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Summary. Thefinite element method is areasonable and frequently utilised
tool for the spatial discretization within one time-step in an elastoplastic
evolution problem. In this paper, we analyse the finite element discretization
and prove a priori and a posteriori error estimates for variational inequalities
corresponding to the primal formulation of (Hencky) plasticity. The finite
element method of lowest order consists in minimising a convex function
on a subspace of continuous piecewise linear resp. piecewise constant trial
functions. An a priori error estimate is established for the fully-discrete
method which showtinear convergence as the mesh-size tends to zero,
provided the exact displacement fields smooth. Near the boundary of the
plastic domain, which is unknown a priori, it is most likely thats non-
smooth. In this situation, automatic mesh-refinement strategies are believed
to improve the quality of the finite element approximation. We suggest such
an adaptive algorithm on the basis of acomputable a posteriori error estimate.
This estimate is reliable and efficient in the sense that the quotient of the error
by the estimate and itsinverse are bounded from above. The constants depend
on the hardening involved and become larger for decreasing hardening.

Mathematics Subject Classification (199&5N30, 65R20, 73C50

1. Introduction

The time-independent elastoplastic material behaviour can be modeled in
what Han and Reddy [11] call the primal formulation. This is to minimize

a function

(1.1) d+1Y: X xY = RU{+o0}
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578 C. Carstensen

where¢ : X x Y — Ris uniformly convex and has a Lipschitz continuous
Fréchet derivativéD¢ while : Y — RU{+o00} is convex and lower semi-
continuous (and possibly non-smooth). We emphasize that this is a nonlinear
variational inequality (see, e.g., [9] for details and further references on the
numerical analysis of variational inequalities), where we seek(x, y) €

7 := X x Y satisfying

(1.2) Do(zz—¢) <o) —vy) (= (&n) €Z).

The minimization problem (1.1) as the variational inequality (1.2) are
dual to and so equivalent to the classical model in plasticity. The numerical
analysis of the latter model was analyzed by Johnson (see, e.g., [13-16])
who proved a priori linear convergence and also established a posteriori
error control as adaptive mesh-refining algorithms.

The aim of this paper is to establish the analog for (1.1) and (1.2), the
primal form for plasticity with hardening in the spatially discrete situation.
First, we improve the a priori error estimates from [10] (and a list of earlier
references quoted in [11]). Secondly, we prove an a posteriori error esti-
mate which justifies an adaptive algorithm for automatic mesh-refinement.
The estimate is reliable and efficient. But, the constants involved rely on
the hardening and so the estimates become worse for vanishing hardening
parameters. (Then one should follow corresponding arguments in [16].)

The proof argues with Jensen’s inequality for constant coefficients in the
material laws. Hence, it is not too obvious that the improved convergence
order is not destroyed by varying coefficients. Our proof relies on a closer
study of the hardening laws (our analysis covers perfect plasticity as well,
but there are only much weaker implications). To keep the representation
short and precise, we focus on one (quite general master) example, which
models combined isotropic and kinematic hardening, instead of stating gen-
eral conditions in an abstract fashion. However, the technique applies to
other situations as well.

An outline of the paper is as follows. In Sect. 2 we state the continuous
problem in its strong, weak, primal, and dual form. In addition, preliminary
consequences of the action of the hardening law are established. The corre-
sponding spatially discrete problem is introduced in Sect. 3. For simplicity,
we treat the lowest order method, but it should be stressed that the advan-
tage of the primal formulation (over the more elaborated dual formulation)
is that conform ansatz functions of arbitrary order can be employed. Cor-
responding a priori resp. a posteriori error estimates are stated in Sect. 4
resp. Sect. 5. The analysis in the proofs provided in Sect. 6 covers effects
of numerical integration as well as discrete evaluation of the material law.
Thereby, since) may be infinite on piecewise constant ansatz functions, a
discrete counterpaits is required and we face a variational crime in the
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sense that the exact resp. the discrete solition) resp.(z s, ys) may yield
¥s(y) = 0o = ¥(ys).

Numerical evidence of the linear convergence of the lowest order scheme
in the time-independent case will be provided in [2] and in the time-depen-
ding in [1].

2. The strong, weak, primal, and dual form of the continuous problem

In the small-strain models of solid mechanics, a bounded Lipschitz domain
2 inR? d = 1,2,3, serves as reference and current configuration of a
body. The strong form of equilibrium conditions states that the (Cauchy)
stress fieldr € L?(2;RE%Y), RE< being the set of all real symmetric

d x d matrices, satisfies

(2.1) dive+f=0, o=0" in 2,
(2.2) ocn=gyg only,

wheref € L%(£2;R?) is a given applied volume force agds L?(I'v; RY)

is a given applied surface force. (The Lebesgue and Sobolev spaces in the
definition are defined in a standard way [12,17,23].) The bounBasyos?

is split into the Dirichlet boundaryT,, a compact set of positive surface
measure, and the (possibly empty) Neumann bounffary- I" \ I'p. The
exterior unit vector ol (which exists almost everywhere @1 is denoted

asn (see (2.2)). The displacement field

(2.3) ue Hh(2) :={we H (2)?: w|p, =0}
is linked to the (linear Green) strain fied(u) € L2(£2; RYXY),

Sym
@4)  (elw) = (2 O

The constitutive relations in small strain elastoplasticity are based on an
additive split of the total straia(u) into an elastic par¢ and a plastic part

b,
(2.5) e(u) =e+p.

