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Abstract

Averaging techniques are popular tools in adaptive finite element methods for the numerical treatment of second-order partial
differential equations since they provide efficient a posteriori error estimates by a simple postprocessing. In this paper, the reliability of
any averaging estimator is shown for low order finite element methods in elasticity. Theoretical and numerical evidence supports that
the reliability is up to the smoothness of given right-hand sides and independent of the structure of a shape-regular mesh. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Error control and efficient mesh-design in finite element simulations of computational engineering and
scientific computing is frequently based on a posteriori error estimates [2,3,14,18]. One of the more popular
techniques is local or global averaging, e.g., in form of the ZZ-error estimator [20]. Efficiency and reliability
of this estimator were known only for very structured grids and for solutions of higher regularity and then
we have even asymptotic exactness [18]. Numerical experiments in [3] showed that averaging techniques
were more reliable on irregular meshes than expected. For homogeneous Dirichlet conditions for a Laplace
equation, the reliability and efficiency of the ZZ-estimator is proven on unstructured, merely shape-regular
grids in [17].

In this work, we give theoretical and numerical support for the reliability of all averaging techniques in
elasticity, robust with respect to violated (local) symmetry of meshes or super-convergence and robust with
respect to other boundary conditions and discuss the robustness with respect to incompressibility locking.

For a more precise description of averaging techniques in elasticity, let us discuss a discretisation of the
equilibrium condition.

f+dive=0 (1.1)

fyxrf, with a given right-hand side f € Lz(Q)d on an elastic body Q ¢ RY. Here,

[R?nyr‘f denotes the real symmetric d x d-matrices and Lz(Q)f;: = L}(Q; [F\nyjl‘]") denotes the Hilbert space of all
dxd

Lebesgue integrable functions on the bounded Lipschitz domain Q with values in R{7T.

for a stress field ¢ € L?(Q)
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Suppose a known approximation o, € LZ(Q)?;: satisfies a discrete principle of virtual work with respect
to a test function finite element space that includes continuous piecewise linears ¥, (7° )d (with homoge-
neous Dirichlet boundary conditions) based on a regular triangulation 7 of Q, i.e., suppose

/o-h ce(vp)dx = /f -vydx for all v, € #L(7)". (1.2)
Q Q

Here, the (linear) Green strain &(u) = (Du + (Du)")/2 is the symmetric part of the gradient Du of the
displacement field u and colon denotes the scalar product of d x d-matrices, i.e., 4 : B=3_,, | AyBj with
norm |4| = /4 : A for 4,B € R™“. '

In averaging techniques, the error g — o[ ,2q) is estimated by the approximation error of a smoother
approximation g; to g,. For instance, in linear elasticity with constant Lamé constants and with piecewise
linear finite elements, oy, is piecewise constant and approximated by continuous piecewise linear functions,
written '(77). Then

= min oy — il (13)
GZES‘(;’/ )4

may serve as a computable error estimator and the elementwise contributions as local error indicators in an
adaptive mesh-refining algorithm.
This paper aims to investigate an upper and lower estimate of the form

cinz +ho.t. <||o — 04| L*(R) < comz + heo.t. (1.4)

and proves that ¢;,¢, > 0 do not depend on local symmetry relations of shape-regular meshes.

We study a nonlinear model problem in elasticity and give precise conditions on the Dirichlet and
Neumann boundary data, establish the necessary modifications for Neumann data, and analyse their
influence on the higher order terms h.o.t. in (1.4). Furthermore, we mention equivalence of local and
global averaging from [7]. Changing to energy norms in linear elasticity we show that the constants
c1,¢2 > 0, do not depend on the Poisson ratio v — 1/2 and in this sense, the estimate (1.4) is locking-
free.

Note that in practice, we may apply an averaging operator .o : Lz(Q)‘:yf:f — INT )fyxnfl to o, and com-
pute the upper bound |lo) — .2/0;|| ;2 of 1. Then, efficiency depends strongly on the approximation
properties of o7 and deserved further investigations, but their reliability follows from our results and is
independent of (lacking) higher-regularity of the solution.

The outline of the paper is as follows. The model problem and precise descriptions of material properties
and the regularity of right-hand sides are given in Section 2 together with modified versions of (1.3) and
(1.4) that include the proper treatment of boundary conditions. Three different adaptive algorithms are
suggested in Section 3. Numerical evidence is provided in Section 4 for almost asymptotic exactness of our
realisation of the ZZ-estimator for adapted meshes (when we start with a structured grid). For more un-
structured grids the reliability and efficiency is still observed with very good constants. The proofs are given
in Section 5 following arguments in [7]. The proof is essentially based on an approximation operator from
[7,6,11] and (almost) avoids the use of any trace-inequality. Section 6 is devoted to the locking phenomena
in linear elasticity when Young’s modulus is nearly 1/2. Experimental evidence for a robust error estimation
is supported by a theoretical heuristic argument. A further analysis on the locking phenomena will follow in
Part II of this paper [10].

