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Summary. The finite element method is a reasonable and frequently utilised
tool for the spatial discretization within one time-step in an elastoplastic
evolution problem. In this paper, we analyse the finite element discretization
and prove a priori and a posteriori error estimates for variational inequalities
corresponding to the primal formulation of (Hencky) plasticity. The finite
element method of lowest order consists in minimising a convex function
on a subspace of continuous piecewise linear resp. piecewise constant trial
functions. An a priori error estimate is established for the fully-discrete
method which showslinear convergence as the mesh-size tends to zero,
provided the exact displacement fieldu is smooth. Near the boundary of the
plastic domain, which is unknown a priori, it is most likely thatu is non-
smooth. In this situation, automatic mesh-refinement strategies are believed
to improve the quality of the finite element approximation. We suggest such
an adaptive algorithm on the basis of a computable a posteriori error estimate.
This estimate is reliable and efficient in the sense that the quotient of the error
by the estimate and its inverse are bounded from above. The constants depend
on the hardening involved and become larger for decreasing hardening.

Mathematics Subject Classification (1991):65N30, 65R20, 73C50

1. Introduction

The time-independent elastoplastic material behaviour can be modeled in
what Han and Reddy [11] call the primal formulation. This is to minimize
a function

φ+ ψ : X × Y → R ∪ {+∞}(1.1)

Numerische Mathematik Electronic Edition
page 577 of Numer. Math. (1999) 82: 577–597



578 C. Carstensen

whereφ : X × Y → R is uniformly convex and has a Lipschitz continuous
Fréchet derivativeDφwhileψ : Y → R∪{+∞} is convex and lower semi-
continuous (and possibly non-smooth). We emphasize that this is a nonlinear
variational inequality (see, e.g., [9] for details and further references on the
numerical analysis of variational inequalities), where we seekz = (x, y) ∈
Z := X × Y satisfying

Dφ(z; z − ζ) ≤ ψ(η) − ψ(y) (ζ := (ξ, η) ∈ Z).(1.2)

The minimization problem (1.1) as the variational inequality (1.2) are
dual to and so equivalent to the classical model in plasticity. The numerical
analysis of the latter model was analyzed by Johnson (see, e.g., [13–16])
who proved a priori linear convergence and also established a posteriori
error control as adaptive mesh-refining algorithms.

The aim of this paper is to establish the analog for (1.1) and (1.2), the
primal form for plasticity with hardening in the spatially discrete situation.
First, we improve the a priori error estimates from [10] (and a list of earlier
references quoted in [11]). Secondly, we prove an a posteriori error esti-
mate which justifies an adaptive algorithm for automatic mesh-refinement.
The estimate is reliable and efficient. But, the constants involved rely on
the hardening and so the estimates become worse for vanishing hardening
parameters. (Then one should follow corresponding arguments in [16].)

The proof argues with Jensen’s inequality for constant coefficients in the
material laws. Hence, it is not too obvious that the improved convergence
order is not destroyed by varying coefficients. Our proof relies on a closer
study of the hardening laws (our analysis covers perfect plasticity as well,
but there are only much weaker implications). To keep the representation
short and precise, we focus on one (quite general master) example, which
models combined isotropic and kinematic hardening, instead of stating gen-
eral conditions in an abstract fashion. However, the technique applies to
other situations as well.

An outline of the paper is as follows. In Sect. 2 we state the continuous
problem in its strong, weak, primal, and dual form. In addition, preliminary
consequences of the action of the hardening law are established. The corre-
sponding spatially discrete problem is introduced in Sect. 3. For simplicity,
we treat the lowest order method, but it should be stressed that the advan-
tage of the primal formulation (over the more elaborated dual formulation)
is that conform ansatz functions of arbitrary order can be employed. Cor-
responding a priori resp. a posteriori error estimates are stated in Sect. 4
resp. Sect. 5. The analysis in the proofs provided in Sect. 6 covers effects
of numerical integration as well as discrete evaluation of the material law.
Thereby, sinceψ may be infinite on piecewise constant ansatz functions, a
discrete counterpartψS is required and we face a variational crime in the
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sense that the exact resp. the discrete solution(x, y) resp.(xS , yS) may yield
ψS(y) = ∞ = ψ(yS).

Numerical evidence of the linear convergence of the lowest order scheme
in the time-independent case will be provided in [2] and in the time-depen-
ding in [1].

2. The strong, weak, primal, and dual form of the continuous problem

In the small-strain models of solid mechanics, a bounded Lipschitz domain
Ω in R

d, d = 1, 2, 3, serves as reference and current configuration of a
body. The strong form of equilibrium conditions states that the (Cauchy)
stress fieldσ ∈ L2(Ω; Rd×d

sym), R
d×d
sym being the set of all real symmetric

d× d matrices, satisfies

div σ + f = 0, σ = σT in Ω,(2.1)

σ · n = g onΓN,(2.2)

wheref ∈ L2(Ω; Rd) is a given applied volume force andg ∈ L2(ΓN; Rd)
is a given applied surface force. (The Lebesgue and Sobolev spaces in the
definition are defined in a standard way [12,17,23].) The boundaryΓ = ∂Ω
is split into the Dirichlet boundaryΓD, a compact set of positive surface
measure, and the (possibly empty) Neumann boundaryΓN = Γ \ ΓD. The
exterior unit vector onΓ (which exists almost everywhere onΓ ) is denoted
asn (see (2.2)). The displacement field

u ∈ H1
D(Ω) := {w ∈ H1(Ω)d : w|ΓD = 0}(2.3)

is linked to the (linear Green) strain fieldε(u) ∈ L2(Ω; Rd×d
sym),

(ε(u))jk :=
1
2
(
∂uj

∂xk
+
∂uk

∂xj
) (j, k = 1, . . . , d).(2.4)

The constitutive relations in small strain elastoplasticity are based on an
additive split of the total strainε(u) into an elastic parte and a plastic part
p,

ε(u) = e+ p.(2.5)

A free energy is assumed in an uncoupled form as

F (e, ξ) =
1
2
e : Ce+ ξ · Hξ,(2.6)

whereC ∈ L∞(Ω; Rd×d×d×d) is the fourth order elasticity tensor, with the
Lamé constantsλ andµ,