A free energy is assumed in an uncoupled form as

(2.6) F(e,f):%e:Ce—i—ﬁ-Hﬁ,

whereC € L (£2; R¥*dxdxd) s the fourth order elasticity tensor, with the
Lamé constants and,

(2.7) Cq:=2puq+ (\-trq)laxa (g € RED),
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andH € L*(£2;REN™) is the positive definite modulus of hardening. In
(2.7),14xq denotes théd x d)-unit matrix and we definer g := ¢ : 14x4 as
the trace of;. Here, in (2.6), and below, the scalar product of two matrices
in p, ¢ € R is written with a colon, e.gp : q := Y7 ._, pijai;-

The elastic part and the internal variablé are linked to the stress
and an internal streggthrough the free energy (2.6),

oF oF

Finally, the material law of plastic evolution is the principle of maximal
dissipation,

(2.9) (p,§) € Op(a,x),

wherep : R4 x R™ — R U {oo} is the dissipation functional andy

sym

denotes its sub-gradient.

Remark 2.1.According to the definition of the sub-gradient (or sub-differ-
ential) in convex analysis, the inclusion (2.9) (with respect to some scalar
productx in R™ which is specified below) equivalently reads

(2.10) ((5,%) € RIXd x R™).

The weak form of (2.1)—(2.9) is obtained straightforwardly as discussed,
e.g., in [11], and is (formally) equivalent to the problem which Han and
Reddy call dual formulation of elastoplasticity (we refer to [11] and omit
details).

Definition 2.1 (Dual form). Foru € X := H(2)? and(o,x) € Y =
L2(02; RIXd x R™), set

sym

2

—/J:e(u)da:—l—/ fudx+/ guds,
n 02 I

@12) (0= [ plo)dn

1 1
(2.11) ¢(u,0,x) = / o:C lodr + 2/ x-H 'ydz
2 9]

Then, the dual problem consists in finding a minimigero, x) of ¢ + ¢
inZ:=XxY.

The following important class of dissipation functionals is usually ap-
plied to metals or other ductile materials.
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Example 2.1.Mon-Mises' yield function with combined kinematic and iso-
tropic hardening states that a (generalized) stfesg) is admissibleif
x = (a,b) € R x R4 =R™, m =1+ d(d+ 1)/2, witha > 0 and

sym —
(2.13) &(o,a,b) :=|devo —devd| — oy (1 + Ha) <0.

Here,oy > 0 is the yield stress andl > 0 is the hardening modulus.
Furthermore,
tro

(2.14) devo =0 — 7 1gxd-

Then, the dissipation functional in (2.9) is given as the characteristic func-
tional of the admissible stresses (2.7), i.e.,

(0,a,b) = | 0 Ta=0AP(0,0,6) <0
AT 4 0) =1 oo if a <0V ®(c,a,b) >0

(2.15) ((0,a,b) € R4 x R x R¥X4),

Sym sym

By definition of the sub-gradient, (2.9) read$o,a,b) < 0 and for all
(5,a,b) € RE4 x R x REXZ with #(5,a,b) <0 there holds

Sym Sym
(216) p:(6—0)—a-A Y a—a)—pB:BHb—b) <0

Here,£ = («, 8) andy = (a,b) = —H¢ (recall (2.8)) and we introduced

a scalar product in R™ represented byA~!, B~!). In other words, if
&(o,a,b) < 0 then there is no plastic evolutiofy, —«, —(3) = 0, and if
&(o,a,b) = 0thenthe vector of plastic evolutidgp, —«, —3) is perpendic-

ular to the surface of admissible (generalized) stresses (with respect to the
scalar product givenin (2.16)). Therefore, the maximal dissipation principle
is also called the normal rule.

Remarks 2.21. Example 2.1 models combined isotropic and kinematic
hardening for the von-Mises yield condition; in particular, kinematic hard-
ening for H = 0 and isotropic hardening faB = 0, and perfect plasticity
for H = 0andB = 0. Inthe sequel, we will say that a constant is hardening-
independent if it does not depend Aror B. In particular,H is expected

to be bounded and independent’oénd B.

2. In the presence of hardening, the dual problem has a unique solution [15].
In case of perfect plasticity we have of no hardening, and solutions do, in
generalnot exist in Hf, (£2) x L*(£2;R%<), cf. [13,20,21] for details in
this case.

