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Abstract

The coupling of nonconforming finite element and boundary element methods was established in Part I
of this paper, where quasi-optimal a priori error estimates are provided. In the second part, we establish
sharp a posteriori error estimates and so justify adaptive mesh-refining algorithms for the efficient
numerical treatment of transmission problems with the Laplacian in unbounded domains.
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1. Introduction

A model transmission problem was rewritten in terms of boundary integral op-
erators in the first part [8], subsequently refered to as Part I. In addition to the
conditions stated there, we assume that the domain � ⊂ R2 is simply con-
nected and suppose that the prescribed jumps are slightly more regular, name-
ly, u0 ∈ H 1(0) and t0 ∈ L2(0). The continuous problem can be recast as
follows: Find (u, ξ, φ) ∈ H 1(�) × H 1/2(0) × H−1/2(0)/R satisfying, for all
(v, θ, ψ) ∈ H 1(�)×H 1/2(0)×H−1/2(0)/R,

(A(Du),Dv)− 〈φ, v〉 = (f, v)+ 〈t0, v〉,
−2〈u,ψ〉 − 〈Vφ,ψ〉 + 〈(K+ 1)ξ, ψ〉 = −2〈u0, ψ〉,

〈(K∗ + 1)φ, θ〉 + 〈Wξ, θ〉 = 0.

(1.1)

We recall from Part I that (·, ·) is the scalar product in L2(�), and 〈·, ·〉 denotes the
L2(0)-duality. The boundary integral operators involve the single layer potential
V , the double layer potential K, its dual K∗, and the hypersingular operator W as
defined in Section 2 of Part I. The capacity of 0 is assumed smaller than one, e.g.,
if � is scaled to belong to the unit ball.
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The discretisation relies on a regular triangulationT of the domain�and an induced
decomposition G of the polygonal boundary 0 with G-piecewise constant resp.
continuous and G-piecewise affine spline functions S0(G) resp. S1(G). The lowest
order nonconforming Crouzeix–Raviart finite element space SNC(T ) consists of
T -piecewise affine functions that are continuous at the midpoints M of edges E .
The T -piecewise application of differential operators is denoted by a subscript T ,
e.g., DT is given by (DT f )|T = D(f |T ) on T ∈ T and f ∈ H 1(T ) := {g ∈
L2(�) : ∀T ∈ T , f |T ∈ H 1(T )}. Then the discrete problem can be written as in
Remark 4 in Part I: Find (U,4,8) ∈ SNC(T )× S1(G)/R× S0(G) satisfying, for
all (V,2,9) ∈ SNC(T )× S1(G)/R× S0(G),

3(A(DT U),DT V )− 〈8,V 〉 = (f, v)+ 〈t0, V 〉,
−2〈U,9〉 − 〈V8,9〉 + 〈(K+ 1)4,9〉 = −2〈u0,9〉,

〈(K∗ + 1)8,2〉 + 〈W4,2〉 = 0.

(1.2)

In Part I, we showed equivalence of a model interface problem with (1.1), unique
existence of solutions as well the sharp a priori error estimate

‖DT (u− U) ‖L2(�) ≤ C
(
‖hTD2u ‖L2(�) + ‖hT divA(Du)) ‖L2(�)

+ distH−1/2(0)(Su|0 − t0; S0(G))
)
.

It is the aim of Part II to establish some local error indicator η(T ), T ∈ T , such
that we have the reliable error estimate

‖DT (u− U) ‖2
L2(�)

≤ C
∑
T∈T

η(T )2. (1.3)

Moreover, for uniform meshes at the boundary, we have generically the reverse
inequality which verifies efficiency of the a posteriori error bound. Therefore, we
may base heuristic mesh-refining algorithms on (1.3) and so design an adaptive
scheme which has proved to be efficient in numerical examples reported below.

The rest of Part II is organised as follows. In Section 2 we specify notation
and further assumptions on the above problems (following essentially [8]). The
a posteriori error estimate is stated and proved in Section 3 while its efficiency
is analysed in Section 4. The corresponding adaptive mesh-refining algorithm
and implementation is outlined in Section 5. Numerical examples illustrate the
efficiency of the adaptive coupling scheme in Section 6.

