h h) ||H1/2(F;R2)><H071/2(F)}
letting a*(s) := SUR-o(s -t — a(t)) for s > 0O, the dual ofa.

Proof. The existence and uniqueness of the discrete solutions follow as in the
continuous case.

Let (vn,¢n) € HM x Hh’l/2 be an approximation ofu(¢), the solu-
tion of Problem (P), (cf. Assumption 1) such that we may assume that
|| (vn, 1n) ||H01(Q)XH071/2(F) is bounded. Letu,, ¢n) solve problemP,) such that,

from Theorem 5, we get

0‘(“ €Un HLZ(Q;ngXm?)) + 5 . || (;:h) Hal/Z(F;RZ)XH*l/Z(F;RZ) < L(( ;J;:))

Using equivalence of € - || zorzxzy + |7 [H12(mr2) @nd || - [lnyerz one

sym)
concludes thattg, ¢n), (U, ¢), and n, ¢n) are bounded itHE(£2) x Hy /(1)
by ro > 0, say, where is independent ofi. Therefore, we may and will assume
in the sequel thaA is Lipschitz continuous with Lipschitz constaa(ro) (see
below).
From Theorem 5 we conclude with approprigtg 6, € Hh_l/2 that

- 2
a(” “n — th ”LZ(Q;RinmZ)) 60 1 G ™ verimayc-varirey

<B((U) (7)) — B((S). (0))
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Using the Galerkin condition,

B((Y), (1)) = B((%), (1) =0 for all (n,¥n) € Hy x Hy 2,

and the continuous dependencengf— 6, from (y(vn — Un), ¥n — @p), i.€.

| 7h — on lln -1/2([":R?2)
< C (llvwn = Un lnarzrrzy + [19h — ¢n ln-22rr7) >
we get a constart; such that the right hand side of the last inequality is bounded
by
/ (A(evn) — A(ew)) - (evn — eup) dS2
+ ¢ (Wh Wh) lH12(r:R2)xH -12(1R2)
W) ln2/2rr e /2R -

Using thatA is Lipschitz continuous (see above in this proof) we obtain

a(@+pf-c?<c,-a-b+ci-c-d

with some constant, > 0 and real numbers

H €Uh — €lUp ||L2(Q ‘R 2X2

a )
sym
b = H €h — €U HLZ(Q'RZXZ
c = H(Wh Wh) lnv/2(mr 2y -12(rR?)
d = H Wh W) lH12(r:R2)xH -12(rR2)-

Next we usd -s < éa(t) + ;a*(Zs) fort =a ands = c,b and a similar standard
argument forc - d to obtain with some constact > 0

a(@) + fy - €2 < a*(2cb) + ¢4 - d2.

Thusc? = || (" Wh)) HHM(F R2)xH-1/2(rR 1S bounded by the right hand side
of the clalmed mequallty of the theorem.

With 2 = ¢ + Vg P(L — K)u|p € Hy 73(I) and 3 := ¢y + Vg P(L —
K)un|r € Ho’l/z(l“) we obtain from (23)

ol e = et i) + O G ™) Ragrmayen—vaemsy
(29) <B((4), (-8 = B((4): (5=9)
=B((4), (-5 — B((), (,=5")
using the Galerkin property fos, € Hy. SinceA is Lipschitz continuous (see
above in this proof) and sineg— 6 depends continuously or (U — un), ¢ — ¢n)

we get
a@+p-f?<cs-e-b+ce-f-(f +d)
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with a, b, ¢, d defined above and

e

f

leu — eun llzorze)

H ( Zs(f(;hUh)) ”H /2(IR2)xH —1/2(I";R 2)-

According to triangle inequalityf,? < 2(c? + d?) which gives
ae)+4-f2<cs-e-b+cy- (c?+d?).

Again usingt - s < Ja(t) + ;o*(2s) for t = e ands = csb yields
a(e) + -2 < a*(2csb) + cg - (c? +d?).