3. A dual formulation is obtained by using the dydlof ¢, i.e.,

(2.17) ©*(b) := St;p{a “b—¢(a)},

and is based on the equivalencenof 0p(b) andb € d¢*(a). Therefore,
the dual form to (2.9) reads

(2.18) (0,x) € 09" (p, §)-
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582 C. Carstensen

Definition 2.2 (Primal form). Foru € X := H} (£2)% and(p,£) € Y =
L2(02; R4 x R™), set

sym

009 1= 3 [ (0= cla)) : Clp— c(w) da

(2.19) —i—;/ﬁﬁ-Hﬁd:r—/qudx—/FNguds,
@20) 6= [ 0O

Then, the primal problem consists in finding a minimigerp, £) of ¢ + v
inZ:=XxY.

Remarks 2.31. The primal and dual problem are equivalent to each other
and of the form (1.1) which is equivalent to (1.2). (For an elementary proof
of "(1.1) implies (1.2)", we infer from convexity af thato(z, y) + ¥ (y) <

o(z, An+ (1= Ny) + A\p(n) + (1 — M)y (y). Rearranging this and letting

A — 0 we obtain (1.2).)

2. The quadratic formp is known to be uniformly convex and is con-

vex, lower semi-continuous, and non-negative [10,11,5]. Hence, the primal
problem has exactly one solution.

The numerical analysis of the primal problem is under consideration in the
next sections. This section is concluded by computing the functighahd
illustrating the action of the hardening law related to Example 2.1.

Proposition 2.1. If o : R x R x R — RU{oo} is defined by2.13)-

Sym Sym

(2.16)then its dual functionap* : RY? x R x REX? — R U {oc} is, for
(p.a, B) € REI x R x R, given by

oylp| iftrp=0Ap=-B~'p
(221) ¢ (p,a,p) = ANA"Ya+ oy Hlp| <0,

00 if not.

Proof. According to (2.17), (2.15) and (2.16),

(2.22) o*(p,a,B):= sup {p:o+aAla+p3:B b},
P(0,a,b)<0

where the supremum is taken over @il a,b) € REX! x R x REX satis-
fying (o, a,b) < 0. First, we conside(o, a,b) = (- 14x4,0,0) and get
©*(p,a, B) > r-trpforallr € R. Thus, eithetr p = 0oro*(p, a, B) = 0.
Secondly, we considér, a, b) = (r- E;j,0,r- E;;) whereE;; := syme; ®
e; is the symmetric part of a matrix that has one non-vanishing ératyhe
position(i, j),i,j = 1,...,d. Then*(p,a, ) > r - (p;; + B~'b;;) and
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we infer thaty*(p, o, ) = oo or p = —B~13. Thirdly, we may assume
trp = 0 and considefo, a,b) = (oy (1 + rH)signp,r,0) wherer > 0
andsign p = p/|p|if p # 0 andsign 0 := 0. A minor calculation shows that
(0,a,b) is admissible and that*(p, o, 3) > oy |p| + (A~ a + oy H|p|).
Thus,p*(p, a, B) = oo or oy H|p| + A~'a < 0 because > 0 may be
arbitrary large. Moreover, letting = 0 we seep*(p, o, ) > oy|p|-

Finally, we assumey H|p| + A~'a < 0,3 = —Bp, trp = 0 and
&(o,a,b) <0,a > 0. According to Cauchy’s inequality and orthogonality
of deviatoric and unit matrices yield

p:o+aAla+3: B b= p(devo — devbd) + aA ta
<oy(1+ Ha)|p| + aA™a
(2.23) < oylpl +a(oy Hlp| + A~ a) < ovpl,

whencey*(p,a, 5) < oy|p|. Thus, under the present assumptions on
(p, o, B), oy |p| = ¢*(p, @, B) (and otherwise* (p, a, §) = o0). O

Proposition 2.2. If (o,x) € 9¢*(p,&) andx = (a,b), & = (a,p) €
R x R¥4 such thatp # 0, then, withk := Aoy H, we have

Sym

dev(o —b) B L

Proof. Note thattrp = 0, p = —B~13, a+ k- |p| < 0. For anyg € RZx¢
with ¢r ¢ = 0 we considep := p + ¢, & == —k|p +q|, 3 :== —B(p + q),
and¢ := (&, ), such thatp*(p, &) = oy|p + ¢|. Thus, according to the

definition of the subgradient, we have
(225) o:q+a-A"Ha—a)+b: BB~ P) <oy(p+al - Ipl).

The estimate on and the equalities fok, 3, 3 lead in (2.25) to

dev(oc — b
( )):q§|p+q|—lp!-

2.2 —_—
(2.26) oy(l+ Ha

This is the definition for
_ dev(oc —b)

(2.27) T = m

€ 0| dev-|(p) = signdev p,

wheresignp := {p/|p|} if p # 0, andsign 0 = {q € RY||q| < 1}. We
remark that the last identity is known in convex analysis and so we give a
proof only for convenient reading. Lettimg= 7 in (2.26) (noticer = = 0),

we infer with the triangle inequality

(2.28) 171> < |r +p| = Ipl < |7,
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whence|r| < 1. Lettingg = —p in (2.26) (noticetr p = 0), we infer after
a multiplication with—1 that

(2.29) ipl <7m:p<|r|-Ip| < |pl

because of Cauchy’s inequality ajpd < 1. So we have equality in Cauchy’s
inequality, and this showsgn p C sign 7 and concludes the proof of (2.27).
We add thap # 0 impliesa = —k|p|, because equality in (2.29) is possible
only if we have equality in (2.25), which is a strict inequalityvf< —k|p|.