2. Model example and results

The stress field o satisfies the equilibrium equations:

f+dive=0 in Q, (2.1)
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c-n=g only, (2.2)

for given volume force f € L2(2)* and applied surface load g € L*(I'y)”. The Lipschitz boundary I' = 3Q of
the body, occupied by a bounded domain Q in R, consists of a closed Dirichlet part I'y with positive
surface measure and a remaining, relatively open and possibly empty, Neumann part I'y := I' \ I'p. The
Dirichlet data up € C(I'p) is supposed to be differentiable at any flat piece of I'p such that the surface
gradient is square-integrable (written up € H'(I'p)). Then, we suppose that the exact displacement field u
belongs to H'(Q)", i.e., u € L*(Q)? and the gradient Du satisfies Du € L*(Q)"** and satisfies

u=up onlIp. (23)

The elastic constitutive relation between the stress field ¢ and the (linear) Green strain
e(u) = (3(Ou;/dx; + Ouy/ axj))ikzl is described by a (possibly nonlinear) function (x, ¢) that depends on the
material point x € Q and on the Green strain ¢

a(x) = 6(x,e(u)(x)) fora.a. xe Q. (2.4)

The function 6(x,¢) is supposed to be piecewise smooth in x and Lipschitz continuous and uniformly
monotone in ¢, i.e., we suppose that there exist constants c3, ¢, > 0 such that for almost all x € Q and for all
A, B € R there holds

e3)B— A’ <(0(x,B) — a(x,4)) : (B —A), (2.5)
6(x,B) — o (x,4)| <cslB — Al. (2.6)

A typical example for such a nonlinear material behaviour is named after Hencky [19], where
6(x,8) = (A + ) tr(e)lyng + pD*¢(|devel?) (2.7)

and D?¢ is the Hessian matrix of all partial derivatives of second-order of a smooth monotone increasing
function ¢ : [0,00) — R. Under further conditions and ¢, it is shown in [19, Section 62] that é(x,-) is
uniformly monotone and Lipschitz continuous in the sense of (2.5) and (2.6). From the general theory of
monotone operators we have existence of a unique (weak) solution u to (2.1)—(2.5) in the Sobolev space
H'(Q).

To approximate the (unknown) exact solution u with a finite element method, we consider a triangu-
lation 7 of the bounded Lipschitz domain @ C RY,d = 2,3, [5,12] (the domain is matched exactly)
with piecewise affine Lipschitz boundary I' = 0Q = I'p U I'y, i.e.,  consists of a finite number of closed
subsets of Q, that cover Q = UJ . Each element T € 7 is either a triangle T = conv{a,b,c} or a para-
llelogram T = conv{a,b,c,d} if d=2 or a tetrahedron T =conv{a,b,c,d} or a parallelepiped
T =conv{a,b,c,d,e,f,g,h} if d = 3. The extremal points a, . . ., h are called vertices, the faces £ C 0T such
as E = conv{a,b} if d =2, or E = conv{a,b,c}, respectively a parallelogram conv{a,b,c,d} if d = 3 are
called edges. The set of all vertices and all edges appearing for some 7 in 7 are denoted as /" and &.

ForT € 7, let Py := 2(T)ifd = 1, orif Tis a triangle and d = 2, or if T'is a tetrahedron and d = 3; let
Pr: 2,(T)if Tis a parallelogram and d = 2, or a parallelepiped and d = 3. Here, 2 (K), respectively, 2;(K)
denotes the set of algebraic polynomials in d variables on K of total respectively, partial degree <k. The
(nonconforming) discrete space £ () is the set of all U € L*(Q) with restrictions in Py, i.e., U|, € Py for
all Tin 7 while £°(77) denotes the set of 7 -piecewise constant functions. Then, let

INT) =LY (T)NC(Q) and LL(T) :={v, € L(T):v|Tp = 0}. (2.8)

