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Abstract

The coupling of nonconforming finite element and boundary element methodswas establishedin Part |
of thispaper, where quasi-optimal apriori error estimatesare provided. |n the second part, we establish
sharp a posteriori error estimates and so justify adaptive mesh-refining algorithms for the efficient
numerical treatment of transmission problems with the Laplacian in unbounded domains.
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1. Introduction

A model transmission problem was rewritten in terms of boundary integral op-
erators in the first part [8], subsequently refered to as Part |. In addition to the
conditions stated there, we assume that the domain © < R? is simply con-
nected and suppose that the prescribed jumps are slightly more regular, name-
ly, uo € HY(I') and 19 € L?T). The continuous problem can be recast as
follows: Find (u, &, ¢) € HYQ) x HY?(I") x H~Y2(I") /R satisfying, for all
(v,0,y) € HY(Q) x HY2T") x H-Y2(I")/R,

(A(DM), DU) - <¢a U) = (fv U) + (IO» U),
=2(u, ) — Vo, ¥) + (K+ DE, ) = —2uo, ¥), (1.1)
(K* + 1o, 0) + (WE,0) =0.

Werecall from Part | that (-, -) isthe scalar product in L2(2), and (-, -) denotes the
L2(I")-duality. The boundary integral operators involve the single layer potential
V, the double layer potentia «, its dual K*, and the hypersingular operator W as
defined in Section 2 of Part |. The capacity of I is assumed smaller than one, e.g.,
if Q isscaed to belong to the unit ball.
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Thediscretisationreliesonaregular triangulation 7 of thedomain €2 and aninduced
decomposition G of the polygona boundary T" with G-piecewise constant resp.
continuous and G-piecewise affine spline functions S°(G) resp. S1(G). Thelowest
order nonconforming Crouzeix—Raviart finite element space SV¢(7) consists of
T -piecewise affine functions that are continuous at the midpoints M of edges €.
The 7-piecewise application of differential operators is denoted by a subscript 7,
eg., Dy isgivenby (D7 f)lr = D(flr)onT € Tand f € HYT) = {g €
L%(Q) : VT € T, flr € HXT)}. Then the discrete problem can be written asin
Remark 4in Part I: Find (U, 2, ®) € SNC(T) x §1(G)/R x §°(G) satisfying, for
al (v, 0, W) e SNC(T) x SYG)/R x 5°(Q),

3(A(D7U), D7V) — (®, V) = (f,v) + {to, V),
—2(U, W) — (V®, W) + (K + DE, W) = —2(uo, ¥), (1.2)
(K* + 1)@, ©) + (WE, ®) = 0.

In Part |, we showed equivalence of amodel interface problem with (1.1), unique
existence of solutions aswell the sharp apriori error estimate

| D7 = U) 2@ = € (Ih7 D%l 2y + Il 7 GVADW) l 20

+ diaH—l/Z(F) (Suh" — 10; So(g)))

It isthe aim of Part Il to establish some local error indicator n(T), T € 7T, such
that we have the reliable error estimate

I Dru = U) 72, < C Y n(T)2. (13
TeT

Moreover, for uniform meshes at the boundary, we have generically the reverse
inequality which verifies efficiency of the a posteriori error bound. Therefore, we
may base heuristic mesh-refining algorithms on (1.3) and so design an adaptive
scheme which has proved to be efficient in numerical examples reported bel ow.

The rest of Part Il is organised as follows. In Section 2 we specify notation
and further assumptions on the above problems (following essentialy [8]). The
a posteriori error estimate is stated and proved in Section 3 while its efficiency
is analysed in Section 4. The corresponding adaptive mesh-refining algorithm
and implementation is outlined in Section 5. Numerical examples illustrate the
efficiency of the adaptive coupling schemein Section 6.