O

3. Spatially discrete problem

In this section, we analyse the discrete finite element method based on
piecewise linear resp. constant ansatz functions on a regular triangulation
T. Also, we specify notation of the model in Example 2.1.

Definition 3.1 (Triangulation). The triangulatiori/” of the polyhedral do-
maing? is assumed to be regular in the sense of [6] and satisfies the minimum
angle condition such that there is a constant- 0 with

(3.1) et 3 <|T) < e - b3 (T €T),

where|T| is the area andy is the diameter of". (The triangulatior is
assumed to match? exactly and a change of boundary conditions is only
allowed in nodes.)

We defineS?(7T) ¢ L?(f2) as the piecewise constant asd(7) c
HY(02) or S5(T) c HL(£2) as continuous and piecewise affine functions;
piecewise is understood with respectfioDefine

X := H)(2) and

B2 Y:i={(p,§) € (KR xR™) :trp=0Ap=p'},

Sx = SH(T) and
(3.3) Sy :={(p,&) € XM ™™ :trp=0Ap=0p"},
34 S:=SxxSyCcXxY=Z
Remark 3.1.The restrictiong = p' andtrp = 0 are easily implemented
by identifying the symmetrig x 2-matrixp(z) with the4 entries-(z), s(x),
s(z), and—r(z) with scalar functions:, s for d = 2 (and corresponding

formulae ford = 3). Since there are no other restrictions involved, the
implementation of conform higher order methods is quite simple.

The material parametefs B, C, H, andoy may vary in the domair?
and so the integrals have to be approximated by quadrature or interpolation
by T-piecewise constant functiodsy, B, Cr, Hr, oy .
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Definition 3.2 (Data Approximation). Given bounded and measurable
functionsA, B, C, H, oy in {2, we define their piecewise constant ap-
proximantsA+, By, C+, Hr, oy in §2, with respect to the triangulation
T, such that, e.g.,
(3.5) ADlreR  (TeT)
(and corresponding formulae for the remaining quantities). The above men-
tioned properties are preserved sucthas By, Cr, Hy are symmetric
and positive definite a4, B, C, H are antby+ > 0 asoy > 0.

The mean operatod is defined with respect t@ by

3.6) (Mf)lr ::/dex/mea$T) (f € L2(Q),T € T)

such thatM f is constant on each elemehtwith volume mea&l’) and
equals its integral mean there. (We applyyto each component if the argu-
ment is a vector or matrix.) Finally, 1€, g7) € S%(T)¢ x {w|r, : w €
S%(T)?} be constant on eadhi € 7.

The spatially discrete problem is simply the original problem when we
replace all the material parameters and functions of the right-hand side and
in initial values by their discrete counterparts.

Definition 3.3 (Discrete FEM).Foru € X = H} (1), (p,§) € Y =
L2(Q;Rd><d % Rm),

sym
or(0p.€) =5 [ (p=cw) : Orlp = cfu) da
1
(3.7) +2/Q§:H7§dx
—/QfTudw—/FNgTuds,
@8 = [ o
wherey’-(p, a, 3) := oyrlp| if simultaneouslytrp = 0, p = —B'8,

and,A}la + oyTHrlp| < 0, while ¢*(p, o, ) := oo if not. Then, the
fully-discrete finite element scheme consists of minimispg+ 17 on S.

Remarks 3.21. The approximationg+ and« 7 inherit the convexity pro-
perties ofp andv and so there exists exactly one solution to the discrete
problem.

2. Since possibly*(ps, as, Bs) = oo or ¢i-(p, o, ) = oo for the exact

and discrete solutiofp, o, 3) and(ps, as, Os), respectively, we encounter
what sometimes is called a variational crime.

3. We establish the convention that all known discrete quantities get an index
T while the discrete unknowns are labelled$y
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4. A priori error analysis

Adopting notation for the primal problem, let= (z,y) € Z andzs =
(zs,ys) € S C Z be the minimisers of + ¢ in Z and¢7 + 7 in S,
respectively.

Owing to the data approximation, further notation is provided to formu-
late a priori error estimates.

Definition 4.1 (Data-Errors). Let M be the mean operator, et denote
identity, and sek := AHoy andky := ArHyoy 7. Then,

01 := max{|| ((id —M)(k,B,C,H),C+ — MC,

(4.1) H7 — MH) || (), || (id =M)oy [|12(2) }
o9 := max{|| (k7 — Mk, By — MB) ||~ (o)
(42) HO’Y’T—MO’Y HLQ(Q)}

The proof of the a priori error estimate will be provided in Sect. 6.