We allow hanging nodes and suppose that there is set .4~ of regular nodes (i.e., the vertices defined above
which are not hanging nodes), such there exist a nodal basis (¢, : z € /") of the space &' (7), respectively
(¢, : z € A) of the space 7},(7") defined by the orthogonality-property that ¢,(z) = 1 and ¢,(x) = 0 for all
x,z € A with x # z. Continuity of the basis functions for all ¢, is understood such that for d = 3 and any
face E € &, ¢,|, is either on 2'(E) or 2'(E) for all ¢, with ¢_|, # 0. That means, a parallelpiped cannot
share a face of positive surface measure with a tetrahedron. Finally, 2#" := 4"\ I'p is the set of free nodes
while /"N I'p are the regular nodes on the Dirichlet boundary.
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The number of hanging nodes is limited by the condition that

max Lip(¢p,) <c¢s/h,, where h, := diam(w,) (2.9)
zex

and Lip(¢) denotes the Lipschitz constant of ¢, diam(w,) is the diameter of the patch
o, ={xeQ:0<q,(x)}. (2.10)

Let u, € #'(7)? denote the Galerkin approximate to u which is defined by the Dirichlet boundary con-
ditions

uh(z):uD(z) forze A/ 'NIp (211)

and the Galerkin-property, for all v, € & ]139“ a4
/&(x,s(uh)(x)) ce(vy) dx = /f.v;, dx —I—/ g.v, ds. (2.12)
Q Q I'n

The existence of u;, is assumed and guaranteed, e.g., for Hencky’s material (2.7). Then, we define
oy := 6(x, &(up) (x)) (2.13)

and its piecewise constant approximation (|7| denotes the area or volume of 7)

1 € LT )gu with Gl = / oy dx/|T| for T € 7. (2.14)
T

The proper averaging functions of &' (7 )dXd have to approximate the static boundary conditions (2.2). To

make this possible, it is required that the averaging function ¢* € &' (7 )dXd may be nonsymmetric and that

g satisfies some compatibility conditions. Let &x := {E € ¢: E C I'y} denote the edges or faces at the

Neumann boundary. For each F € &y, let n; denote the (constant) outer unit normal along the flat surface

piece E. To enable a nodal interpolation

6'(z) -ng=g(z) forallze /" NE with E € éx (2.15)

we require some continuity on g. At those nodes z on I'y, where I'y is flat and so the normal vectors
coincide, ng, = ng,, for two distinct neighbouring E;,E, € &x, the continuity of ¢* at z€ EyNE, N A
implies that the restrictions g|; and g|;, coincide at z. Then, the set

2T, g) = {o" € SYT)" : 6" satisfies (2.15)} (2.16)

is nonvoid. Note that 2(7,g) = ' (7)“*Y in the case of pure Dirichlet conditions.
The global averaging estimator is defined by

= i -0 2.1
Nz U*égéf/}‘g) o JHLZ(Q) (2.17)

The subsequent result is a precise statement of (1.4) with ¢; = 1 under mixed boundary conditions. Let
hs € XO(F) denote the local mesh-size, i.e., hs|; := hr :=diam (T) for T € 7, and let hs € yo(U 8)
define the local edge-size on the skeleton |J & of all edges by hs|; := hy := diam(E) for E € &.

Theorem 2.1. Let u GHI(Q)d solve (2.1)-(2.4) and let u, € yl(ﬂ')d solve (2.11) and (2.12). Suppose
feH(Q), g e H(I') and up € HX(T'y). Then,

. . _ 3/2
n;— min |o— Uh”LZ(g) SO - O'h”LZ(Q) & (’72 + |lo— Gh”LZ(Q) + ||hf/ azun/asz\le<rD)

a*c2(7 .g)

32
+ |13 0g/0sll 2y + |

V). (2.18)

The meshsize-independent constant c; > 0 depends on c3,cs and the shape of the elements and patches only.
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Remarks 2.1. (i) Since |u — u;|;1q) = O(h) for the maximal mesh-size &/ — 0, the remaining terms such as

Al O*up /05*(| 2 OF ||h}/26g/6s||Lz(rN) are of higher order and so are mingcy(7 ) [|o — 0*[| 2o, and
llo — axll 12(q)- Therefore, (2.18) proves (1.4) with ¢; = 1. It seems interesting that h.o.t. on the right-hand
side of the estimate (2.18) depends on the smoothness of the given loads only and hence it can be checked if
this is true. Conversely, the h.o.t. on the left-hand side of the estimate (2.18) (unknown) smoothness of the
exact solution o.

(i1)) Let us emphasise from the proof in Section 4 that the derivatives along I' are required only
&-piecewisely while f needs to be patch-wise (not only elementwise) in H' and so f € H'(Q). For
nonsmooth right-hand side £, ||#% V /|| 12(q) May be replaced by a patch-wise L*-best-approximation error in
the approximation through constants of f.