2. A Posteriori Error Estimate

Let (u, ξ, φ) solve (1.1) and define and σ := A(Du). Given a solution (U,4,8)
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to (1.2), define 6 := A(DT U) and set Jn, Jτ ∈ L2(∪E), on each edge E ∈ E ,

Jn|E :=
{

(6T −6T ′) · nE if E 6⊂ 0,

6 · nE −8− t0 if E ⊂ 0,
(2.1)

Jτ |E :=


(DT U |T −DT U |T ′) · τE if E 6⊂ 0,

2DT U |T · τE − ∂/∂s(2u0

+ (K+ 1)4− V8) if E ⊂ 0.

(2.2)

Here, nE denotes the normal and τE the tangential unit vector along the edge E.
In the first cases of (2.1) resp. (2.), T and T ′ denote two neighbouring elements
that share the edge E. The local mesh-sizes hT ∈ L∞(�) and hE ∈ L∞(∪E)
are piecewise constant functions with (hT )|T := diam(T ), T ∈ T , and (hE)|E :=
diam(E), E ∈ E .

Theorem 1. There exists a positive constant C which depends only on cθ and the
simply connected domain �, such that there holds

‖Du−DT U ‖2
L2(�)

+ ‖φ −8 ‖2
H−1/2(0)

+ ‖ ξ −4 ‖2
H 1/2(0)/R

≤ C
{∑

T∈T
h2

T

∫
T

|f + divT6|2 dx +
∑
E∈E

hE

(‖ Jn ‖2L2(E)
+ ‖ Jτ ‖2L2(E)

)
+
∑
E∈G

hE‖W4+ (K∗ + 1)8 ‖2
L2(E)

}
. (2.3)

Proof: Let e := u − U , ε := φ − 8 ∈ H−1/2(0), and δ := ξ − 4 ∈ H 1/2(0).
As in Part I [8], we define

ρ0 := −2e − Vε + (K + 1)δ ⊥ S0(G), (2.4)

ρ1 := (K∗ + 1)ε +Wδ ⊥ S1(G)/R, (2.5)

where ⊥ denotes orthogonality in L2(0). (See [8] for details, in particular for the
fact that the continuous version of (1.1) is solved by (u, ξ, φ, 0), and so we have
L2-orthogonality of the residuals ρ0 and ρ1 to the test functions.)

We adopt arguments from [2, 3, 5, 10, 13, 14] and consider a Helmholtz decom-
positions of both DT e and σ −6. Notice that

g(z) := − 1

2π

∫
0

δ(ζ )
∂

∂nζ

log |z − ζ |dsζ + 1

2π

∫
0

ε(ζ ) log |z − ζ |dsζ (z ∈ �)

(2.6)
defines a function g ∈ H 1(�) with trace

g|0 = 1

2
{(K+ 1)δ − Vε} = ρ0/2+ e ∈ H 1/2(0) (2.7)
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which, owing to the mapping properties of the single and double layer potential
operators, satisfies

‖g‖H 1/2(0) ≤ c1(‖ε‖H−1/2(0) + ‖δ‖H 1/2(0)). (2.8)

Let a ∈ H 1(�) be the unique solution to the Dirichlet problem

1a = divDT e and a|0 = g|0. (2.9)

Then, there exists some b ∈ H 1(�)/R with

DT e = Da + Curl b (2.10)

such that, for all η ∈ H 1
0 (�),∫

�

Curl b ·Dη dx = 0. (2.11)

Similarly, we find some α, β ∈ H 1(�) with α = 0 on 0 such that

σ −6 = Dα + Curl β. (2.12)

Since a, b, α, and β are solutions of Dirichlet or Neumann problems, we find a
constant c2 which depends only on � such that

‖Da‖L2(�) + ‖Db‖L2(�) + ‖Dα‖L2(�) + ‖Dβ‖L2(�)

≤ c2(‖g‖H 1/2(0) + ‖DT e‖L2(�) + ‖σ −6‖L2(�))

≤ c2(c1‖ε‖H−1/2(0) + c1‖δ‖H 1/2(0) + (1+ CA)‖DT e‖L2(�)), (2.13)

where we used (2.8), |Curl · | = |D · |, and the Lipschitz continuity of A with
Lipschitz constant CA. According to the uniform monotonicity of A, we consider

cA‖DT e‖2
L2(�)

≤ (σ −6,DT e) = (σ−6,Da)+(Dα+Curl β, Curl b) (2.14)

by (2.10) and (2.11). It is well–established that one can construct an approximant
A = Ia ∈ S1 with the following properties

