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Summary. The boundary element method (BEM) is of advantage in many
applications including far-field computations in magnetostatics and solid
mechanics as well as accurate computations of singularities. Since the nu-
merical approximation is essentially reduced to the boundary of the domain
under consideration, the mesh generation and handling is simpler than, for
example, in a finite element discretization of the domain. In this paper, we
discuss fast solution techniques for the linear systems of equations obtained
by the BEM (BE-equations) utilizing the non-overlapping domain decom-
position (DD). We study parallel algorithms for solving large scale Galerkin
BE–equations approximating linear potential problems in plane, bounded
domains with piecewise homogeneous material properties. We give an ele-
mentary spectral equivalence analysis of the BEM Schur complement that
provides the tool for constructing and analysing appropriate precondition-
ers. Finally, we present numerical results obtained on a massively parallel
machine using up to 128 processors, and we sketch further applications to
elasticity problems and to the coupling of the finite element method (FEM)
with the boundary element method. As shown theoretically and confirmed by
the numerical experiments, the methods are ofO(h−2) algebraic complex-
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ity and of high parallel efficiency, whereh denotes the usual discretization
parameter.
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1 Introduction

Besides the finite element method (FEM), the boundary element method
(BEM) is one of the main tools in the numerical approximation to solutions
of partial differential equations. The FEM and the BEM have certain com-
plementary properties. The FEM is quite flexible and applies to non-linear
problems with varying coefficients but (in its standard form) is restricted
to a bounded domainΩ which is partitioned during the performance of the
FEM. In far field computations, which are of special interest in magnetostat-
ics, electrostatics, thermodynamics, solid mechanics, fluid mechanics, etc.,
the domainΩ is unbounded but its boundaryΓ may be bounded. The BEM
applies in those situations whereΓ is bounded and the equation inΩ is sim-
ple enough such that we know a fundamental solution. Another advantage
of the BEM over the FEM consists in the adaptation of the discretization to
singularities since only the skeleton has to be discretized. The same is true
if one needs the solution and the derivatives on some skeleton only.

In this paper we consider model potential problems with piecewise con-
stant, positive weight functionsa ∈ L∞(Ω) in bounded domainsΩ. The
generalization of the approach to unbounded domains is straightforward [5,
23].

Definition 1 (Strong formulation). Findu ∈ H1(Ω) such that

− div (a∇u) = 0 in Ω and u = g onΓ := ∂Ω,(1)

with giveng ∈ H1/2(Γ ).

Let us further assume thata(x) = ai > 0 for almost allx ∈ Ωi and
Ω1, . . . , Ωp is a partition ofΩ into Lipschitz domains. Since the equation
in (1) is piecewise a (weighted) Laplace equation, a fundamental solution
is known and both, the FEM and the BEM can be applied to compute a
numerical approximation to the solutionu.

In either the FEM or the BEM, the use of parallel computers leads to
enormous time-reductions of the calculation. The main tools for paralleliz-
ing the generation and the solution of finite element schemes are the domain
decomposition (DD) techniques. There are different variants of overlap-
ping and non-overlapping domain decomposition methods (see, e.g., the
proceedings of the annual DD–conferences since 1986). G.C. Hsiao and
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W.L. Wendland utilized the non-overlapping domain decomposition for the
derivation of symmetric boundary element equations living on the skeleton
of the decomposition [25]. This formulation has been used as starting point
for the construction of various parallel solvers [25,28–30,42,44]. In this
context, we consider the following interface formulation of problem (1).

Definition 2 (Interface problem). Find (u1, ..., up) ∈ H1(Ω1) × · · · ×
H1(Ωp) such that

− div (ai∇ui) = 0 in Ωi,(2)

ui = g onΓ ∩ ∂Ωi,(3)

ui = uj on∂Ωi ∩ ∂Ωj ,(4)

ai · ∂ui/∂n = aj · ∂uj/∂n on∂Ωi ∩ ∂Ωj(5)

for all i, j ∈ {1, . . . , p}, whereg ∈ H1/2(Γ ) is given, andn denotes the
unit outer normal on∂Ωi.

The aim of this paper is to provide, to analyse and to test numerically fast
parallel solvers for the discrete equations related to the boundary integral
formulation of (2)–(5).

The outline of this paper is as follows. Equivalent weak forms and the
boundary integral equation related to (2)–(5) are recalled in Sect. 2. The
Galerkin discretization of the resulting boundary integral formulation is in-
troduced in Sect. 3 in notations which stress the parallel algorithms below.
The preconditioned conjugate gradient algorithm is described in Sect. 4,
where we obtain a convergence rate which is mesh-independent provided
that we can construct some spectral equivalent preconditioner. This pre-
conditioner is basically defined by two block operators preconditioning
the discrete single layer potential operator and the discrete (BE-) Schur-
complement. Preconditioners for the discrete single layer potential operator
are well understood now [36,42]. In Subsect. 5.6, we briefly discuss those
preconditioners that have been used in our numerical experiments. The con-
struction of preconditioners that are spectrally equivalent to the BE-Schur-
complement with spectral equivalence constants which are independent of
the discretization parameterh and, possibly, other “bad” parameters, such as
the numberp of subdomains seems to be more difficult. However, a careful
analysis of the discrete Schur-complement and its relation to the discretized
(integral operator) Schur-complement provides us with necessary tools for
designing and analysing appropriate BE-Schur-complement precondition-
ers. In Sect. 5, we prove that the discrete Schur-complement is spectrally
equivalent to the discretization of the Schur-complement on both an abstract
(Subsects. 5.1 and 5.2) and a specialized level (Subsects. 5.3 and 5.4). From
these results, we derive two special BE-Schur-complement precondition-
ers (Subsect. 5.5) that have been also used in our numerical experiments.
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Roughly speaking, any preconditioner which is equivalent to some weighted
H1/2-norm, or to the discrete hypersingular integral operator on the skele-
ton may be applied to precondition the BE-Schur-complement. In Sect. 6,
we present the results of our numerical experiments on distributed memory
computers with up to 128 processors. These results confirm that the number
of iterations is independent of the discretization parameterh, the numberp
of subdomains (see first example) and the mesh grading (see second exam-
ple). A further example shows that this kind of preconditioning works for
pure boundary element and coupled boundary–finite element discretizations
of real-life linear elasticity problems as well.

2 The symmetric Galerkin DD-formulation

The potential problem from Sect. 1 can be rewritten in a weak form and in an
equivalent integral form. Finally, the integral formulation yields a Problem
(P), which is rewritten below, of seeking(λ, u) ∈ Λ× Ug that satisfies

a(λ, u; η, v) = 0 ∀ (η, v) ∈ Λ× U0.(6)

The straightforward numerical treatment of this Problem (P) described in
Sect. 3 leads to a discrete Problem (Ph). The fast solution of Problem (Ph)
is the main topic of this paper.

We recall thatΩ1, . . . , Ωp are p pairwise disjoint bounded Lipschitz
domains in the plane which separateΩ, Ω = ∪p

j=1Ωj anda1, . . . , ap are
positive numbers. Then, the weak form is straightforward.