Theorem 4.1. There exists a hardening-independent constant- 0 such
that

Crlll (o —o0s,& = &s) ||%2(_Q)

<07 +62(1+ | ps z2(02))
i =M (16l 2. ) [y + inf {lle(w=V) e

@3) -+ [ (F = Fr)us - V)do+ /

(9—97)(us =V) dS},
In

where the stresses ave:= C(e(u) — p) andos := C(e(us) — ps).

Proofs of the following discussion of the right-hand side in the theorem
will be given implicitly in Sect. 6.

Remarks 4.11. In general, the consta6y depends o2, I'p, || (C, c,
H,H™") || (0) and||(p€ &s.05) | 2 () -

2. The convergence estimate (4.3) implies thdls, os) || £2(¢) is bounded.
The boundedness dfp, ps)| z2(q) is implied by hardenlng (cf. Theorem
4.2 below).

3. If 2 = 0, the right-hand side is independent/gfs || .20

4. The dependence of the right-hand side{9p, ps) || .2((2) can be relaxed.
If we replaced| oy — Moy [[12(p) in the definition oféz by || oyr —
Moy || L= (a), then the right-hand side would depend|pk |11 () only.
The latter norm is bounded because the minimisation qubd;es

5. For piecewise constant data (with respectip we can arrange that
61 = 0 = d2. Then, the approximation errdr(id —M)(|p, p,§) | L2
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can be omitted on the right-hand side in (4.3).

6. To ensuré? + d, = O(h?) for h := maxper hr, by being the diameter

of T € T, an elementwise one-point evaluation on the points of inertia is
sufficient for piecewise smooth data.

7. Exact integration off resp.g leads to,(f — fr)(us — V)dz = 0
resp.fFN (9 — 97)(us — V)ds = 0. We refer to standard literature for
effects of inexact integration [3, 6] and mention that elementwise one-point
Gauss-quadrature is sufficient in case thag || ;1 () is bounded (which

is guaranteed by hardening, cf. Theorem 4.2 below).

8.1f 61 = 0 = §2 and f, g are exactly integrated, the theorem specifies to
(4.4) Cr'llo —oslza) < if le(w=V) Iz
and we stress that therense contribution of the best-approximation error

of the other variable. This clearly indicates that a finer mesh for the ap-
proximation of the plastic strain variabtds pointless.

9. The estimate (4.3) holds also in case of perfect plasticity (wiete 0

and¢, H, etc. are omitted).

10. At first glance, ifu € H?(2) and if the data are piecewise smooth,
the theorem leads to the optimal linear convergence for approximants of the
stress field and the internal variables.

11. At second glance, the estimate (4.4) and so (4.3) is poor in perfect plas-
ticity, because we cannot expect thais very smooth. There is evidence
thato is much smoother tham[18,19] and so (4.3) cannot be regarded as

a quasi-optimal convergence estimate.

The hardening law allows further estimates. In case that the modulus of
kinematic hardeningB is absent or too small (i.8, B™! ||z~ (£2) is too
large) we need further restrictions on the energetic coupling of kinematic
and isotropic hardening. Usually, this coupling is omitted. Here, we allow a
sufficiently small interaction. Witli1,0) € R x R4 = R™, define

sym —

— oag : ) -1 T
(4.5) Y= efesrglfﬁg(l,()) H(1,k™ (x)B(z)q) ",

(4.6) yr = essinf min(1,0) - Hy(1, k7' (z) Br(z)q) ",
e |q<1

where the argument in the minimum is amongstadi ngxn‘f in the closed
unit ball.

Remark 4.2.Notice thaty,~r > 0 if there isno energetic coupling of

the hardening parameters (i.&4,, H are block-diagonal). The physical
justification and interpretation of off-diagonal entries i is unclear to

the author. In the literature, it is usually assumed to be very small or even
negligible.
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Theorem 4.2. Suppose eitheff (B}l,B‘l) lreo() < oo or k k7,7,
~7 > 0. Then, there exists a hardening-dependent congtant- 0 such
that

Cy 'l (p = ps, e(u — us)) |72

4.7) <|l(0 = 05,6 — &) 320 + 01 + 05.
Proof. Sinces —os = C(e(u—us) — (p—ps)), itis sufficient to estimate
one of the summands, i.e., we will prove thjat— ps ||3 is bounded by the
right-hand side in (4.7).

In the first case, suppose that kinematic hardening is present, i.e.
| B~ ||l and|| B! ||« are bounded from above, so tfjaB B e
and||§71 - B}l |0, Where B := M B, are bounded by - (61 + &2).
Then, we infer fronp = —B~!3 andps = —B7'3s that

lp—pslla< | (B'=B HBlla+ (B ' =B8]
(4.8) +| BF (B — Bs) ||z
< (01 +82)] B2+ 11§ — s ).