‖ a − Ia ‖L2(T ) ≤ ChT ‖Da ‖L2(N (T )), (2.15)

‖ a − Ia ‖L2(E) ≤ Ch
1/2
E ‖Da ‖L2(N (E)), (2.16)

for all T ∈ T , E ∈ E (see, e.g., [5, 12]). Here, N (T ) (resp. N (E)) is the union of
T and at most b2π/cθ c other elements which share a common node with T (resp.
the union of at most two elements which share E as a common side). The constant
C > 0 in (2.15)–(2.16) depends only on cθ . For the proofs we refer to [12] and
notice that (2.15)–(2.16) are improved in [5, 11].
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Then, given A, we calculate with the exact and discrete equation

(σ −6,Da) = (σ −6,D(a −A))+ (σ,DA)− (6,DA)

= (σ −6,D(a −A))− (divσ,A)+ 〈σn,A〉 − 〈8+ t0, A〉 − (f,A)

= (σ −6,D(a −A))+ 〈σn−8+ t0, A〉
with an integration by parts. Since σn = ∂v/∂n + t0 = φ + t0 and by an
elementwise integration by parts we obtain (recall that the skeleton ∪E \ 0 :=
(∪E) \ 0 is the union of all inner edges)

(σ −6,Da) = (−divσ + divT6, a −A)−
∫
∪E\0

Jn(a −A)ds

+ 〈σn−6n, a −A〉 + 〈ε,A〉
= (f + divT6, a −A)−

∫
∪E\0

Jn(a −A)ds

− 〈6n−8− t0, a −A〉 + 〈ε, a〉
= (f + divT6, a −A)−

∫
∪E

Jn(a −A)ds + 〈ε, a〉 . (2.18)

By the approximation properties of A, we have (as, e.g., in [15])

(f + divT6, a −A)−
∫
∪E

Jn(a −A)ds

≤ c3

{∑
T∈T

h2
T ‖f + divT6‖2

L2(T )
+
∑
E∈E

n2
E

}1/2

‖Da‖L2(�). (2.19)

Since α = 0 on 0, the second contribution to the right-hand side of (2.14) is

(Dα + Curl β, Curl b) = (Curl β, Curl b) = (Curl β,DT (e − a)). (2.20)

Let B := Iβ ∈ S1(T ) be the Clément interpolant of β (which satisfies (2.15)–
(2.16) as well). Then, ∂B/∂s ∈ S0(G) and so 〈ρ0, ∂B/∂s〉 = 0 and, using∫
E\0[U ]ds = 0 for all E ∈ E ,∫

∪E\0
[U ]∂B/∂s ds = 0 = 〈ρ0, ∂B/∂s〉. (2.21)

Therefore, an elementwise integration by parts yields∫
�

Curl B ·DT (e − a)dx =
∫
∪E

[e − a]∂B/∂s ds

= 〈∂B/∂s, e− a〉 = 〈∂B/∂s, ρ0/2〉 = 0 (2.22)
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(where we used a = g on 0 and (2.7)). Employing (2.22) in (2.20) performing an
elementwise integration by parts, we obtain

(Dα + Curl β, Curl b) = (Curl (β − B),DT (e − a))

= −
∫
∪E

(β − B)∂(e − a)/∂s ds

≤ c4

(
‖h1/2

E [∂U/∂s]‖L2(∪E\0) + ‖h1/2
E ∂ρ0/∂s‖L2(0)

)
‖Dβ‖L2(�), (2.23)

owing to the approximation properties of the Clément interpolation and a trace
estimate (cf., e.g., [15]). Note that ρ0 = 2U − 2u0 + V8 − (K + 1)4. Let η2

denote the right-hand side of (2.3) and observe that (2.14), (2.18), (2.19), (2.23),
and a = g on 0 verify

cA‖DT e‖L2(�) ≤ c5 η (‖Da‖L2(�) + ‖Dβ‖L2(�))+ 〈ε, g〉. (2.24)

A small calculation (which uses that K and K∗ are adjoint) leads to

2〈ε, g〉 = 〈ε, (K+ 1)δ − Vε〉 = 〈(K∗ + 1)ε, δ〉 − 〈ε,Vε〉
= 〈ρ1, δ〉 − 〈δ,Wδ〉 − 〈ε,Vε〉, (2.25)

and we deduce in (2.24) that, owing to the positive definiteness of V andW,

c6 {‖DT e‖2
L2(�)

