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A Theory of Discretization for Nonlinear Evolution Inequalities 
Applied to Parabolic Signorini Problems (*). 

CARSTEN CARSTENSEN - JOACHIM GWINNER 

A b s t r a c t .  - We present a discretization theory for a class of nonlinear evolution inequalities that 
encompasses time dependent monotone operator equations and parabolic variational in- 
equalities. This discretization theory combines a backward Euler scheme for time discretiza- 
tion and the Galerkin method for space discretization. We include set convergence of convex 
subsets in the sense of Glowinski-Mosco-Stummel to allow a nonconforming approximation 
of unilateral constraints. As an application we treat parabolic Signorini problems involving 
the p-Laplacian, where we use standard piecewise polynomial finite elements for space dis- 
cretization. Without imposing any regularity assumption for the solution we establish vari- 
ous norm convergence results for piecewise linear as well piecewise quadratic trial func- 
tions, which in the latter case leads to a nonconforming approximation scheme. 

1. - I n t r o d u c t i o n .  

The standard approach to discretization of parabolic variational inequalities em- 
ploys finite elements for space discretization and finite differences for time discretiza- 
tion. However, only linear interpolation of nonnegative (or nonpositive) data preserves 
inequalities. Thus, whenever the unilateral constraint, e.g. given by an obstacle, is inho- 
mogeneous or whenever the finite element trial functions consist of piecewise polyno- 
mials of higher order than linear, a fully discrete approximation scheme has to include 
a nonconforming approximation of the unilateral constraint, which can be treated by 
means of Glowinski-Mosco-Stummel set convergence for the associated convex subsets 
of the discrete variational inequalities. This is elucidated in the monographs of Glowin- 
ski-Lions-Tr~moli~res [15, chapter 6] and of Glowinski [14, chapter 6]. 
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In this paper we extend the convergence analysis of Glowinski-Lions-Tr~moli~res 
[15] (dealing with variational inequalities given by bilinear forms) to nonlinear evolu- 
tion problems where the underlying elliptic differential operator gives rise to a mono- 
tone operator in the sense of Browder and Minty. Furthermore we also treat the semi- 
coercive case, that is, the case where the nonlinear form associated to the elliptic differ- 
ential operator is only coercive with respect to a seminorm, what occurs when only 
Neumann and Signorini boundary conditions are present in the initial boundary value 
problem. Thus we also extend convergence results of Baiocchi [4], GrSger [16], Ka~ur 
[23, chapter 8.2], 2eni~ek [39], see also [40], to more general evolution problems includ- 
ing nonconforming approximation of unilateral constraints. Moreover by our approach 
via monotone-convex functions following Oettli [32] we subsume a class of differential 
inclusions. Thus in this respect, our analysis also complements the work of Magenes 
[28] on time discretization of abstract differential inclusions of parabolic type. 

We emphasize that our aim is to establish norm convergence of the discretization 
method under weak assumptions, that is under conditions as close as possible to those 
of the existence theory. Therefore, error estimates of the type given in [22], [26] and 
[27] in the case of conforming approximation using piecewise linear trial functions are 
outside of the scope of the present paper which instead continues earlier work [17] on 
steady state problems. 

As the most simple application which shows all issues of the generality of our dis- 
cretization theory, namely unilateral boundary conditions and monotone nonlinearity 
of the associated elliptic operator, we study an initial boundary obstacle problem in- 
volving the p-Laplacian. We treat both the coercive case of a mixed Dirichlet-Signorini 
boundary condition and the semicoercive case of a Signorini boundary condition. For its 
finite element approximation we do not only consider piecewise linear trial functions, 
but also investigate piecewise quadratic trial functions that lead to a nonconforming 
approximation of the unilateral constraint. Under assumptions close to the existence 
theory [7, 30] of monotone parabolic problems, in particular dispensing with any regu- 
larity hypotheses on the solution, we establish various (strong) convergence results for 
fully discrete approximations. 

Let us point out that the p-Laplacian and related degenerate parabolic equations 
are a recently much studied subject in analysis, see e.g. [6], not only by their intrinsic 
mathematical interest, but also by their role as a mathematical model for a diversity of 
nonlinear problems in mechanics and physics. Already Ladyzenskaja [24] suggested 
equations of this kind as a model of motion of non-newtonian fluids. Further  for the 
modeling and study of nonlinear diffusion and of power-law materials we refer to e.g. 
[1,18]. Quite naturally in addition to linear boundary conditions, here unilateral bound- 
ary conditions like Signorini condition occur that model contact in quasistationary solid 
mechanics or semi-permeable walls in fluid mechanics, see [12]; such degenerate 
parabolic equations with a Signorini boundary condition are particularly encountered 
in porous media [9,21]. 

The outline of this paper is as follows. In the next section we formulate the evolu- 
tion inequality problem under study where we distinguish different variational and re- 
laxed versions. In Section 3 we present our theory of full space time discretization for 
the evolution problem. Finally in Section 4, we apply our discretization theory to p-har- 
monic Signorini initial boundary value problems. 
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2. - The problem: variat ional  and relaxed versions.  

In this section we formulate the evolution inequality problem under study. As our 
numerical functional analysis of finite element discretization will show, it is worth dis- 
tinguishing different versions of the problem. Here we state these different variational 
and relaxed versions and also give their relations. Finally in this section, we comment 
on more general time dependent problems. In particular when not only the right hand 
side, but also in the application to parabolic obstacle problems, the coefficients of the 
associated elliptic differential operator depend on time, it is shown how this more gen- 
eral problem can easily be reduced to the problem studied. 

Let us first fLX some notations. Let J denote the open interval (0, T) with T > 0 
given. Let X be a real reflexive separable Banach space with norm ]1" ]ix and dual space 
X*. In addition, let H be a real separable Hilbert space endowed with the scalar prod- 
uct (., .) and identified with its dual such that Xr  H r X* continously and densely. 

Throughout the paper, we fix the parameter p e [2, r162 ) and consider the space 
LP(J, X) of (classes of) measurable functions u for the Lebesgue measure on J with 
values in X such that 

Ilul] := ]luiiLP(J,X) := u(t)llPxdt < + ~ . 

L p (J, X) is a subspace of 69' (J,  X) = 2 ((D(J), X), the latter being the space of vector- 
valued distributions on J (see e.g. [11], chapter 18, section 1.1). Moreover 3tu (or inter- 
changeably u ') denotes the derivative of u with respect to time t in the sense of vector- 
valued distribution (see e.g. [11], chapter 18, section 1.1, Definition 3). In virtue of X c  
cX* it makes sense to define the space 

WP(J; X, X*) := {ueLP(J ,  X): ~tueLP' (J, X*)},  

where 1/p + 1/p' = 1. This Banach space, equipped with the norm 

Ilullw ( ;x,x.) := x) + II  ull. x . ) ,  

is of fundamental importance in the analysis of evolution problems. It is known (see 
[11], chapter 18, section 1.2, Theorem 1 for the case p = 2; [13], Satz 1.17 and [37], 
Proposition 23.23 for the general case) that every ueWP(J;  X , X * )  is a.e. (almost 
everywhere) equa l  to a continuous function on J =  [0, T] in H and that even 
WP(J; X, X * ) c  C[J, HI continuously, where C[J, H] denotes the space o f  H-valued 
continuous functions on J and is endowed with the topology of uniform conver- 
gence. 

Next let us introduce the data of the problem. The right hand s idef i s  assumed to be 
in LP'(J, X*) A L l ( j ,  H). To define the unilateral constraint, let K E Y  be a given non- 
void closed convex set. For consistency of the problem, let the initial datum u0 belong to 
K. Instead of a nonlinear elliptic operator, we prefer to introduce a function of: X • 
• X- - )R  in order to subsume partial differential inclusions by this approach and follow 
the terminology of Oettli [32]. 
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DEFINITION 2.1. - A function ~: X • X--~ R is called monotone-convex, if for any x e 
eX, ~(x, .) is convex and lower semicontinuous, satisfies r x) = 0, and further, ~ is 
monotone, that is 

~(x , y )+c f (y , x )< .O for all x, y e X .  

EXAMPLE 2.2. - Let F:  X--~X* be a set valued monotone operator in the sense of 
Browder and Minty [38] with convex closed bounded values F(x ) r  (x e X), then 

~(x, y ) : =  max{(~, y-X)x*•  ~ r ( x ) }  

defines a monotone-convex function r Thus by this approach we treat a class of evolu- 
tion inclusions and partial differential inclusions. 

In all what follows we require that cf is monotone-convex. Since we are involved 
with time dependent problems, we require for the nonlinear Nemytskii operator 
(v(.), w(-) ) ~ r w(.) ) that of(v(.), w(-) ) e L 1 (j)  for arbitrary v, w e L P (J, X). This 
is guaranteed by the growth condition (with a constant Co > 0) 

(2.1) I q ~(x, Y) I <- Co[llxll~ + IlY - xll~] for all x, y e X .  

Then we may define the real valued function r  LP(J, X)•  LP(J, X)---~R by 

T 

O(v, w) := [cf(v(t), w(t))dt (v, w e L P ( J ,  X) ) .  
0 

For brevity, we introduce the following sets 

LP(J, K ) : = { v e L P ( J ,  X): v ( t ) e K  a.e. in J},  

WP(J, K) :={veWP(J;  X, X*): v(t) e K  for all t e J } ;  

W~(J, K) := {v e WP(J, K): v(0) = Uo}. 