(1ii) It is shown in [6,11] that the edge-contributions (jump differences in the normal fluxes components
across edges) dominate in standard residual a posteriori error estimates [2,4,5,9,14,18]. Arguing as in
[13,16,17] one can hence derive alternative proofs of (2.18).

(iv) In an L*>-estimate of [15] it is suggested to average over a domain of size O(klog(1/4)) instead of
merely patches or the entire domain to obtain asymptotic exact results.

3. Adaptive algorithms

The numerical examples provide experimental evidence of the efficiency, reliability and robustness of the
a posteriori error estimate as the superiority of the following adaptive refinement Algorithms (4%) and (4?))
over a uniform mesh-refining.

Instead of n, we calculate n,, := |lo) — .2/0 |2, With the averaging operator .o/ based on a function
o, e IN(T )>** which satisfies g(z) = 0} (z)ng(z) for each endpoint z of an edge E on I'y. We define
Aoy =0, = Zfz(ah)qoz, (3.1)

zeN"

where . : L2(Q)7? — #'(7)> for z € A" /Tx is, with §, , dx denoting the integral mean of g, over w.,
I (o) == / oy, dx.

For z € T'y we distinguish between the following cases (i) and (ii) to fulfil the discrete Neumann condition
g(z) = o;(z)ng at z.

(3.2.1) In case z € E| N E, for two distinct edges E1, E; C I'y with linearly independent outer unit normals
X1 X2
X211 X22

ng, and ng, on Ej, E,, respectively, we choose .#.(0;) to be the unique solution of the linear

system

nye, M 0 0 X11 81|E, (Z)
0 0 nie Mg X2 | | 825 (Z)
nyg, Mg, 0 0 X21 B 81|, (2)
0 0 ne, Mmeg X2 82|k, (Z)

(3.2.11) In the remaining casesz € E; N I'p or z € E; N E, with two parallel outer unit normals ng, , ng, we
choose #;, to be the unit tangent to Q at z that is perpendicular to nz and let .#.(s,) be the solution

<x11 x12> of the uniquely solvable system

X321 X22
81|E, (Z)
nig,  ME 0 0 X11 ()
D (2
0 0 nie ME, X2 | i
tlAEz t27E2 0 0 X21 (fw:(o-h,lhah,n)dx ZLEI

0 0 lie, g, X22 (fw: (021, 0022) dx) g
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This amounts in the error indicator 4, -, for each T € 7,

N7 += |lOn — ‘Q[O-h”LZ(T)' (33)
For each T € 7 we define the error indicator #, , by

nzr = llow — HGhHLZ(T)a (34)

where IT denotes the L-projection onto 2(7,g).
We will illustrate the efficiency of 5, in comparison with 5, and a residual based error estimate 7, i.e.,

n = Z Mg, where np, == % ||hy7f||iz(7-> + p||hY (o ‘”]”iz(é‘T)' (3.9)
TeT
Recall that [0}, - n] denotes the stress jumps on interior edges, define it as o), - n — g on I'y, and set formally
[0 - n](x) :=0if x € I'p.
For the adaptive approaches we use the following Algorithm (4Y,), (43), and (4%). They differ only in
the used error indicator and generate meshes that are either unperturbed (relative to .7 ) for ¥ = 0 and
randomly perturbed for ¢4 = 1 in step (f).

Algorithm. (47)), (43), respectively (4%):

(a) Start with a coarse mesh 7 o,k = 0.

(b) Solve the discrete problem with respect to the actual mesh .7, with N degrees of freedom and errror
ex = lllo = oalll == 1€~ (s — )] 20

(c) For Algorithm (4?,) compute, for all T € 7,

Ny =Ny r = |lon — <Q/‘7h||L2(T)-
For Algorithm (4%) compute, for all T € 7,
Ny =nzr = |loy — HO'hHLZ(T)'

For Algorithm (4%) compute, for all 7 € 7 1, = 1z as in (3.5)
(d) Compute a given stopping criterion and decide to terminate or to go to (e).
(e) Mark the element T (red refinement) provided,

2 max Ny Sz
(f) Mark further elements (red-green—blue-refinement) to avoid hanging nodes. Generate a new triangu-
lation 7, using edge-midpoints if ¥ = 0 and points on the edges at a random distance at most 0.34;
from the edge-midpoints if ¢ = 1. Perturb the nodes z € /7| of the mesh T w+1 at random with values
taken uniformly from a ball around z of radius ¥27%/15. Correct boundary nodes by orthogonal projec-
tion onto that boundary piece they are expected such that Q, I'p, I'y are matched by the resulting mesh
T 141 exactly. Update k and go to (b).