2. A Posteriori Error Estimate

Let (u, &, ¢) solve (1.1) and defineand o := A(Du). Givenasolution (U, E, ®)
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to (1.2), define = := A(D7U) and set J,,, J; € L?(UE), oneach edge E € &,

Jn|E — { (ET — ET/) ‘NE If E ¢ F, (21)

Y ng—®—-1 IfECT,
(DrU|r — DrUl|p)-tg HEZT,
Jr|E = 2D7U|7‘ *TE —8/8s(2u0 (2.2)
+K+DE-VP) IfECT.
Here, ng denotes the normal and tz the tangentia unit vector along the edge E.
In the first cases of (2.1) resp. (2.), T and T’ denote two neighbouring elements
that share the edge E. The loca mesh-sizes hr € L®°(Q) and he € L (UE)
are piecewise constant functionswith (h7)|r := diam(T), T € 7, and (he)|g =
diam(E), E € €.

Theorem 1. There exists a positive constant C which depends only on ¢y and the
simply connected domain €2, such that there holds

I Du — DrU 7o) + 16 = @15 10 + 16 = B 15100y R
<C {Z h’ / |f +divrEPdx+ Y he(ldn 172 + 11 9 1225))
T

TeT Ee&

+ 3 hel WE + (K* + D ||§2(E)}. (2.3)
Eecg

Proof: Lete :=u—U,e:=¢ —® € HY3I),and s := & — E € HYA(I).
AsinPart | [8], we define
po := —2¢ — Ve + (K + 18 L $°G), (2.4)
o1 = (K* + e +Ws L SY(G)/R, (2.5)
where L denotes orthogonality in L?(I"). (See[8] for details, in particular for the

fact that the continuous version of (1.1) is solved by (u, &, ¢, 0), and so we have
L?-orthogonality of the residuals pp and pz to the test functions.)

We adopt arguments from [2, 3, 5, 10, 13, 14] and consider a Helmholtz decom-
positions of both Dre and o — X. Notice that

0 1
8(;)@ loglz — ¢lds; + Z/FG(;) loglz — ¢lds; (z € )
(2.6)

g(z) = Ton -

defines afunction g € H1(2) with trace

glr = %{(/H 18 — Ve} = po/2+e € HYA(I) 27)
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which, owing to the mapping properties of the single and double layer potential
operators, satisfies

gl g2y < cilll€l g-12ry + 1181l gr2r))- (2.8)
Leta € H1(2) be the unique solution to the Dirichlet problem
Aa =divDre and alr =g|r. (2.9
Then, there exists some b € H1(Q2)/R with
Dre = Da + Curl b (2.10)

such that, for al n € HX (),
/ Curl b- Dndx = 0. (2.11)
Q

Similarly, wefind some«, 8 € HY(Q) witha = 0 on T such that
o — X = Da + Curl 8. (2.12)

Since a, b, «, and B are solutions of Dirichlet or Neumann problems, we find a
constant ¢ which depends only on € such that

I Dallp2iq) + Dbl 2(q) + I Dallp2iq) + DBl L2
< c2(llgll grzry + lIDrell L2y + llo — Ellp2(q))
< ca(c1ll€ll g-vz(ry + calldll grzry + (L+ Ca)lIDrell L2(q),  (213)

where we used (2.8), |Curl - | = |D - |, and the Lipschitz continuity of .4 with
Lipschitz constant C 4. According to the uniform monotonicity of .4, we consider

calDrell?,q, < (6 =, Dre) = (o — B, Da)+(Da+Curl g, Curl b) (2.14)

by (2.10) and (2.11). It iswell—established that one can construct an approximant
A = Za € ST with the following properties

la —Zallp2iry < Chrll Da llp2(aery)s (2.15)
1/2
la —Za 2y < ChEZ N Dall 20 5y (2.16)

foral T € T, E € £ (see, eg., [5, 12]). Here, N(T) (resp. NV (E)) isthe union of
T and at most |27 /cg | other elements which share acommon node with 7' (resp.
the union of at most two elementswhich share £ asacommon side). The constant
C > 0in (2.15)—«2.16) depends only on cg. For the proofs we refer to [12] and
notice that (2.15)—2.16) are improved in [5, 11].
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Then, given A, we calculate with the exact and discrete equation

(0 —2,Da)=(c —XZ,D(a— A))+ (o, DA) — (X, DA)
= (0 — X, D(a — A)) — (dive, A) + (on, A) — (® + 19, A) — (f, A)
=(@0—-X,Da—A)+{on— D +1g, A)

with an integration by parts. Since on = dv/dn + tg = ¢ + to and by an
elementwise integration by parts we abtain (recall that the skeleton UE \ T =
(V&) \ T isthe union of al inner edges)