Now we can state our evolution inequality problem in pointwise variational form: 

(P) Find u ~ W~(J, K) such that for almost all t in J 

(2.2) (~t u - f ( t ) ,  y - u(t))x. • + ~(u(t), y) 1> 0,  Vy e g .  

This means that the preceding inequality holds pointwise on J except a fLxed null set 
(only dependent on the solution u) for any y e K. In integrated variational form our 
evolution inequality reads: 

(P1) Find u ~ W~ (J, K) such that 

T 

(2.3) f ( ~ t u - f ,  v - U ) x . •  + q)(u, v) ~ O, Yv~LP(J ,  K). 
o 

Similar to Br~zis [7] and Naumann [30] we introduce the relaxed form: 
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(P2) Find u e L P ( J ,  K ) A  C[J, H] with u ( 0 ) =  Uo such that 

T 

1 IIv(O)- UOII2H, V v e W P ( J ,  K).  (2.4) ~(atv - f ,  u - V)x* • + r u) <~ 
0 

These problems are related. In the following we show the equivalence of (P), (P1), and 
(P2) under reasonable assumptions. 

LEMMA 2.3. - The problems (P) and (P1) are equivalent. 

PROOF. - Let u e WoP(J, K) solve (P) and let v ~ LP(J,  K) arbitrarily. Then a.e. on J 
we can plug in y = v(t) e K  and integrate a nonnegative L l ( j )  function to obtain that u 
also solves (P1). - -  Vice versa, for any y �9 K, to e J, ~ > 0 with (to - s, to + s) r J, 
set 

y i f t e ( t o - e ,  to+e); 

v( t ) = u( t ) otherwise. 

Then y e L P ( J ,  K) and for a solution u of (P1), we have 

t0-bE 

f [ (u ' ( t )  - f ( t ) ,  y - u(t))x,•  cp(u(t), y)] dt >t O. 
to-E 

Division by 2 ~ and letting ~--* 0 shows that u satisfies (2.2) except some null set, 
since by assumption the integrand is a L I( j )  function and thus the Lebesgue differen- 
tiation theorem (see e.g. [20], (18.4)) applies. Using the separability of the graph 
{(y, s): y e K, s = ~(u(t), y)} as a subspace of the separable metric space X • R we can 
get rid (similarly as in [7], Appendice I) of the dependence of the null set on y e K. Thus 
we conclude that u solves (P). �9 

In addition, we need a mild continuity assumption on 9 with respect to the first 
variable. 

DEFINITION 2.2. - A function 9: X • X - * R  is called hemicontinuous, if for any 
x, y, z e X there holds 

lim sup r + az, y) ~< ~(x, y).  
a--*0 + 

Thus hemicontinuity means upper semicontinuity of ~ with respect to the first variable 
on one dimensional subspaces only. 

REMARK. - By the condition (2.1), the integral function q) inherits hemicontinuity 
from 9. Indeed, let u, v, w e W P ( J ;  X,  X*). Then wo := u + aw-->u for a - * 0  +. 
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Therefore it suffices to estimate 

lim inf{ Co[llwoll p + IIv - Woll p ] - q)(Wo, v) } = 
o--)0 + 

T 

= aim inf ~ {Co[llWo(t)llPx + II(v-  Wo)(t)[l~]- cf(u(t) + aw(t),  v ( t ) )}  dt 
o-'+0 + 

0 

in virtue of Fatou's lemma, since the integrand {... } is nonnegative and is in L 1 (j), by 

T 

I> ~lim inf {Co[llWo(t)ll~ + II(v - wo)(t)ll~] - cf(u(t) + aw(t),  v(t))} dt 
J o--)0 + 

0 

Co[HUll p + IIv - ull p] - ~ ( u ,  v ) .  

Thus we obtain hemicontinuity of O. �9 

Comparing (P1) and (P2) we see that in (P1), (weak) dffferentiability in time is re- 
quired for the solution function u, whereas in (P2), (weak) differentiability in time is 
only needed for the test function v. This leads to different solution spaces and test 
spaces. Nevertheless, we have the following result. 

LEMMA 2.2. 

a) I f  u solves (P1), then u solves (P2), too. 

b) Suppose that q) is hemicontinuous.  Let  u be a solution of  (P2) such that the weak 
derivative ~t u ~ L p' (J, X *  ). Then u ~ W~ (J, K) and there holds 

T 

f ( ~ t u - - f ,  v - u ) x * •  + q)(u, v) I>0, Y v e  W~(J ,  ]~). 
0 

PROOF. - To verify part a) let u be a solution of (P1) and let v ~ WP(J ,  K) arbitrarily. 
By monotonicity, q)(u, v) + ~b(v, u) ~< 0. Hence by (2.3) 

T T T 

v-u)x.•  v -u )d t  § v - u ) d t .  
0 0 0 

T 

Thus it is enough to estimate [(e ', e) dt below for e := v - u. On the other hand, it fol- 

lows from integration by part~ (see [11], Chapter 18, Section 1, Theorem 2 for the case 
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p = 2; [13], Satz 1.17 for the general case) that  

T 

f ( e ' ,  e)x.• = 1 {lle(T)ll -Ile(0)ll } I> -  lle(0)ll , 
0 

where e(0) = v ( 0 ) -  Uo. This proves part  a). 

To verify part  b) let u be a solution of (P2) with u '  eLP ' (J ,  X*).  Thus immediately 
u �9 W~(J, K). Fix arbitrarily v �9 W~(J, K) and a � 9  (0, 1]. Then wo := av + (1 - r  �9 
�9 W~(J, K), and by (2.4), 

T T 

O(wo, u)<~ ](w" - f ,  w o - u ) x . •  = a ~(u' + a(v' - u ' )  - f , v -  u)x .•  . 
0 0 

Since O inherits convexity in its second argument  from ~, we have 

0 = q)(Wo, wo) <~ acP(wo, v) + (1 - a) r u ) ,  

l m a  
-r v) <<. - - r  u). 

a 

hence 

Therefore we conclude that  for a--* 0 + 

T 

lira i n f -  r v) <<. ~(u'  - f ,  v -  U)x.•  
a - * 0 +  J 

0 

Since by assumption �9 is hemicontinuous, we arrive at 

T 

- r  v) <. ~(u' - f ,  v - u ) x . •  
0 

what concludes the proof of part  b). �9 

To return from (P2) to (P1) completely, we have to be more precise about the func- 
tion ~. We decompose r as follows: 

(.) cp(y, z) = ~O(z) - ~f(y) + ~(y,  z) for all y ,  z e X .  

where ~2: X- - )R  is convex and lower semicontinuous (can be more generally a proper 
extended real function) and ~ has the same properties as ~0 as described above. By the 
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appropriate growth condition (2.1), time integration leads to the associated func- 
tions 

T 

W(v) = ~ ~p(v(t) ) dt , 
o 

T 

"~(v, w) = f ~ (v(t), w(t)) d t .  
o 

In addition to the requirements on ~ given above, being in force for ~ now, we need 
continuity of �9 with respect to the second variable, what follows from the continuity of 
~(y,  .) for all y � 9  and from the appropriate growth assumption (2.1). 

Without any restriction of generality, we can assume that yJ >t 0, hence W ~> 0. In- 
deed, by the strong separation theorem (consider e.g. (u0, ~ ( u 0 ) -  1) which does not 
belong to the closed convex epigraph set of ~2) there exist xo* � 9  r e  R such 
that 

~(y) := ~p(y) - (x~, y ) - r > ~ O ,  Y y � 9  

Hence we can decompose 

q~(y, z) = ~(y) - ~(z) + [~(y, z) + (Xo*, y - z)], 

with ~ nonnegative as claimed. 
Now we can state 

LEMMA 2.6. - Let u be a solution of(P2) such that ~t u �9 LP' (J, X*). Suppose that in 
the decomposition (.), q)(u, .) is continuous on LP(J,  X). Then u solves (P1). 

PROOF. - We adopt a construction due to Naumann ([30] pp. 36-37, 39). For any v �9 
L P(J, K) consider 

t if v~(t) = exp [ - t / e ]  Uo + - exp [(s - t)/s] v(s) ds ,  
e 

o 

t E J ,  e > 0 .  

Because of X c H c X *  continuously and p>~2, v�9 (J, X*), and hence v~�9 
�9 WP(J; X,  X*)  with v~(0)= uo �9  We split for t � 9  

v~(t) = exp[ - t / s]  Uo + {1 - e x p [ - t / s ] }  ~ ( t ) ,  

t 

~( t )  - 1 1 ~exp[s/e] v(s) ds .  
e exp [t/e] - 1 

o 

By an indirect argument using the separation theorem, ~ ( t ) � 9  for any t � 9  Thus 
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v~ ~ W~(J ,  K). Therefore  by Lemma 2.5, we have 

(2.5) 
T 

O(u,  v~) + ~(u 
0 

' - f ,  v ~ - u } x . •  >I0, ( re  > 0) ,  

where 

r  v~) = ~(v~) - ~ ( u )  + r  v~). 

Since v~--~v strongly in LP(J,  X) for s--e0 (see Footnote 11 [30], p. 36) we only 
have to investigate the limit behaviour of ~Y(v~) in the following. By convexity of % we 
have for fixed t e J 

~p(v~(t)) ~ exp[  - t /e]  ~P(uo) + {1 - exp[  - t / e ]}  ~p(~( t ) ) .  