+ ‖δ‖2
H 1/2(0)/R + ‖ε‖2H−1/2(0)

}
≤ η (‖Da‖L2(�) + ‖Dβ‖L2(�))+ ‖ρ1‖H−1/2(0)‖δ‖H 1/2(0)/R. (2.26)

Finally, absorb the term ‖δ‖H 1/2(0)/R on the right-hand side, recall from [4] (or
[2] in Part I) that

‖ρ1‖H−1/2(0) ≤ c7‖h1/2
E ρ1‖L2(0) = c7‖h1/2

E {(K∗ + 1)8+W4}‖L2(0), (2.27)

and employ (2.13) to conclude the proof. �

Remark 1. A more precise analysis of inequality (2.19) is given in [6] where c3
is estimated analytically and in [7] a numerical approach is shown to approximate
c3.

Remark 2. The volume contribution in (2.3) can be omitted. Indeed, for a modi-
fication Ã ∈ S1(T ) ⊆ SNC(T ) of the Clément-interpolation to a it can be shown
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that, in addition to (2.19),

(f + divT6, a − Ã)−
∫
∪E

Jn(a − Ã)ds

≤ c8

{∑
z∈N

h2
z‖f − fωz‖2L2(ωz)

+
∑
E∈E

n2
E

}1/2

‖Da‖L2(�).

Here, N denotes the set of all nodes, ωz is the union of elements T ∈ T with the
vertex z and fωz is the integral mean of f on ωz (see [5, 11]). Hence, in (2.3),
‖hT f ‖L2(�) can be replaced by ‖h2

TDf ‖L2(�) which, generically, is of higher
order and so negligible.

3. Efficiency

Theorem 1 yields the a posteriori error estimate (1.3), where

η(T )2 := h2
T

∫
T

|f + divT6|2 dx +
∑

E∈E∧E⊂∂T

hE

(‖ Jn ‖2L2(E)

+‖ Jτ ‖2L2(E)
+ ‖W4+ (K∗ + 1)8 ‖2

L2(E∩0)

)
.

(3.1)

This global reliable estimate is sharp in the sense that, up to higher order approxi-
mation errors, the reverse inequality is true partly in a local form.

Let N (T ) denote the union of all triangles that share one vertex with T ∈ T and
letN (E) denote the union of at most two triangles that share E ∈ E as an element
side.

Theorem 2. Suppose 6 ∈ S0
h(�) and let fT denote the integral mean of f on

T ∈ T . Let û ∈ S1(T ) approximate u in H 1(�), while t̃0 resp. φ̃ ∈ S0(G)
approximates t0 resp. φ in L2(0) and ξ̃ ∈ S1(G) approximates ξ in H 1(0). Then,
there are constants Ca,Cb > 0 (which depend only on cθ ) such that

Ca η(T )2 ≤ ‖ σ − 6 ‖2
L2(N (T ))

+ ‖hT (f − fT ) ‖2
L2(N (T ))

+ ‖h1/2
E (t0 − t̃0) ‖2L2(0∩∂T )

+ ‖h1/2
E (φ −8) ‖2

L2(0∩∂T )

+ ‖h1/2
E

∂

∂s
(u− û) ‖2

L2(0∩∂T )
+ ‖h1/2

T DT (u− û) ‖2
L2(N (T ))

+ ‖h1/2
E W(ξ −4) ‖2

L2(0∩∂T )
+ ‖h1/2

E (K∗ − 1)(φ −8) ‖2
L2(0∩∂T )

+ ‖h1/2
E

∂

∂s
V(φ −8) ‖2

L2(0∩∂T )
+ ‖h1/2

E
∂

∂s
(K− 1)(ξ −4) ‖2

L2(0∩∂T )
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for each T ∈ T and

Cb

∑
T ∈T

η(T )2 ≤ ‖ σ −6 ‖2
L2(�)

+ ‖hT (f − fT )‖2
L2(�)

+ ‖h1/2
E (t0 − t̃0)‖2L2(0)

+ ‖h1/2
E

∂

∂s
(u− û)‖L2(0) + ‖h1/2

T DT (u− û) ‖2
L2(�)

+ h0,max/h0,min

(
‖ξ −4‖2

H 1/2(0)
+ h0,max‖ ∂

∂s
(ξ − ξ̃ )‖2

L2(0)

)
+ h0,max/h0,min

(
‖φ −8‖2

H−1/2(0)
+ h0,max‖φ − φ̃‖2

L2(0)

)
.