Definition 3 (Variational problem). Findu ∈ Vg := {v ∈ H1(Ω) : v =
g onΓ} such that

p∑
i=1

ai

∫
Ωi

∇Tu∇v dx = 0 ∀v ∈ V0 :=
o
H

1(Ω),(7)

with giveng ∈ H1/2(Γ ).

The variational problem can be rewritten as a system of boundary integral
equations as in [25] where we define

Λ := H−1/2(Γ1) × · · · ×H−1/2(Γp),(8)

Ug := {u ∈ L2(ΓBE) : u|Γ = g

and,u|Γi ∈ H1/2(Γi) ∀i = 1, . . . , p},(9)

and let〈., .〉Γi be the duality product betweenH−1/2(Γi) andH1/2(Γi)
extended from the scalar product inL2(Γi). Here,Γi := ∂Ωi andui = u|Γi ,
λi = ∂u/∂n|Γi for i ∈ {1, . . . , p} andΓBE := ∪p

i=1Γi.
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Definition 4 (Integral equation). Findλ = (λ1, . . . , λp) ∈ Λ andu ∈ Ug

such that, for allv ∈ U0, η = (η1, . . . , ηp) ∈ Λ, the equations

p∑
i=1

ai { 〈Diui, vi〉Γi +
1
2

〈λi, vi〉Γi + 〈λi,Kivi〉Γi} = 0,(10)

−ai

2
〈ηi, ui〉Γi − ai 〈ηi,Kiui〉Γi + ai 〈ηi,Viλi〉Γi = 0,(11)

i = 1, . . . , p,

are satisfied.

The integral operatorsVi, Ki, Di denote the single layer potential, the
double layer potential and the hypersingular operators, respectively, and are
defined by

Viλi(x) :=
∫
Γi

E(x, y)λi(y) dsy, Vi ∈ L(H−1/2(Γi);H1/2(Γi)),

Kivi(x) :=
∫
Γi

∂nyE(x, y)vi(y) dsy, Ki ∈ L(H1/2(Γi);H1/2(Γi)),

Diui(x) := −∂nx

∫
Γi

∂nyE(x, y)ui(y) dsy,

Di ∈ L(H1/2(Γi);H−1/2(Γi)) .

Here,E(x, y) is the fundamental solution of the differential operator (e.g.,
− 1

2π log |x − y| for the 2d-Laplacian) and∂nx denotes the (weak) normal
derivative with respect to the variablex. For Banach spacesX andY we
write L(X;Y ) for the Banach space of linear and bounded operators from
X to Y endowed with the operator norm. The mapping properties of the
boundary integral operators on Sobolev spaces are known from [9].

The equations (10),(11) are equivalently recast to (6) provided the bilin-
ear forma is defined by

a(λ, u; η, v) :=
p∑

i=1

ai

{
〈Diui, vi〉Γi +

1
2
〈λi, vi〉Γi + 〈λi,Kivi〉Γi

+ 〈ηi,Viλi〉Γi − 〈ηi,Kiui〉Γi − 1
2
〈ηi, ui〉Γi

}
,(12)

where the spaceV := Λ× U0 is endowed with the norm

‖(λ, u)‖V :=
(‖λ‖2

Λ + ‖u‖2
U0

)1/2
, with(13)
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‖λ‖2
Λ :=

p∑
i=1

‖λi‖2
H−1/2(Γi)

and ‖u‖2
U0

:=
p∑

i=1

‖ui‖2
H1/2(Γi)

.

Definition 5 (Problem (P)). Find (λ, u) ∈ Λ × Ug that satisfies (6) for
giveng ∈ H1/2(Γ ).

Theorem 1 (Hsiao, Wendland [25]).The problems given by Definitions 3–
5 are pairwise equivalent. The bilinear forma isV-elliptic and the problems
given by Definitions 3–5 have unique solutions.

3 Galerkin discretization

To describe a Galerkin discretization of Problem (P), we choose finite di-
mensional subspaces

Λh := span{ψ1, ψ2, . . . , ψNΛ
},

Uh := span{φ1, . . . , φNC}
of Λ andU0, respectively, and set

Vh := Λh × Uh.

Definition 6 (Problem (Ph)). Find (λh, uh) ∈ Vh that satisfies

a(λh, uh; ηh, vh) = f(ηh, vh) ∀(ηh, vh) ∈ Vh,(14)

for givenf ∈ V∗
h.

Remark 1.In Equation (14),f(ηh, vh) := −a(0, g; ηh, vh), andg ∈ Ug is
arbitrarily extended from the given datag|Γ . Thus, the final approximation
is (λh, g + uh) ∈ Λ × Ug.

To reflect the domain decomposition, we assume a certain order in the
basis function. The boundariesΓ1, . . . , Γp are split into boundary pieces
Γij := Ω̄i ∩ Ω̄j , 1 ≤ i, j ≤ p, which are further partitioned into boundary
elements resulting in a full discretization of the skeletonΓBE. Based upon
this discretization we can define the usual nodal BE basis consisting of
piecewise polynomial trial functions

Φ := ΨΛ ∪ ΦC = [ψ1, ψ2, . . . , ψNΛ
;φ1, . . . , φNC ]

with NΛ =
∑p

i=1NΛ,i and

ΨΛ := ΨΛ,1 ∪ · · · ∪ ΨΛ,p

= [ψ1, . . . , ψNΛ,1 ] ∪ · · · ∪ [ψNΛ−NΛ,p+1, . . . , ψNΛ
] ,

ΦC := [φ1, . . . , φNC ] .
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Utilizing the isomorphismΦ : R
NΛ+NC → Vh we are lead to the linear

system of equations (which is equivalent to Problem (Ph))(
KΛ −KΛC
KCΛ KC

)(
uΛ

uC

)
=
(
f

Λ
fC

)
.(15)

The block entries are given by

(KΛuΛ, vΛ) :=
p∑

i=1

ai〈ηi,Viλi〉Γi with λi = ΨΛ,iuΛ,i, ηi = ΨΛ,ivΛ,i,

(KCΛuΛ, vC) :=
p∑

i=1

ai{〈λi,Kivi〉Γi +
1
2
〈λi, vi〉Γi}, KΛC := KT

CΛ,

(KCuC, vC) :=
p∑

i=1

ai〈Diui, vi〉Γi , with ui = ΦCuC,i, vi = ΦCvC,i,

where the entries ofuC,i ∈ R
NC (analogously forvC,i) which act as coef-

ficients for non-zero trial functions onΓi are equal to the entries ofuC, all
other entries ofuC,i are zero.

Remark 2.Problem (Ph) is equivalent to (15).

Remark 3.In contrast to finite element discretizations, the BE-coefficient
matrices are, in general,not sparse.