Finally, combining this with the above bound fof concludes the proot]

4. A posteriori error estimate

In this section we present an a posteriori error estimate, which is the base of our
adaptive feedback procedure. For simplicity, we restrict ourselves to piecewise
linear functions on triangles as finite elementsHp and to piecewise constant
functions onI" as boundary elements Hh’l/z assuming the following.
Assumption 2. Let 2 be a two-dimensional domain with polygonal boundary

I' on which we consider a family” := (% : h € |) of decompositionsf =
{A1,..., Ay} of 2 in closed trianglesq;, . .., Ay such thatf? = UiNzlAi and

two different triangles are disjoint or have a side in common or have a vertex in
common. Let# denote the sides, i.e.

S ={0Ai NOA; 11 #] with 0A; NI4; is a common sidg,
04 being the boundary ofy;. Let
h={E:Ee.fwWthECTI}
be the set of "boundary sides” and let
RO = AN

be the set of "interior sides”.

We assume that all the angles of sorhes .74, € .7 are > © for some fixed
© > 0 which does not depend oft or .7%,.

Then, define

Hh
H Y2

{nn € HF(2) s mj|a € PLforany A € F (j = 1,2)}

{ton € Hg Y/2(I") : ¢njle € Poforany E€ %, (j = 1,2)}

where R denotes the polynomials with degreek.
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For fixed.%; let h be the piecewise constant function defined such that the
constants i and he equal the sizediam(A) of A € .7 anddiamE) of E € .%4.

We assume that A is of the forA¢)(x) = (& (X, ((X)))i j=1,2 for some coef-
ficients g which are piecewise smooth with respect to both variables such that
A(evy) € CHA) for any A € . % € .7 and any trial functionv, € Hy. Finally,
let up € H(I"; R?) and f € L2(12; R?), , ty € LA(I"; R?) satisfy(17).

Remark 10.We emphasize that a standard basisl—fg’rl/2 is given by the deriva-
tives with respect to the arc—length of the standard piecewise linear hat functions
on the polygoni” (piecewise with respect t&). As noted above (cf. Remark
9) the restriction ofH, to be a subspace dfJ(£2) is not really necessary, it
determines just the constant in the (discrete) solution.

Instead of constructing a basis of piecewise linear trial functionidja2)
we may use the standard basis of piecewise linear trial funcﬁﬁneﬁeglecting
the above conditior< 71,1 >= 0 =< 72,1 > for = (n%,%?)) but adding one
artificial boundary condition on the discrete problem determining a constant like,
e.g. (%) = 0 for some fixed node in the mesh (or on the boundary) giving
Hn. Then, the modified discrete problem yields a unique solutisnd) €

HE x Hrrl/2 of

BU(H). () =L(R) () € Ay x HY).
Letting u, := P{, we obtain a solutionu,, ¢n) € Hi x Hh’l/2 of Problem Py).

Definition 8 (Notations). Let n be the exterior normal off and on any element
boundaryd A, letn have a fixed orientation so tha#jun)-n]|e € L?(E) denotes
the jump of the discrete tractionfdu,) - n over the sideE € .%°. Define

R = ) diam(A)2~/ |f +div (Aeun)|>d 2
AeR A

RS = Z diam(E)-/|[A(euh)-n]|2ds
Ec.y0 E

Rs = |vh- (to—A(euh)-n+W(uO—vuh)

—(K' - 1/2)¢h) lo(r;r2)

R = Y diam@)Y | {(1/2 - K)(w - o)

Ec%h
=V én}lizERr?)-

Remark 11.Note thatRy, ..., R4 can be computed (at least numerically) as far
as the solutiont,, ¢y) of problem P4) is known (see also Sect. 6 below for the
computational details).

Under the above assumptions and notations there holds the following a poste-
riori estimate whereu, ¢) and (1, ¢n) solve problem) and @y,), respectively.
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Theorem 7. There exists some constant> 0 such that for any he | with
h < hg (hp from Lemma 2) we have

B0 aflleu— e luarzy ) A1 GEI sy vig

< a*(c-(Ri+Re+Ry)) +c- (RR+RE+RE+RY)

Proof. The proof of Theorem 7 is of some length but analogous to corresponding
results in [3] so that we give only a sketch of the proof. We adopt the notation
and the assumptions of this sectian> 0 is a generic constant and depends
only on.7" but not onh, A, N u, etc.