To estimate the latter t e rm substitute for 0 ~< s ~< t 

1 1 
r = r(s) := exp [(s - t)/s] - exp [s/e] 

1 - exp [ - t/s] exp [t/s] - 1 

and vice versa  

s = s(r) = slog [ r (exp  [t/e] - 1)] 

and write with ro := frO), r 1 := r(t)  

r l  

~ ( t )  = I v ( s ( r ) ) d r .  
ro 

Note that  r l - t o  = 1 and that  the set {[v(s(r)),  ~p(v(s(r)))]: ro<<.r<~rl} is con- 
tained in e p i p  = {[x, a ] e X x  R: ~p(x)~<a}, the epigraph of p which is closed and 
convex. Hence by Jensen's  inequality 

~ v(s(r))  dr ~ ~o(v(s(r))) dr .  
ro 

Thus we conclude 

t 

1 [ exp [ ( s  - t)/s] v2(v(s))ds. ~f(v~(t) ) <~ exp[  - t /e]  ~p(uo) + -~ 6 

Since ~f I> 0, time integration yields 

T T ' II ~(v~) ~< s~p(Uo) + -- exp [(s - t)/e] ~fl(v(s))dt ds <~ e~p(Uo) + W(v). 
0 s 

This estimate and (2.5) entail in the limit s - - )0  that  finally u satisfies (2.3). Hence u 
solves (P1) as claimed. �9 
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Our next result concerns uniqueness. 

LEMMA 2.7. - There exists at most  one solution to (P1). 

PROOF. - Let ui, u2 be two solutions to (P1). Using the index j modulus two We ob- 
tain from the respective inequality in (P1) by plugging in v(t) = u s +l(t)  on [0, t], v(t) = 
= us(t) on (t, T] 

t t 

o <- ~(uj - f ,  uj .1 - uj )x . •  + ~ ~(uj(t), us ~ , ( t ) ) d t .  
0 0 

Adding up these inequalities for j = 1 and j = 2 leads to 

t t 

0 ~ ] ( U  1' - -  U2 t , U 2 - -  U l )X*  •  + f[~(u,( t ) ,  u 2 ( t ) )  + q~(u2(t), u l ( t ) ) ]  dt  

0 o 

t 

<~ f ( e ' ,  - e ) x . •  
0 

by monotonicity, where e := U l - u 2  on J. Thus by integration by parts, 

211e(t)ll~ - l l le(o)l l~ ~ o .  

Since e ( 0 ) =  0, we arrive at e = 0. �9 

C O N S E Q U E N C E .  - By the equivalence of the problems (P), (P1) and (P2) under the 
stated assumptions in Lemma 2.5 and in Lemma 2.6, also uniqueness for (P) and (P2) 
holds. 

To conclude this section we admit the nonlinear functional ~ to depend on time, too. 
We show how this more general evolution problem can be reduced to the problem given 
above by increasing the dimension of the problem. 

Let ~: J • X • X--~ R be given (under analogous assumptions as above). Extending 
the problem (P) we now seek u ~ WoP(J, K)  that satisfies for almost all t e J and for all 
y e K  

(u  ' (t) - f ( t ) ,  y -  u( t ) )x .  • + q~(t, u(t), y)>I O . 

The classical transformation (see e.g. [3] section 6.3, p. 300) 

[ t l = [ t l ( v )  ~ _  d t - 1  
~uJ ~u] ' dr 

leads to the equivalent problem: Find (t, u)  e WP(J ,  R • K)  with (t(0), u(0))  = (0, Uo) 
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such that  for almost all r e J and for all (s, y) e R x K 

(it(v) - f (v) ,  y - u(v) }x*• ( t(v) - 1, s - t(v) ) + O((t, u) (v) , ( s ,  y)  ) >~ O, 

where q~((t, x), (s, y ) )  := r  x, y). In this way we arrive at  a problem of the form (P), 
now in the product  space R x X. Note that  ~ inherits structural  propert ies  from ~, in 
particular q~((t, x) , ( t ,  x ) ) =  ~o(t, x, x) = 0, ~((t ,  x), .) is convex and so on. 

However, by this trick, problems with time dependent  obstacles, that  is K = K(t),  
cannot be simplified. 

3. - T h e  d i s c r e t i z a t i o n  t h e o r y .  

In this section we present  the theory of full space time discretization for the evolm 
tion problem described above. Here  we investigate in detail a backward Eule r  scheme 
for t ime discretization, For  space discretization we employ the Galerkin method and 
admit nonconforming approximation of unilateral constraints using Glowinski conver- 
gence of convex sets. 

3.1. Time discretization. - In this preliminary subsection we concentrate on time dis- 
cretization using a backward Euler  scheme. In particular, we prove useful propert ies  of 
the finite difference operator  and other  approximation operators.  

Le t  us introduce a sequence { z n }~ ~ N of (not necessarily equidistant) partitions of 
the time interval J = [0, T] such that  z~  = (t ~ . . . ,  tN~), where 0 = t ~ < t 1 < ... < t N~ = 
= T. We consider a regular sequence of partitions, in the sense that  

k~ := max { t J -  t j - 1 1 j =  l ,  . . . ,  N~} 

approaches zero for n--~ ~ and that  there  exists a constant v0 > 0 independent  of n 
such that  

min{ t j  - t  J -1  IJ = 1, . . . ,  N~} ~> yoke. 

To describe the different approximations used, let V be an arb i t rary  reflexive Ba- 
nach space (or a closed convex subset thereof), where later  on, as the case may be, V = 
= X, V = H,  V = X* or V = K. The partitions of [ 0, T] give rise to the space of V-valued 
piecewise constant functions subordinate to z n, defined by 

5'0n(J, I0 := {v~L ~(J,V) I v I-,(t~-I ,onj=vjeV,~l ( j =  1,.. . ,Nn)}, 

where for any v e 5 '~  V), v~ denotes the constant value of v on the par t  interval 
(t j - l ,  tJ]. Thus, for any fixed a e V ,  the finite difference operator  dan: 8~~ V)--* 
---) tP ~ (J ,  V) is defined in a linear space V by 

V j - - V j - 1  

. a " n  nJ  (d~v)/ .=d~vct~- ,  t,~ := t J _ t j _  1 ( j =  1, . . . ,  Nn) ,  
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where v0 = v(0) := a. Moreover, for any V-valued function v defined throughout J, e.g. 
v e C[J, V], we construct a piecewise constant interpolation ) t~  8~~ V) by 

2~ t~] := v(t j )  ( j  = 1 . . . .  , N,~) 

and the piecewise linear interpolation ~lnV ~ L ~ (J,  V) by 

, s - t ~ - '  v(td) + 
,~nVl(t~-i, tJ](8) : =  t J _ t J _ l  

t j -  s 

t ~ - t ~ - ~  
v(td -1) 0 =  1, . . . ,  N~),  

what gives rise to the class tP~[J, V] of V-valued piecewise linear continuous functions 
on J. Finally we introduce the mean value operator t~n: L I ( J ,  V)--~ g,o(j,  V) by 

t~ 
1 f 

l~nVl(t~-l,t~] := t J _ t j _  1 J v(8) d8 
tin-1 

( j =  1, ..., Nn). 

For these approximation operators we have the following results. 

LEMMA 3.1.  - Suppose ( V , ( . , . ) , I .  [) is a Hilbert space. Then the mapping  
dan: LP~ V)--> LP~ V) is uni formly  monotone and Lipschitz  continuous. 

PROOF. - Let u, v e ~ o ( j ,  V) and w : = u - v .  Then for any j =  1, . . . ,  Nn we 
have 

t~ 

~(d~nU -- a~nV, 
J J 

u - v } d t  = i = l E ( W i - W i - l '  wi) ~-i~=1 {(wi' wi) - (Wi-l '  wi)} 

J 
E {lw~l ~- lw~l lw~-,l }, 

i = l  

and since AB ~< 1/2A 2 + 1/2B ~ for any reals A, B and by Wo = 0 

1 ~1 I~ ~} = 1 i~" ~ {lw~ -lw~-~l ~lu~-v~ 

Thus in particular 

(3.1) f ( d ~ u  - 5av,  1 12 . u - v} dt ~ -~ [UN, -- VNn 

This proves uniform monotonicity. 
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To verify Lipschitz continuity, let u, v, w be as above. Then 

T T 

f i S ~ u -  5~vl2dt  = f i S ~  ~dt 
0 0 

by the parallelogram rule, 

Hence 

N~ 1 
= Z i w ~- w j - ~  i 2, 

j = l  t ~ - t ~  -1 

4 N. -< ~ ~ i~ 12 

T 

4 f ]wl2dt " 
~< (~o k~)-----~o 

+ Iw~-t 12} 

i i~ lu  - ~ v i i ~ 2 ( j , .  -< ~ k .  iiu - vii~2(j, v ) ,  

2 
where the Lipschitz constant - -  depends on n. �9 

vokn 

LEMMA 3.2. 

a) Let v e C[J, V]. Then for any 1 <<. r<~ :r and for  any i = O, 1 we have ~ v - - > v  
in L~(J ,  V) as n--> ~ .  

b) Suppose, v e e [ J ,  V] is absolutely continuous such that v ' e L r ( J ,  V ) f o r  
some 1 <.r< ~.  Then with a = v ( 0 ) ,  5 ~ v - - ) v '  in L~(J ,  V) as n--)  ~ .  

PROOF. - To prove part a) note that by assumption, v is continuous, hence on 
i ~--*0 for J = [0, T] uniformly continuous. Therefore by construction, t l v -  2~VtlL~(J, 

n--~ ~.  This proves 2~v--->v in L~(J ,  V) (n--> ~ )  for any 1 ~<r~ < ~.  