Proof: Arguing as in [15, (1.23)] we estimate ‖ fT ‖L2(T ) and obtain

3/
√

20 ‖hT fT ‖L2(T ) ≤ ‖hT (f − fT ) ‖L2(T ) + c9 ‖ σ −6 ‖L2(T ). (3.2)

(The constant c9 > 0 as well as c10, . . . , c23 below depend only on cθ [15, Lemma
1.3 and Eqn. (1.23)].)

Suppose that E ∈ E withN (E) := T1∪T2 is the union of two triangles T1, T2 ∈ T
sharing the common side E. Define bE := 4λTj ,1 λTj ,2 on Tj , j = 1, 2 and bE = 0
on � \N (E). Here, λT,1, λT,2, λT,3 are the barycentric coordinates of T ∈ T and
λTj ,1 and λTj ,2 are such that bE is nonzero along E.

Let E ∈ E be an inner face, i.e., E = T ∩ T ′ for some T ′ ∈ T , then using the
extension operator P : C(E)→ C(N (E)) from [15], we infer

‖Jn‖2L2(E)
= c10

∫
E

bEP(Jn)Jn ds (3.3)

= c10

∫
N (E)

{
D(bEP(Jn))6 + bEP (Jn)div6

}
dx.

Because of the inverse estimate and integration by parts we have
‖D(bEP(Jn))‖L2(N (E)) ≤ c11h

−1
E ‖bEP (Jn)‖L2(N (E)) and∫

N (E)

{
D(bEP(Jn))σ + bEP (Jn)divσ

}
dx = 0 .

Then, Cauchy’s inequality, ‖bEP (Jn)‖L2(N (E)) ≤ c12h
1/2
E ‖Jn‖L2(E) and (3.3) lead

to

h
1/2
E ‖Jn‖L2(E) ≤ c13

{‖6 − σ‖L2(N (E)) + ‖hT (f − fT )‖L2(N (E))

}
. (3.4)
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Let E ∈ G be an edge on the boundary, E ⊂ 0, and consider

hE

∫
E

J 2
n ds = hE

∫
E

|6 · nE −8− t0|2 ds

≤ 2hE

∫
E

|6 · nE −8− t̃0|2 ds + 2hE

∫
E

|t0 − t̃0|2 ds,
(3.5)

where t̃0 is the integral mean of t0 on E. Arguing in the same way for (σ −6) · n
in 6 · n − 8 − t0 = ε − (σ − 6) · n, ε := φ − 8, we obtain for E ∈ G, (i.e.,
E ⊆ 0) and q := bE P (6 · nE −8− t̃0) that

hE

∫
E

|6 · nE −8− t̃0|2 ds = c10hE

∫
E

q(6 · nE −8− t̃0) ds

= c10hE

(∫
E

q(6 − σ) · nE ds +
∫

E

q(φ −8) ds +
∫

E

q(t0 − t̃0) ds

)
≤ c10hE

∫
N (E)

(divT (σ −6)q + (σ −6) ·Dq) dx

+ c10hE

(
‖ε‖L2(E) + ‖t0 − t̃0‖L2(E)

)
‖q‖L2(E) .

From ‖q‖L2(N (E)) ≤ c12h
−1/2
E ‖6 · nE −8− t̃0‖L2(E) and

‖Dq‖L2(N (E)) ≤ c11h
−1
E ‖q‖L2(N (E)) ≤ c11c12h

−1/2
E ‖6 · nE −8− t̃0‖L2(E) ,

it follows

h
−1/2
E ‖6 · nE −8− t̃0‖L2(E) ≤ c14

(
‖hT (f − divT6)‖L2(N (E))

+ ‖ σ −6 ‖L2(N (E)) + ‖h1/2
E ε‖L2(E) + ‖h1/2

E (t0 − t̃0)‖L2(E)

)
.

(3.6)

With (3.2) and (3.5) this yields for E = T ∩ 0 that

hE

∫
E

J 2
n ds ≤ c15

(
‖hT (f − fT )‖2

L2(N (T ))

+ ‖ σ −6 ‖2
L2(N (T ))

+ ‖h1/2
E ε‖2

L2(E)
+ ‖h1/2

E (t0 − t̃0)‖2L2(E)

)
.