Cq := 2µq + (λ · tr q)1d×d (q ∈ R
d×d
sym),(2.7)
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andH ∈ L∞(Ω; Rm×m
sym ) is the positive definite modulus of hardening. In

(2.7),1d×d denotes the(d×d)-unit matrix and we definetr q := q : 1d×d as
the trace ofq. Here, in (2.6), and below, the scalar product of two matrices
in p, q ∈ R

d×d is written with a colon, e.g.,p : q :=
∑d

i,j=1 pijqij .
The elastic parte and the internal variableξ are linked to the stressσ

and an internal stressχ through the free energy (2.6),

σ =
∂F

∂e
and χ = −∂F

∂ξ
.(2.8)

Finally, the material law of plastic evolution is the principle of maximal
dissipation,

(p, ξ) ∈ ∂ϕ(σ, χ),(2.9)

whereϕ : R
d×d
sym × R

m → R ∪ {∞} is the dissipation functional and∂ϕ
denotes its sub-gradient.

Remark 2.1.According to the definition of the sub-gradient (or sub-differ-
ential) in convex analysis, the inclusion (2.9) (with respect to some scalar
product∗ in R

m which is specified below) equivalently reads

p : (σ̃ − σ) + ξ ∗ (χ̃− χ) ≤ ϕ(σ̃, χ̃) − ϕ(σ, χ)
((σ̃, χ̃) ∈ R

d×d
sym × R

m).(2.10)

The weak form of (2.1)–(2.9) is obtained straightforwardly as discussed,
e.g., in [11], and is (formally) equivalent to the problem which Han and
Reddy call dual formulation of elastoplasticity (we refer to [11] and omit
details).

Definition 2.1 (Dual form). For u ∈ X := H1
D(Ω)d and(σ, χ) ∈ Y :=

L2(Ω; Rd×d
sym × R

m), set

φ(u, σ, χ) :=
1
2

∫
Ω
σ : C−1σ dx+

1
2

∫
Ω
χ · H−1χdx(2.11)

−
∫

Ω
σ : ε(u) dx+

∫
Ω
fu dx+

∫
ΓN

gu ds,

ψ(σ, χ) :=
∫

Ω
ϕ(σ, χ) dx.(2.12)

Then, the dual problem consists in finding a minimizer(u, σ, χ) of φ + ψ
in Z := X × Y .

The following important class of dissipation functionals is usually ap-
plied to metals or other ductile materials.
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Example 2.1.Von-Mises’ yield function with combined kinematic and iso-
tropic hardening states that a (generalized) stress(σ, χ) is admissibleif
χ = (a, b) ∈ R × R

d×d
sym ≡ R

m,m = 1 + d(d+ 1)/2, with a ≥ 0 and

Φ(σ, a, b) := |dev σ − dev b| − σY (1 +Ha) ≤ 0.(2.13)

Here,σY > 0 is the yield stress andH ≥ 0 is the hardening modulus.
Furthermore,

dev σ := σ − trσ
d

· 1d×d.(2.14)

Then, the dissipation functional in (2.9) is given as the characteristic func-
tional of the admissible stresses (2.7), i.e.,

ϕ(σ, a, b) :=
{

0 if a ≥ 0 ∧ Φ(σ, a, b) ≤ 0
∞ if a < 0 ∨ Φ(σ, a, b) > 0

((σ, a, b) ∈ R
d×d
sym × R × R

d×d
sym).(2.15)

By definition of the sub-gradient, (2.9) readsΦ(σ, a, b) ≤ 0 and for all
(σ̃, ã, b̃) ∈ R

d×d
sym × R × R

d×d
sym with Φ(σ̃, ã, b̃) ≤ 0 there holds

p : (σ̃ − σ) − α · A−1(ã− a) − β : B−1(b̃− b) ≤ 0.(2.16)

Here,ξ = (α, β) andχ = (a, b) = −Hξ (recall (2.8)) and we introduced
a scalar product∗ in R

m represented by(A−1,B−1). In other words, if
Φ(σ, a, b) < 0 then there is no plastic evolution,(p,−α,−β) = 0, and if
Φ(σ, a, b) = 0 then the vector of plastic evolution(p,−α,−β) is perpendic-
ular to the surface of admissible (generalized) stresses (with respect to the
scalar product given in (2.16)). Therefore, the maximal dissipation principle
is also called the normal rule.

Remarks 2.2.1. Example 2.1 models combined isotropic and kinematic
hardening for the von-Mises yield condition; in particular, kinematic hard-
ening forH = 0 and isotropic hardening forB = 0, and perfect plasticity
forH = 0 andB = 0. In the sequel, we will say that a constant is hardening-
independent if it does not depend onA or B. In particular,H is expected
to be bounded and independent ofA andB.
2. In the presence of hardening, the dual problem has a unique solution [15].
In case of perfect plasticity we have of no hardening, and solutions do, in
general,not exist inH1

D(Ω) × L2(Ω; Rd×d
sym), cf. [13,20,21] for details in

this case.
3. A dual formulation is obtained by using the dualϕ∗ of ϕ, i.e.,

ϕ∗(b) := sup
a

{a · b− ϕ(a)},(2.17)

and is based on the equivalence ofa ∈ ∂ϕ(b) andb ∈ ∂ϕ∗(a). Therefore,
the dual form to (2.9) reads

(σ, χ) ∈ ∂ϕ∗(p, ξ).(2.18)
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582 C. Carstensen

Definition 2.2 (Primal form). Foru ∈ X := H1
D(Ω)d and(p, ξ) ∈ Y :=

L2(Ω; Rd×d
sym × R

m), set

φ(u, p, ξ) :=
1
2

∫
Ω

(p− ε(u)) : C(p− ε(u)) dx

+
1
2

∫
Ω
ξ · Hξ dx−

∫
Ω
fu dx−

∫
ΓN

gu ds,(2.19)

ψ(p, ξ) :=
∫

Ω
ϕ∗(p, ξ) dx.(2.20)

Then, the primal problem consists in finding a minimiser(u, p, ξ) of φ+ψ
in Z := X × Y .