We start as in the proof of Theorem 6 and use (29) to see that the left hand
side in (30) is bounded by

L( IeJ:?:h) - B(( ;hn)’ ( 2:6/221))

wheree := u — Uy, p = 3(¢ — ¢n) + 2Vy 'P(1/2 — K)(yu — yun) and n, pn) €
Hp x Hh’l/2 will be chosen later on.

Elementwise integration by parts of the termisA(eun) - (e — e,) df2 and
direct calculations yield that the left hand side in (30) is bounded by

T1+To+T3+ Ty

where

Ty = Y [ (f+divAdeun))(e - &) de

Aex’A
L= - 3 [[Aew) e a)eds
Ecx0”E
T3 = <tog—Aleun) -n+W(ug — ~yuh)
—(K" = 1/2)¢n, (ve — ven) >

Ts = <p—pn(1/2—=K)(Uo —YUp) —Vn >.

It remains to estimatéy, ..., T4 corresponding tdRy, ..., Ry.

Under the Assumption 2 the results of [4] apply here which are recalled
in the present notations. Firstly, there exists a family of interpolation operators
(Ih : HY(2;R? — Hy : h € |) — obtained by localL?—projection — such
that for anyA € .7 € .7 and integerk,q with 0 < k < g < 2 and with
Na = U{A" € A : A'n A # 0}, the union of all neighbor elements &f, and
for all u € HY(NL),

(31) [ IhU = UG are) < € diam@)?0™9 U4, R

Secondly, (cf. [4, Lemma 4]) for any side side of A € .%f, € .77, and any
u € HY(A;IR?) there holds
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(32) diam@)|lu ”EZ(E;RZ) <c: (|| u HEZ(A;RZ) +diam@)? - [u ml(A;RZ))'

We chooses, = Ine and letp, be arbitrary.
Using Cauchy’s inequality, (31)k(= 0, g = 1) and since the number of
neighbors is bounded, one concludes

T, <c- |e|H1(Q;R2) -Ry.

Combining (31) (withe — e replacingu) and (32) (withe replacingu,
k=0,q=1andk = 1=q) we obtain for anjE € 4%, EC A, Ac.F .7,

e —Ihe|fery < ¢ - diam@)|elf iy, ro)-

Therefore,
T2 < Z [ [A(eun) - ] [|Loesr2) - 1€ — Inelleer2)
Ec?®
< c Z VdiamE)|| [Aleun) - N] [l 2e:r2) - | € lHinar?)
Eeyh'o
< cR-|elhiry.

Note thatty € L2(I"; R?), W(up—~up) € LA(I"; R?) sinceup—yun € HY(I'; IR ?),

(K’ —1/2)pn € LAI";R?) since¢n € LAI"; R?), and A(eun)n|r € LA(I"; R?)
sinceeu, is piecewise constant arag is piecewise smooth. Thus, we may repeat
the above arguments to see

Ts<c-|elyyor?y R
Define = (1/2 — K)(up — yun) — V ¢, and note

T4:<P_Ph7P¢>

for any pn € H, Y% Sincen := Py € H-Y%(I";R?) we obtain thaty ¢

H(I"; R?) is orthogonal to any piecewise constant function (not only these from
Hh_l/z). As it is proved in [2, Proposition 1] this properties include

M
1 lws2rmry < € D IVhn' lznre, € = EVk, ER
i1

when {I1,...,Tw} = % We remark that [2, Proposition 1] the factefk
appears withk := max{diam(li)/diam(}) : I} andj have a common node
which is bounded because of the angle property in Assumption 2. Thus, choosing
pn =0 and noting|| p [y -v2rrzy < € [ (55 4,) HH;/Z(F)WOA/Z(F), we get