Part b) follows from the subsequent Lemma 3.3 applied to the Bochner integra- 
ble v '. �9 

LEMMA 3.3. -- Let  l ~ < r <  ~. Then the linear operators / ~ : L ~ ( J , V ) - - ~  
--~ L ~ ( J , V)(n~N)  are uniformly bounded with norm 1 and tt ~ v --> v in L ~ ( J , V) as 
n o  oo for  any veLr(J, V). 
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PROOF. - 1) To prove the uniform boundedness of the operators tt~ we estimate 

T N, t~ 

f f j=l  t J - - t j _ ~  v(s)  ds 
0 t~-I 

from above in the following way: 

J=, ( t J _ t j _ , y _  , f v(s)  j~=l ( t J - t J - ' y  -1 Hv(s)lldsl ' 
t4-, Lt~ -, j 

which in the case r = 1 equals IHILI(j, ~, whereas for r > 1 we continue to est imate by 
the classical HSlder inequality (1 / r  + 1/r '  = 1), 

N~ 

= Ilvll tr( j ,  . .  

Since/~nv = v for any constant function v, I~11 = 1 follows. 

2) In the case r = 1 we directly prove the claimed convergence s ta tement  for any 
step function v, what suffices in view of density and of the uniform boundedness of the 

operators / ~ .  Thus let v = ~ vzz1t be a given left-continuous step function, where 

m �9 N is fLxed and Z It are the characteristic functions of the intervals It for l = 1 . . . .  , m 
that  give rise to a fLxed partitioning of J.  Since kn--~0, for large enough n �9 N any 
subinterval ( t~ -  1), t j ]  of z~  contains at most one jump of v. This means that  for any 
l � 9  there  exist unique j � 9  such that  for 
t � 9  (t j - l ,  t j ] 

v( t )  = I v~ if t - t j -  ~ <. a( t  j - t j -  ~) ; 

[ vl+l i f t - t J - l > a ( t J - t J - 1 ) .  

Hence ( ~ v ) ( t )  = avl + (1 - a)  vz+l for t e  (t j - l ,  t j ]  and thus 

t~ 

I I~u~v - vllds = 2a(1  - a)( t  j - tJ-~)llvz+~ - vtll 

t j - t  

1 
-~(t  j -- t J -  1)llVl+ 1 -- vlH. 
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This gives 

m-1 
S ]~ /nv-v l ld8  ~ Z k  Z l]Vl+l - vl][~O 2 nt=l 

J 

(n--> or 

3) In contrast, the remaining case 1 < r < 00 needs several steps. 

i) Let  V= R, v >I 0. Then t tnv I> 0 and the conclusion follows from density and 
the above approximation argument, which easily modifies to a nonnegative step func- 
tion in L~(J, R), or from the reasoning in [19, exercise (7), p. 112]. 

ii) Let  V = R, but no sign restriction on v. Then decompose v = v § - v - ,  tt ~ v = 
=/~ n v + - tt ~ v - and apply the preceding step. 

iii) Let  V be an arbitrary reflexive Banach space. Fix some v * � 9  V* and some 
subinterval I of J. Then for w = v * X i we have that  

(/.tnV , W)---- S((~/nV)(t), V*)VxV.dt -= ~/./n((V, V*)v• 
I I 

--> [(v(t), v * )v • v. dt = (v, w) (n--> :r ), 
I 

since by the preceding step ttn((v, v*))--)(v ,  v*) (n-*  ~ )  in L I ( J ) e L f ( J ) .  Hence 
( i t ,v ,  w)-->(v, w) ( n o  ~)  for any step function w. In view of the uniform bounded- 
ness o f / ~  on Lr(J ,  V) and the density of the step functions in L~'(J, V*)(1/r + 1/r' = 
= 1 ) we conclude that  (/~ ~ v, w) --* (v, w) for any w �9 L ~'(J, V* ). Thus weak convergence 
in L~(J, V) follows. 

iv) In view of weak convergence and weak lower semicontinuity of the norm, the 
estimate in part  1) of the proof provides convergence of the L r(J, V) norm of tt ~ v to- 
wards the Lr(J,  V) norm of v for n--* r162 what together with weak convergence yields 
the claimed strong convergence. �9 

3.2. Space time discretization. - In this section, we employ the Galerkin procedure to 
discretize with respect to the space variable x, in addition, and thus to arrive at finite 
dimensional, hence computable approximate problems: In particular, we admit noncon- 
forming approximations of the subset K. 

To describe the Galerkin procedure~ let a sequence {Xv}wN of finite dimensional 

subspaces of X be given such that  X = U Xv with respect to ]]. ]ix holds. Likewise we 
yeN 

have a sequence {H~}.~N of finite dimensional subspaces of H with X~r Hv (not neces- 

sarily H .  -- X~) such that  H = U Hv with respect to ]]. ]IH holds. Fur thermore  we have a 
yen 

sequence {K~}~EN of closed convex nonempty subsets of Xv. W e  do not require that  K~ 
is contained in K (nonconforming approximation). Instead we only assume that  A Kv n 

n K ~ 0 and follow the approximation procedure of Glowinski [14, p. 9] using the follow- 
ing set convergence concept. 



378 C. CARSTENSEN - J. GWINNER: A theory of discretization, etc. 

DEFINITION 3.4. - We say that K~ G-converges to K(v ~ ~ ) (shortly K~-~ K), if the 

following two conditions are satisfied. 

(G1) If for some subsequence {Vi}iEN, Vi 1' ~ (as i---> ~),  x ~ e K ~ ,  xv~----~x (weak 
convergence in X) as i--* ~ ,  then x �9 K. 

(G2) There exists a subset M dense in K and for all v e N ,  mappings rv: M--~X~ with 
the property that, for each z e M, r~ z--* z (strong convergence in X) as v -~  
and r~zeK~ for all v>>-Vo(Z) for some v0(z) ~N.  

REMARKS. - If M coincides with K, then G-convergence defined above reduces to 
Mosco-convergence: 

w - lim sup K~ c K r s - lim inf K~, 

introduced by Mosco [29] and investigated independently by Stummel [34]. Actually, 
both notions are equivalent, as Stummel [34, p. 11/12] already showed; see also the sub- 
sequent Lemma 3.7. There is a great variety in concepts of set convergence and recent 
research in this subject, see the paper of Sonntag and Zalinescu [33] for a survey and 
classification. Here we stick to G-convergence since this concept provides easily verifi- 
able conditions in finite difference and finite element approximations using well known 
interpolation results in Sobolev spaces. 

Concerning the initial datum Uo e K of our problem, we let approximations Uo, ~ ~ K, 
be given such that Uo, ~-->Uo in H(v---~ ~ ). In view of the subsequent Lemma 3.7, such 
approximations Uo, ~ E Kv exist. For the right hand side f, we let approximations fn, ~ 
�9 5'~ Hv) be given, such that fn ~---~fin L I ( j ,  H) A LP'(J,  X*)(n,  v---~ ~);  such ap- 
proximations exist for any f in L i ( j ,  H ) A  L p' (J,  X*) as shown later in Section 3.3. 
Similary as in Section 3.1, fJ, ~ e H ~ c X *  will denote the constant value of f , ,  ~ on the 
part interval (t j -  1, t j]  ( j  = 1, ..., Nn). 

Thus we are led to the subsequent approximate problem for any n, v e N: 

(Pn, v) F i n d q , , , = { q J ~ : j = l , . . . , N n } ,  q j : = q J , ~ e K ~ s u c h t h a t  for a l l y e K ~  

q)(qj, y )+ <(5~,~qn, ~)j - fJ, ~, y -  qj>x.• O . 

Let us first show the solvability of the approximate problem (P~, v). 

LEMMA 3.5. - For any n, v ~ N, (P~, v) admits a unique solution. 

PROOF. - By definition of the finite difference operator 5 ~, the variational inequality 
in (P~, v) writes, for any step j = 1, ..., N , ,  

(3.2) ( tJ-tJ-X)q~(qj ,  Y)+(qj ,  Y - q j ) > ~ < ( t J - t J - 1 ) f J ,  v + q j - l , y - q j )  (VyeKv) .  

While the right hand side is (within the step j )  a fLxed linear functional applied to 
the argument y - qj, the left hand side defines a uniformly monotone-convex function. 
Thus by well-known monotonicity arguments, which in the general case of mono- 
tone-convex functions can be found in [32], solutions qjeKv exist for all steps 
j = l ,  . . . ,Nn .  
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To prove uniqueness, let P3 be another solution in step j and consider ej := pj - qj. 
We proceed by induction on j, plug in y = pj, respectively y = qj in the variational in- 
equalities for qj, pj respectively, add up, and by monotonicity of ~ obtain 

-Ilejll  = - <ej, ej>x, x O 

to conclude ej = O. 
Starting from the discrete values qJ, ~ = qj with the initial value qO, 

construct the piecewise constant approximation (,,brick>> function) 
= u0, v, we can 

=~o ~ . j  ~.N~ 5'~ K~) where ~ ,~(0)  qO, -qn, v . ~ n t ~ n ,  v j 3 = l  E -'~ 

and the piecewise linear approximation (,<hat- function) 

q~,v = ;t~{q j, ~}~2o e t ~ [ J ,  K~]. 