Remarks 2.3.1. The primal and dual problem are equivalent to each other
and of the form (1.1) which is equivalent to (1.2). (For an elementary proof
of ”(1.1) implies (1.2)”, we infer from convexity ofψ thatφ(x, y)+ψ(y) ≤
φ(x, λη + (1 − λ)y) + λψ(η) + (1 − λ)ψ(y). Rearranging this and letting
λ → 0 we obtain (1.2).)
2. The quadratic formφ is known to be uniformly convex andψ is con-
vex, lower semi-continuous, and non-negative [10,11,5]. Hence, the primal
problem has exactly one solution.

The numerical analysis of the primal problem is under consideration in the
next sections. This section is concluded by computing the functionalϕ∗ and
illustrating the action of the hardening law related to Example 2.1.

Proposition 2.1. If ϕ : R
d×d
sym ×R×R

d×d
sym → R∪{∞} is defined by(2.13)–

(2.16)then its dual functionalϕ∗ : R
d×d
sym × R × R

d×d
sym → R ∪ {∞} is, for

(p, α, β) ∈ R
d×d
sym × R × R

d×d
sym , given by

ϕ∗(p, α, β) =



σY |p| if tr p = 0 ∧ p = −B−1β

∧ A−1α+ σYH|p| ≤ 0,
∞ if not.

(2.21)

Proof. According to (2.17), (2.15) and (2.16),

ϕ∗(p, α, β) := sup
Φ(σ,a,b)≤0

{p : σ + αA−1a+ β : B−1b},(2.22)

where the supremum is taken over all(σ, a, b) ∈ R
d×d
sym × R × R

d×d
sym satis-

fying Φ(σ, a, b) ≤ 0. First, we consider(σ, a, b) = (r · 1d×d, 0, 0) and get
ϕ∗(p, α, β) ≥ r·tr p for all r ∈ R. Thus, eithertr p = 0 orϕ∗(p, α, β) = ∞.
Secondly, we consider(σ, a, b) = (r ·Eij , 0, r ·Eij) whereEij := sym ei ⊗
ej is the symmetric part of a matrix that has one non-vanishing entry1 at the
position(i, j), i, j = 1, . . . , d. Then,ϕ∗(p, α, β) ≥ r · (pij + B−1bij) and
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we infer thatϕ∗(p, α, β) = ∞ or p = −B−1β. Thirdly, we may assume
tr p = 0 and consider(σ, a, b) = (σY (1 + rH) sign p, r, 0) wherer ≥ 0
andsign p = p/|p| if p 6= 0 andsign 0 := 0. A minor calculation shows that
(σ, a, b) is admissible and thatϕ∗(p, α, β) ≥ σY |p| + r(A−1α+ σYH|p|).
Thus,ϕ∗(p, α, β) = ∞ or σYH|p| + A−1α ≤ 0 becauser ≥ 0 may be
arbitrary large. Moreover, lettingr = 0 we seeϕ∗(p, α, β) ≥ σY |p|.

Finally, we assumeσYH|p| + A−1α ≤ 0, β = −Bp, tr p = 0 and
Φ(σ, a, b) ≤ 0, a ≥ 0. According to Cauchy’s inequality and orthogonality
of deviatoric and unit matrices yield

p : σ + αA−1α+ β : B−1b = p(dev σ − dev b) + aA−1a

≤ σY (1 +Ha)|p| + αA−1a

≤ σY |p| + a(σYH|p| + A−1α) ≤ σY |p|,(2.23)

whenceϕ∗(p, α, β) ≤ σY |p|. Thus, under the present assumptions on
(p, α, β), σY |p| = ϕ∗(p, α, β) (and otherwiseϕ∗(p, α, β) = ∞). ut
Proposition 2.2. If (σ, χ) ∈ ∂ϕ∗(p, ξ) and χ = (a, b), ξ = (α, β) ∈
R × R

d×d
sym such thatp 6= 0, then, withk := AσYH, we have

dev(σ − b)
σY (1 +Ha)

= p/|p| and α = −k|p|.(2.24)

Proof. Note thattr p = 0, p = −B−1β, α+ k · |p| ≤ 0. For anyq ∈ R
d×d
sym

with tr q = 0 we consider̃p := p + q, α̃ := −k|p + q|, β̃ := −B(p + q),
and ξ̃ := (α̃, β̃), such thatϕ∗(p̃, ξ̃) = σY |p + q|. Thus, according to the
definition of the subgradient, we have

σ : q + a · A−1(α̃− α) + b : B−1(β̃ − β) ≤ σY (|p+ q| − |p|).(2.25)

The estimate onα and the equalities for̃α, β̃, β lead in (2.25) to

dev(σ − b)
σY (1 +Ha)

: q ≤ |p+ q| − |p|.(2.26)

This is the definition for

τ :=
dev(σ − b)
σY (1 +Ha)

∈ ∂|dev ·|(p) = sign dev p,(2.27)

wheresign p := {p/|p|} if p 6= 0, andsign 0 = {q ∈ R
d×d
sym | |q| ≤ 1}. We

remark that the last identity is known in convex analysis and so we give a
proof only for convenient reading. Lettingq = τ in (2.26) (noticetr τ = 0),
we infer with the triangle inequality

|τ |2 ≤ |τ + p| − |p| ≤ |τ |,(2.28)
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whence|τ | ≤ 1. Lettingq = −p in (2.26) (noticetr p = 0), we infer after
a multiplication with−1 that

|p| ≤ τ : p ≤ |τ | · |p| ≤ |p|(2.29)

because of Cauchy’s inequality and|τ | ≤ 1. So we have equality in Cauchy’s
inequality, and this showssign p ⊆ sign τ and concludes the proof of (2.27).
We add thatp 6= 0 impliesα = −k|p|, because equality in (2.29) is possible
only if we have equality in (2.25), which is a strict inequality ifα < −k|p|.

2

3. Spatially discrete problem

In this section, we analyse the discrete finite element method based on
piecewise linear resp. constant ansatz functions on a regular triangulation
T . Also, we specify notation of the model in Example 2.1.