M
Ts<cC- || (;e_%) |‘H01/2(F)><H071/2(F) . Z || \/h . w/ HLZ(I}JRZ)'
i=1

Numerische Mathematik Electronic Edition
page 204 of Numer. Math. (1997) 77: 187-221



On the adaptive coupling of FEM and BEM in 2—d—elasticity 205

By the above estimates he have that the left hand side in (30) is bounded by

C(Rl +R, + R3) . |e|H1(Q;R2) +CRy - H (;i¢h) ||H01/2(F)><H071/2(F)'

Sincel| e - [l grz + 117 ||H01/2(F) is an equivalent norm ik} (£2) we obtain

a@+3-b><c(Ri+R,+Rs+Ry)-b+c(Ri+R, +Ry) - a

where

leellzorzz

~e
I (¢>—¢h) HH[}/Z(F)xHD*l/Z(r)

Usingt -s < Ja(t) + 3a*(2s) for t = a ands = c¢(R, + R, + Rs) and a similar
standard argument fa(R; + R, + Rz + R4) - b we obtain

a(@)+3-b* < o (C(Rl +Ry+ Rs)) +C(Ry + Ry + Ry + Ry)?
concluding the proofJ

Example 2.In the case of Example A is uniformly monotone, i.e. we have a
global positive constanig such that

ao(§ —¢) 1 (€ — Q) < (A) — AlO)E — Q)
for any ¢, ¢ € RS Hence, in the above notations(t) = ao - t2. Thena*(s) =
s?/(4ap). Therefore, in this example, Theorem 7 gives

(33) 1(5-8) ||H&(Q)XH071/2(F) <c-(Ri+Ry+R3+Ry).

5. Adaptive feedback procedure

For a given triangulation/y = {4;,...,Ax} of 2 and the related partition
{In,...,Iw} = % of the boundaryl" we can consider one elemed§ € .7
and compute its contributions;, b, to the right hand side of the a posteriori
error estimate in Theorem 7

a? diam(Aj)z-/ If + div A(eun)[*d 2
Ay

+ > diamCE)~/E|[A(euh)~n]|2ds

Ec¥%0ECHA
diam(I" N 04;) - || to — A(eun) - n + W (Uo — yUn)
—(K" = 1/2)¢n ||EZ(Fm8AJ:R2)

. 0
diam(@)¥2 - || 85{(1/2 — K)(Uo — yun) = Vén} llaniir2)-

+

by
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The computational details for the computationaf by are given in the next
section.
According to Theorem 7, the error in the energy norm is bounded by

N N M 2
(34) a*(cZaﬁ)+cZa,—2+c<Zbk> .
j=1 =1 k=1

This a posteriori error estimate is almost useless for absolute error control without
the computation of an upper bound for the constant 0. — But it may be
used to compare the contributions to the local error.

In order to simplify notations and to stress the physical importance of the
Hencky material we consider the particular case of Example 1 and 2 and obtain
(cf. (33))

N M
u—u 2
(35) H(¢*<;h)||H&(Q)><H071/Z(F) <c Za] +CZbk.
i=1 k=1
For any elementy; let
N
(36) G=a+ » b
k:l,FkgAj

where the sum may be zero or consists of a finite number of summands. Note that
¢; describes the contribution of the elemefit to the right hand side of (35).

The notion for the construction of an automatic mesh-refinement is to refine
these elements having a larger "contributias)” The meshes in our numerical
examples are steered by the following algorithm wherg @ < 1 is a global
parameter.

Algorithm (A) Given some coarse e.g. uniform mesh refine it successively by
halving some of the elements due to the following rule. For any triangulation
define a,...,ay as above and divide some elemefjt by halving the largest
side if

G >0 max C.

In a subsequent step all hanging nodes are avoided by further refinement in order
to obtain a regular mesh.

Remark 12.(i) Note that in Algorithm (A)6 = 0 gives a uniform triangulation

and with increasing the number of refined elements in the present step decreases.
(il) By observing (35) we have some error control which, in some sense, yields
areliable algorithm. In particular, the relative improvement of (35) may be used
as a reasonable termination criterion.