The implementation is performed on triangles in Matlab as suggested in [1] using analytic formulae in the
calculation of the stiffness matrix. Since C in (4.1) is a linear operator in our examples, the linear system of
equations can be solved directly. In order to approximate the right-hand side for a given function
ge (I N)2 we compute |, I 800 ds via a three-point Gaussian quadrature rule on any edge E. The Dirichet
boundary conditions are satisfied at the boundary nodes.

4. Numerical experiments

Three examples provide numerical evidence that all three a posteriori error indicators improve the
convergence rate of the discretisation, that the error estimator 7, is reliable and efficient on unstructured
(rather degenerated) meshes, that the reliability is robust with respect to 2 — oo, and that our adaptive
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scheme (47,) is efficient in practise. Experimentally, the quotient of error over estimator increases with
larger perturbations as a possible consequence of lacking local symmetry in the mesh or of degenerating
triangles (see Fig. 4).

4.1. L-shaped domain with analytic solution

Let us consider the linear problem (2.1) and (2.2) with
o(e) = Atr(e)layn + 2ue (4.1)

and A =Ev/((1+v)(1 —2v)),u=E/(2(1 +v)) for Young’s modulus £ = 100 000 and the Poisson coeffi-
cient 0.3<v < 0.5.

The model example on the L-shaped domain shown in Fig. 1 models singularities at reentrant corners.
Using polar coordinates (r,0), —n < 6 <=, centered at the origin, the exact solution u with radial com-
ponent u, reads

o

u,(r,0) = ;—u(f(a 1) cos((o+ 1)0) + (Cr — (2 + 1))Cy cos((2 — 1)0)),

o

uo(r, 0) = ;7‘((05 + )sin((o 4 1)0) 4 (C + o« — 1))Cy sin((x — 1)0)).

The parameters are C; = —cos((a+ 1)w)/ cos((a — 1)w), C, = 2(A+2p) /(A + u), where o = 0.54448373 . ..
is the positive solution of asin 2w + sin 2wa = 0 for w = 3n/4. The exact solution is traction free, g =0, on
the Neumann boundary I'y. Starting from the initial mesh 7 from Fig. 1, we run Algorithm (4°)). The
resulting mesh after 21 adaptive refinements and a zoom at the re-entrant corner is shown in Fig. 2 and
displays a rather high mesh-refinement near the singularity.

Error and error estimators #, are displayed versus the number of degrees of freedom N for
v =10.3,0.49,0.499 for uniform meshes and adaptively refined meshes with Algorithm (4°)) in Fig. 3. The
slope -1/2 corresponds to an experimental convergence rate 1 owing to N oc 272 in two dimensions. For the
sequences of uniform meshes we obtain experimentally convergence = 0.54 which coincides with the the-
oretically expected rate o. The adaptive mesh-refining Algorithm (4°,) improves this experimental con-
vergence order to 1 which is expected to be optimal for the used family of finite elements spaces. This
numerical experiment confirms numerically that the a posteriori error estimate is s-independent.

The used FEM for the displacement formulation shows incompressibility locking phenomena in Fig. 3,
i.e., the error in energy norm is not bounded (for a given number of unknowns) as v — 1/2. (Further details
of this model problem and nonlocking finite elements are given in [8] and in Part II of this paper [10].)

Fig. 1. System and initial mesh in Section 4.1.
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Fig. 3. Errors ey and error indicator 1, vs N for uniform and adaptive meshes from Algorithm (4°)) of Section 4.1.

Besides Algorithm (4%,), we run Algorithm (4%) and obtained results (not displayed) similar to those in
Fig. 3; the entries for the error indicators #, have the same slopes and the meshes resulting from Algorithm
(4°)) are of the same quality.

Super-convergence properties are frequently believed to be responsible for the good performance of
averaging techniques for a posteriori error control in practice. To study the influence of local symmetries in
the mesh, Algorithms (4')), (4}), and (4}) perturb the nodes in step (f). Fig. 4 shows a sequence of per-
turbed refined meshes from Algorithm (4!,))(v = 0.3) with optimal experimental convergence order 1.