Definition 3.1 (Triangulation). The triangulationT of the polyhedral do-
mainΩ is assumed to be regular in the sense of [6] and satisfies the minimum
angle condition such that there is a constantc1 > 0 with

c−1
1 · h2

T ≤ |T | ≤ c1 · h2
T (T ∈ T ),(3.1)

where|T | is the area andhT is the diameter ofT . (The triangulationT is
assumed to matchΩ exactly and a change of boundary conditions is only
allowed in nodes.)

We defineS0(T ) ⊂ L2(Ω) as the piecewise constant andS1(T ) ⊂
H1(Ω) or S1

D(T ) ⊂ H1
D(Ω) as continuous and piecewise affine functions;

piecewise is understood with respect toT . Define

X := H1
D(Ω) and

Y := {(p, ξ) ∈ L2(Ω; Rd×d × R
m) : tr p = 0 ∧ p = pT},(3.2)

SX := S1
D(T ) and

SY := {(p, ξ) ∈ S0(T )d×d+m : tr p = 0 ∧ p = pT},(3.3)

S := SX × SY ⊂ X × Y = Z.(3.4)

Remark 3.1.The restrictionsp = pT andtr p = 0 are easily implemented
by identifying the symmetric2×2-matrixp(x) with the4 entriesr(x), s(x),
s(x), and−r(x) with scalar functionsr, s for d = 2 (and corresponding
formulae ford = 3). Since there are no other restrictions involved, the
implementation of conform higher order methods is quite simple.

The material parametersA, B, C, H, andσY may vary in the domainΩ
and so the integrals have to be approximated by quadrature or interpolation
by T -piecewise constant functionsAT , BT , CT , HT , σY T .
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Definition 3.2 (Data Approximation). Given bounded and measurable
functionsA, B, C, H, σY in Ω, we define their piecewise constant ap-
proximantsAT , BT , CT , HT , σY T in Ω, with respect to the triangulation
T , such that, e.g.,

(AT )|T ∈ R (T ∈ T )(3.5)

(and corresponding formulae for the remaining quantities). The above men-
tioned properties are preserved such asAT , BT , CT , HT are symmetric
and positive definite asA, B, C, H are andσY T > 0 asσY > 0.

The mean operatorM is defined with respect toT by

(Mf)|T :=
∫

T
f dx/meas(T ) (f ∈ L2(Ω), T ∈ T )(3.6)

such thatMf is constant on each elementT with volume meas(T ) and
equals its integral mean there. (We applyM to each component if the argu-
ment is a vector or matrix.) Finally, let(fT , gT ) ∈ S0(T )d × {w|ΓN : w ∈
S0(T )d} be constant on eachT ∈ T .

The spatially discrete problem is simply the original problem when we
replace all the material parameters and functions of the right-hand side and
in initial values by their discrete counterparts.

Definition 3.3 (Discrete FEM). For u ∈ X := H1
D(Ω), (p, ξ) ∈ Y :=

L2(Ω; Rd×d
sym × R

m),

φT (u, p, ξ) :=
1
2

∫
Ω

(p− ε(u)) : CT (p− ε(u)) dx

+
1
2

∫
Ω
ξ : HT ξ dx(3.7)

−
∫

Ω
fT u dx−

∫
ΓN

gT u ds,

ψT (p, ξ) :=
∫

Ω
ϕ∗

T (p, ξ) dx,(3.8)

whereϕ∗
T (p, α, β) := σY T |p| if simultaneouslytr p = 0, p = −B−1

T β,
and,A−1

T α + σY T HT |p| ≤ 0, while ϕ∗(p, α, β) := ∞ if not. Then, the
fully-discrete finite element scheme consists of minimisingφT +ψT onS.

Remarks 3.2.1. The approximationsφT andψT inherit the convexity pro-
perties ofφ andψ and so there exists exactly one solution to the discrete
problem.
2. Since possiblyϕ∗(pS , αS , βS) = ∞ or ϕ∗

T (p, α, β) = ∞ for the exact
and discrete solution(p, α, β) and(pS , αS , βS), respectively, we encounter
what sometimes is called a variational crime.
3. We establish the convention that all known discrete quantities get an index
T while the discrete unknowns are labelled byS.
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4. A priori error analysis

Adopting notation for the primal problem, letz = (x, y) ∈ Z andzS =
(xS , yS) ∈ S ⊂ Z be the minimisers ofφ + ψ in Z andφT + ψT in S,
respectively.

Owing to the data approximation, further notation is provided to formu-
late a priori error estimates.

Definition 4.1 (Data-Errors). Let M be the mean operator, letid denote
identity, and setk := AHσY andkT := AT HT σY T . Then,

δ1 := max{‖ ((id−M)(k,B,C,H),CT − MC,

HT − MH) ‖L∞(Ω), ‖ (id−M)σY ‖L2(Ω)},(4.1)

δ2 := max{‖ (kT − Mk,BT − MB) ‖L∞(Ω),

‖σY T − MσY ‖L2(Ω)}.(4.2)

The proof of the a priori error estimate will be provided in Sect. 6.

Theorem 4.1. There exists a hardening-independent constantC1 > 0 such
that

C−1
1 ‖ (σ − σS , ξ − ξS) ‖2

L2(Ω)

≤ δ21 + δ2(1 + ‖ pS ‖L2(Ω))

+‖ (id−M)(|p|, p, ξ) ‖2
L2(Ω) + inf

V ∈SX

{
‖ ε(u− V ) ‖2

L2(Ω)

+
∫

Ω
(f − fT )(uS − V ) dx+

∫
ΓN

(g − gT )(uS − V ) ds
}
,(4.3)

where the stresses areσ := C(ε(u) − p) andσS := C(ε(uS) − pS).

Proofs of the following discussion of the right-hand side in the theorem
will be given implicitly in Sect. 6.