To prove the estimate

hE‖Jτ‖2L2(E)
≤ c16‖De‖2

L2(N (E))
(3.7)
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for E ∈ E , E 6⊆ 0, we argue as in [10, 14] and only illustrate the modified
technique in case E ∈ G in the sequel. Note that Jτ = ∂/∂s(2U − 2u0 − (K +
1)4+V8)= ∂/∂s(−2e+ (K+ 1)δ−Vε) because, as we mentioned in Part I [8],
2v|0 = (K+ 1)v− Vφ as a consequence of the jump relations of the double layer
potential. Since û is affine on T ,

hE‖Jτ‖2L2(E)
≤ 3hE‖(K+ 1)δ − Vε‖2

H 1(E)

+ 12hE‖∂/∂s(U − û)‖2
L2(E)

+ 12hE |u− û|2
H 1(E)

,

where |v|H 1(E) := ‖∂v/∂s‖L2(E) defines a semi-norm on E ⊆ 0. We estimate the
term hE‖∂/∂s(U − û)‖2

L2(E)
as in the proof of (3.7) and calculate

hE‖Curl (U − û) · nE‖2L2(E)

= 2

3
hE Curl (U − û) · nE

∫
E

bE Curl (U − û) · nE ds (3.9)

= 2

3
h

1/2
E ‖Curl (U − û) · nE‖L2(E)|

∫
T

div(bE Curl (U − û))dx|

thanks to Gauss’ divergence theorem on T ∈ T with E ⊆ ∂T . Because div Curl=
0, we conclude from (3.9) that

h
1/2
E ‖∂/∂s(U − û)‖L2(E) ≤ c17‖D(U − û)‖L2(T ) (3.10)

≤ c17

(
‖De‖L2(T ) + ‖D(u− û)‖L2(T )

)
.

Using (3.5)–(3.10) we obtain

c18η(T )2 ≤ ‖hT (f − fT )‖2
L2(N (T ))

+ ‖σ −6‖2
L2(N (T ))

+
∑
E∈E

E⊆∂T∩0

hE

(
‖ε‖2

L2(E)
+‖t0− t̃0‖2L2(E)

+ |u− û|2
H 1(E)

+‖DT (u− û)‖L2(N (T ))

+ |(K + 1)δ − Vε|2
H 1(E)

+ ‖Wδ + (K∗ + 1)ε‖2
L2(E)

)
. (3.11)

(Notice equivalence of ‖σ − 6‖2
L2(T )

and ‖DT e‖2
L2(T )

.) For the remaining part

of this proof, let |v|H 1(0) denote the piecewise H 1-semi-norm, i.e. |v|2
H 1(0)

:=
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E∈G ‖ ∂

∂s
v‖2

L2(E)
. Summation over all T ∈ T leads to

c19

∑
T∈T

η(T )2 ≤ ‖σ −6‖2
L2(�)

+ ‖hT (f − fT )‖2
L2(�)

+ ‖h1/2
E ε‖2

L2(0)

+ ‖h1/2
E (t0 − t̃0)‖2L2(0)

+ |h1/2
E (u− û)|H 1(0) + ‖h1/2

T DT (u− û)‖L2(�)

+ |h1/2
E ((K+ 1)δ − Vε)|2

H 1(0)
+ ‖h1/2

E (Wδ + (K∗ + 1)ε)‖2
L2(0)

. (3.12)

The terms |h1/2
E (K + 1)δ|H 1(0), |h1/2

E Vε|H 1(0), ‖h1/2
E Wδ‖L2(0), and ‖h1/2

E (K∗ +
1)ε)‖L2(0) can be estimated exactly as in the conforming case, see [2] in Part I,
and so we illustrate the arguments just for the first term. With h0,max(min) :=
max(min)E∈GhE we have, according to the mapping properties,

|h1/2
E (K+ 1)δ|2

H 1(0)
≤ c20h0,max ‖δ‖2H 1(0)

≤ c20h0,max (‖ξ − ξ̃‖2
H 1(0)

+ ‖ξ̃ −4‖2
H 1(0)

)
(3.13)

for any approximation ξ̃ ∈ S1(G) to ξ = v|0. Then, thanks to well-established
inverse estimates (see, e.g., [4] or [18] in Part I), we have

h0,max‖ξ̃ −4‖2
H 1(0)