4 Iterative solver and its parallelization

The system matrix of the Galerkin equations (15) is positive definite, but
non-symmetric. To solve such systems, one can apply preconditioned Krylov
subspace methods (see [37] for a detailed state-of-the-art description). How-
ever, either no convergence rate estimates are available or the parallelization
of these methods is far from being as efficient as that of the method used in
the present paper. Alternatively, multiplying the last block row of (15) by
−1 yields an equivalent system with a symmetric, but now indefinite system
matrix. Again, there are several iterative methods for solving such systems
(see [12,26,32,35]). A comparison of some of the above methods applied
to boundary element equations can be found in [42].

Since we are interested in a parallel implementation and in rate estimates,
we prefer to use the so-called Bramble-Pasciak transformation [2] in order
to transform (15) into the equivalent system

Mu = q,(16)
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with the symmetric and positive definite (spd) coefficient matrix

M :=


KΛC−1

Λ KΛ − KΛ − (KΛ − CΛ)C−1
Λ KΛC

−KCΛC−1
Λ (KΛ − CΛ) KCΛC−1

Λ KΛC + KC


 .

The vectorsq andu are defined as follows

q :=

(
(KΛ − CΛ) · C−1

Λ f
Λ

−KCΛC−1
Λ f

Λ
+ fC

)
and u :=

(
uΛ

uC

)
,

where the spd(NΛ ×NΛ)–matrixCΛ denotes some suitably scaled precon-
ditioner forKΛ, i.e., we assume

γ
Λ

· CΛ ≤ KΛ ≤ γΛ · CΛ with γ
Λ
, γΛ > 1.(17)

Throughout this paper, the relationA ≤ B for spd matricesA andB means
thatB − A is positive semi-definite.

The following theorem is equivalent to the results in [2] and gives suffi-
cient conditions for the spectral equivalence ofM with the preconditioner

C :=

(
KΛ − CΛ 0

0 CC

)
.(18)

Theorem 2. LetCC be a spd preconditioner for the BE-Schur-complement
KC + KCΛK−1

Λ KΛC, i.e., there exist positive constantsγC andγC with

γC · CC ≤ KC + KCΛK−1
Λ KΛC ≤ γC · CC.(19)

Then the spd preconditionerC defined in (18) is spectrally equivalent to the
matrixM of the spd system (16), i.e.,

γ · C ≤ M ≤ γ · C(20)

with the spectral equivalence constants

γ :=

(
1 +

α

2
+

√
α+

α2

4

)−1

min{1, γC} ,

γ :=
1 +

√
α

1 − α
max{1, γC} ,(21)

whereα := 1 − (1/γΛ).
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We utilize a conjugate gradient (cg) method preconditioned byC, i.e.,
we apply the cg-iteration to the linear system of equations

C−1Mu = C−1q.(22)

In the sequel,u is the exact solution of (22) and (15) whileuk := (uk
Λ, u

k
C)T

denotes thek-th cg-iterate,u0 is a given initial vector. The details of the
numerical computation ofu(k) are discussed below. We consider the con-
vergence properties with respect to the energy norm‖.‖2

M := (M., .).

Theorem 3. Under the assumptions and notations of Theorem 2 letρ :=
(1 − √

ξ)/(1 +
√
ξ) andξ := γ/γ. Then,

‖u− uk‖M ≤ 2ρk

1 + ρ2k
· ‖u− u0‖M .(23)

Proof. The theorem follows from Theorem 2 and standard results on pre-
conditioned conjugate gradient algorithms, see [13,37,38] for more details.

2

We conclude this section with several remarks on details within a nu-
merical performance of the conjugate gradient method applied to (22) as
shown in Table 1.

We define two types of distribution, called overlapping (type 1) and
adding (type 2), for the vectors belonging to the inner coupling boundary
ΓC ⊂ ΓBE. Namely,

Type 1: uC, wC, sC are stored inPi :uC,i = AC,iuC (analogouswC,i, sC,i),
Type 2: rC, vC, fC are stored inPi : rC,i such thatrC =

∑p
i=1A

T
C,irC,i

(analogousvC,i, fC,i).

Here,Pi stands for theith processor and the matricesAC,i are the “C-block”
of the Boolean subdomain connectivity matrixAi which maps some overall
vector of nodal parameters into the superelement vector of parameters asso-
ciated with the subdomain̄Ωi only. Then, we introduce the PCG-algorithm
with a given accuracyε as stopping criterion in Table 1, the hat symbol ‘’̂
marks the new iterates.

Remark 4.Only those parts of the algorithm which take the full width of
the table require communication between the processors; all other parts are
performed completely in parallel.

Remark 5.The vectorszΛ,i andhΛ,i have been inserted to reduce the number
of matrix by vector operations. The vectorp

i
avoids the computation of

CΛ,irΛ,i which is not necessarily available (CΛ,i is defined such that the
inverse operationC−1

Λ,i × wΛ,i can be performed easily as in the case of
multigrid preconditioners).
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Table 1. The pcg-algorithm

For allΩi, i = 1, . . . , p

Starting Step

Choose an initial guessu = u0

ui =
[
uΛ,i uC,i

]T

vΛ,i = f
Λ,i

− KΛ,iuΛ,i +
KΛC,iuC,i

rΛ,i = C−1
Λ,ivΛ,i

rC,i = fC,i − KC,iuC,i −
KCΛ,iuΛ,i

rC,i = rC,i − KCΛ,irΛ,i

wΛ,i = rΛ,i; p
Λ,i

= vΛ,i

vC,i = rC,i; zΛ,i = KΛ,irΛ,i

wC = C−1
C

∑p
i=1 AT

C,ivC,i

wC,i = AC,iwC; si = wi

σi = rT
C,iwC,i + wT

Λ,i(zΛ,i −
p

i
)

σ = σ0 =
∑p

i=1 σi

Iteration

wΛ,i = zΛ,i − KΛC,isC,i

vΛ,i = C−1
Λ,iwΛ,i

vC,i = KC,isC,i +
KCΛ,i(sΛ,i − vΛ,i)

δi = vT
C,isC,i + vT

Λ,izΛ,i −
wT

Λ,isΛ,i

δ =
∑p

i=1 δi; α = σ/δ

ûi = ui + αsi

r̂C,i = rC,i − αvC,i

r̂Λ,i = rΛ,i − αvΛ,i

v̂C,i = r̂C,i; ĥΛ,i = KΛ,ir̂Λ,i

wC = C−1
C

∑p
i=1 AT

C,ivC,i

wC,i = AC,iwC
ŵΛ,i = r̂Λ,i; p̂

Λ,i
= p

Λ,i
−

αŵΛ,i

σi = r̂T
C,iŵC,i + hT

Λ,ir̂Λ,i −
p̂T

Λ,i
r̂Λ,i

σ̂ =
∑p

i=1 σi; β = σ̂/σ

ŝi = ŵi + βsi; ẑΛ,i = hΛ,i +
βzΛ,i

If σ̂ ≤ ε2 ∗ σ0, then STOP
else start next iteration.