(0 — X, Da) = (—dive +divrX,a — A) —/ Jo(a — A)ds
UE\T
+{on—Xn,a — A) + (¢, A)
=(f +divrX,a— A) —/ Jo(a — A)ds
Ue\r
—<En—¢—t0,a—A>+<€,a>

=(f +divrX,a— A) —/ Ju(a — A)ds + (e,a). (2.18)

ue

By the approximation properties of A, we have (as, eg., in[15])

(f—l—divTZ,a—A)—/ Ju(a — A)ds
ue

1/2
<c3 { PR VERCIZI n%} IDall 2. (2.19)
TeT Eecg

Since @ = 0 on T, the second contribution to the right-hand side of (2.14) is
(Da + Curl 8, Curl b) = (Curl B8, Curl b) = (Curl 8, Dy (e — a)). (2.20)
Let B := I8 € SY(T) be the Clément interpolant of A (which satisfies (2.15)—

(2.16) as well). Then, 3B/ds € S°(G) and s0 (pg, dB/ds) = 0 and, using
fE\F[U]ds =O0fordl E € ¢,

/ [U]dB/dsds = 0= (pg, dB/ds). (2.21)
UE\T
Therefore, an elementwise integration by partsyields

/ Curl B- Dr(e —a)dx = [e —a]oB/dsds
Q ue
= (0B/ds,e —a) = (0B/ds, po/2) =0 (2.22)
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(whereweused a = g on T and (2.7)). Employing (2.22) in (2.20) performing an
elementwise integration by parts, we obtain

(Do + Curl 8, Curl b) = (Curl (8 — B), D1 (e — a))
=— (B— B)d(e —a)/dsds
ue

1/2 1/2
< ca (121009511l 2wy + I 2000/9511 o)) 1 DBl 2y, (2.23)

owing to the approximation properties of the Clément interpolation and a trace
estimate (cf., eg., [15]). Notethat pg = 2U — 2ug + V® — (K + 1)E. Let 2
denote the right-hand side of (2.3) and observe that (2.14), (2.18), (2.19), (2.23),
anda = g on T verify

callDrellp2iq) < csn (I1Dallp2iq) + 1DBllL2(q) + (€, 8)- (2.24)
A smdll calculation (which usesthat K and K* are adjoint) leadsto

2(e, g) = (e, (K + 1)8 — Ve) = ((K* + D)e, 8) — (e, Ve)
= (p1, 8) — (8, W8) — (e, Ve), (2.25)

and we deduce in (2.24) that, owing to the positive definiteness of vV and W,
ce{IDrellf 2, + 1815 +llel )
L2(Q) HY2(M/R H-Y2(I)

<nDall2iq) + IDBll2(0) + lloall g-120) 18]l o2y R (2:26)

Finally, absorb the term ||3]| ;1/2(r), g ON the right-hand side, recall from [4] (or
[2] inPart I) that

1/2 1/2 ~
loall 12y < erllig % pallay = erllhy “1C* + DO + WE}2ry. (227)
and employ (2.13) to conclude the proof. O

Remark 1. A more precise analysis of inequality (2.19) isgiven in [6] where c3
isestimated analytically and in [7] anumerical approach is shown to approximate
c3.

Remark 2. The volume contribution in (2.3) can be omitted. Indeed, for a modi-
fication A € SY(7) < SNC(T) of the Clément-interpolation to « it can be shown



Coupling of Nonconforming FEM and BEM |1 249

that, in addition to (2.19),

(f +divyE,a — A) —/ Jo(a — Ayds
ue

1/2
< cg {ZhZHf folZ2g,, + Zné} IDall;2(q)-

ZEN Eecg

Here, N denotes the set of all nodes, w, isthe union of elements T € 7 with the
vertex z and f,,, isthe integra mean of f on w, (see[5, 11]). Hence, in (2.3),

AT fllL2(q) can be replaced by ||h Df|l 2q) Which, genericaly, is of higher
order and so negligible.

3. Efficiency

Theorem 1 yields the a posteriori error estimate (1.3), where

n(T)? = h%/ |f +divrsPdx+ Y he(l a2

EcENECHT (31)
e 1255 + IWE + (K* + DP 125 )

Thisglobal reliable estimateis sharp in the sense that, up to higher order approxi-
mation errors, the reverse inequality istrue partly in alocal form.