Remarks 4.1.1. In general, the constantC1 depends onΩ, ΓD, ‖ (C,C−1,
H,H−1) ‖L∞(Ω) and‖(p,ξ,ξS ,σS)‖L2(Ω).
2. The convergence estimate (4.3) implies that‖ (ξS , σS) ‖L2(Ω) is bounded.
The boundedness of‖(p, pS)‖L2(Ω) is implied by hardening (cf. Theorem
4.2 below).
3. If δ2 = 0, the right-hand side is independent of‖ pS ‖L2(Ω).
4. The dependence of the right-hand side on‖ (p, pS) ‖L2(Ω) can be relaxed.
If we replaced‖σY T − MσY ‖L2(Ω) in the definition ofδ2 by ‖σY T −
MσY ‖L∞(Ω), then the right-hand side would depend on‖ pS ‖L1(Ω) only.
The latter norm is bounded because the minimisation involvesψT .
5. For piecewise constant data (with respect toT ), we can arrange that
δ1 = 0 = δ2. Then, the approximation error‖ (id−M)(|p|, p, ξ) ‖L2(Ω)
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can be omitted on the right-hand side in (4.3).
6. To ensureδ21 + δ2 = O(h2) for h := maxT∈T hT , hT being the diameter
of T ∈ T , an elementwise one-point evaluation on the points of inertia is
sufficient for piecewise smooth data.
7. Exact integration off resp.g leads to

∫
Ω(f − fT )(uS − V ) dx = 0

resp.
∫
ΓN

(g − gT )(uS − V ) ds = 0. We refer to standard literature for
effects of inexact integration [3,6] and mention that elementwise one-point
Gauss-quadrature is sufficient in case that‖uS ‖H1(Ω) is bounded (which
is guaranteed by hardening, cf. Theorem 4.2 below).
8. If δ1 = 0 = δ2 andf, g are exactly integrated, the theorem specifies to

C−1
1 ‖σ − σS ‖2

L2(Ω) ≤ inf
V ∈SX

‖ ε(u− V ) ‖2
L2(Ω)(4.4)

and we stress that there isno contribution of the best-approximation error
of the other variablep. This clearly indicates that a finer mesh for the ap-
proximation of the plastic strain variablep is pointless.
9. The estimate (4.3) holds also in case of perfect plasticity (wherem = 0
andξ, H, etc. are omitted).
10. At first glance, ifu ∈ H2(Ω) and if the data are piecewise smooth,
the theorem leads to the optimal linear convergence for approximants of the
stress field and the internal variables.
11. At second glance, the estimate (4.4) and so (4.3) is poor in perfect plas-
ticity, because we cannot expect thatu is very smooth. There is evidence
thatσ is much smoother thanu [18,19] and so (4.3) cannot be regarded as
a quasi-optimal convergence estimate.

The hardening law allows further estimates. In case that the modulus of
kinematic hardeningB is absent or too small (i.e.‖ B−1 ‖L∞(Ω) is too
large) we need further restrictions on the energetic coupling of kinematic
and isotropic hardening. Usually, this coupling is omitted. Here, we allow a
sufficiently small interaction. With(1, 0) ∈ R × R

d×d
sym ≡ R

m, define

γ := essinf
x∈Ω

min
|q|≤1

(1, 0) · H(1, k−1(x)B(x)q)T,(4.5)

γT := essinf
x∈Ω

min
|q|≤1

(1, 0) · HT (1, k−1
T (x)BT (x)q)T,(4.6)

where the argument in the minimum is amongst allq ∈ R
d×d
sym in the closed

unit ball.

Remark 4.2.Notice thatγ, γT > 0 if there is no energetic coupling of
the hardening parameters (i.e.,H,HT are block-diagonal). The physical
justification and interpretation of off-diagonal entries inH is unclear to
the author. In the literature, it is usually assumed to be very small or even
negligible.
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Theorem 4.2. Suppose either‖ (B−1
T ,B−1) ‖L∞(Ω) < ∞ or k, kT , γ,

γT > 0. Then, there exists a hardening-dependent constantC2 > 0 such
that

C−1
2 ‖ (p− pS , ε(u− uS)) ‖2

L2(Ω)

≤ ‖ (σ − σS , ξ − ξS) ‖2
L2(Ω) + δ21 + δ22 .(4.7)

Proof. Sinceσ−σS = C(ε(u−uS)− (p−pS)), it is sufficient to estimate
one of the summands, i.e., we will prove that‖ p− pS ‖2

2 is bounded by the
right-hand side in (4.7).

In the first case, suppose that kinematic hardening is present, i.e.
‖ B−1 ‖∞ and‖ B−1

T ‖∞ are bounded from above, so that‖ B−1−B
−1 ‖∞

and‖ B
−1 − B−1

T ‖∞, whereB := MB, are bounded byc · (δ1 + δ2).
Then, we infer fromp = −B−1β andpS = −B−1

T βS that

‖ p− pS ‖2 ≤ ‖ (B−1 − B
−1)β ‖2 + ‖ (B−1 − B−1

T )β ‖2

+‖ B−1
T (β − βS) ‖2(4.8)

≤ c
(
(δ1 + δ2)‖β ‖2 + ‖ ξ − ξS ‖2

)
.

In the second case, suppose that isotropic hardening is present, i.e.,‖ 1/k ‖∞
and‖ 1/kT ‖∞ are bounded from above andγ, γT are positive. As in (4.8),
we obtain from Proposition 2.2 that

‖ |p| − |pS | ‖2 = ‖α/k − αS/kT ‖2

≤ c
(
(δ1 + δ2)‖α ‖2 + ‖ ξ − ξS ‖2

)
.(4.9)

Almost everywhere inΩ, we have

|p− pS |2 = (|p| − |pS |)2 + 2(|p||pS | − p : pS).(4.10)

The first term on the right-hand side can be bounded by (4.9). Moreover,
writing σ̃S := CT C−1σS , we infer from Proposition 2.2 that|dev σ| =
σY (1 +Ha) and|dev σ̃S | = σY T (1 +HT aS), where(a, b) := −Hξ and
(aS , bS) := −HT ξS . If the second term|p(x)||pS(x)| − p(x) : pS(x) on
the right-hand side in (4.10) is nonzero it equals (by Proposition 2.2)