5 Preconditioning

In order to construct BE-Schur-complement preconditionersCC with the
property (19) we prove in this section that the BE-Schur-complement norm
is equivalent to some weightedH1/2-norm withh-independent equivalence
constants. The first two subsections treat this question on a quite general level
and follow partly arguments from [6,8]. The third subsection collects some
properties of the Poincaré-Steklov operator. Then, we consider the particular
case at hand in the fourth subsection. Subsect. 5.5 is devoted to two quite
efficient realizations ofCC on the basis of multilevel and multigrid ideas. In
Subsect. 5.6, we briefly discuss two preconditioners for the discrete single
layer potential operator and their appropriate scaling. The final subsection
summarizes the results.
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5.1 Preliminaries I: Spectral equivalence of Schur complements

This section presents some auxiliary results for the spectral equivalence
utilized in the subsequent subsections to construct optimal preconditioners
for the BE-Schur-complement.

We use the following general notation. LetX andY be reflexive Banach
spaces and letU ⊂ X be a closed subspace with the canonical embedding
iU : U ↪→ X and its duali∗U : X∗ ↪→ U∗.

We considerA ∈ L(X;X∗) andB ∈ L(Y ;X∗) and define

AU := i∗UAiU ∈ L(U ;U∗).(24)

We assume thatA is symmetric andX-elliptic, i.e., there existsα > 0 such
that for allx, y ∈ X

(Ax)(y) = (Ay)(x) and (Ax)(x) ≥ α · ‖x‖2
X .(25)

The Lax-Milgram lemma applies toA andAU and shows thatA−1 andA−1
U

exist and are bounded. Moreover, we have the following estimate.

Lemma 1. There holds

(B∗iUA−1
U i∗UBy)(y) ≤ (B∗A−1By)(y) .(26)

Proof. Giveny ∈ Y definef := By, fU := i∗Uf , x := A−1f , andxU :=
A−1

U fU . The so-called Galerkin-orthogonality states, for allu ∈ U ⊂ X,
that(A(x− xU ))(u) = (f − fU )(u) = 0. According to this we compute

(B∗A−1By)(y) − (B∗iUA−1
U i∗UBy)(y) = f(x− xU ) = (Ax)(x− xU )

= (A(x− xU ))(x) = (A(x− xU ))(x− xU ) ≥ 0

because ofxU ∈ U and (25). ut
The next result is closely related to the construction of norms well-known

in the context of the Bramble-Hilbert lemma.
Let C,D ∈ L(Y ;Y ∗) andγ, δ > 0 satisfy for ally ∈ Y andw ∈ ker C

(Cy)(y) ≥ γ · inf
c∈ker C

‖y − c‖2
Y , (Dy)(y) ≥ 0

and,(Dw)(w) ≥ δ · ‖w‖2
Y .(27)

Furthermore, assume thatD is symmetric, i.e.,(Du)(v) = (Dv)(u),∀u, v ∈
Y .

Lemma 2. LetC,D satisfy (27). Then, forβ := 1
4

{
δ+ γ + ‖D‖L(Y ;Y ∗) −(

(δ + γ + ‖D‖L(Y ;Y ∗))2 − 4δγ
)1/2}

and ally ∈ Y we haveβ > 0 and

((C + D)(y))(y) ≥ β · ‖y‖2
Y .(28)
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Proof. Giveny ∈ Y andε > 0 we findw ∈ ker C with infc∈ker C ‖y−c‖2
Y ≥

‖y − w‖2
Y − ε/γ and definez := y − w. According to (27) and Cauchy’s

inequality, we find, for allλ ∈ (0, 1),

((C + D)y)(y) + ε ≥ γ · ‖z‖2
Y + (D(w + z))(w + z)

= γ · ‖z‖2
Y + (Dw)(w) + 2(Dz)(w) + (Dz)(z)

≥ γ · ‖z‖2
Y + (Dw)(w) − λ · (Dw)(w) − λ−1 · (Dz)(z) + (Dz)(z)

≥ γ · ‖z‖2
Y + (1 − λ) · δ · ‖w‖2

Y − (λ−1 − 1) · (Dz)(z)
≥
(
γ − (λ−1 − 1) · ‖D‖L(Y ;Y ∗)

)
· ‖z‖2

Y + (1 − λ) · δ · ‖w‖2
Y

≥ 2β · (‖z‖2
Y + ‖w‖2

Y )
≥ β · ‖z + w‖2

Y = β · ‖y‖2
Y ,

where we setβ := 1
2 min{

(
γ − (λ−1 − 1) · ‖D‖L(Y ;Y ∗)

)
, (1 − λ) · δ}.

Finally, the lemma follows by choosingλ as the positive root ofλ2 + 1
δ (γ+

‖D‖L(Y ;Y ∗) − δ) · λ − ‖D‖L(Y ;Y ∗)/δ which belongs to(0, 1) and letting
ε → 0. 2

The preceding two lemmas imply the following estimate where we as-
sume that

inf
c∈ker C\{0}

(B∗iUA−1
U i∗UBc)(c)
‖c‖2

Y

=: δU > 0(29)

and define

β :=
1
4

{
δU + γ + ‖B∗iUA−1

U i∗UB‖L(Y ;Y ∗)(30)

−
(
(δU + γ + ‖B∗iUA−1

U i∗UB‖L(Y ;Y ∗))
2 − 4δγ

)1/2}
> 0.

Theorem 4. For all y ∈ Y , we have

β · ‖y‖2
Y ≤ ((C + B∗iUA−1

U i∗UB)y)(y)(31)

≤ ((C + B∗A−1B)y)(y) ≤ ‖C + B∗A−1B‖L(Y ;Y ∗) · ‖y‖2
Y .

Proof. The first inequality follows from Lemma 2 withD := B∗iUA−1
U i∗UB,

the second from Lemma 1 and the last inequality in (31) is the continuity of
C + B∗A−1B. 2

Remark 6.The condition (29) follows frominfc∈ker C\{0}
‖i∗UBc‖U∗

‖c‖Y
=: δ′

U

> 0 and (25) withδU ≥ (δ′
U )2/α > 0.

Remark 7.The operator normB∗iUA−1
U i∗UB in condition (30) is bounded

by ‖B‖2
L(X;Y ∗)/α. For example,

‖C + B∗A−1B‖L(Y ;Y ∗) ≤ ‖C‖L(Y ;Y ∗) + ‖B‖2
L(X;Y ∗)/α.(32)
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5.2 Preliminaries II: Matrix equivalence of Schur complements

A computer realization of the Schur complementC + B∗A−1B requires
a basis ofX andY , which are assumed to be finite dimensional in this
subsection. We prove that the stiffness matrix of the Schur complementC +
B∗A−1B is the Schur complement of the corresponding stiffness matrices.