≤ c21h0,max/h0,min‖ξ̃ −4‖2
H 1/2(0)

≤ 2c21h0,max/h0,min(‖ξ −4‖2
H 1/2(0)

+ ‖ξ̃ − ξ‖2
H 1/2(0)

). (3.14)

By the interpolation estimate and taking, e.g., ξ̃ as a nodal interpolant, we deduce

‖ξ̃ − ξ‖2
H 1/2(0)

≤ c22h0,max ‖ξ − ξ̃‖2
H 1(0)

. (3.15)

Gathering (3.13)–(3.15) together, we are left with

|h1/2
E (K+ 1)δ|2

H 1(0)

≤ c23h0,max/h0,min (‖ξ −4‖2
H 1/2(0)

+ h0,max‖ξ − ξ̃‖2
H 1(0)

).

The remaining terms are estimated in the same way, so we neglect details. �

Remark 3.1. The estimate (3.11) shows that η(T ) is a local estimator. Even for
T at the interface 0, the boundary contributions may be regarded as pseudo-local
(according to the pseudo-locality of pseudo-differential operators).

Remark 3.2. The right-hand side consists of errors and of approximation errors.
The latter terms are generically of higher order. This justifies the claim in the
introduction that the a posteriori error estimate is generically efficient in case of a
quasi-uniform mesh on the boundary.
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4. Adaptive Algorithm and Implementation

Given a local error indicator η(T ) which is (even locally) related to the local error
(in Theorem 2), we may follow the standard approach in residual based adaptive
mesh-refining algorithms and obtain the following scheme.

Algorithm 4.1.

(a) Start with a coarse mesh T .
(b) Solve the discrete problem for the actual mesh T .
(c) Compute η(T ) for all T ∈ T .
(d) Compute stopping criterion and decide to terminate or goto (e).
(e) Refine the element T (red refinement) provided η(T ) ≥ 1

2 maxT ′∈T η(T ′).
(f)Refine further elements (red-green-blue refinement) to avoid hanging nodes.
Define resulting mesh as actual mesh T , and go to (b).

For details on the red-green-blue refinement algorithms, we refer to [15] and only
mention here that, thereby, the constant cθ is uniformly bounded (with respect to
the sequence of different meshes).

The adaptive algorithm is implemented in Matlab and we conclude this section
with some remarks on the numerical Matlab-realisation before we present some
numerical examples on the practical performance in the subsequent section.

We refer to Part I for details on the implementation of the discrete scheme. The
calculation of the integrals for the residuals in (3.1) over the finite element T and the
boundary element 0k is performed as follows. Since, in the following numerical
examplesA in (1.1) is piecewise constant, and since U is piecewise affine, the jumps
across the interior element boundaries in Jn and Jτ can be calculated exactly. The
L2-Norm of

A(DT U)|T · nE −8− t0

is approximated via a 3-point Gaussian-quadrature formula on each boundary el-
ement 0k also the L2-Norm of

2DU |T · tE − ∂/∂s (2u0 + (K + 1)4− V8) ,

where for xi ∈ 0k and g ∈ C(0k) the derivative ∂/∂s g(xi) is replaced by its
central difference operator [g(xi+1) − g(xi−1)]/|xi+1 − xi−1| with a distance of
nodes |xi+1 − xi−1| = |0k|/20. The term∫

0k

|W4+ (K∗ + 1)8|2 ds

is approximated also with a 3-point Gaussian quadrature rule. Since f = 0 in the
numerical examples the term

∫
T
|f + divTA(DT U)|2 dx vanishes.
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Remark 4.1. The integral operators in (1.1) have to be tested only with piecewise
polynomial functions. This can be done analytically and the code is fast and
accurate. Also the terms in the a posteriori estimate (2.3) (except the integrals
over the jumps u0 and t0) can be calculated analytically. Hence, compared with a
posteriori error estimates for conforming finite elements [9] or [4] in Part I terms
like Wu0, K′t0 have not to be calculated. Since the given jumps u0 and t0 are
general functions, these computations are in general difficult and cause a high
amount of computational costs. Thus, for an adaptive approach in the case of
conforming finite-elements and inhomogeneous jump conditions the coupling as
introduced in this paper (see (1.1)) is preferable.

5. Numerical Examples

Two examples from Part I provide numerical evidence of the superiority of the
adaptive mesh-refining Algorithm (A) in comparison with quasi-uniform mesh-
refinement.