Inthe second case, suppose that isotropic hardening is presefit, j/e ||
and|| 1/k7 ||~ are bounded from above and~y; are positive. As in (4.8),
we obtain from Proposition 2.2 that

[l = Ipslll2 = [la/k — as/kr |2
(4.9) <c(@+o)lals+1€—¢sl)-

Almost everywhere inf2, we have

(4.10) b — psl® = (Ip| — lps|)? + 2(pllps| — p : ps).

The first term on the right-hand side can be bounded by (4.9). Moreover,
writing 65 := C1+C~'os, we infer from Proposition 2.2 thatlev o| =
oy(1+ Ha) and|dev és| = oy7(1 + Hras), where(a, b) :== —HE and
(as,bs) == —H7¢s. If the second ternip(z)||ps(x)| — p(x) : ps(z) on
the right-hand side in (4.10) is nonzero it equals (by Proposition 2.2)
aagkflk}la;la;#
(1+ Ha)(1+4 Hras)

(4.11)(\ dev(o — b)||dev(Gs — bs)| — dev(o — b) : dev(5s — bg)),

where we neglected the argumente (2. We have to analyse the term
as/(1 + Hrag) and may utilise thaty > 0. By ps # 0, we haveas =
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—k7|ps| and s = —Byps and thus, writingg := ps/|ps| and Hy =
(Hij : i,j = 1,2) for Hi; >0 andng € Rlx(m*l),

las| = [Hiias + Hiafs| = (Hiy + k7' HipBrg)|as|
(4.12) > yrlasl.

Using this and its analog:| > ~v|«|, the factor in (4.11) is seen to be
bounded from above by a universal constant. Therefore, we conclude almost
everywhere in2 that

lp—psl”> < (Ip| — Ipsl)?

@ 13%2\ dev(o —b)||dev(Gs — bs)| — dev(c — b) : dev(s — bs)
| kkroyoyrHHryyT .

Arguing as in (4.10), we achieve
|dev(o — b)||dev(cs — bs)| — dev(o — b) : dev(Gs — bs)
_ %|dev(o G+ bs — b)[?
—5({dev(o =) ~ | dev(zs —bs)])?
(414) < 1[dev(o — b5 +bs —b)P < lo— s +[b—bsP’
which, together with (4.9) and (4.13) leads to

cHp—psl3 <ot +65+]€—Es3
(4.15) +o—6sl3+ 16— bs|f3-

Here, the constant depends on the constant in (4.9) and |pfkkroy

x oy7HH7yy7) ™! ||0o. It remains to bound| o — &5 ||2 and|| b — bs ||2.
According to

| (0 —05,0—bs)ll2 < | (0 —0s, H(E —&s)) I|2
(4.16) + (1 = CrC Nos, (H — Hr)s) ||2

we consider terms like

(™ —Ccos|3<||C™HC - Cr)CH | X los |13
(4.17) <slcZIcH |1Xlos3

to establish a bound of (4.16) and conclude the proof. O
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5. A posteriori error estimates

For eacHI” € T, let hy denote its diameter and let
(5.1) n%:h%p/ |f+diV03|2dx+/ helJ(os - ng)|? ds
T oT

whereJ(os-ng)isthe jump of the discrete stress field along an elgéth
normaln i and sizéh g with the usual modificatiod (os-ng) :== os-ng—g
if £ C Ix.

The proof of the a posteriori error estimate will be provided in Sect. 6.

Theorem 5.1. Under the assumptions of Theorem 4.2, there exists a har-
dening-dependent constafi > 0 such that

C?:lH (p _p876(u - US)’O- - 0-576 - 58) ||%2(_Q)

<D np 467+ S+ || (id=M)(|pl, p, ) 17200
TeT

5.2 max — — 200)-
62+ o ([ (= grVdat [ (g gnV a1V e,
Remarks 5.11. The estimatony is the same as in pure elasticity (utilising
the stress field from a discrete elasto-plastic problem).
2. In perfect plasticity, Theorem 5.1 is expected to be false. A closer inspec-
tion then shows that it is required to follow the arguments in [16] and to
derive weaker estimates.
3. The discussion of the right-hand side is analogous to the comments in Re-
mark 4.1. In particular, i6; = 0 = dz, the term|| (id —M) (|, , &) | L2(2)
can be neglected.
4. In case of exact integration ¢fandg, the maximum in the upper bound
is zero. Otherwise, the maximum can be computed. Standard arguments
(involving Poincaé’s inequality) show that elementwise one-point Gauss-
quadrature is sufficient for this term to be of orde(h?) (providedf and
g are piecewise smooth).

As in the case of pure elasticity, the a posteriori error estimate is efficient
[22] in a local sense.

Theorem 5.2. There exists a hardening-independent constant- 0 such
that, forallT € T,

Cy'ng <lo = o5 1720
(5.3) +diam(wr) (| f = MF 200y + 19 =172 0pnr) »

wherewr is the set of all neighbouring triangles which share one edge with
T andj is the piecewise best-approximationgah L?(I'y).
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Proof. Since the estimatayr involves stress terms only, the proof can follow
arguments in [22] which are independent of the material laws. To illustrate
this we prove the first halve of (5.3). Givan e T, letb := A1 A3 with

the barycentric coordinates onT'. Direct calculations verifyp < 1/27,

(5.4) h3 < Cz/ bdz, and [ Vb2 < cs,
T

where the positive constants andcs depend ore; (from (3.1)) but do not
depend orhiy. Then, forf|r = div(os — o)|r and f; := (M f)|r € R,
we have

02_1|‘Mf||%2(T) < fT/bewa

(5.5) ~ fr /T bf di+ fr /T b(fr — ) dr.