(i) If in some step of Algorithm (A), (35) does not become smaller then we
may add some uniform refinement stefgs< 0). It can be proved that in this
case (35) decreases and tends towards zero. If we allow this modification we get
convergencef the adaptive algorithm.

Numerische Mathematik Electronic Edition
page 206 of Numer. Math. (1997) 77: 187-221



On the adaptive coupling of FEM and BEM in 2—d—elasticity 207

6. Numerical experiments

We consider two numerical examples for the solution of nonlinear interface prob-
lems related to Example 1.
First, we describe the numerical implementation of the Algorithm (A).

6.1. Implementation of the Galerkin procedure

We treat the case(t) = ;(t — (1 +1)71), t > 0 yielding a nonlinear operatak
as explained in Example 1 with = ; b =1 andn =3 in (8). In the sequel we
explain the computation of the form in (26) where it is sufficient to describe the
approximation of

B((y4).(;n)) and L(j)
used in the numerical examples. Hejen, € H! are linear basis functions on

triangular or quadrilateral elements ang, v, € Hh_l/2 are piecewise constants
on boundary elements,,, I, and vanish on the remaining part bfpartitioned
byF]_,...,FM.

The integral

/ {O+ p) tr(em)tr (eni) + 2u¢’ (deven; : deven;) - deven; : deveny} df?
A

is computed by a symmetric quadrature rule of order 19 on any triaAgies
presented in [10]. The dualities V¢, > and < K¢, > where ¢, p are
polynomial functions can be calculated almost analytically [21]. The remaining
integrals which appear are performed by a 32 point Gaussian quadrature rule. By
using the relation< Ky, ¢m >=< K'¢m, 7 > and —Wn; = $V* Ly [14] the
computation of the Galerkin matrix is performed. The oper&toris defined by

(V*o)(x) =< E*(X,-), ¢ >
where

p2(A2 + p12) { g 1 X —=y)x—y)T }

Eey) = (A2 + 2u) o

X =yl X —yl|?

In order to approximate the right hand side for given functiorsL?(1", IR ?),
U € HYXIIR?), andty € H~Y(IIR?) we computef,f - 7 df2 via a
qguadrature rule with order 19 on any triangle

The integrals< z/;k,(é — K)up > and < to + Wy, yn; > are calculated in
the following way. The terms are rewritten such that the integral operator acts
on the polynomial function. These integrals can be computed analytically. The
outer integral is approximated by a 32 point Gaussian quadrature formula.

Altogether the above descriptions determine the (approximate) computation
of the mapping® andL when applied to discrete functions. Sinkés a nonlinear
operator we get a nonlinear system of equations which is solved via a Newton
method until the termination error is of the magnitude of the machine precession.
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6.2. Calculation of norms and residuals

In the examples below the error of the displacemengnd hence their gradient
gradu and tractiong = Tov (cf. Theorem 1) are known explicitly. Hence the
L2(£2) norm of u — u, and grad ¢ — u,) can be calculated via the quadrature
rule of order 19 [10] on any triangle. This yields an approximation of the error
u — uy in the H(2; R%)—-norm.

The calculation of the integrals for the residulds ..., R4 over the finite
elementA and the boundary elemeti is performed as follows: The integral

/ |div A(eun) +f |2d 2
A

is approximated via the above mentioned quadrature rule of order 19 [10]. Here,
f is given explicitly andA(euy) is performed by the central difference replace-
ment of eu, which is known for each point. The jumps on the interior element
boundaries irR, are polynomial functions and theli—norm is determined an-
alytically. TheL?(Ik)-norm of

to— Aleth) -1+ Wt — 1) — (K’ )6

is approximated by a 32 point Gaussian quadrature formula. k§éxgjs known,
A(eun) - n is determined for each point ofi, while the analytic functiorug is
replaced by its best approximatiag in Pg and the terms K’ — 1)¢n)(x) and
W (U — un)(X) = —( 2V * 2. (Uo — yun))(x) are calculated analytically.