Let A/(T) denote the union of all triangles that share one vertex with 7 € 7 and
let N'(E) denote the union of at most two trianglesthat share E € £ asan element
side.

Theorem 2. Suppose T € S}?(Q) and let fr denote the integral mean of f on
T € T. Let it € SY(T) approximate u in H1(2), while 7p resp. ¢ € S°(G)
approximates ro resp. ¢ in L2(I") and &€ € S1(G) approximates £ in H(I"). Then,
there are constants C,, C, > 0 (which depend only on ¢y) such that

Can(T)? < 10 = T T2y + 1AT(F = ) 1 F 20007y

1 1/2
+ ” h / ([0 [0) ”LZ(FﬂaT) + ” h / (¢ CI)) ”LZ(FﬂaT)

172 0 1/2

g o = ) oy + 107D = ) W,
1/2 1/2
+ ” h / W(S L4) ”LZ(I‘HBT) + ” h / (IC* - 1)(¢ - CD) ”iz(f‘ﬂaT)
1 2 1 2 -
+ | hy V@ ®) 12 amary + 127 . K—DE-8) 12y
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for each T € 7 and

1/2 ~
Chp Y (T < llo = B3z, + Ihr(f = )2 0q + I *(t0 — T0)12 2,
TeT

1/2 0 R 1/2 N
IR P =@ — D)l 2y + 172Dy — i) |2,
as L(S2)

0 -
+ hr,max/ hrmin (us = Bl + hrmadl - € — S)Iliz(r))

+ hr,max/ hr,min <||¢ - q)”?{fl/z(r) + hr,maxll¢ — ¢~’||iz(p)> .

Proof: Arguing asin [15, (1.23)] we estimate || fr || 2.y and obtain

3/NO I hr frilaqy < Vhr(f = fr) 2y +callo — Bl 2. (32)

(Theconstant cg > Oaswell ascio, . .. , c23 below depend only on ¢y [15, Lemma
1.3 and Eqgn. (1.23)].)

Supposethat E € £ with NV (E) := Th UT» istheunion of twotriangles Ty, T> € T
sharingthecommon side E. Definebg = drradr20nT;, j =1, 2andbr =0
on Q\N(E). Here, 1.1, AT,2, At 3 arethebarycentric coordinatesof T € 7 and
A1i 1 and A1;.2 are such that bg isnonzero dong E.

Let £ € £ beaninner face ie, E =T NT' forsomeT’ € 7, then using the
extension operator P : C(E) — C(NV(E)) from [15], we infer

1l g, = €10 /E b P () ds (33)
= 010/ {DbEP()E + beP(Jy)divs} dx.
N(E)

Because of the inverse estimate and integration by parts we have
DB PU) 2y < c1hg Ibe PUn) 2 e and

/ {D(bEP(In)o + be P(Jy)dive }dx = 0.
N(E)

Then, Cauchy’sinequality, [Ibg P (Ji)ll L2y < c12h3 I nll 2 and (3.3) lead
to

1/2
RNl 2y < c13{IlE = oll2gvey + hr (f = fOll2geey ) (34)
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Let E € G be an edge on the boundary, E c T, and consider
2 _ 2
hE/ JndS—hE/ |X -ng —® —1ol|°ds
E E

< ZhE/ IS ng — ® —ig|%ds + 2hE/ Ito — To|? ds,
E E (3.5)

where 7g istheintegral mean of 7 on E. Arguing inthe sameway for (c — X) - n
N -n—®—tn=¢—(c—%)-n¢€:=¢— P, weobtainfor E € g, (i.e,
EgF)andq::bEP(E-nE—CD—Eo)that

hE/ |z.nE—q>—Eo|2ds:clohE/q(z.ng—cb—fo)ds
E E
= c10hE </ q(E—o).nEds—{—/q(¢—®)ds+/q(to—fo)ds>
E E E
< c1ohs / (dvr (@ — £)g + (0 — 5) - Dg)dx
N(E)