Note that contrary to [15], we have 

Nn 
~ . ~ =  • qJ, vz j ,  

j = l  

where X j denotes the characteristic function of the interval ]t j -  1, t j ] ( j  = 1, ..., N~). 
Although the approximations ~ ,  ~ and ~ ,  ~ being different, they shall give rise to the 
same limit; more precisely, we shall show in the subsequent section that 

lim llq~,~ - q~, ~llL2(J,H)= O. 
n, y--~ oo 

It is obvious from integration that the discrete variational inequality in (Pn, v) is equiva- 
lent to 

T 

O ( ~ ,  ~, v) + f ( 5 ~ .  ~qn,~ - f ,  v - -~, ~) dt >I 0 
0 

(Vv~ ~,o(j, g~)), 

which is the counterpart in discretization to the variational inequality in (P1) in the con- 
tinuous case. 

Similarly to the relaxed problem (P2) in the continuous case, we formulate a relax- 
ation of (P~, v) that is needed in the convergence analysis to follow. 

LEMMA 3.6. - Let  ~ ,  ~ be the solution of  (P~, v). Then for  any  v e s o ( j ,  K~) wi th  
Vo = v( O ), there hold the inequali t ies 

(3.3) 
T 

O(q~, v, v) + f(6~n~ - f ,  
0 

1 
v - ~ , ~  ) dt >I - -~ IIv0 - u0,~ II~, 

(3.4) 
T 1 

O(v,  ~ ,  v) + f ( c ~  ~ - f ,  q~,v - v) dt <~ ~llvo - Uo, vlt~. 
0 
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PROOF. - Similar to [15, p. 423/424] we use the simple relation (omitting the suffLx H 
in the Hilbert space norm II. IIH) 

<a - b, a) = l[[a[[2-l[[b[[2 + 1Ha - bH2. 

Nn 
Hence we have the identity for v = Y~ v j z { ,  qj := q~, ~ ( j  = 1, . . . ,  Nn)  

j=l  
( vj - vj _ l , vj - qj > - < qj - qj _ l , vj - qj ) = 

= 21Iv j -  qjll 2 -  l l lv j_  1 -- qj_lll 2-4- l l l (v  j -  Vj_I)-- (qj-- qj-1)[[ 2. 

By division by t j - t j -  1, we obtain for the solution qj of (Pn, ~), for any j = 1, . . . ,  N~ 
with ~ :=f~, ~ 

q~(q~, v~) + ((~ ~n~ --fj, Vj -- qj) I> 

1 
2(tJ - t J - 1 )  { livj - qj  lr 2 - I [ V j _ l  - qj  _ 1112 + [l(v/- v j  _ 1) - ( q j  - q j  - 1 )  lr~ } . 

Integration over ]t j - l ,  t j ] and relaxation lead to 

t~ 

f { ~ ( q , v )  ( 5 ~ ~  q)} + dt 

t j-1 

1 1 
- I l v j -  qjl l  2 - livj 1 - q j  , II 2 
2 

Hence by summation on j = 1, . . . ,  N~, we obtain (3.3). Finally we use monotonicity 
to arrive at (3.4). �9 

3.3. A basic dens i t y  L e m m a .  - In this subsection we provide the basic tool in our con- 
vergence analysis. This density lemma is analogous to Lemma 3.2 in [15, p. 418], which 
covers only the case p = 2 and is stated there without proof. Our result  also extends the 
analogous Lemma 1.2 in [16]; however, our proof is different from that  in [16], here we 
use an approximation argument  due to Stummel [34]. 

LEMMA 3.7. - F o r  a n y  g i ven  v e W P ( J ,  K), there ex is t  a subsequence  {$t'nv}veN of 
part i t ions ,  sequences  {a~}~NCX and {vv}~NCL ~(J ,  X )  such  that  

a ~ e K ~ ( v e N ) ,  a~---~a:=v(O) in H(v---)  ~ ) ;  

v ~ e g ) ~  v v - o v  in L P ( J , X )  (v---) ~ ) ;  

5~v~-- -~v '  in L P ' ( J ,  X * )  (v--> ~ ) .  
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PROOF. - Let v e WP(J ,  K) be given, let a := v(0). In virtue of Lemma 3.2, both 
, ~ ~ 1 4 9 1 7 6  K) and )L~v�9 5'~[J, K] converge strongly to v in LP(J ,  X), moreover 
5~v ~ 0 . 1 5, , ,~.v a t , ~ v  = t t , ,~ tv- - -~tv  (strongly) in LP' (J,  X*) .  In the follow- ----(~n~nV---- = 

ing we construct different approximations to the values v(t~) ( j  = 1, . . . ,  Nn) leading si- 
multaneously to a piecewise constant approximation (as needed by the claim of the lem- 
ma) and a piecewise linear approximation to v, where differentiating the latter provides 
an approximation to c3tv. The special initial value v(O), moreover, will be approximated 
in H. 

To begin with, fix lo �9 N such that max { T, T 1/p' } < 2/o - 8. By the convergence prop- 
erties stated above, for any 1 � 9  we find a partition z-z of J = [0, T] such that )~~ e 
�9 t~~ K) and )~l~ve 5'~[J, K] satisfy 

1 0 1 
m a x  {llv - x . ,  vll~{~, x), I1~ - x ~, ~11.(~, ~), I1~, v - ~, x ~, v i i . '  (~, ~.) } ~ 2' +--~" 

Since by (G2) M is a dense subset of K c X ,  for the 
=0 ,  1 . . . .  , N . ) ,  we find z J z � 9  ( j = 0 ,  1 . . . .  , N.,) such that 

1 
I Iv(tD - z~,ll~ <~ 2'+~ ' 

values v(t j )  � 9  ( j =  

and in view of X c H c X *  and recalling k.--*0 such that also 

vk m 
1 i i v ( t D _ z ~ , l l x . <  2 '+~+ '  IIv(0 ) - z2, IIH --< 2,---;Z, 

70 l~J 1Nnl 5'~ M) and for w,,~ . -  A, nt~Znt~j= 0 e CO Thus for w,, t :=,,L, ntlZ, nl.tj=le A ._ '~1 t j ~N.,t ,~l t ( j ,  M), 
where co M denotes the convex hull of M, we obtain 

1 
max{ll~~ I I~%,v-~., l l~|  ~ 2,+-~, 

hence 

max {11~~ - w, , l l~(~.  :o, 
T 1 

I I x ~ , v - ~ , l l ~ . ( ~ , ~ }  ~< 2 - ~  < 2 '+ - -~"  

Furthermore, we estimate 

Nnl 
Ila,~,,, ~ "' E I I ( z ~ ' - z 4 ' - i ) - ( v ( t D - v ( W i ) ) l l ~ ' *  

- ate. ~,vllL~'(j, x*) = 
j = 1 ( t  j ,  - t~ , -  1)p' 

using (tJ~- tJ~ -1) I> vk~, from above by (1/2t+/oF' T, hence 

T lip' 1 
1 

I l a , ~ , -  a ,Z , , v l l ~ , . ( ~ .~ . )~  ~ < 2,+--- ~ . 

�9 ( t ~ , -  t U  1) 
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Altogether  we obtain approximations Wnt�9176 that satisfy with an~ :-- 
= ~ . , ( o )  = z2,  a ~ , w . ,  = a te . ,  

1 
m a x  { [ J v  - w,,,ll~(~, ~ ,  IIv(o) - %IIH, Ila, v - ~,~,,,11.'(~, ~*)} < 2' + - -~"  

In  the next  approximation step, we use M c s - lim i n f  Kv. Namely  by  (G2), for any  

l � 9  fLxed, for every zJ~ ( j  = 0, 1, .., N=~) there  exist rvzJ~aKv for all v >~ Vo(1) �9  
such tha t  ~ ~ j ---> q j in X as v - +  r162 Then similar as above, we construct  ov~n l  ~ n  I 

0 ~(v) 1 j N~ V(~ ) = ~Ol{rvZJnt}:211_ �9 ~nl(J, K~) and .t = ~nt{'FvZnl}~=O �9 ~)ntl [j, Kv] �9 

Again, we have for v - *  oo 

max{l lv=T w.,llL~(~,x. A(~) - v,,, - +,,,ll~,<.,. x ) }  ~ o ,  

I 1 ~ ) ( o )  - ~ , , , ( 0 ) I I H  ~ 0 ,  

Ila~(~; ) -  a,~,,,ll.,(~, x . ) - ~ o .  

Now in the final step, we adopt  a construction due to S tummel  [34, p. 12], where  in the 
space WP(J, X)cC[J ,  H] A LP'(J, X*)  we use the equivalent norm 

III ~ III:-- max { llvll.(~, ~ ,  IIv(O)IIH, lla~ vli~'(~, X*, } 

and also abbreviate  t e rms  like 

m a x  { l lw . , -  vll~.., ~ ,  II ~,~,(o) - ~(o)I I . ,  l la~,~,-  a~ vll~.,(~, ~.) } 

simply by  IIIw~, - v III, 
Let  Ko = 1 and for each 1 �9 N let K~ �9 N be an index with the p rope r ty  

1 
i Q  > i Q _  l , m a x  { V (v) V (v) ~, - w ~ ,  III - w ~ , + ,  III } -< - -  

' nl+l 2 / + 2  
for all v I> Kz. 

Then for these v I> Kl 

(v) ~ (v) V (v) I[Iv~/+l - vnl III ~ n/+l - -  W~l+l Ill + I[Iw~/+l- viii + IIIv-W~ll[I + I[IWnl--V(V) lllnl < 

1 1 1 1 1 

< 2 - ~ z + 2 - ~ + 2 - ~ + 2 - ~ z < 2 - 7 .  