ααSk−1k−1
T σ−1

Y σ−1
Y T

(1 +Ha)(1 +HT aS)(
| dev(σ − b)||dev(σ̃S − bS)| − dev(σ − b) : dev(σ̃S − bS)

)
,(4.11)

where we neglected the argumentx ∈ Ω. We have to analyse the term
αS/(1 + HT aS) and may utilise thatγ > 0. By pS 6= 0, we haveαS =
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−kT |pS | andβS = −BT pS and thus, writingq := pS/|pS | andHT =
(H ij : i, j = 1, 2) for H11 > 0 andH12 ∈ R

1×(m−1),

|aS | = |H11αS + H12βS | = (H11 + k−1
T H12BT q)|αS |

≥ γT |αS |.(4.12)

Using this and its analog|a| ≥ γ|α|, the factor in (4.11) is seen to be
bounded from above by a universal constant. Therefore, we conclude almost
everywhere inΩ that

|p− pS |2 ≤ (|p| − |pS |)2

+2
|dev(σ − b)||dev(σ̃S − bS)| − dev(σ − b) : dev(σ̃S − bS)

kkT σY σY T HHT γγT
.(4.13)

Arguing as in (4.10), we achieve

| dev(σ − b)||dev(σ̃S − bS)| − dev(σ − b) : dev(σ̃S − bS)

=
1
2
|dev(σ − σ̃S + bS − b)|2

−1
2
(|dev(σ − b)| − | dev(σ̃S − bS)|)2

≤ 1
2
|dev(σ − σ̃S + bS − b)|2 ≤ |σ − σ̃S |2 + |b− bS |2,(4.14)

which, together with (4.9) and (4.13) leads to

c−1‖ p− pS ‖2
2 ≤ δ21 + δ22 + ‖ ξ − ξS ‖2

2

+‖σ − σ̃S ‖2
2 + ‖ b− bS ‖2

2.(4.15)

Here, the constantc depends on the constant in (4.9) and on‖ (kkT σY

× σY T HHT γγT )−1 ‖∞. It remains to bound‖σ − σ̃S ‖2 and‖ b− bS ‖2.
According to

‖ (σ − σ̃S , b− bS) ‖2 ≤ ‖ (σ − σS ,H(ξ − ξS)) ‖2

+‖ ((1 − CT C−1)σS , (H − HT )ξS) ‖2(4.16)

we consider terms like

‖ (C−1 − C−1
T )σS ‖2

2 ≤ ‖C−1(C − CT )C−1
T ‖2

∞‖σS ‖2
2

≤ δ21‖ C−1 ‖2
∞‖ C−1

T ‖2
∞‖σS ‖2

2(4.17)

to establish a bound of (4.16) and conclude the proof. 2
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5. A posteriori error estimates

For eachT ∈ T , lethT denote its diameter and let

η2
T = h2

T

∫
T

|f + div σS |2 dx+
∫

∂T
hE |J(σS · nE)|2 ds(5.1)

whereJ(σS ·nE) is the jump of the discrete stress field along an edgeE with
normalnE and sizehE with the usual modificationJ(σS ·nE) := σS ·nE−g
if E ⊂ ΓN.

The proof of the a posteriori error estimate will be provided in Sect. 6.

Theorem 5.1. Under the assumptions of Theorem 4.2, there exists a har-
dening-dependent constantC3 > 0 such that

C−1
3 ‖ (p− pS , ε(u− uS), σ − σS , ξ − ξS) ‖2

L2(Ω)

≤
∑
T∈T

η2
T + δ21 + δ2 + ‖ (id−M)(|p|, p, ξ) ‖2

L2(Ω)

+ max
V ∈SX\{0}

(
∫

Ω
(f − fT )V dx+

∫
ΓN

(g − gT )V ds)/‖ ∇V ‖L2(Ω).(5.2)

Remarks 5.1.1. The estimatorηT is the same as in pure elasticity (utilising
the stress field from a discrete elasto-plastic problem).
2. In perfect plasticity, Theorem 5.1 is expected to be false. A closer inspec-
tion then shows that it is required to follow the arguments in [16] and to
derive weaker estimates.
3. The discussion of the right-hand side is analogous to the comments in Re-
mark 4.1. In particular, ifδ1 = 0 = δ2, the term‖ (id−M)(|p|, p, ξ) ‖L2(Ω)
can be neglected.
4. In case of exact integration off andg, the maximum in the upper bound
is zero. Otherwise, the maximum can be computed. Standard arguments
(involving Poincaŕe’s inequality) show that elementwise one-point Gauss-
quadrature is sufficient for this term to be of orderO(h2) (providedf and
g are piecewise smooth).

As in the case of pure elasticity, the a posteriori error estimate is efficient
[22] in a local sense.

Theorem 5.2. There exists a hardening-independent constantC4 > 0 such
that, for allT ∈ T ,

C−1
4 η2

T ≤ ‖σ − σS ‖2
L2(ωT )

+ diam(ωT )2(‖ f − Mf ‖2
L2(ωT ) + ‖ g − g ‖2

L2(ωT ∩ΓN)) ,(5.3)

whereωT is the set of all neighbouring triangles which share one edge with
T andg is the piecewise best-approximation ofg in L2(ΓN).
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Proof. Since the estimatorηT involves stress terms only, the proof can follow
arguments in [22] which are independent of the material laws. To illustrate
this we prove the first halve of (5.3). GivenT ∈ T , let b := λ1λ2λ3 with
the barycentric coordinatesλj onT . Direct calculations verify,b ≤ 1/27,

h2
T ≤ c2

∫
T
b dx, and ‖ ∇b ‖L2(T ) ≤ c3,(5.4)

where the positive constantsc2 andc3 depend onc1 (from (3.1)) but do not
depend onhT . Then, forf |T = div(σS − σ)|T andfT := (Mf)|T ∈ R,
we have

c−1
2 ‖ Mf ‖2

L2(T ) ≤ fT

∫
T
bfT dx

= fT

∫
T
bf dx+ fT

∫
T
b(fT − f) dx.(5.5)

Since the bubble functionb vanishes on∂T , integration by parts leads to∫
T
bf dx =