For perturbed and nonperturbed meshes from Algorithms (47,) and (4%) we display the extreme quo-
tients of the error estimator #_, (respectively #,) over the error in energy norm ey versus 1/2 — v, i.e., the
displayed constants are min{n_,/ex }, max{n,,/ex}, min{n,/ex}, and max{n,/ex} for different values of N
corresponding to J 1,...,7 for k as implicitly shown in Fig. 3. The values for #, are always smaller than
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Fig. 5. Computed reliability/efficiency constants vs 1/2 — v for perturbed and nonperturbed meshes from Algorithms (4Y,) and (49) of

Section 4.1.

those that correspond to 7, as predicted by the theory. Fig. 5 shows also that the reliability constant is
bounded from above and the efficiency constant from below independently from the Poisson ratio v. This
numerical example supports that also for perturbed meshes the estimate (1.4) is reliable and efficient.
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4.2. Cook’s membrane problem

As a further test example we consider a tapered panel clamped on the left end as depicted in Fig. 6
subject to a shearing load on the right end, i.e., g = (0, 1000) on the right edge of Q, g = 0 on the remaining
part of I'y,u = 0, on I'p, and f = 0. The material constants are £ = 100 000 and v = 1/3 or 0.499 and the
initial mesh 77 is displayed in Fig. 6.

A plot of the approximated von-Mises stress after 11 refinements generated by Algorithm (4°,) as some
magnified detail near the re-entrant corner (zoom of (0, 10) x (36,46)) is given in Fig. 7. (For visualisation
the grey scalebar shows the stress only up to a fixed limit despite the maximal stress is unbounded.) The
calculated von-Mises stress is in agreement with corresponding pictures in the literature.

The errors ey for v =1/3 (left) and v = 0.499 (right) computed with uniform and adaptive refinements
are given in Fig. 8. the error ey is computed using Galerkin orthogonality, via e = |||a]|| — |||o4]|]*. For
given v, extrapolated energies G, :=|||g||| are calculated from a sequences of approximations such as
G()'g =0.235093 and G()<499 =0.218128.

The adaptive mesh-refining Algorithms (4%) and (4%) yield convergence order 1 which is asymptot-
ically better than uniform refinement as observed in Fig. 8. The posteriori error estimates 7, respectively
ng overestimate the error in a range of (0.69, 1.02), respectively (3.3, 25, 6) for all tested

44 mm

\c,—j

1 |
= 1

48 mm

Fig. 6. Cook’s membrane problem. System and initial mesh in Section 4.2.
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Fig. 7. Mesh 7, generated by Algorithm (4%,) and magnified detail at (0, 44) of Section 4.2.
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Fig. 8. Errors ey and error indicators 17, and 1, vs N for uniform and adaptive meshes from Algorithms (4%,) and (4%) of Section 4.2.
(v=1/3 left ,v = 0.499 right).

v € {1/3,0.45,0.49,0.499}. For coarse uniform meshes, 1, seems to fail for v=0.499. By Algo-
rithm (4°)) we obtain meshes with slightly smaller errors ex and quantities 5, and 5, than generated by
Algorithm (4%) and to reach a given error tolerance Algorithm (4%) needs more adaptive iterations
than (4°)).

4.3. Components tension specimen

A compact tension specimen in Fig. 9 is loaded with a surface load g = (0,100) on I'y =
{(x,y) €I':|y| =60} and f = 0; E = 100000 and v = 0.3 and 0.499. The specimen is subjected to a ver-
tical elongation. As the problem is symmetric, one half of the domain was discretized. We fixed the hor-
izontal displacement with the constraint that the integral mean of all horizontal displacements is zero. For
coarse meshes, the problem behaves like a problem with re-entrant corner at 4 = (50,0) and hence we
expect a higher mesh-refinement. The numerical solution for this problem with v = 0.3 and N = 21503 and
a magnification of the adaptively refined mesh around 4 is provided in Fig. 10. The approximated energies
for this example are Gy; = 0.520590 and Gy 499 = 0.490950. The resulting improvement of the convergence
is outlined in Fig. 11, where the error ey and the a posteriori error estimates 7, and 7, are plotted versus
the number of degrees of freedom N. The convergence rate of n,, and ny is approximately 1 for the adaptive
meshes and (computed from the last two meshes) 0.45, respectively 0.14 for uniform meshes. Similar as in
Subsections 4.1 and 4.2 the overestimation factors corresponding to n,, and ny lie here in a range of

PEREERRREERRAEE RIS

55 mm
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60 mm

A .
: Ip
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| | |
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Fig. 9. System and initial mesh in Section 4.3.
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Fig. 11. Errors ey and error indicators 17, and 1, vs N for uniform and adaptive meshes from Algorithms (4°,) and (4%) of Section
43. (v=0.3 left ,v = 0.499 right)

(0.6, 1.04), respectively (2, 94, 45.4) for all tested v € {0.3,0.45,0.49,0.499}. Both adaptive mesh-refining
Algorithms (4°,) and (4%) improve this experimental convergence order to the optimal order one. The error
estimator n, fails for v = 0.499 (in the range of considered meshes) and so proves to be nonrobust for
incompressibility.