For  each v �9 N, obviously, there  exists a uniquely determined number  iv := i such tha t  
~(v) �9 5 ~  [ j , .K~ ] are well-defined v (~) tP~ Kv) and ~(v) := "~ K i - l ~ ] 2 < I C i  �9 S ~  : =  n~, E 

for all v �9 N.  
Now let e be an a rb i t ra ry  positive number  and choose 1 �9 N such tha t  22 - z < e. F o r  
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every v >I Xt, we then have for i := iv, x i -x  ~< v < Ki, hence l < i, and 

V (v)  III u (~) - ,~,- (~) III = III vAS ) - vAT ) III < III vA:  ) - vA~- ) , III + �9  + III vA,*2, - ~, III ~< 

1 1 1 e 
< z-~_~ + . - -  + ~ < z-~_l < ~ -  

Finally for all v I> K~, 

III v -  u(v) ]11 ~< IIIv-w~, III + IIIw~,-v~7 ) III + IIIvA7 ) -  u(~) III 

< - -  
1 1 

+-: -=_ + - < ~ .  
2 1 + 2  2t+z 2 

This proves that  u( : )e  G)~(J,  Kv), a: := ~<~)(0) eK~ and 5 ~ u  <~) = ~t ~<~) satisfy the 
desired approximation properties. �9 

REMARK. - The proof shows that  for any given strongly monotone number se- 
quences {nk}kEi, {7)k}keN with nk--) oo, vk-*  oo as k--) oo, there exist n~, for t = vk, 
a(k)eK~k, and v(~k)e t)~~ K~k) that  have the claimed convergence properties. 

Since in Theorem 3.15, the central result  of our discretization theory, we require for 
the approximations fn, v that  fn.~--~f in LP'(J, X*), also in LI(J ,  H), respectively in 
L2( j ,  H), the subsequent addendum is of interest. 

ADDENDUM TO LEMMA 3.7. - Let f e L t ( J ,  H) A L P ' ( J , X  *) for some r e  [1, ~).  
Then there exists a sequence 0ev}vENCL | H) and the subsequence {Z,~}~N of 
Lemma 3.7 can be constructed such that in addition, 

f i e  g'~ H~)(v e N), f~--~f in Lr(J,  H) ALe ' (J ,  X*) (v---> ~ ) .  

PROOF. - According to Lemma 3 . 3 , / ~ f - - ) f  in Lr(J,  H)ALV ' ( J ,  X*) as n - - )~ .  
Fur ther  by construction of the subspaces H~, (v e N), for any z e H there exist z~ e Hv 
such that  z~---*z in H. Since the embedding H c X *  is continuous, it follows that  z~---~z 
also in X*. Now the proof of Lemma 3.7 modifies to construct a subsequence of {/~ n f }  
that  satisfies the claimed convergence properties in addition. �9 

3.4. Stability. - To obtain a priori estimates and thus to prove the desired convergence 
properties, we need additional assumptions on the nonlinear function ~ and on the 
right hand side f. 

Le t  us recall that  there is some Zo e K such that  zo e Kv for all v e N. In view of our 
applications, either simply Zo = 0 in the case of homogeneous obstacles (constraints) or 
we can choose Zo as a large (respectively small) enough constant function, if the given 
obstacle is not homogeneous. Since the function ~ represents the variational form asso- 
ciated to an elliptic differential operator, it is no restriction of generality to assume that  
cf(Zo, ") - 0 and hence by monotonicity, of(., z0) ~< 0. 
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LEMMA 3.8. - Suppose that fn, ~ o f  in L 1 ( j ,  H)  (n, v---> ~ ). Then a n ,  v remains in a 
bounded set of L ~(J,  H), and moreover there is a constant ~ such that for all 
n, y e N  

N~ 
_ j - 1 2  2 IIq~,v qn,~ IIH--< ~. 

j = l  

PROOF. - The choice y = Zo in the variational inequality of (P., ~) and ~(qJ, ~, Zo) ~< 0 
(as discussed above) entail for j = 1, . . . ,  N . ,  qJ : =  q J ,  v - -  Zo  

( ( q J - q j - 1 ) - ( t J - t J - l ~  :J qJ>~o 
v n  i j n ,  v ,  

Using the simple identity (suppressing the suffix H in the Hilbert norm ]1. ]]H) 

( a  - b,  a> = l { l l a l l  2 _ ilbl12 + I la  - all ~} 

provides 

~ {llqJ II ~ - IlqW- * II ~ + IlqJ - qJ- 1112} ~ (t~ - t J-~)<f~, v, qJ>. 

Summation from j = 1 to j = i leads to 

i N n  

II qi ii ~ + 2 II qJ - q J  - '11 ~ -< Iluo, ~ - Zo II 2 + 2 max  ~= II qk II E x(t ~ - t d - 1  )112~, ~ II. 
- -  j = l  - -  - -  = , . . . ,  - -  "= 

Since by assumption, u0 ~--~Uo in H andfn  v-- ) f in  L I ( j ,  H), we conclude from this 
estimate that  maxllq i H, hence Ilqn, v lIL| H)and also ~. IlqJ, ~ - qj.1112 remain bounded 

3 
for n ,  v--) r162 as claimed. �9 

An easy consequence of the boundedness of ~llqd, v - q j l  H} is the following con- 
vergence estimate for qn, ~ -  an ,  v: 3 

Nn 1 Nn 
2 2 2 . Z ( t n  j -  1 _  tDz ilqg-: _ q~, ~J I1~ -< 

k 2  N n  C 2 
n j - 1  v "< T ~xllqn' ~ - q J, I1~, <- ~ kn ~ o .  

Fur ther  to obtain norm boundedness of the approximations qn, v in the , ,energy, 
space LP(J,  X), we can use the coercivity that  results from the uniform monotonicity of 
the functional ~. Thus we have the following result. 
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LEMMA 3.9. - Suppose in addition, that q9 is uniformly monotone, that is, there 
exists a constant c,~ such that 

(3.5) c lly- zll <-< - z )  + y ) } ,  V y ,  z e X .  

Then the approximations "qn, ~ remain bounded in L p (J,  X). 

PROOF. - From the variational inequality in (In, ~), by ~(Zo, -) -- 0 and by (3.5), we 
have for j = 1, . . . ,  N~; qJ, v := q J, ~ - Zo 

cm(t j - t s - ' ~ l l ' i j n  Ill n,v - -  Z011 "< - (t j - t j - ' )  ~o(qJ ~, Zo) < 

~< ((t J -  t J - l )  ~ , ~  - (q J, v -  qj.vl),  qJ, v). 

Hence by summation, 

p 1 

from which by Lemma 3.8 the conclusion follows. �9 

- zoll ,, 

In some applications (see the concluding section on the p-harmonic Signorini prob- 
lem) the hypothesis of uniform monotonicity with respect to the norm [[. [ix is too 
strong. Therefore it is useful to obtain stability also in the semicoercive case as 
follows. 

LEMMA 3.10. - Suppose in addition that in X there is given a seminorm [.] such 
that 

(3.6) 3fl > 0, y > 0 such that [x] + YiiXiIH >I fliiXiix, VX ~ X ,  

and that q~ is uniformly monotone with respect to the seminorm [. ], that is, 

(3.7) 3a  > 0 such that qJ(x, y) + ~0(x, y) <~ - a[x - y]P, Yx ,  y e X .  

Moreover let f~, v---)f in L I(J,  H ) n L  p' (J,  X*).  Then the approximates ~ ,  ~(n, v ~ N) 
are bounded in L p (J, X). 

PROOF. - The proof of Lemma 3.9 has to be modified. Here from the variational in- 
equality in (Pn, v), we have by (3.7) for j = 1, . . . ,  Nn 

a(t j _ tj-1)[q~, v]p <~ (t j j -~ y j _ (qj ,#-1 ,~j ~}H• - t~ )(f~,~, q~,~)x*• _ - _  _ 

Hence by summation till t i, i ~< N~ we obtain as in the proof of Lemma 3.9 

t i t i 

f 1 1 I (3.0) a [g=, ,Fdt+ IIg ,vll , - lluo, -:oll + 
0 0 

where q~, v = qn, v -  Z0E D~~ X). The latter integral can be estimated similarly as in 
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[25, Chap. 2.1.4., p. 163] as follows. We have 

f(f~, ~, q~, v}x* • <~ IIf~, ~ll~',dt . IIq~, ~lI~cdt 
0 0 

using (3.6) and the boundedness of f~, [( (j)1  / 
C 1 I[qn, ~]Pdt + Ilqn, ~ll~dt 

O" 

c1 
a [qn, ~]Pdt + c2(a, p, c 1) -I- -~- 1 + IIq~, ~ll~ dt 
2 - 

0 

by Young's inequality and its special form 2A ~< 1 + A 2. Therefore (3.8) implies 

(3.9) ~[qn, ~]P dt + IIq_ i, ~II2H <~ C8 + C3 IIq~, ~ll~dt �9 
0 

This gives for any t e [0, T] 

IIq~, ~(t)ll~ <<- c4max (1, jllqn, vll~ds) 2/p, 

hence 

t 

IIq,, ~(t)ll~ <~ c5 + c5 ~ IIq~,v II~ds . 
0 

Therefore by Gronwall's inequality the boundedness of IIq~, v IIH in L | (J) follows, what 
by (3.9) implies the boundedness of [q~, v] in LP(J). Altogether by (3.6) we obtain the 
stability result. �9 

Finally in this section, we want to refine the boundedness result of Lemma 3.8 and 
obtain the boundedness of the difference quotients. To achieve this goal, we need fur- 
ther assumptions. One way is by imposing higher regularity in the initial data Uo - an 
argument of this kind is given by Wei [35] in his study of the p-harmonic parabolic 
problem in the simpler case of linear time-independent boundary conditions. Instead, 
similar to the work of Lin and Barrett  (see e.g. [27]), we exploit the variational struc- 
ture in our application to the p-harmonic Siguorini parabolic problem. Therefore we 
take here for granted that our function ~ arises from the subgradient operator F of a 
continuous convex function ~ X---~ R (see Example 2.2); in other words, we assume the 
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existence of a continuous convex potential ~ Then convex analysis tells us the simple 
inequality 

(3.10) of(x, y) + 5~(x) ~< 5~(y) for all x, y e X .  