+ c10hE <||6||L2(E> + llto — f~0||L2(E)> gl 2k -

_1/2 -
From llgll .2y = c12hg / I1Z-ng —®—toll 2 and
1 —-1/2 ~
I1Dgll 2w ey < c11hg gl L2y < cracr2hy 7 “I1Z -ng — @ —toll L2y »
it follows
i) ® — i < h divy S
g IE ng =@ —1oll2g) < cua| lhr (f — AV E)l 20y

1/2 1/2 ~
o — T2y + 10 el 2y + 10 (10 — to)lle(E)> .
(3.6)

With (3.2) and (3.5) thisyieldsfor E = T N T that

hE/ J2ds < 615<||h7'(f - fT)”iZ(N(T))
E

1/2 1/2 =
+llo =T 12200 + lhy €2 + g % (0 — to)lliz(E)> :
To prove the estimate

hEleN T2z < c16lDell? o g, (37)
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for E € & E € T, we argue as in [10, 14] and only illustrate the modified
technique in case E € G inthe sequel. Notethat J; = 9/9s(2U — 2up — (K +
DE+VP)=09/3s(—2e + (K + 1)§ — Ve) because, aswe mentioned in Part | [8],
2v|r = (K 4+ v — V¢ asaconsequence of thejump relations of the double layer
potential. Since iz isaffineon T,

Rl < 3hEll(K + D8 — Vell2

+ 12he|3/3s(U — )15, + 12hE |u

12
L2(E) ~ ey

where [v] 1) = [19v/ds]l L2 definesasemi-normon E C I'. Weestimatethe

term hg||0/0s(U — ﬁ)||i2(E) asinthe proof of (3.7) and caculate

hellCurl (U = &) -ngll?s

2
= éhE Curl (U —12) nE/ bg Curl (U —ﬁ) -ngds (39)
E

2 . R
- éh%/z ICurl (U — &) - ngll o) / div(bg Curl (U — ))dx|
T

thanksto Gauss' divergencetheoremon T € 7 with E C 9T . Because div Curl =
0, we conclude from (3.9) that
1/2 N N
W 219/0sU = )l 25y < 7l DU = D)l 27 (310)

< 017<||D€||L2(T> + D — ﬁ)||L2(T))-
Using (3.5)—(3.10) we obtain

c18n(T)? < b (f = Fo)lZ2iniryy + 19 = B3 2050ry)

+ > hE(ueuiz(E) + 1t = fol3 2y + = @l%1 ) + 1 D1 = D)l 2arry
EgEaeTgﬂF

K+ D)8 — Velf i, + W8 + (K* + 1)e||§2(E)>. (3.12)

(Notice equivaence of |jo — E”iZm and ||DTe||iz(T).) For the remaining part

of this proof, let |v] 1, denote the piecewise H*-semi-norm, i.e. |v|i{1(r) =
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9 2 H
Y Eeg ”%””LZ(E)' Summation over dl T € T leadsto

1/2
c19 Y (1) < llo = T2y, + Ihr(f = f) 220, + IhE %€l22r
TeT

1/2
&

~ 1/2 ~ 1/2 N
+ g (0 — )12 oy + 1 2 — ) ary + I1h7 2 Dy — ) 12

12K+ D8 = Ve) 2y ) + B2V + (K* + Do), (312)

The terms |h/> (K + D3| g1y, 1hg Vel iy, 1B WSl oy, and [Ihg 200 +
De)ll 2y can be estimated exactly as in the conforming case, see [2] in Part I,
and so we illustrate the arguments just for the first term. With At maxmin) =
max(min) gcgh g We have, according to the mapping properties,

1/2
&

I 2K + D813,1 1) < c20hr max 1812,

< coohrmax (1§ = €110y + 15 = Ell 1) .
3.13

for any approximation £ € S1(G) to £ = v|r. Then, thanks to well-established
inverse estimates (see, e.g., [4] or [18] in Part |), we have

hr maxl|E = E1 1) < c2hr.max/ b minl€ = N5z
< 2c21hrmax/ hr.min(1§ = El Gy + 18 = §1512).  (314)

By the interpolation estimate and taking, e.g., £ as anodal interpolant, we deduce

1E — &% 02 < co2hrmax 1§ — &% - (3.15)

Gathering (3.13)—3.15) together, we are left with

1/2
2K + 181211,

< cashr max/ e min (1§ = EllZ172.p0y + hrmaxllE — E15p)-
The remaining terms are estimated in the same way, so we neglect details. O

Remark 3.1. The estimate (3.11) shows that (T') is alocal estimator. Even for
T a theinterface I, the boundary contributions may be regarded as pseudo-local
(according to the pseudo-locality of pseudo-differential operators).