5. Proof of Theorem 2.1

The proof of efficiency is relatively easy and follows from the triangle inequality

lon — 0"[l1200) < 0 = Onll20) + [0 — 7|l 2 (5.1)
for all o* € 2(7,g). Taking the infimum over ¢* in (5.1) we deduce with (2.17)

Nz <o = onll 2 + a*eijr};g)ﬂff =020 (5.2)

and conclude the proof of the lower inequality in (2.18).
The proof of reliability is more involved and we base our proof on a certain global interpolation op-
erator J from [6,7,11].



C. Carstensen, S.A. Funken | Comput. Methods Appl. Mech. Engrg. 190 (2001) 2483-2498 2495

Definition 5.1. For each regular node z € A4\ 4" on the Dirichlet boundary we choose a neighbouring free
node {(z) € # and {(z) ={z} if ze #". Forze A setI(z) ={z€ N : {(¢=1z} and

Y()=> ¢, and Q. :={reQ:0<y.(x)} (5.3)

Lel(z)

Remarks 5.1.

(i) Note that (¢, : z € A7) and (, : z € A") are Lipschitz continuous partitions of unity with supports of
a finite overlap. The functions y, are designed by adding neighbouring hat functions in (5.3) for this pur-
pose.

(ii) The choice of a neighbouring free node {(z) means . connected. If all nodes of an element belong to
the Dirichlet boundary we are forced to choose a second neighbour, etc. The constants below depend on
this choice and it is only required that the degree of neighbourhood stays bounded and €, is connected.
(iil) If z € " lies far apart from I'p we have , = ¢, according to /(z) = {z}. Note that ¢, # , implies
that I'p N (0Q,) has positive surface measure.

Definition 5.2. For w € H)(Q)" let Jw = Y"__, w.¢. be defined, for z € 4,
(Jw)(z) =w, := / wy, dx// @, dx.
Q. w;

Lemma 5.1. ([6,7,11]) The operator J : Hll)(Q)d — 911)(3‘)‘1 has the following properties for all w € HIID(Q)d

- ~1/2
||JW||H1(Q) + Hhﬁfl(w _JW)”LZ(Q) + llhs / (w _JW)||L2(Q) < c6||vw||L2(Q) (5.4)

and locally for all z € # and A, := diam(L.),

[w., — Wlpz”Lz(Q) < C7h2||vw||L2(Q)' (5.5)

The constants ¢g,c; > 0 depends on the shape of the elements and patches only neither on z, w or any mesh-
size.

We are now prepared to sketch the proof of the upper estimate of Theorem 2.1 following arguments in
[7]. Let < denote an inequality up to a constant factor C that is (hs, A)-independent but may depend on
C3y...,¢7, ,I'p. Let e :=u —u, denote the displacement error. From (2.5) and Korn’s inequality, we
obtain

||e\|1211(m < /Q(a —oy) :e(e) dx = /Q(a — o) e(w—Jw+v—u) dx, (5.6)

where employed the Galerkin property (which follows from (2.1)-(2.4) to (2.12) and (2.13) for w:=u — v
and ve H'(Q)Y with v=up on I'p and minimal |ju, — Ullgiig) <llello- Note that [l g <
lelliiq) + [lun — ol 1) < 2llell 1 (q) it is shown in [Lemma 4.1, 7] that we can find some v for u, with (2.10)
by extending the boundary values (u, — up)|I'p such that

32
lah = 0l ey < 1A O /05y - (57)
Similarly, for any ¢* € 2(7,g), one can prove that
1/2 . 3/2
17 (g = 0" )12y S 13 O /0521y (5.8)

Cauchy’s inequality, Lemma 5.1, (2.1) and (2.2) and an integration by parts show (notice w —Jw =0
on I'p)
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/Q(a—ah):s(w—Jw)@zA(a—ah):V(W—Jw)dx

= /Q(o—a*):V(W—Jw)dx—i—/(a*—ah):V(W—Jw)dx

</r (g—af,)-(W—Jw)dx—&-/g(f—i—diva*)-(w—Jw)dx

+llon = "l W = Wl g

< 102 = o)z s 200 = )l (59)
4 / o (w—Jw) iV 200 IV 210,
Q

+llon = "l 2@ VW2

(/)

< lelln ) (1105 = 0" l2(@) + 12058 /sl + I dive ] q))