For anyx € I the first summand of

¥(x) = ;(Uo — YUn)(X) — (K (Uo — yun))(X) — (V ¢n)(y)

is given explicitly, the third can be calculated analytically and by using the best
approximationug instead ofup|, the termK (uo|, — yun)(X) is calculated ana-
lytically. Then, || ¥ || 2(5.r2) is approximated by a 32 point Gaussian quadrature
rule on Iy where the value)’(x) is determined for any Gaussian kngtas fol-
lows. For 1< i < 32, the values ofp(x_1), ¥(X), andy(x+1) are interpolated

by a second order polynomig and its derivativep/(x;) replacesy’(x). For

i =1 we takey(xy), ¥(x2), andw(x3) and fori = 32 we takey(Xso), 1(X31), and
1(X32) to determinep; and psp, respectively.

6.3. Numerical experiments

Let us consider the interface problem (1)-(7), i.e. Problem (P) for Example 1 on
the L-shaped domain in Fig. 1 with exact solution

2 . 2 2 .
_ [ rasin(Ge)—C _ Jprisin(2/30)ds
ur(X,y) ( 3 sin6) — C ) whereC [ ds
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Fig. 1. L-shape

and

=1
uy(r, 6) = ( rO ) wherer? = (x + 0.5)? + (y — 0.5)

in polar and Cartesian coordinates{) and &, y), respectively. Young’s modulus

E = 2-10'Ncm~2 and Poisson’s coefficient = 0.3 in both domains. We have
) =3(1-(1 +t)71), t > 0 in (8), compare Example 1. The solution has a
typical corner singularity such that the convergence rate of the h—version with
a uniform mesh does not lead to the optimal convergence rate even if the right
hand side is smooth. The right hand sfdand the jumpsly andty are computed

by (12) and (13) fronu; andu, above. The Lar@ coefficients are given by the
relations

\ = Ev d _ E
Ta-2)1+y) M HT o1y

As initial mesh we use a partition @? in six similar triangles with vertex at the

origin (see Fig. 1).

Numerical results for thd—versions are shown (see Tables 1-6). The al-
gorithm (A) generates meshes as shown in Fig. 1#or 0.4. The meshes
automatically refine towards the origin where we have the expected singularity
of the solution.

In Table 1 we have the numerical results for the uniform mesh= (0)
and in Table 2-6 for the meshes generated by Algorithm (A)tfata = 6 =
0.2,0.4,0.6,0.8,1.0. We show the number of degree of freeddiand the
corresponding relative error of the displacemesisin the H(£2; R%)-norm.

From Table 1-6 we may compute experimental convergence rates. For the uniform
mesh we get experimentally a convergence of the f@th®) with a mesh size

h = O(1/N?) anda ~ 3. We compare the degrees of freedbhmeeded to make

the relative error smaller than®%. Forf = 0, 02, 0.4, 0.6 and 08 we have

N = 450,236,168,166,166 and the number of adaptive steps are 4,8,10,12,15.
This shows that, in this example, the adapted meshes vyield better results than
a uniform triangulation, but it is not clear whidhleads to the most efficient
procedure.
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Fig. 2. Adapted meshes for the nonlinear transmission problem
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Fig. 2. (continued)
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Table 1. Numerical results for the nonlinear transmission problem

=0

" Ui — UN "Hl(ﬂ)

U3

16 0.25281

42 0.16958

130 0.09945

450 0.06414
expected:

log lug—uny |
fluz —un, |l

log mi

0.41376
0.47234
0.35313

0.33

)