Remark 3.2. The right-hand side consists of errors and of approximation errors.
The latter terms are genericaly of higher order. This justifies the claim in the
introduction that the a posteriori error estimate is generically efficient in case of a
quasi-uniform mesh on the boundary.
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4. Adaptive Algorithm and I mplementation

Given alocal error indicator n(T) whichis (even locally) related to thelocal error
(in Theorem 2), we may follow the standard approach in residual based adaptive
mesh-refining algorithms and obtain the following scheme.

Algorithm 4.1.

(a) Sart with a coarse mesh 7.
(b) Solve the discrete problem for the actual mesh 7.
(c) Compute n(T) forall T € T.
(d) Compute stopping criterion and decide to terminate or goto (€).
(e) Refine the element T (red refinement) provided n(T) > % maxz e n(T").
(HRefine further elements (red-green-blue refinement) to avoid hanging nodes.
Define resulting mesh as actual mesh 7', and go to (b).

For details on the red-green-blue refinement algorithms, we refer to [15] and only
mention here that, thereby, the constant ¢y is uniformly bounded (with respect to
the sequence of different meshes).

The adaptive algorithm is implemented in Matlab and we conclude this section
with some remarks on the numerical Matlab-realisation before we present some
numerical examples on the practical performance in the subsequent section.

We refer to Part | for details on the implementation of the discrete scheme. The
calculation of theintegral sfor theresidualsin (3.1) over thefiniteelement T and the
boundary element Ty, is performed as follows. Since, in the following numerical
examples.Ain(1.1) ispiecewiseconstant, andsince U ispiecewiseaffine, thejumps
across the interior element boundariesin J,, and J; can be calculated exactly. The
L2-Norm of

AD7U)|r -ng — P — 1o

is approximated via a 3-point Gaussian-quadrature formula on each boundary €-
ement I'; aso the L2-Norm of

2DU|7 - tg — 3/ds (2uo+ (K + DE — V),
where for x; € I’y and g € C(I'x) the derivative 9/9s g(x;) is replaced by its

central difference operator [g(x;+1) — g(xi—1)]/|xi+1 — xi—1| with a distance of
nodes |x;+1 — x;—1| = |T'x|/20. Theterm

/ IWE + (K* + 1)®|? ds
Ty

is approximated also with a 3-point Gaussian quadrature rule. Since f = Ointhe
numerical examplestheterm [.. | f + divz A(D7U)|? dx vanishes.
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Remark 4.1. Theintegral operatorsin (1.1) have to be tested only with piecewise
polynomia functions. This can be done analytically and the code is fast and
accurate. Also the terms in the a posteriori estimate (2.3) (except the integrals
over the jJumps ug and #p) can be calculated analytically. Hence, compared with a
posteriori error estimates for conforming finite elements [9] or [4] in Part | terms
like Wug, K'tg have not to be calculated. Since the given jumps ug and 7o are
genera functions, these computations are in general difficult and cause a high
amount of computationa costs. Thus, for an adaptive approach in the case of
conforming finite-elements and inhomogeneous jump conditions the coupling as
introduced in this paper (see (1.1)) is preferable.

5. Numerical Examples

Two examples from Part | provide numerical evidence of the superiority of the
adaptive mesh-refining Algorithm (A) in comparison with quasi-uniform mesh-
refinement.