Throughout this section we consider

X = span{χ1, . . . , χM} and Y = span{η1, . . . , ηN}(33)

and operatorsA ∈ L(X;X∗) with bounded inverseA−1 ∈ L(X∗;X),
B ∈ L(Y ;X∗), C ∈ L(Y ;Y ∗), and defineS := C + B∗A−1B. We assume
that(χ1, . . . , χM ) is a basis ofX and(η1, . . . , ηN ) is a basis ofY and define
the corresponding stiffness matrices by

Ai,j := (Aχj)(χi) (i, j = 1, . . . ,M),(34)

Bi,j := (Bηj)(χi) (i = 1, . . . ,M ; j = 1, . . . , N),(35)

Ci,j := (Cηj)(ηi) (i, j = 1, . . . , N),(36)

Si,j := (Sηj)(ηi) (i, j = 1, . . . , N).(37)

Theorem 5. The stiffness matrixS of the Schur complementS is the Schur
complement of the stiffness matrices, i.e.,

S = C + BTA−1B,(38)

under the assumptions made above.

Proof. Giveni, j ∈ {1, . . . , N}, it is sufficient to prove that((B∗A−1B)ηj)
·(ηi) = (BTA−1B)i,j . Let bj := Bηj ∈ X∗ andxj := A−1bj ∈ X.
If χ∗

1, . . . , χ
∗
M denotes a basis ofX∗ which is dual toχ1, . . . , χM , i.e.,

χ∗
i (χj) = δij (Kronecker’sδ), then we find coefficientsξ = (ξ1, . . . , ξM )T

andζ = (ζ1, . . . , ζM )T with

xj = ξ1χ1 + · · · + ξMχM and bj = ζ1χ
∗
1 + · · · + ζMχ

∗
M .

Note thatζ` := bj(χ`) = B`,j (j = 1, . . . ,M). FromA−1bj =
∑M

k=1 ξkχk

we concludebj =
∑M

k=1 ξkAχk and so

ζ` =
M∑

k=1

A`,kξk (` = 1, . . . ,M).

SinceA−1 exists,A is regular and we infer

ξk = (A−1ζ)k = (A−1B)k,j (k = 1, . . . ,M).
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Using this we compute

(BTA−1B)i,j = (BTξ)i =
M∑

k=1

Bk,iξk =
M∑

k=1

(Bηi)(χk)ξk

= (Bηi)(xj) = (B∗xj)(ηi)
= (B∗A−1Bηj)(ηi)

which concludes the proof. 2

5.3 Preliminaries III: The Poincaŕe-Steklov operator

In this subsection we summarize some known properties of the Poincaré-
Steklov operator only for convenient reading.

Definition 7. Assuming that the conformal radius ofΓi is smaller than 1,
we define the Poincaré-Steklov operator

Si := Di + (K∗
i + 1

2)V−1
i (Ki + 1

2).(39)

Lemma 3. The Poincaŕe-Steklov operatorSi ∈ L(H1/2(Γi);H−1/2(Γi))
is well-defined, symmetric, positive semi-definite andH1/2(Γi)/R-elliptic.

Proof. As it is well-known, the single-layer potentialVi is positive defi-
nite under the restriction onΓi. Hence the Poincaré-Steklov operatorSi is
well-defined. Then, the assertions follow from the mapping properties of
the boundary integral operators involved [9]. Finally, the definiteness is a
consequence of Lemma 4.2

Lemma 4. The Poincaŕe-Steklov operatorSi acts as a Dirichlet-Neumann
map, i.e., given datav ∈ H1/2(Γi) there exists exactly oneu ∈ H1(Ωi)
with∆u = 0 andu|Γi = v and its Neumann data areSv = ∂nu|Γi .

Proof. The assertion is well-known to the experts, so we only sketch the
proof. The representation formula

u(x) = −
∫
Γi

∂nyE(x, y)v(y) dsy +
∫
Γi

E(x, y)∂nu(y) dsy (x ∈ Ωi)

describes the solutionu ∈ H1(Ωi) to∆u = 0 andu|Γi = v in Ωi. Letting
x → Γi in the representation formula and taking the normal derivative we
compute the Cauchy data ofu, i.e.,

v = u|Γi = ( 1
2 − Ki)v + Vi∂nu,(40)

∂nu = Div + ( 1
2 + K∗

i )∂nu,(41)
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almost everywhere onΓi. We emphasize that the classical jump relations
are used here and we assume thatΓi is piecewise smooth [10]. From the first
equation we obtain∂nu = V−1

i (Ki + 1
2)v which we insert in the right-hand

side of the second equation. This results in∂nu = Siv as claimed. 2

Lemma 5. For all ui ∈ H1(Ωi) with∆ui = 0 there holds

〈Siui|Γi , ui|Γi〉Γi =
∫

Ωi

|∇ui|2 dx.(42)

Proof. Since∆ui = 0, integration by parts shows that
∫
Γi
ui|Γi∂nu|Γi ds =

‖∇ui‖L2(Ωi) so that Lemma 4 proves (42).2

The representation (42) gives rise to consider the energy norm onU0.

Definition 8. Foru ∈ U0 let

‖u‖a :=
( p∑

i=1

ai · 〈Siui|Γi , ui|Γi〉Γi

)1/2
.(43)

Remark 8.Eachu ∈ U0 can be extended toE1u,E2u inH1
0 (Ω) by defining

ũi := E1u|Ωi , ûi := E2u|Ωi ∈ H1(Ωi) as the unique (weak) solution of
the Dirichlet problems

−ai∆ũi = 0 respectively −∆ûi + ûi = 0(44)

with boundary datâui|Γi = u|Γi = ũi|Γi Then, the piecewise defined func-
tions fit together and we have indeedE1u, E2u ∈ H1

0 (Ω). Moreover, the
equations in (44) are strong forms of Euler-Lagrange equations which cor-
respond to minimization of norms. Indeed,

‖a1/2∇(E1u)‖L2(Ω) = ‖u‖a and ‖E2u‖H1
0 (Ω) = ‖u‖U0 .(45)

This explains the name energy-norm for‖·‖a and links to the equivalence of
the variational problem (Definition 3) to the integral equation (Definition 4).

Remark 9.The norms‖ · ‖U0 and‖ · ‖a are equivalent, but the equivalence
constants depend onai andΩi as well as onp.

5.4 Spectral equivalences of the BE-Schur-complement

Let us adopt the notations from the previous sections.
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Theorem 6. If all p subdomainsΩi can be mapped to a fixed (p-indepen-
dent) number of normalized master domains by scaling, then there exist a
positive, h- and p-independent constantc1 such that the equivalence in-
equalities

c1 · ‖uh‖2
a ≤ uT

C (KC + KCΛK−1
Λ KΛC)uC ≤ ‖uh‖2

a and(46)

uT
C KCuC ≤ uT

C (KC + KCΛK−1
Λ KΛC)uC ≤ c−1

1 · uT
CKCuC(47)

hold for all uC ∈ R
NC with uh = ΦuC.