Table 2. Numerical results for the nonlinear transmission problem

0=02
It = Un e

||U1||H 1)
16 0.25281
22 0.25352
38 0.18754
56 0.16920
74 0.12164
110 0.10614
152 0.08714
170 0.07925
236 0.06661
278 0.06185
334 0.05320
392 0.04951
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log (I\UlfuNlH

fluz —un, |l

N
log Ni

0.00881
0.55156
0.26539
1.18407
0.34385
0.60987
0.84846
0.52938
0.45343
0.82056

0.47952

)
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Table 3. Numerical results for the nonlinear Table 4. Numerical results for the nonlinear
transmission problem transmission problem
0=04 0=06
log (\|U1—UN1H) log (HUl*UNlH)
lus = unlyag) luz — | lus = unllyag) =ty |
"Ul"H ) |og “i " Uz "H Q) log mi
16 0.25281 16 0.25281
0.07237 0.07237
20 0.24876 20 0.24876
0.54832 0.92354
28 0.20685 24 0.21021
0.39568 0.10453
46 0.16996 28 0.20685
0.67566 0.25132
60 0.14203 42 0.18681
1.38666 0.84729
78 0.11940 56 0.14640
0.37952 1.24741
88 0.10827 66 0.11927
0.60628 0.90066
110 0.09457 72 0.11028
0.49228 1.06361
130 0.08710 80 0.09859
0.65764 0.32314
152 0.07859 104 0.09058
0.80326 0.39653
168 0.07252 124 0.08447
0.76238 0.42860
194 0.06499 144 0.07923
0.35093 0.49460
254 0.05912 166 0.07385
0.46000 0.67173
302 0.05460 186 0.06842
0.67717 0.47885
348 0.04960 224 0.06259
0.48282 0.39081
410 0.04582 280 0.05736
0.55940

336 0.05268
0.70794
372 0.04798
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Table 5. Numerical results for the nonlinear Table 6. Numerical results for the nonlinear
transmission problem transmission problem
0=08 0=1.0
log (HUl*UNlH) Iog(Hul—UN1II>
luz = unlya) un—tn | lus = unlyag Jun =t |
[l 10 log 2 Ul y2(0) log \?
16 0.25281 16 0.25281
0.63723 0.63723
18 0.23453 18 0.23453
0.63019 1.17641
22 0.20667 20 0.20719
0.19519 0.02637
24 0.21021 22 0.20667
0.18019 0.19519
26 0.20720 24 0.21021
0.18842 0.18019
32 0.19925 26 0.20720
0.26904 0.02281
44 0.18289 28 0.20685
0.09819 0.28034
46 0.18369 32 0.19925
1.18070 0.36072
62 0.12913 34 0.19494
1.05527 0.23764
72 0.11028 36 0.19231
1.06361 0.52977
80 0.09859 40 0.18187
0.70532 0.06189
84 0.09525 42 0.18242
0.22608 0.16561
104 0.09076 44 0.18102
0.43513 0.32939
128 0.08292 46 0.18369
0.40064 1.66691
146 0.07866 48 0.17111
0.53578 0.64698
166 0.07344 50 0.16665
0.58319 1.28970
182 0.06960 52 0.15843
0.71381 1.42936
212 0.06242 54 0.15011
0.35890 0.82558
270 0.05723 56 0.14567
0.38711 1.18413
312 0.05411 60 0.12913
0.52817 0.83262
346 0.05124 62 0.12913
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0.16866 —

0.08866 —

relative error Hu-uhll in H1-norm

h-version, adaptiv, (theta = 0.0)
h-version, adaptiv, (theta = 0.2)
h-version, adaptiv, (theta = 0.4)
h-version, adaptiv, (theta = 0.6)
h-version, adaptiv, (theta = 0.8)
h-version, adaptiv, (theta = 1.0)
0.00866 T T T T
16 116 216 316 416

Number of unknowns

¢« P»OI D

Fig. 3. Numerical results for the nonlinear transmission problem

In order to compare the adaptive algorithms for various parameters we com-
press the data in the sequel using Fig. 3. In Fig. 3 an entry corresponds to a symbol
depending on the parametér The entries belonging to the same parameter are
connected by a straight line. Thecoordinate of a symbol is lob() whereN
is the number of degrees of freedom corresponding to a meshy-€Eherdinate
of the symbol is logdy). A straight line with the slope-« corresponds to an
algebraic convergence of order