There is no restriction of generality to assume in addition that  5 ~ is nonnegative. 
Thus we arrive at the following stability result. 

LEMMA 3.11. - Suppose uo, v---+Uo(V---+ ~ ) in X and f~, : -+ f  in L2(J,  H)(n ,  v---+ +). 
Moreover suppose that there exists a convex continuous potential ~ X--+ R+ for the 
function q). Then 3tqn,: and 5~(qJ:) are bounded in L2(J, H), respectively in R+. 

PROOF. - We test  the j - th  discrete variational inequality in (P~, v) by qn/;: 1 e K:  for 
j = 1, . . . ,  Nn, sum from j = 1 to j = m(m = 1, . . . ,  N~), insert  qO, ~ = Uo, ~, and derive 
from (3.10) the telescoping sum estimate 

~ ~(qJ, ~,_ . an, ~ ) ~ J - 1  ~ {~(qj-vl), - 5V(qJ, ~) } = ~(Uo, v) - ~(qn, v)m o 

/ = 1  j = l  

Thus when writing 

, n ' t i n ,  v l ( t ~ -  , t ~ )  

we obtain for any m = 1, . . . ,  N~ 

m 

gin, 3 - 1 
- q n ,  

t J _ t J - 1  
(3"=1, . . . ,Nn)  , 

m 

J(qn,:)+m ~_,(t j -- t~-l)ll(at~l,,v)j[[2H<~5~(Uo, v)+ Z ( t  j --tnl-1 )(f~,:,(3tq,,v)j),~ 
j = l  j = l  

hence 

2 2 2 ][Otqn, v[[L (J ,H)  ~ C( ~: (Uo) ,  tlf]]22(g,H)), s u p  5~(qJ,:) ~< c (5~(u0) ,  ]]f[IL2<J,H)) . 
j=O . . . . .  N n 

From 
result. 

Lemma 3.8 and Lemma 3.11 we conclude the following compactness 

COROLLARY 3.12. - Under the assumptions of Lemma 3.11 the sequence {qn, v},~, yeN 
is relatively compact in C[J, H]. 

PROOF. - Again we suppress the sUffLX H in the Hilbert space norm [[. [[H. By conti- 
nuity of the Bochner integral and by HSlder's inequality we obtain f o r j  = 1, . . . ,  Nn and 
for any tl, t2 ~ (t j -  1, t j],  

I[~n,:(te) -~n,:(tl)[[ = 3 t~ , :d t  <- Ilst~,:lldt <<- [ tz-  t~ I liS:q~,vllL (+,H). 
t 1 t 

Hence by Lemma 3.11, {qn, :} is equicontinuous in C[J, H]. Fur ther  by Lemma 3.8, 
{qn, . } is bounded in C[J, H]. Thus in virtue of the general Arzela-Ascoli-Bourbaki the- 
orem, {qn, ~} is relatively compact. �9 
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3.5�9 Feasibility. - In this subsection we deal with another feature of the unilateral con- 
straint in our evolution problem and its full space time discretization. We investigate 
whether the approximation process {q~, v}~,~eN admits limit points that are feasible, 
i.e. that belong to K almost everywhere on J. We endeavour to obtain such a feasibility 
result already with weak convergence in LP(J, X) to include the semicoercive case. 
Therefore we have to be somewhat more precise about the unilateral constraint. 

Let us suppose that K = g + C, K~ = g~ + C~ (v e N), where Xv ~ g~--* g in X(v--> oo ) 
and C, C~(v �9 N) are convex closed cones with their vertices at zero in X, respectively 
in X~. Then K~-~ K, if and only if C~ Mosco-converges to C. Further we apply the equiv- 

alence of Mosco-convergence of convex lower semicontinuous functions to Mosco-con- 
vergence of their Fenchel transforms (see Theorem 3.18 in the monograph of Attouch 
[2]). Here we consider the indicator function Ic: X--*RU {+ r162 } of the cone C, given by 

I t (x)  = I 0 if x � 9  ; 
[ + ~ elsewhere, 

respectively the indicator functions Ic~ of the cones C~. We find that the Fenchel trans- 
form Ic ~ ist simply given by 

Ice (~) = sup {(~, X}z*• x � 9  =Ic- (~) ,  

where 

C - =  { ~ � 9  x)~<0 for all x e C }  

denotes the dual cone of C. Thus we conclude that C~ Mosco-converges to C, if and only 
if in the dual space, C j  Mosco-converges to C -  (v--* ~ ). Based on this equivalence we 
obtain the following feasibility result. 

LEMMA 3.13. - Suppose that K~-~ K(v---* ~),  where K =g + C, K~=g~ + Cv(v�9 

�9 N); g~---*g in X; C, C~ are convex closed cones in X,  respectively in X~(v �9 N). Then 
any limit point q of {~, ~}~, yen (or of {~,  ~}n, ~eN) with respect to weak convergence 
in LP(J, X) belongs to LP(J, K). 

PROOF�9 - First observe that since X is reflexive and separable, X*, hence C - is sep- 
arable, too. Let {~,}~EN be dense in C - .  Since C (  Mosco-converges to C- ,  there exist 
for any ~, sequences { ~, v }yeN such that ~ ~ e C j  (v e N) and ~, ~--* ~ in X* (v--* ~ ). 
Hence for any measurable subset A of J ,  '~,,~ZA---)~,ZA in LP"(J, X*). 

Now let q be a limit point of {~, ~} with respect to weak convergence in LP(J, X), 
say q = w - (~, v)eNlim ~ , .  where N o N  • N appropriately. Then q - g = w - ( n ! l l ~ l N ( q n ,  v - -  

- g~) in LP(J, X). Altogether we have that the reals (~,  ~ - gv, ~,, ~ZA) converge to (q - 
- g ,  ~,ZA) for (n, v) �9 N. Since all these reals are nonpositive by construction, we have 
that the limits are nonpositive, too, for any measurable subset A of J. Hence there exist 
null sets E, (possibly depending on ~,) such that the L I ( j )  functions (q ( . ) -  
- g ,  ~,)x• �9 N) are nonpositive on J\E,. Taking E = U E ,  a null set, and using the 

t e n  
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density of { ~ } ~ i  in C - we obtain that  (q(-) - g, ~) ~< 0 for all ~ �9 C - on J \E.  In other 
words, q(.) - g �9 C - - = C by the bipolar theorem or q(.) �9 K almost everywhere on J. 

The feasibility proof for a weak limit point of {~,~} is verbatim the 
same. �9 

3.6. The convergence result. - In addition to hemicontinuity of the function �9 which suf- 
fices in existence theory we need a stronger hypothesis of lower semicontinuity already 
used in [17] to make the Galerkin procedure work. 

DEFINITION 3.14. - The function �9 satisfies the (LSC) condition, if for any se- 
quences {v~}~ and {w~}v such that  v~--~v in LP(J,  X) and w~--~w (weak convergence) 
in L P (J,  X) there holds 

O(v, w) ~< lim inf r w 0 .  
y - - - >  co 

Finally we can conclude our convergence analysis by the following result. 

THEOREM 3.15. - Suppose that �9 is hemicontinuous and satisfies the (LSC) condi- 
tion; further suppose that cp is either uniformly monotone in the sense of (3.5) or uni- 
formly monotone with respect to the seminorm [.] in the sense of (3.6), (3.7). Suppose 
that f~, ~-o f in L I(J, H) n LP' (J, X * )(n, v--> oo ) and that Kv-~ K(v--~ r162 where K = 

= g + C, Kv = gv + C~(v �9 N); g~---~g in X; C, C~ are convex closed cones in X, respect- 
ively in X~(v �9 N). 

A) Then the sequence {~,  ~}n,~N possesses limit points with respect to weak 
convergence in LP(J,  X) and with respect to weak*convergence in L |  H). A ny  
such limit point belongs to LP(J,  K) and satisfies (2.4), the variational inequality of 
(P2). 

B) Suppose in addition that that the function q~ is continuous with respect to 
its second argument on LP(J,  X) and admits a convex continuous potential ~ X---~ 
---) R +. Moreover suppose that Uo, ~ --~ uo ( v ~ ~ ) in X and f n, ~ ---*fin L 2 ( j , H )( n, v ---> ~ ). 
Then the sequence {~., v}~, v~N converges to the unique solution u of (P1) strongly in 
C[J, H], and the sequence {qn, ~}~, ~ N  converges to u strongly in L 2(J, H). Moreover 
there holds: qn, v---~U in LP(J,  X) and 3 t ~ , ~ - - ~ t u  in L2(J ,  H). 

C) I f  furthermore cp is uniformly monotone in the sense of (3.5), then -~, ~ con- 
verges strongly to u as n, v ~ ~ in L P(J, X), too. 