Proof. By considering Subsect. 5.2 withX = Xi = span{λ|Γi : λ ∈ Λh},
Y = Yi = Uh, andA := j∗

Xi
VijXi with the canonical embeddingjXi :

Xi ↪→ H−1/2(Γi) etc., we finally conclude that

uT
C(KC + KCΛK−1

Λ KΛC)uC

=
p∑

i=1

ai

〈
(Di + (K∗

i + 1
2)jXi(j

∗
Xi

VijXi)
−1

×j∗
Xi

(Ki + 1
2))uh|Γi , uh|Γi

〉
Γi
.(48)

Utilizing Lemma 1, we infer

0 ≤ 〈(K∗
i + 1

2)jXi(j
∗
Xi

VijXi)
−1j∗

Xi
(Ki + 1

2)uh|Γi , uh|Γi

〉
Γi

≤ 〈(K∗
i + 1

2)V−1
i (Ki + 1

2))uh|Γi , uh|Γi

〉
Γi

(49)

and obtain〈
(Di + (K∗

i + 1
2)jXi(j

∗
Xi

VijXi)
−1j∗

Xi
(Ki + 1

2))uh|Γi , uh|Γi

〉
Γi

≤ 〈Siuh|Γi , uh|Γi〉Γi
.(50)

This proves the second inequality in (46).
To prove the remaining first inequality, we consider (48) and, by (49),

observe that it suffices to prove

〈Siui|Γi , ui|Γi〉Γi ≤ c−1
1 · 〈Diui|Γi , ui|Γi〉Γi .(51)

It is known that the hypersingular operatorDi as the Poincaré-Steklov op-
eratorSi lead to scalar products onH1/2(Γi)/R which are equivalent to
the norm inH1/2(Γi)/R. However, the equivalence constants depend on
the boundaryΓi. But a scaling argument, especially the invariance of the
H1/2(Γi)/R-norms induced byDi andSi with respect to the scaling of the
Ωi’s, shows that the equivalence constantc1 depends only on the shape of
theΩi’s and is independent uponp or h. This verifies (46).
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The first inequality in (47) is obvious. To prove the second inequality in
(47) we conclude from (48), (49) and (51) that

uT
C(KC + KCΛK−1

Λ KΛC)uC

=
p∑

i=1

uT
C,i(KC,i + KCΛ,iK−1

Λ,iKΛC,i)uC,i

≤
p∑

i=1

ai 〈Siuh|Γi , uh|Γi〉Γi ≤ c−1
1

p∑
i=1

〈Diuh|Γi , uh|Γi〉Γi

= c−1
1 · uT

CKC uC,(52)

which gives (47). 2

Remark 10.The constantc1 in (39) can be sharpened. If the underlying grid
in X is the coarsest grid under consideration then only

c1 · 〈Siui|Γi , ui|Γi〉Γi

≤ 〈Di + (K∗
i + 1

2)jXi(j
∗
Xi

VijXi)
−1j∗

Xi
(Ki + 1

2))uh|Γi , uh|Γi〉Γi

is required.

Remark 11.Forp = 1 we recover a result in [39]. But, here we extended it
for any discretization (not only for piecewise linears as in [39]).

We extend the results to the case that one domain is infinite as, for
example, in far field computations. Assume the following model situation
whereΩ1 is a fixed unbounded domain, say the complement of a compact
region as isΩ and we adopt the remaining notations from Sect. 1 (and add
a radiation condition to the problem inΩ1). We assume that boundaries
Γ1, . . . ,Γp, have diameters smaller than one. In this situation the analog of
Theorem 6 holds.

Theorem 7. There exist a constantc1 > 0 such that for alluh ∈ Uh with
coefficient vectoruC = Φ−1uh there holds (46). Moreover, the Poincaré-
Steklov with respect to the unbounded domainΩ1 is positive definite on
H1/2(Γ1); its approximations are uniformly positive definite.

Proof. The proof is analogous to the proof of Theorem 6 so we focus on the
positive definiteness ofS1 and only emphasize the difference to the above
arguments.

From (40) and (41) we concludeKi1 = −1/2 for i ≥ 2 (take the
Cauchy data of the constant function). Here,Ωi is the bounded component,
the normal points into the unbounded component ofR

2 \ Γi. The situation
is different withK1 because the normal onΓ1 that is used in the definition
of K1 points into the bounded component ofR

2 \ Γ1 and so has a different
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sign. Therefore, we concludeK11 = 1/2. Note that the change of the normal
affects only the double layer potential operator and its dual but not the single
layer potential or hypersingular operator.

Now, the kernel ofC = D1 is R and Theorem 4 applies toB := K1 + 1
2

andA := V1 because ofB1 = 1 ∈ Xh. This concludes the proof. 2

5.5 BE-Schur-complement preconditionersCC

We propose to use

C(1)
C := S–BPX (Schur-complement BPX) and

C(2)
C := KC (IC − MC)−1 (multigrid preconditioner)

(53)

as two quite efficient realizations forCC. The Schur-complement BPX pre-
conditioner (S-BPX) and its implementation is well known [43]. The S–BPX
generalizes the hierarchical basis Schur-complement preconditioner studied
earlier in [18,40] to the multilevel “basis” case. The multigrid (mg) precon-
ditioner C(2)

C is defined by the iteration operatorMC of the symmetric

multigrid method used. The action(C(2)
C )−1 × dC means the application of

one symmetric multigrid cycle (e.g., one symmetric W–cycle) to the defect
systemKCwC = dC with the initial guessw0

C = 0 (see [27] for details),
whereKC results from the globally assembled boundary element discretiza-
tion of the hypersingular integral operator which is symmetric and positive
definite after implementing the Dirichlet boundary conditions. The mg pre-
conditioner is spd provided that the presmoothing error operators are adjoint
to the postsmoothing error operators in theKC–energy inner product and
the restriction matrices are transposed to the interpolation matrices. Further
we assume that the coarse grid matrices are obtained by Galerkin projection
and systems arising on the coarsest grid are solved by some direct method.
Under these assumptions, the multigrid iteration operatorMC is selfad-
joint and non-negative with respect to theKC–energy inner product [27].
In the numerical experiments, we use a symmetric V–cycle with 1 Jacobi
presmoothing step and 1 Jacobi postsmoothing step (see Sect. 6).

Lemma 6. Under the assumptions made above, there exist h-independent
constantsγC andγC such that (19) is valid for either choice ofCC.

Proof. The equivalence ofuT
CC(1)

C uC to ‖uh‖2
a follows from [31]. This

equivalence and inequalities (46) prove the spectral equivalence between
the S–BPX preconditionerC(1)

C and the BE–Schur-ComplementKC +
KCΛK−1

Λ KΛC. From [27] we conclude the spectral equivalence inequalities

(1 − η) · KC (IC − MC)−1 ≤ KC ≤ KC (IC − MC)−1,(54)
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whereη is the spectralradius of the multigrid iteration operatorMC that
can be supposed to be independent ofh [22,33]. Combining inequalities
(47) and (54), we arrive at the spectral equivalence inequalities (19) with
γC = 1 − η andγC = c2. 2

Remark 12.Since matrix-by-vector operations of the formKC × uC are

involved in the case ofC(2)
C , the arithmetic work is of one order higher

(O(h−2)) than forC(1)
C (O(h−1)).