6.4. Practical example

In this section we describe the followittgnnel problemvhere the exact solution

is unknown. An infinite elastic plane of steel is considered with a rectangular
hole and a socket of rubber in it. The hole in the socket is also rectangular and
one side is loaded by a constant force, the other sides are fixed (see Fig. 4). The
task is to compute the displacements. In a more mathematical formulation it is
the following transmission problem. Two different materials are connected. In the
interior domain we have rubbeE (= 2Ncm™!, v = 0.45) which has nonlinear
character and in the exterior domain we have stBet - 10’ Ncm™1, v = 0.3)

which behaves almost linear. This classical situation leads to the coupling of
finite elements and boundary elements for the transmission problem described as
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y
! E=2Ncm—2
2 _V:O(?TS / FC
0.75+
% -
i g
/ t
0.25+
w w N
0.25 0.75 1
Fig. 4.
—div A(eu) = f in 2:=(0,12\ (3, 2)?
—A*y=0 in 2 := IR2\ (0, 1)2
u=v andA(eu)n = Tr(up) onlg:=0f2
u=0 only =002\ (I UI)
Aleu)-n=g onli:=(3.3) x {3}

in the strong formulation. Following the description above we can reformulate
this transmission problem with mixed boundary conditions on the noncoupling
boundary as the following variational problem:

Given(f, g) € L%(12; R?) x L2(I}; R?) find (u, ¢) € HL(12) x Hy /?(I%) with

/ A(eu) - end {2
2
+ < Whu+(K'=1/2)p,yn >+ <),V +(1/2—K)yu >

:/f-nd!2+/ g-ynds
? I

for all (n,¢) € H(12) x Hy Y*(I') where H(2) := {u € HY(2;R?)|u =
OonIy}.

Remark 13.With the Dirichlet boundaryl}, # ) we need not look for solutions
uin HY(2) NHL(£2); instead the variational problem above, is even coercive on

HA(2) x Ho/4(I).

Corresponding to this variational formulation we get the contributgnsy
to the right hand side of the a posteriori error estimate (30) in Theorem 4 as
follows:
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Fig. 5. Adapted meshes for the nonlinear transmission problem
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Fig. 5. (continued)
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a? = diam(A,-)Z./ If -+ div Aeun)|2d 2

AJ
+ Z diamE) - / I[A(eun) - n]|2ds
E€40,ECOA, E
+  diam( N 0A)) - | to — Alen) - N + W (Uo — YUn)
—(K" = 1/2)¢n ||EZ(chaA,-;R 2)
+ diam(i N 94;) [ g — Aleu) - n HEZ(I‘,maA,-;RZ)

) 0
diam(Zk N Fc)l/z' l aS{(1/2 — K)(Up — yun) =V on} |liz(ri:r2)-

by

Note the error indicator in our adaptive algorithm is then given as in (36).
In our numerical example we neglect the body forces,fi.e.0 in 2 and the
load densityg = 2Ncm™ on I;. Our coupling procedure was performed with
piecewise linear finite elements iA and piecewise constant boundary elements
on I;. We start the adaptive algorithm with 10 subsquares of equal size. The
resulting displacements and a sequence of meshes are shown in Fig. 5.

In Fig. 5 the sum of node-coordinates and node-displacements is plotted. The
meshes are refined at corners with mixed boundary conditions and on the loaded
side. The resulting displacements at the coupling boundargre almost zero.

As Fig. 5 shows both the refinement ot the mesh and the resulting displacements
are symmetric to a parallel of thg-axis. Hence, the adaptive algorithm is a
robust procedure which produces well refined meshes.

6.5. Conclusion

From the numerical experiments reported in the previous subsections, we claim
that adaptive methods are important tools for an efficient numerical solution of
transmission or interface problems via a coupling of finite elements and boundary
elements. The asymptotic convergence rates are improved as well as the quality
of the Galerkin solutions corresponding to only a few degrees of freedom.

AcknowledgementThe authors would like to thank the DFG Forschergruppe at the University of
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