Table 1. Errors|eN|Hl(Q) and error estimates 7 in Example 5.1

N |5N|Hl(Q) NN |eN|Hl(Q)/nN
30 0.23819 1.86329 0.1278
7 0.23163 1.33962 0.1729
136 0.15752 0.86199 0.1827
195 0.11869 0.64563 0.1838
309 0.08863 0.49091 0.1805
472 0.06307 0.35315 0.1786
616 0.05308 0.29000 0.1830
985 0.04084 0.22146 0.1844
1417 0.03261 0.17459 0.1868
2210 0.02558 0.13760 0.1859
3397 0.02023 0.10864 0.1862
5077 0.01638 0.08756 0.1870
8288 0.01267 0.06783 0.1868

Example 5.1. Thelinear interface problem with .4 = id on the L-shaped domain
showninFig. 1 of Part | hastheexact solutionu (r, 9) = r%/3sin(2/39) inpolar and
Cartesian coordinates with a typical corner singularity. Hence, the convergence
rate of the h—version with auniform mesh does not |ead to the optimal convergence
rate even though the right-hand side is smooth.

The L?(2)-Norm D4 (u — U) iscalculated viathe 7-point quadrature rule of order
6 from [1, Formula 25.4.63.c] on any triangle. Table 1 displays the numerica
resultsfor themeshes generated by Algorithm (A). We show the number of degrees
of freedom N, the corresponding relative error ey in the H1()-semi-norm, the
estimated error ny and theratio ley | y1(q)/nn- AsinPart| we get experimentally

aconvergence of theform O (h*) withameshsizeh = O(N~Y2) anda = 2/3for



256 C. Carstensenand S. A. Funken

1 T T T
0.1 B
£
=}
s uniform meshes ——
<y adaptive meshes -+ T
g
w Tl
c
= e
S ok
g 12 e
0.01 B
1
0.001 L L L
100 1000 10000

Number of Unknowns

Figurel. Errors|ey |H1(Q) for uniform and adaptive meshes
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Figure 2. Solution (Ieft) and zoom of the mesh (right) in Example 5.2

uniform meshes. For our adaptive approach we obtain quasi-optimal convergence
rate which is approximately 1. (A slope —1/2 in Fig. 1 and 4 corresponds to an
experimental convergence rate 1 owingto N o< A~2 intwo dimensions,) Theratio
len'| 1(g)/nnv hasanupper bound (< 0.19) inour numerical example. Thisverifies
the estimate (2.3) experimentally. Thesignificant improvement of the convergence
can be deduced from Fig. 1 where we plotted the error u — U in H-semi-norm for
uniform and adaptive refinement versusthe number of unknownsinalog-log-scale.

Example 5.2. The potentia of a capacitor in an unbounded domain is computed
with homogeneous jump conditionsin (1.1) and A = 5id with given charge +1 at
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Figure 3. Sequence of adaptively refined meshes

boundaries T'p 1 and I'p 2. The geometry of 2, ., I'c, I'p,. and the coarse grid
isdepicted in Fig. 2 of Part I.

Algorithm (A) produces a sequence of unstructured meshes as shown in Fig. 3.
For the coarse mesh the problem behaves like a crack problem and as the mesh is
more and more refined around I'p ;, it models a domain with re-entrant corners
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of the Dirichlet boundary. The solution for this problem with N = 21503 and a
magnification of theadaptively refined mesharound I' p 1 isprovidedinFig. 2. The
meshes are highly refined at corners of the Dirichlet boundary as expected. There
isno additional refinement on the coupling boundary dueto the coupling compared
with pureFEM-modelling. AsshowninFig. 2therefinementissymmetrictothex-
and y-axis. The streamlinesdisplayed give knowledge of gradientsof the potential .
Owingto the higher permeability in 2 the streamlines|ook more depressed and flat
than in the case where A = id as expected. Although we are using nonconforming
finite elements (nc-FE) in 2 the streamlines appear smooth, a so near the coupling
boundary.

InFig. 4weplot theaposteriori error estimate n for uniform and adaptive meshes
(from Fig. 3). The convergence rate of ny is approximately 1 for the adaptive
meshes and 0.72 for uniform meshes. As expected, the a posteriori error estimate
ny decreases faster for adaptively refined meshes with nearly optimal convergence
rate.

uniform meshes —<—
adaptive meshes -+--

A Posteriori Estimate

100 1000 10000
Number of Unknowns

Figure4. Error estimatesn for uniform and adaptive meshes

From the numerical experiments, we deduce that adaptive methods are powerful
toolsfor an efficient treatment of interface problems, especial ly withinthe coupling
of nonconforming finite e ements and boundary elements. The asymptotic conver-
gence rates are improved to the optimal order and the considered error estimator
is efficient and robust.
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