Since the bubble functiolvanishes o®T, integration by parts leads to

68 [ rdo= [ (o =os)w e < allo—os

Incorporating (5.6) in (5.5), we finally obtain

_ —-1/2, —
M fr ey < eser Phitl o = as |2y

(5.7) +l fr = fllz2(r)/27.
From this we can estimate the volume contributiomto that is (for some
Ccy > 0)

h%/2/T|f12d:cgh%/T|fT2d:c+h%/T|ffT|2dsc

(5.8) <clllo = os |3z + b3l fr = £ 2r)-

The estimation of the edge contributions is similar and replalogs product
of two barycentric coordinates on two neighbouring elements. We refer to
[22] for detalls. 0

6. Proof of Theorem 4.1 and 5.1

First, we argue with (1.2) for both the continuous and the discrete problem.
Forallz = (z,9) € Zand allzs = (Zs,9s) € S, this yields

(6.1) Dé(z; 2 — z5) — Dop(zs;2 — zs)

(6.2) < D¢(z2s5258 — zs) — Dor(zs; zs — Zs)
(6.3) + Do(zs; Zs — ) + 7 (Us) — ¥ (v)
(6.4) + Do(2; 2 — z5) + ¥(U) — ¥r(ys).
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The remaining part of the proof consists of a careful estimation of the terms
in (6.1)—(6.4) where we let = & € X andis = us € Sx and fix
g = (p,§) and¢ = (&, B) etc. as

(65) gS = (}537&§>BS) = (Mp7 min{/\/la, _kT|Mp|}7 _BTMp)a
(6.6) 7:=(p & pB):= (ps,as+ (k7 — k)|ps|, —Bps)-

Secondly, one shows(y) = [, oy |ps|dz andyr(ys) = [,ovT
- [Mp| dz. As in the following, we abbreviaté := Aoy H andkr :=

AroyTHr > 0and,e := e(u) — p andes := e(us) — ps, YV := (e,§) as
Vs = (es, &s) etc. andy is the block diagonal tensor with diagonal entries
C and H with corresponding modifications fgr = MG andGr.

In step three, we consider (6.2) and calculate

D¢(zs; 25 — zs) — Dor(285 28 — 2s)
67) = /Q (Vs = s) : (@ = Gr)Vs de — r(us — is)
wherelr(w) == [(f — friwdz + [, (9 — g7)wds. Writing || - ||, for

the norm in (any product of)?(f2), we infer from Cauchy’s inequality and
with the definition ofd; that

Do(zs;25 = 2s) = Dor(283 25 = 23)
(6.8) < 01| Vs — Vs |2l Vs ll2 — b1 (us — ts).

In step four, Jensen’s inequalityVtp| < M|p|, M(id —M) = 0, and
Y7 (¥s) < oo yield

br(is) — () = /Q (oyTIMp| — ovlp|) dx
< /Q(UYT_MUY)|MP| dx

-l-/ (UY — /\/loy)(./\/l — id)’p| dx
2
(6.9) < 61l (id =M)|pl [|2 + b2 p [|2-

In step five, we provide estimates fog — Ma. On each elemefit € T,
as — Ma is constant, non-positive, and either vanishes or satisfies

0>as — Ma=-Ma— kr|Mp|
(6.10) > —Ma — k7| Mp| + o + Elp|,

because)(p, ) < co. Taking averages in (6.10), we deduce

(6.11) as — Ma > —kr|Mp| + M(k|pl).
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According to Jensen’s inequality again, this yields
(6.12) 0> as— Ma > (k—kr)Mp|+ M((k — k)(id =M)|p]),

where we over-line averages, suchkas= Mk and belowB := MB.
Thus, in all cases we conclude

(6.13) I s — Marlla < b1 (id =M)|p[ |2 + b2 p [|2-

In step six, we provide estimates f6g — M. The definition of and
the side restriction o and the fact that ((B — B)Mp) = 0 yield

Bs — MB = M((B - B)(id-=M)p) + (B — Br)Mp, whence
(6.14) || Bs — M|z < 61| (id —M)p |2 + 52| p |12.

In step seven, we consider the stress field= C/(e(u) — p) (resp.
os := C(e(us) — ps)) which is in equilibrium with applied forces and so

D(zs; 25 — 2) = /(03—0): (ﬂg—u)dx—k/gasz(p—ﬁg)daz
(6.15) / (s H(Es —

The first integral on the right-hand side of (6.15) will be estimated by
Cauchy’s inequality. According to the definition 8§, the second integral
on the right-hand side of (6.15) equals

(6.16) /Qag : (p—ps)de = /QJS : (id=M)pdx = 0.