∫
T
(σ − σS)ε(b) dx ≤ c3‖σ − σS ‖L2(T ).(5.6)

Incorporating (5.6) in (5.5), we finally obtain

c−1
2 ‖ fT ‖L2(T ) ≤ c3c

−1/2
1 h−1

T ‖σ − σS ‖L2(T )

+‖ fT − f ‖L2(T )/27.(5.7)

From this we can estimate the volume contribution toηT , that is (for some
c4 > 0)

h2
T /2

∫
T

|f |2 dx ≤ h2
T

∫
T

|fT |2 dx+ h2
T

∫
T

|f − fT |2 dx
≤ c4(‖σ − σS ‖2

L2(T ) + h2
T ‖ fT − f ‖2

L2(T )).(5.8)

The estimation of the edge contributions is similar and replacesbby a product
of two barycentric coordinates on two neighbouring elements. We refer to
[22] for details. 2

6. Proof of Theorem 4.1 and 5.1

First, we argue with (1.2) for both the continuous and the discrete problem.
For all z̃ = (x̃, ỹ) ∈ Z and allz̃S = (x̃S , ỹS) ∈ S, this yields

Dφ(z; z − zS) −Dφ(zS ; z − zS)(6.1)

≤ Dφ(zS ; zS − z̃S) −DφT (zS ; zS − z̃S)(6.2)

+ Dφ(zS ; z̃S − z) + ψT (ỹS) − ψ(y)(6.3)

+ Dφ(z; z̃ − zS) + ψ(ỹ) − ψT (yS).(6.4)
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The remaining part of the proof consists of a careful estimation of the terms
in (6.1)–(6.4) where we let̃x = ũ ∈ X and x̃S = ũS ∈ SX and fix
ỹ = (p̃, ξ̃) andξ̃ = (α̃, β̃) etc. as

ỹS := (p̃S , α̃S , β̃S) := (Mp,min{Mα,−kT |Mp|},−BT Mp),(6.5)

ỹ := (p̃, α̃, β̃) := (pS , αS + (kT − k)|pS |,−BpS).(6.6)

Secondly, one showsψ(ỹ) =
∫
Ω σY |pS | dx andψT (ỹS) =

∫
Ω σY T

· |Mp| dx. As in the following, we abbreviatek := AσYH andkT :=
AT σY T HT ≥ 0 and,e := ε(u) − p andeS := ε(uS) − pS , Y := (e, ξ) as
YS = (eS , ξS) etc. andG is the block diagonal tensor with diagonal entries
C andH with corresponding modifications forG = MG andGT .

In step three, we consider (6.2) and calculate

Dφ(zS ; zS − z̃S) −DφT (zS ; zS − z̃S)

=
∫

Ω
(YS − ỸS) : (G − GT )YS dx− `T (uS − ũS)(6.7)

where`T (w) :=
∫
Ω(f − fT )w dx+

∫
ΓN

(g − gT )w ds. Writing ‖ · ‖p for
the norm in (any product of)Lp(Ω), we infer from Cauchy’s inequality and
with the definition ofδ1 that

Dφ(zS ; zS − z̃S) −DφT (zS ; zS − z̃S)
≤ δ1‖ YS − ỸS ‖2‖ YS ‖2 − `T (uS − ũS).(6.8)

In step four, Jensen’s inequality,|Mp| ≤ M|p|, M(id−M) = 0, and
ψT (ỹS) < ∞ yield

ψT (ỹS) − ψ(y) =
∫

Ω
(σY T |Mp| − σY |p|) dx

≤
∫

Ω
(σY T − MσY )|Mp| dx

+
∫

Ω
(σY − MσY )(M − id)|p| dx

≤ δ1‖ (id−M)|p| ‖2 + δ2‖ p ‖2.(6.9)

In step five, we provide estimates forα̃S −Mα. On each elementT ∈ T ,
α̃S − Mα is constant, non-positive, and either vanishes or satisfies

0 > α̃S − Mα = −Mα− kT |Mp|
≥ −Mα− kT |Mp| + α+ k|p|,(6.10)

becauseψ(p, ξ) < ∞. Taking averages in (6.10), we deduce

α̃S − Mα ≥ −kT |Mp| + M(k|p|).(6.11)
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According to Jensen’s inequality again, this yields

0 ≥ α̃S − Mα ≥ (k − kT )M|p| + M((k − k)(id−M)|p|),(6.12)

where we over-line averages, such ask := Mk and belowB := MB.
Thus, in all cases we conclude

‖ α̃S − Mα ‖2 ≤ δ1‖ (id−M)|p| ‖2 + δ2‖ p ‖2.(6.13)

In step six, we provide estimates forβ̃S − Mβ. The definition of and
the side restriction onξ and the fact thatM((B − B)Mp) = 0 yield

β̃S − Mβ = M((B − B)(id−M)p) + (B̄ − BT )Mp, whence

‖ β̃S − Mβ ‖2 ≤ δ1‖ (id−M)p ‖2 + δ2‖ p ‖2.(6.14)

In step seven, we consider the stress fieldσ := C(ε(u) − p) (resp.
σS := C(ε(uS) − pS)) which is in equilibrium with applied forces and so

Dφ(zS ; z̃S − z) =
∫

Ω
(σS − σ) : ε(ũS − u) dx+

∫
Ω
σS : (p− p̃S) dx

+
∫

Ω
ξS · H(ξ̃S − ξ) dx.(6.15)

The first integral on the right-hand side of (6.15) will be estimated by
Cauchy’s inequality. According to the definition ofp̃S , the second integral
on the right-hand side of (6.15) equals∫

Ω
σS : (p− p̃S) dx =

∫
Ω
σS : (id−M)p dx = 0.(6.16)

The third integral on the right-hand side of (6.15) can be estimated according
to (6.13) and (6.14) and we obtain∫

Ω
ξS · H(ξ̃S − ξ) dx

=
∫

Ω
ξS · H(ξ̃S − Mξ) dx

−
∫

Ω
((id−M)HξS) · (id−M)ξ dx

≤ ‖HξS ‖2

(
δ1‖ (id−M)(p, |p|) ‖2 + δ2‖ (p, |p|) ‖2

)
+δ1‖ ξS ‖2‖ (id−M)ξ ‖2.(6.17)