PROOF. - Part  A) - The claimed existence of limit points is a direct consequence of 
the stability Lemmata  3.8, 3.9, respectively 3.10. Le t  q be such a cluster point, that  is, 
~ ,  v--~q in LP(J,  X) and ~ ,  v --~ * q in L ~ (J ,  H)  for some appropriate subsequence, say 
(n, v) � 9 2 1 5  N. Then by Lemma 3.13, q e L P ( J ,  K). 

Now let v �9 WP(J,  K) arbitrary. Then by Lemma 3.7 we have for some appropriate 
subsequence {nv}~, thus (n, v) � 9  r  • N ,  by := Vo, ~--~v(O) in H ,  v~, v--~v in 
L p (J ,  X) and (~ ~ ~ v~, ~ --~ at v in L p' (J ,  X* ). We apply Lemma 3.6, insert  v := Vn, ~ in the 
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relaxed variational inequality (3.4) for qn, ~, and obtain 

T 
1 v q)(v~,~, ~ ,~ )  + f(5~:v~,~ - f~ ,~ ,  ~ , ~  - %,~)x . •  <<- -~11 o,~ - Uo, ~11~. 

0 

Here we use that  Uo,.---)Uo, b~---->v(O) both in H ;  f , ,~---~f in LP ' (J ,  X * )  and qn,~-- 
-- %, ~---'q -- V in LP(J ,  X). Fur ther  by the (LSC) condition for (P, we conclude that  q sat- 
isfies (2.4). 

Par t  B) - In virtue of Lemma 3.11 the difference quotients atq~, ~ are bounded in 
L e ( J ,  H)  and by Corollary 3.12 the sequence {qn ,  v }n ,  v e N  is relatively compact in 
C[J, H]. Therefore we obtain the claimed convergence properties for some appropriate 
subsequence. On the other hand, for any limit point q we have q �9 LP(J ,  K ) A  C[J, H] 
and atq � 9  H ) c L P ' ( J ,  X*) .  Hence by Lemma 2.6, any such limit point q is a sol- 
ution of (P1), and by uniqueness due to Lemma 2.7 the conclusion follows. 

Par t  C) - We apply Lemma 3.7 to obtain approximations Un, ~ �9 5)~ K~) such that  
a~ := u ~ v = u,,~(O)-->Uo in H, u~,~-->u in LP(J ,  X)  and 5~u~,~-->atu in LP' (J ,  X*) .  
We apply Lemma 3.6 and insert these Un, ~ in the relaxed variational inequality (3.3) for 
~ ,  ~. By the uniform monotonicity of ~ in the sense of (3.5), we obtain 

0 ~ CmltUn, v --  "qn, vii p < --  {(~-)(Un, v,  an,  v) -'b (~('qn, v,  Un, v)} ~ 

T 
1 o 

<~ - r ~, "~, ~) + f (5~u~ ,~  - f~ ,  ~, un,~ - ~ ,  ~)x* • + ~ Ilu~,~ - Uo, ~11~. 
0 

Taking the lim sup and using the (LSC) condition, we conclude Ilu~, v - qn, v II---) 0, hence 
~ ,~- -~u  in LP(J ,  X). �9 

4. - An application to p-harmonic Signorini initial boundary value problems. 

Let  us address the following nonlinear parabolic initial boundary value problem: 

a tu -d iv ( l lVu l lP-2Vu)  = f  in (0, T) • ~ ,  

u = u o  in { 0 } •  

u = g on (0, T) • F D ,  

u>~g, ilVulp_ 2 a_.u_u />0, (u_g)l lVullp_ 2 ~u - 0  on (0,  T ) •  
an an 

where p > 2, T > 0, t9 r R 2 is a polygonal domain, Y's U To = at-2, Fs  N FD = O, IIVull 2 = 
= (alU) 2 + (a2u) 2 and Uo, f i g  are given data. Before we can apply Theorem 3.15 to 
establish the convergence in the appropriate spaces for full time space discretization 
including the finite element discretization, we have to discuss several more theore- 
tical issues. 
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4.1. Preliminaries. - By invoking an appropriate Green's formula (see e.g. [5, Chapter 
18]) we can see that the variational formulation of the initial boundary value problem 
considered is the variational inequality (P), where for all y, z eX=Wl .P( t~ )  we 
define 

~(y, z) = a(y, z - y),  a(y, z)= f llVyllP-2Vy.Vzd.w , 
Q 

5~(z) = l J llVzllP dw , 

K = g + C ,  C = { z e W I ' P ( Q )  Iz~O on Fs} .  

Note that t9 is a Lipschitz domain (3t9 e C ~ 1) and hence by Sobolev's embedding [31, 
Theorem 3.8, p. 72] W 1' P(t9) r e(~).  Therefore the restriction of z on Fs is well de- 
fined, and with g given in WI'P(t~), K is convex closed and C is a convex closed 
cone. 

As a continuous seminorm on X we have here 

which is equivalent to t h e  112:111, p norm on X in the case of m e a s  /'D > 0. We f'Lx H = 
=L2(~9) and thus (3.6) holds. 

Evidently the defined ~ is monotone-convex. Referring to the proof of [10, (5.3.20), 
Theorem 5.3.3] we have for some positive constant cl for all y, z e X 

- { ~ ( y ,  z) + cp(z, y)} =a(z, z - y ) - a ( y ,  z - y )  ~ C  1 ly -z l~ .p ,  

and (3.7) holds. Since moreover by HSlder's inequality 

(4.1) I~( x, Y) I = la( x, Y - X )  l <c2 IXlPl,-p 1 l Y - x l l , p ,  

Young's inequality implies the growth condition (2.1). Moreover (4.1) shows the conti- 
nuity of O(u, .) on LP(0, T; X). Also the hemicontinuity of ~, hence the hemicontinuity 
of O, and also the (LSC) condition follow easily. 

4.2. Additional space discretization by finite elements. - As a finite element dis- 
cretization of the given bounded polygonal domain ~9 c R 2 we choose a triangulation ~6h 
of Q, i.e. ~h is a finite set of triangles T such that 

Tr ~h), [J T = ~  
T e "~ h 

o o 
T1 ;7 T2 = ~ ff T1 ;~ T2 (YT1, Tz e ~h). 

Moreover for all T1, T 2 e ~h with T 1 ~ T 2 exactly one of the following statements must 
hold: 
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(i) T1 A T2 = 0, 

(ii) T1 N T2 = {P} (one common node), 

(iii) T1 N T2 = {~p-x} (one common edge). 

As usual h > 0 denotes the length of the largest edge of the triangles in the triangu- 
lation ~6h. In the subsequent convergence analysis we consider a family of triangula- 
tions {~6h}h>0 with h--*0, which is assumed to be quasiuniform, i.e. all the inner angles 
of all triangles of the triangulation family {~6h }h are uniformly bounded from below by 
some 0 o > 0  as h ~ 0 .  

Here we want to study both piecewise linear and piecewise quadratic finite element 
approximation of X and K. To this end we introduce the space/7 K of polynomials in two 
real variables of degree less than or equal to K (K= 1, 2), and the following finite node 
sets: 

3r { P e - ~ I P  is a node of T e ~ h } ,  

Yh = {P e 3r IRe at)},  

JQ = { P e - ~ I P  is the midpoint of an edge of T e ~ h } ,  

N~ = {Re J~ IRe a$2}, 

N h if K = I ,  

N [ =  Nh U N~ if K= 2 . 

N [ , s = N [ A F s ,  N [ , D = N [ A F D ,  

where we assume that Fs ~ FDC Nh for all triangulations ~6h. Then for K = 1, 2, the 
space X may be approximated by 

X [ =  {zhe e~ I r e n K ,  (VTe ~h)} 

and with g[,  u~ h e X [  constructed by interpolation of g, respectively of Uo, K may be 
approximated by 

- gh (P)  (VP e Nh, D)}" K [ =  { z h e X [  [zh(P) >-g[(P) (VPeNh,  s), zh(P) - '~ 

Since the gradient Vzh for zh e X[  exists a.e. on ~2 and is bounded, X[  is a finite di- 
mensional subspace of X =  WI'p(t2). Moreover, the sets C[ = K [ -  g[ are closed con- 
vex nonempty cones for K = 1, 2 and all h > 0. 

According to Lemma 3.5, there exist for K = 1, 2 and for all h > 0 unique solutions 
to the following approximate problems: 

(P~,h) Find qn, _ {qj,,~: j = l , . . . , N ~ } ,  qj, K : = q j : [ e K [  such that for all y e K [  

~(qJ' ~, Y) + ((6~' h %~, h)j " i f ,  h, Y -- qJ' ~)x*• >~ O . 

Since it is known (see [14], [17]) that K [ - o K  for K= 1, 2 as h---~ 0, we arrive at the 
following result. V 
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COROLLARY 4.1. - Suppose that uo, geWX'p(t~) and f e L e ( J ,  L2(t~))N 
ALP' (J ,  (WI 'p( t~))*) .  Then for K= 1, 2~ the families {q~,h}n~N,h,o converge to the 
unique solution u of (P )  strongly in C[J, L2(tg)],  and the families {~,  h}.~N, h>o con- 
verge to u strongly in L2(J,  L2(~)).  Moreover there holds: ~,h---~u in 
LP(J,  W I ' p ( ~ ) )  and at~t~,h---~tu in L2(J,  L2(tg)). 

I f  furthermore meas FD > 0 holds, then for K = 1, 2, the families ~ ,  h converge 
strongly to u as n---> r162 h---~O in LP(J,  WI'P(Q)), too. 
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