The third integral on the right-hand side of (6.15) can be estimated according
to (6.13) and (6.14) and we obtain

/fs és—9)

/Es (€s — ME)da
- [ (a2 HEs) - (1 -M)g do

< || Hes |12 (8111 (d =M) (b, [p]) 12 + 621l (b, 1) I12)
(6.17)  +01l|&s Ilall (id =M€ |2
In step eight, we find with (6.6) that

(6.18) ¥(7) — ¢r(ys) = /Q(MUY —oyT)|ps| dz < b2 ps ||2-
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In step nine, we note that the stress fields in equilibrium with the
applied forces and th@t= ps. Hence, arguing as in step seven,

D¢(Z;5—Zs)=/Q€-H(§—£s)dw
/ (HE — M(HE)) - (5,’;‘_’3255;) dz

kr = k)|ps|
/MH§ < _B)p5> dz
(6.19) < {6l (id =M HE |1 + 6ol HE |12} 1| 0. Ips)) >

Furthermore, we havg (id —M)H¢ ||2 < 61| € |l2 + || H ||oo]| (id = M)
x & |2

So far, we estimated all the terms in (6.2)—(6.4). In the final step ten, we
put all those estimates together and, since

Do(2;2 — 25) — Do(2s52 — zs)

(6.20) = [[(C™ (0 — 05), H*(£ = &) |13,
we obtain a constant > 0 such that

cs|| (CTV2 (0 — 0s), H?(§ = &5)) |13

<01([| Vs = Vs ll2 + || (id =M)(p, p],€) l2) (1 + 1| Vs [|2)

+62| (1, p, ps, &, &s) |15 + us — i)
(621)  +[|C7V2(0 —0s) |2l CPe(u — s) [|2-
According to the above estimates 9 — MY and|| Vs — MY |2 <
| Vs = Vo = (C (o —05),& = &) |l2,
[ Vs —Vslla <MY —Vslla+ | Vs — MY |2
< le(u —ts) |l2 + 91| (id =M)(p, [p]) |2

(6.22) +302 (0, 1)) ll2 + | (C (0 — 05),& = &5) [lo-

By incorporating (6.22) in (6.21) and by absorbing the facldis— os, { —
¢s) ||2 on the right-hand side, we verify (4.3).
The proof of Theorem 4.1 is finished and itremains to prove Theorem 5.1.
In step eleven, we focus on (6.15) and, now, do not use equilibrium of
with the applied forces. Hence,

D¢(zs;2s — 2) = /QO‘S ce(us —u)dr — /Qf(ﬂg —u)dx
(6.23) —/F g(tis —u)ds

(6.24) +/U$ (p —ps dx+/§3 (s — &) dx
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The terms in (6.24) are treated as in step seven, so we concentrate on the
first term on the right-hand side in (6.23). The treatment of this term follows
established techniques for pure elasticity, so we give only a sketch. Let
I7(u — us) be the Clement interpolant to— us [6,7,3,22] and letis :=

I(u — us) + us such that we obtain a constaft which depends on;

only,

(6.25) bt lu—iis |72y < c6 - | V(w—us) |2,

TeT

6.26) > hp'lu—is|Fam < o6 | Viu—us) |,
Ee&

(6.27) | VIr(u—wus)ll2 <c6- || V(u—us) |2

Here, & denotes the set of all edgesTn By elementwise integration by
parts, we obtain from the strong form (2.1)—(2.2) that

/Qag:6(115—u)dw—/ﬂf(z]g—u)d:v—/FNg(ﬂs—u)ds

— [ J(os - nw)(is —u)ds — / (f + div os) (iis — ) dz
€ uT

< ST InfPI(os - nE) 2wl g (@s — u) |l 2
FEe&

+ Z | hr(f +divos) |2l h51(ﬁ8 —u) |2
TeT

< ol V(= us) I2( D I hr(f +dives) B
TeT

1/2
+ 32T (0s 1) g
Ec&

(6.28) co| V(u —us) [|l2(D_ ng)'/%.
TET
In step twelve, we incorporate the results of Theorem 4.1 and 4.2 and

(asin (6.21)) obtain, with some > 0,

crll (p = ps, e(u — us), 0 — 05,6 = &5) |13

<0 ([ Vs = Vs ll2 + [ (id =M)(p, [pl, €) l2) (1 + [ Vs 12)

+02]| (1,9, s, €, &) |13 + £(I7 (u — us))
(6.29) 4] V(u—us)l2- (D )/
TeT

Notice that{(I7(u — us)) is bounded by the maximum in (5.2) times
| VI7(u— us) ||2. Owing to Korn’s inequality and (6.27), the latter term is

Numerische Mathematik Electronic Edition
page 595 of Numer. Math. (1999) 82: 577-597



596

C. Carstensen

bounded by:;|| e(u — us) ||2 @and can be absorbed in (6.29). Then, the proof
is concluded with the above arguments.
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