Table 1. Errors |eN |H1(�)
and error estimates ηN in Example 5.1

N |eN |H1(�) ηN |eN |H1(�)/ηN

30 0.23819 1.86329 0.1278
77 0.23163 1.33962 0.1729

136 0.15752 0.86199 0.1827
195 0.11869 0.64563 0.1838
309 0.08863 0.49091 0.1805
472 0.06307 0.35315 0.1786
616 0.05308 0.29000 0.1830
985 0.04084 0.22146 0.1844

1417 0.03261 0.17459 0.1868
2210 0.02558 0.13760 0.1859
3397 0.02023 0.10864 0.1862
5077 0.01638 0.08756 0.1870
8288 0.01267 0.06783 0.1868

Example 5.1. The linear interface problem with A = id on the L-shaped domain
shown in Fig. 1 of Part I has the exact solution u(r, θ) = r2/3 sin(2/3θ) in polar and
Cartesian coordinates with a typical corner singularity. Hence, the convergence
rate of the h–version with a uniform mesh does not lead to the optimal convergence
rate even though the right-hand side is smooth.

The L2(�)-Norm DT (u−U) is calculated via the 7-point quadrature rule of order
6 from [1, Formula 25.4.63.c] on any triangle. Table 1 displays the numerical
results for the meshes generated by Algorithm (A). We show the number of degrees
of freedom N , the corresponding relative error eN in the H 1(�)-semi-norm, the
estimated error ηN and the ratio |eN |H 1(�)/ηN . As in Part I we get experimentally
a convergence of the form O(hα) with a mesh size h = O(N−1/2) and α = 2/3 for
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Figure 1. Errors |eN |H1(�)
for uniform and adaptive meshes
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Figure 2. Solution (left) and zoom of the mesh (right) in Example 5.2

uniform meshes. For our adaptive approach we obtain quasi-optimal convergence
rate which is approximately 1. (A slope −1/2 in Fig. 1 and 4 corresponds to an
experimental convergence rate 1 owing to N ∝ h−2 in two dimensions.) The ratio
|eN |H 1(�)/ηN has an upper bound (≤ 0.19) in our numerical example. This verifies
the estimate (2.3) experimentally. The significant improvement of the convergence
can be deduced from Fig. 1 where we plotted the error u−U in H 1-semi-norm for
uniform and adaptive refinement versus the number of unknowns in a log-log-scale.

Example 5.2. The potential of a capacitor in an unbounded domain is computed
with homogeneous jump conditions in (1.1) and A = 5 id with given charge ±1 at
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Figure 3. Sequence of adaptively refined meshes

boundaries 0D,1 and 0D,2. The geometry of �, �c, 0C , 0D,· and the coarse grid
is depicted in Fig. 2 of Part I.

Algorithm (A) produces a sequence of unstructured meshes as shown in Fig. 3.
For the coarse mesh the problem behaves like a crack problem and as the mesh is
more and more refined around 0D,j , it models a domain with re-entrant corners
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of the Dirichlet boundary. The solution for this problem with N = 21503 and a
magnification of the adaptively refined mesh around 0D,1 is provided in Fig. 2. The
meshes are highly refined at corners of the Dirichlet boundary as expected. There
is no additional refinement on the coupling boundary due to the coupling compared
with pure FEM-modelling. As shown in Fig. 2 the refinement is symmetric to the x-
and y-axis. The streamlines displayed give knowledge of gradients of the potential.
Owing to the higher permeability in � the streamlines look more depressed and flat
than in the case where A = id as expected. Although we are using nonconforming
finite elements (nc-FE) in � the streamlines appear smooth, also near the coupling
boundary.

In Fig. 4 we plot the a posteriori error estimate ηN for uniform and adaptive meshes
(from Fig. 3). The convergence rate of ηN is approximately 1 for the adaptive
meshes and 0.72 for uniform meshes. As expected, the a posteriori error estimate
ηN decreases faster for adaptively refined meshes with nearly optimal convergence
rate.
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Figure 4. Error estimates ηN for uniform and adaptive meshes

From the numerical experiments, we deduce that adaptive methods are powerful
tools for an efficient treatment of interface problems, especially within the coupling
of nonconforming finite elements and boundary elements. The asymptotic conver-
gence rates are improved to the optimal order and the considered error estimator
is efficient and robust.
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