+/wf-(w—Jw)dx

The last term is analysed utilising ) __,wy,=w and Jw=)> _ w.p., where w.€ R satisfies
Jo. Wi, —w.p,) dx = 0 for all z € 4.
Therefore, for all £, € R?

r-trmmmac=3 [ 5w )ae= 3 [ (=0 ) as
zex ZE! 2
< SRl ~ < (thllfleiz(gz)> leline (510

In the last step we employed a Cauchy inequality and made essential use of the fact that the patches
(Q.:z € XA) have only a finite overlap. A Poincaré inequality on Q. shows

?}ég”f_ﬁHLz(Qz) < hZHVf”LZ(QZ)

Using this in (5.10), observing A, < by for T C Q., and again using the finite overlap of the patches we
eventually infer

/Q £ 0 =) dv < 199200 12V 1 e (5.11)

The proof focusses now on ||hs dive®|[;2q). On each element 7 € 7, div ¢” is a constant vector, ¢* |7 is
affine. Hence an inverse inequality [4,5,12] shows for the constant oh| r

||diVJ*HL2(T) = [|div(c" — 5h)||L2(T) S hiTHG* - 6h||L2(T)
and so, with a triangle inequality.

||h»7diVJ*HL2(Q) < llo" - 6h||L2(Q)HG* - Gh”LZ(Q) +llow — 0_-h||L2(Q)' (512)
Gathering (5.6) and (5.7) and (5.10)—(5.12) together we have shown that there holds

lellz @) S llelln o (IlhmGZMD/GZSIIWD + llow = 0" ll2@) + llow = Full o)

+ 130 /5121y + AV N )-

from which we conclude the proof.
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6. Locking

Nearly incompressible linear elastic materials yield Lamé parameter 4 — oo and bounded positive u in
(4.1). Incompressibility locking is observed for standard conforming finite element methods in the sense
that (for uniform meshes with meshsize /)

IW—GMM=(AW—WMClw—anwyﬂm¢%“ 1)

(x denotes propotionality and o > 0 depends on corner signularities as in Section 4.1.) The empirical
observation of (6.1) is seen in Fig. 2 and can be explained as follows. The Galerkin scheme yields a quasi
optimal a priori error estimate

llo = allP = min  (Zdivie — )0, + 2uldeve(e — o)1) (6:2)

oS (7Y

for the error e := u — uy, respectively ¢ — g, = Ce(e). If p is bounded but 1 relatively large, we would expect
that, A||div(e Uh)HL7 on the right-hand side of (6.2) is of the same order as 2u||deve(e vh)||iz(9>. But for
standard conformmg lower order finite element schemes this is not observed. Instead, we merely observe
that [|div(e — v))||;2(q) is of the same magnitude as ||deve(e — v))| 2o and so

1div el 2oy = wlldev ee)]l2 o (6.3)

for some x > 0. Recall that the discretisation locks if (6.3) holds since the large penalty parameter A — oo in
(6.2) enforce ||div €l|;2o) — 0 which contradicts (6.3).
Depending on the smoothness of u we have generically (for sufficiently small mesh sizes)

csh* < ||Vel| 2, < coh” (6.4)

and conclude with (6.2) that

oVl < /A1 +12)/2||Vel| g < ctoVil* < |||o — o4l < /2 + 2u/12|| Vel p g S enVak™.  (6.5)

This is in agreement with (6.1). Notice that the failure of the scheme has nothing to do with the hopefully
good estimation of the possible poor error e.
The a posteriori error estimate from Theorem 2.1 leads in the case of (4.1) to the estimate

2 : *
llo = aullP < cuzllet@) i | min llos — 03l + ot ), (6.6)
o €S NT)

where the higher order terms h.o.t and the constant ¢, are A-independent. Suppose that we have locking in
the sense that (6.3) is true for some x > 0. Then

1N B 1 1\~
o < (4 ) 16w el <472 (5+5 ) llo =l (6

which yields in (6.6) (with a x-depending constant c;3) that

1/2

llo = aull| <ci3 min A7y — 6}l 50 + 4% hoout. (6.8)
o ESNT)

It is directly seen from the definition of the inverse of the elasticity tensor that

Cl4

2oy — U;;KC lon — )l
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and so (6.8) yields

2oy = ail]] + 27 hooot. (6.9)

*

llo = onl|| <cus
i)

min A
€SNT)

which indicates that the Z-estimator is A-robust reliable if locking is present in the sense of (6.3). Note that
the influence of h.o.t. is decreasing if 4 increases. This heuristic argument indicates the surprising robustness
of the Z-estimator in practice. A detailed analysis will be reported on in Part II of this paper [10].
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