Finally, let us mention that on the basis of Theorem 6 we can utilize
every efficient FE-Schur-complement preconditioner and every good pre-
conditioner for the discrete hypersingular integral operatorKC as BE-Schur-
complement preconditioner as well. FE-Schur-complement preconditioners
have been studied by the finite element domain decomposition community
very extensively. Beside the S-BPX and the multigrid preconditioners, we
have also used the BPS preconditioner proposed in [3] and the hierarchical
Schur-complement preconditioner in our numerical experiments. However,
the S–BPX and the multigrid preconditioners are superior to these other
preconditioners theoretically and practically as well. Preconditioners for
the discrete hypersingular integral operatorKC were also proposed and
analyzed in [28].

5.6 PreconditonersCΛ for the discrete single layer potential operator

The matrixKΛ is block-diagonal with blocksKΛ,i (i = 1, . . . , p). Thus, in
order to construct a preconditioner forKΛ, it is sufficient to find precondi-
tioners for eachKΛ,i. Following [1,27,34,42] we propose to use

C(1)
Λ = diag[(C(1)

Λ,i)]i=1,...,p, with (C(1)
Λ,i)

−1 := αiTT
i M̃−1

h,iKC,iM̃−1
h,iTi,

C(2)
Λ = diag[(C(2)

Λ,i)]i=1,...,p, with C(2)
Λ,i := αiKΛ,i(IΛ,i − MΛ,i)−1,(55)

as scaled preconditionerCΛ for the discrete single layer potential operator
KΛ. In (55),Ti is some basis transformation,̃Mh,i stands for a modified
mass matrix (see [42] for details), andMΛ,i is the multigrid iteration operator
satisfying the same conditions as formulated above for the multigrid pre-
conditionerC(2)

C (cf. also [27]). In the numerical experiments (see Sect. 6),
we use a symmetric V–cycle with 2 pre- and 2 postsmoothing steps which is
defined as proposed in [1,34]. The preconditionerC(1)

Λ can only be applied
if piecewise linear trial functions have been used for both displacements and
tractions. Under this condition, we conclude the following lemma.

Lemma 7. There exist h-independent constantsγ
Λ

andγΛ such that (17)
is valid for either choice ofCΛ .
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Proof. The result follows from [42] and [1,27,34] forC(1)
Λ andC(2)

Λ , re-
spectively. 2

Remark 13.The local scaling factorsαi in (55) have to be chosen such that
γ

Λ
> 1 in (17). In the case ofC(2)

Λ this is an easy task if the local multigrid

convergence rates are available. The use ofC
(1)
Λ requires to estimate the

lowest eigenvalue of(C(1)
Λ,i)

−1KΛ,i for i = 1, . . . , p. This can be done by
applying the algorithm given in [38] to the local problems.

5.7 Final results

Now let us summarize the results of this section in the spectral equivalence
theorem.

Theorem 8. For our choice of the block-preconditionersCΛ andCC the
spectral equivalence constantsγΛ, γC andγC determiningγ andγ in (20)
are independent of the discretization parameterh.

Proof. These results follow directly from Lemma 6, Lemma 7 together with
Theorem 6 (resp. Theorem 7) .2

As a consequence of Theorem 8, we can expect constant iteration num-
bers for allh resp.l (cf. Sect. 6).

6 Numerical experiments on parallel computers

6.1 An academic test problem

First, we consider the Laplace equation in a rectangleΩ = (0, 2) × (0, 1)
under inhomogeneous Dirichlet boundary conditions, withg(x) := 4 (x1 −
x2), (x = (x1, x2)), as a rather academical test problem for our algorithm.
We decomposeΩ into p = 4 × 2, 8 × 4 and 16 × 8 squares, the data
of which are distributed to 8, 32 and 128 processors, respectively. Here,
and in Example 2 (see Sect. 6.2), both, the potentialu on

⋃p
i=1 Γi and the

normal derivativesλi = ∂u/∂n|Γi , i = 1, . . . , p, are being approximated
by piecewise linear functions, and the corresponding discrete BE-operators
were computed semi-analytically [41].

The discretization of the first level(l = 1) is illustrated forp = 8 in
Fig. 1. There, nodes with unknown values ofuC approximatingu|ΓC are
marked by a solid point, and some part of a circle in anyΩi stands for an
unknown component ofuΛ approximatingλi.
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Fig. 1. The discretization of the1st grid for p = 8 in Example 1

Table 2. Number of unknowns (N ), iteration count (I(ε), ε = 10−6), CPU time in seconds
and scaled efficiency according to the CPU time for the 6th level. The experiments were
carried out on a GC-PowerPlus using one processor per subdomain

p 4 × 2 8 × 4 16 × 8
l N I(ε) CPU N I(ε) CPU N I(ε) CPU
1 119 14 0.34 509 15 0.80 2105 16 2.44
2 245 16 0.41 1049 17 0.91 4337 16 2.78
3 497 17 0.55 2129 17 1.05 8801 17 3.27
4 1001 18 1.05 4289 18 1.63 17729 18 4.21
5 2009 18 2.87 8609 18 3.49 35585 18 6.35
6 4025 19 10.14 17249 18 11.00 71297 18 14.09

4 × 2 1.0 0.99 0.80
8 × 4 1.0 0.81

The preconditionersCΛ andCC have been chosen as follows:

CΛ := C(1)
Λ (”K−1

C ”) and CC := C(1)
C (S-BPX) [43].(56)

In Table 2 and below,I(ε) denotes the number of iterations needed in
order to reduce the initial error by the factorε = 10−s ∈ (0, 1). We observe
vertically (for all l) and horizontally (for allp) constant iteration numbers.
For a fixedl, the local problem size is constant for allp.

The scaled efficiencies have been computed by

Seff(p1, p2) :=
p1 · t1
N1

/
p2 · t2
N2

,(57)

where, fori = 1, 2, ti is the time required for solving the problem with
Ni unknowns onpi processors withp2 ≥ p1. For the 6th grid, the value
Seff has been computed for(p1, p2) = (8, 32), (8, 128), (32, 128), obvi-
ously we haveSeff = 1 for p1 = p2. The scaled efficienciesSeff(p1, p2) are
greater than 0.8 in all cases. Since the ratio between the local problem size
and the effort (run–time) for realizing one global communication decreases
with increasingp we observe a decreasing efficiency. The lower efficien-
cies obtained forp2 = 128 are also due to the special architecture of the
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Fig. 2. The subdomains and the BE discretization of the1st level using a uniform grid (left)
and a graded grid (right)

PowerGC, which has a link of lower capacity between two 64-processor
clusters compared to the links within the clusters. This is confirmed by the
numerical results presented in [29], where the unit square was divided into
p = 2×2, 4×4 and8×8 squares. For larger local problems, i.e., for greater
l (l = 7, 8, . . .) we could expect even higher efficiencies than stated in the
table.