In step eight, we find with (6.6) that

ψ(ỹ) − ψT (yS) =
∫

Ω
(MσY − σY T )|pS | dx ≤ δ2‖ pS ‖2.(6.18)
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In step nine, we note that the stress fieldσ is in equilibrium with the
applied forces and that̃p = pS . Hence, arguing as in step seven,

Dφ(z; z̃ − zS) =
∫

Ω
ξ · H(ξ̃ − ξS) dx

=
∫

Ω
(Hξ − M(Hξ)) ·

(
(k − k)|pS |
(B − B)pS

)
dx

+
∫

Ω
M(Hξ) ·

(
(kT − k)|pS |
(BT − B)pS

)
dx

≤
{
δ1‖ (id−M)Hξ ‖2 + δ2‖ Hξ ‖2

}
‖ (pS , |pS |) ‖2.(6.19)

Furthermore, we have‖ (id−M)Hξ ‖2 ≤ δ1‖ ξ ‖2 + ‖ H ‖∞‖ (id−M)
× ξ ‖2.

So far, we estimated all the terms in (6.2)–(6.4). In the final step ten, we
put all those estimates together and, since

Dφ(z; z − zS) −Dφ(zS ; z − zS)

= ‖ (C−1/2(σ − σS),H1/2(ξ − ξS)) ‖2
2,(6.20)

we obtain a constantc5 > 0 such that

c5‖ (C−1/2(σ − σS),H1/2(ξ − ξS)) ‖2
2

≤ δ1(‖ YS − ỸS ‖2 + ‖ (id−M)(p, |p|, ξ) ‖2)(1 + ‖ YS ‖2)
+δ2‖ (1, p, pS , ξ, ξS) ‖2

2 + `(uS − ũS)

+‖ C−1/2(σ − σS) ‖2‖ C1/2ε(u− ũS) ‖2.(6.21)

According to the above estimates for̃YS − MY and‖ YS − MY ‖2 ≤
‖ YS − Y ‖2 = ‖ (C−1(σ − σS), ξ − ξS) ‖2,

‖ YS − ỸS ‖2 ≤ ‖ MY − ỸS ‖2 + ‖ YS − MY ‖2

≤ ‖ ε(u− ũS) ‖2 + δ1‖ (id−M)(p, |p|) ‖2

+δ2‖ (p, |p|) ‖2 + ‖ (C−1(σ − σS), ξ − ξS) ‖2.(6.22)

By incorporating (6.22) in (6.21) and by absorbing the factors‖ (σ−σS , ξ−
ξS) ‖2 on the right-hand side, we verify (4.3).

The proof of Theorem 4.1 is finished and it remains to prove Theorem 5.1.
In step eleven, we focus on (6.15) and, now, do not use equilibrium ofσ

with the applied forces. Hence,

Dφ(zS ; z̃S − z) =
∫

Ω
σS : ε(ũS − u) dx−

∫
Ω
f(ũS − u) dx

−
∫

ΓN

g(ũS − u) ds(6.23)

+
∫

Ω
σS : (p− p̃S) dx+

∫
Ω
ξS · H(ξ̃S − ξ) dx.(6.24)
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The terms in (6.24) are treated as in step seven, so we concentrate on the
first term on the right-hand side in (6.23). The treatment of this term follows
established techniques for pure elasticity, so we give only a sketch. Let
IT (u− uS) be the Clement interpolant tou− uS [6,7,3,22] and let̃uS :=
IT (u − uS) + uS such that we obtain a constantc6, which depends onc1
only, ∑

T∈T
h−2

T ‖u− ũS ‖2
L2(T ) ≤ c6 · ‖ ∇(u− uS) ‖2,(6.25)

∑
E∈E

h−1
E ‖u− ũS ‖2

L2(E) ≤ c6 · ‖ ∇(u− uS) ‖2,(6.26)

‖ ∇IT (u− uS) ‖2 ≤ c6 · ‖ ∇(u− uS) ‖2.(6.27)

Here,E denotes the set of all edges inT . By elementwise integration by
parts, we obtain from the strong form (2.1)–(2.2) that∫

Ω
σS : ε(ũS − u) dx−

∫
Ω
f(ũS − u) dx−

∫
ΓN

g(ũS − u) ds

=
∫

∪E
J(σS · nE)(ũS − u) ds−

∫
∪T

(f + div σS)(ũS − u) dx

≤
∑
E∈E

‖h1/2
E J(σS · nE) ‖L2(E)‖h−1/2

E (ũS − u) ‖L2(E)

+
∑
T∈T

‖hT (f + div σS) ‖L2(T )‖h−1
T (ũS − u) ‖L2(T )

≤ c6‖ ∇(u− uS) ‖2

(∑
T∈T

‖hT (f + div σS) ‖2
L2(T )

+
∑
E∈E

‖h1/2
E J(σS · nE) ‖2

L2(E)

)1/2

≤ c6‖ ∇(u− uS) ‖2(
∑
T∈T

η2
T )1/2.(6.28)

In step twelve, we incorporate the results of Theorem 4.1 and 4.2 and
(as in (6.21)) obtain, with somec7 > 0,

c7‖ (p− pS , ε(u− uS), σ − σS , ξ − ξS) ‖2
2

≤ δ1(‖ YS − ỸS ‖2 + ‖ (id−M)(p, |p|, ξ) ‖2)(1 + ‖ YS ‖2)
+δ2‖ (1, p, pS , ξ, ξS) ‖2

2 + `(IT (u− uS))

+‖ ∇(u− uS) ‖2 · (
∑
T∈T

η2
T )1/2.(6.29)

Notice that`(IT (u − uS)) is bounded by the maximum in (5.2) times
‖ ∇IT (u−uS) ‖2. Owing to Korn’s inequality and (6.27), the latter term is
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bounded byc8‖ ε(u−uS) ‖2 and can be absorbed in (6.29). Then, the proof
is concluded with the above arguments.
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