Remark 14.The71297 BE-unknowns on the6th grid for p = 128 corre-
spond to about 1.180.000 unknowns of a standard FE-formulation with the
same discretization parameterh.

6.2 A L-shape problem using graded grids

Now let us consider a more complicated problem, the potential equation
in a L-shaped domain (re-entrant corner at(0, 0)) with the inhomogeneous
Dirichlet boundary conditionsg(x) := ln |x − y0|, y0 := (−0.01,−0.01)
using uniform and graded grids as shown in Fig. 2. The graded1st-level grid
has been defined such thathmax/hmin > 10. This example was proposed
by the Priority Research Programme “Boundary Element Methods” of the
German Research Foundation as benchmark for testing boundary element
solvers [44]. We will use 16 processors for the corresponding 16 subdomains.

Now, we choose the block preconditionersCΛ andCC as follows:

CΛ := C(1)
Λ (”K−1

C ”) and CC := C(2)
C (mg preconditioner).(58)

Looking at Table 3 we conclude that the algorithm is robust with respect to
both, the number of levelsl and the grading of the grid.

Remark 15.The use ofC(1)
C instead ofC(2)

C in Example 2 leads to higher,
but still constant (with respect tol) iteration numbers.
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Table 3. Iteration count (I(ε), ε = 10−6) and CPU time in seconds on a POWER-Xplorer
using 16 processors

uniform grid graded grid
l N I(ε) CPU N I(ε) CPU
1 593 16 1.04 497 18 1.09
2 1181 17 1.56 989 18 1.57
3 2357 17 2.81 1973 18 2.81
4 4709 17 6.86 3941 18 6.86
5 9413 18 22.64 7877 18 22.31
6 18821 18 82.71 15749 18 82.03

6.3 The dam problem

We are now going to apply the ideas discussed above to a plane strain linear
elasticity problem in which the displacement vectoru(x) ∈ V0 := {v =
(v1, v2)T ∈ H1(Ω)×H1(Ω) : v = 0 onΓD} satisfies the weak formulation

∫
Ω

2∑
i,j,k,l=1

εij(u(x))Dijkl(x)εkl(v(x)) dx =
∫

ΓN

2∑
k=1

gk(x)vk(x) ds(59)

of Lamé’s equations for all test functionsv ∈ V0, under mixed boundary
conditions on the boundaryΓ := ∂Ω = ΓD ∪ ΓN (ΓD 6= ∅, ΓN 6= ∅) of
the bounded Lipschitz domainΩ, whereεij(u) = 1

2( ∂ui
∂xj

+ ∂uj

∂xi
), Dijkl =

λ(x)δijδkl + µ(x)(δikδjl + δilδjk), δij denotes Kronecker’s delta,λ andµ
are the Laḿe coefficients of the elastic materials involved,g = (g1, g2)T is
the vector of boundary tractions prescribed onΓN.

From (59), one can now easily derive DD boundary integral formula-
tions (for pure BE discretizations) as above (Sect. 2), DD domain integral
variational formulations (for pure FE discretizations, see [16,23]), or cou-
pled DD boundary and domain integral variational formulations (for BE-FE
coupling see [5,16,30] for details).

As a test problem we consider a dam filled with water as sketched in
Fig. 3. As indicated there, Dirichlet boundary conditions (b.c.) are given on
ΓD (zero displacement) and Neumann b.c. onΓN (the tractions are equal to
zero, or they are chosen according to the water pressure). The Lamé constants
are given for rock (I-II) byµr = 7.265e 4MPa, λr = 3.743e4 MPa and for
concrete (III-VIII) by µc = 9.2e6 MPa, λc = 9.2e6 MPa. For the results
presented in Table 4, the block preconditionersCΛ andCC were chosen as
follows:

CΛ := C(2)
Λ (mg preconditioner),

CC := C(2)
C (mg preconditioner).(60)
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Table 4. Levels (l), pure solution time (s), number of unknowns (N ), iteration count (I(ε),
ε = 10−6), CPU time in seconds for the dam-problem. The experiments were carried out
on a Power-XPlorer using 8 processors

FEM: III-VIII
BEM: I-VIII BEM: I-II FEM: I-VIII

l I(ε) CPU I(ε) CPU I(ε) CPU
1 26 3.7 22 2.9 20 2.5
2 27 4.9 25 4.3 25 3.9
3 27 8.8 28 8.3 27 7.2
4 28 24.1 30 26.4 31 20.8
5 29 85.9 33 101.4 33 71.5
s(5) 49.5 65.4 54.2
N(5) 6470 78130 119318

Fig. 3. The subdomains and the BE discretization of the1st level (left) and the deformed
(magnification factor 100) FE grid of the2nd level (right)

The BE-matrices were computed fully analytically using piecewise linear
functions for the displacements and piecewise constant functions for the
tractions [41]. As an extension to the theory presented in this paper, we
consider, besides a pure BE discretization, a coupled BE–FE and a pure FE
discretization. The BE discretization of the1st level and the FE discretization
of the2nd level (deformed mesh) are shown in Fig. 3. In the coupled model,
we defined the domains I and II as BE domains and the remaining as FE
domains.

In Table 4, we discuss several combinations of FE/BE discretizations.
Looking at the CPU-time we observe that the FE discretization (column 3)
leads to the best results. However, if we are interested in the pure solving
time s(.) (s(5) for the5th level is given in Table 4) the BE discretization
(first column) is of advantage.

Remark 16.Models involving FE subdomains require (besidesCΛ andCC)
to define additional block operatorsCI andBI which are parts of the Dirich-
let DD preconditioner [14,18,19]. We have used (V02) (multigrid V-cycle
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with 2 postsmoothing steps in the symmetric multiplicative Schwarz method
[17]) for CI and (HExt) (implicitly defined by the hierarchical extension,
formally EIC,i = −B−1

I,i KIC,i [14,19]) for BI in the computations docu-
mented in Table 4.

7 Concluding remarks

The generalization of the approach to unbounded domains sketched in Sub-
sect. 5.4 and to the coupling of the BEM with the finite element method is
more or less straightforward [9,15,23,30]. Moreover, the potential problem
can be non-linear in the finite element subdomains [23]. Linear elasticity
problems and local plasticity problems can be treated in the same fashion [4–
7,24]. With the exception of plasticity problems, the code FEM©©BEM [15]
can solve these problems on massively parallel computers and workstation
clusters (PVM, MPI).

Three dimensional problems can be treated in a very similar way, in
particular the preconditionersC(1)

C (S-BPX) [43] andC(1)
Λ (“K−1

C ”) [42]
satisfy the required estimates independently of the dimension of the problem.
However, the standard application of the BEM leads toO(h−4)-complexity,
which is not optimal in the 3d-case. For this reason, methods as wavelets
(see [11] and the references given there) or the panel clustering method
[20,21] which reduces the complexity for matrix-by-vector operations to
O(h−2 log7 h−1) as well as the required memory toO(h−2 log3 h−1) for
3d-Galerkin BE-equations have to be applied.
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