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Abstract

Averaging techniques are popular tools in adaptive ®nite element methods for the numerical treatment of second-order partial

di�erential equations since they provide e�cient a posteriori error estimates by a simple postprocessing. In this paper, the reliability of

any averaging estimator is shown for low order ®nite element methods in elasticity. Theoretical and numerical evidence supports that

the reliability is up to the smoothness of given right-hand sides and independent of the structure of a shape-regular mesh. Ó 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

Error control and e�cient mesh-design in ®nite element simulations of computational engineering and
scienti®c computing is frequently based on a posteriori error estimates [2,3,14,18]. One of the more popular
techniques is local or global averaging, e.g., in form of the ZZ-error estimator [20]. E�ciency and reliability
of this estimator were known only for very structured grids and for solutions of higher regularity and then
we have even asymptotic exactness [18]. Numerical experiments in [3] showed that averaging techniques
were more reliable on irregular meshes than expected. For homogeneous Dirichlet conditions for a Laplace
equation, the reliability and e�ciency of the ZZ-estimator is proven on unstructured, merely shape-regular
grids in [17].

In this work, we give theoretical and numerical support for the reliability of all averaging techniques in
elasticity, robust with respect to violated (local) symmetry of meshes or super-convergence and robust with
respect to other boundary conditions and discuss the robustness with respect to incompressibility locking.

For a more precise description of averaging techniques in elasticity, let us discuss a discretisation of the
equilibrium condition.

f � div r � 0 �1:1�

for a stress ®eld r 2 L2�X�d�d
sym , with a given right-hand side f 2 L2�X�d on an elastic body X � Rd . Here,

Rd�d
sym denotes the real symmetric d � d-matrices and L2�X�d�d

sym :� L2�X; Rd�d
sym � denotes the Hilbert space of all

Lebesgue integrable functions on the bounded Lipschitz domain X with values in Rd�d
sym .
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Suppose a known approximation rh 2 L2�X�d�d
sym satis®es a discrete principle of virtual work with respect

to a test function ®nite element space that includes continuous piecewise linears S1
D�T�d (with homoge-

neous Dirichlet boundary conditions) based on a regular triangulation T of X, i.e., supposeZ
X

rh : e�vh�dx �
Z

X
f � vh dx for all vh 2S1

D�T�d : �1:2�

Here, the (linear) Green strain e�u� � �Du� �Du�T�=2 is the symmetric part of the gradient Du of the
displacement ®eld u and colon denotes the scalar product of d � d-matrices, i.e., A : B �Pj;k�1 AjkBjk with
norm jAj � ����������

A : A
p

for A;B 2 Rd�d .
In averaging techniques, the error krÿ rhkL2�X� is estimated by the approximation error of a smoother

approximation r�h to rh. For instance, in linear elasticity with constant Lam�e constants and with piecewise
linear ®nite elements, rh is piecewise constant and approximated by continuous piecewise linear functions,
written S1�T�. Then

gz :� min
r�h2S1�T�d�d

krh ÿ r�hkL2�X� �1:3�

may serve as a computable error estimator and the elementwise contributions as local error indicators in an
adaptive mesh-re®ning algorithm.

This paper aims to investigate an upper and lower estimate of the form

c1gz� h:o:t:6 krÿ rhkL2�X�6 c2gz� h:o:t: �1:4�

and proves that c1; c2 > 0 do not depend on local symmetry relations of shape-regular meshes.
We study a nonlinear model problem in elasticity and give precise conditions on the Dirichlet and

Neumann boundary data, establish the necessary modi®cations for Neumann data, and analyse their
in¯uence on the higher order terms h.o.t. in (1.4). Furthermore, we mention equivalence of local and
global averaging from [7]. Changing to energy norms in linear elasticity we show that the constants
c1; c2 > 0, do not depend on the Poisson ratio m! 1=2 and in this sense, the estimate (1.4) is locking-
free.

Note that in practice, we may apply an averaging operator A : L2�X�d�d
sym !S1�T�d�d

sym to rh and com-
pute the upper bound krh ÿArhkL2�X� of gZ . Then, e�ciency depends strongly on the approximation
properties of A and deserved further investigations, but their reliability follows from our results and is
independent of (lacking) higher-regularity of the solution.

The outline of the paper is as follows. The model problem and precise descriptions of material properties
and the regularity of right-hand sides are given in Section 2 together with modi®ed versions of (1.3) and
(1.4) that include the proper treatment of boundary conditions. Three di�erent adaptive algorithms are
suggested in Section 3. Numerical evidence is provided in Section 4 for almost asymptotic exactness of our
realisation of the ZZ-estimator for adapted meshes (when we start with a structured grid). For more un-
structured grids the reliability and e�ciency is still observed with very good constants. The proofs are given
in Section 5 following arguments in [7]. The proof is essentially based on an approximation operator from
[7,6,11] and (almost) avoids the use of any trace-inequality. Section 6 is devoted to the locking phenomena
in linear elasticity when Young's modulus is nearly 1/2. Experimental evidence for a robust error estimation
is supported by a theoretical heuristic argument. A further analysis on the locking phenomena will follow in
Part II of this paper [10].

2. Model example and results

The stress ®eld r satis®es the equilibrium equations:

f � div r � 0 in X; �2:1�
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r � n � g on CN; �2:2�
for given volume force f 2 L2�X�d and applied surface load g 2 L2�CN�d : The Lipschitz boundary C � oX of
the body, occupied by a bounded domain X in Rd ; consists of a closed Dirichlet part CD with positive
surface measure and a remaining, relatively open and possibly empty, Neumann part CN :� C n CD: The
Dirichlet data uD 2 C�CD� is supposed to be di�erentiable at any ¯at piece of CD such that the surface
gradient is square-integrable (written uD 2 H 1�CD�). Then, we suppose that the exact displacement ®eld u
belongs to H 1�X�d ; i.e., u 2 L2�X�d and the gradient Du satis®es Du 2 L2�X�d�d;

and satis®es

u � uD on CD: �2:3�
The elastic constitutive relation between the stress ®eld r and the (linear) Green strain
e�u� � �1

2
�ouj=oxk � ouk=oxj��dj;k�1 is described by a (possibly nonlinear) function r̂�x; e� that depends on the

material point x 2 X and on the Green strain e

r�x� � r̂�x; e�u��x�� for a:a: x 2 X: �2:4�
The function r̂�x; e� is supposed to be piecewise smooth in x and Lipschitz continuous and uniformly
monotone in e; i.e., we suppose that there exist constants c3; c4 > 0 such that for almost all x 2 X and for all
A;B 2 Rd�d

sym there holds

c3jBÿ Aj26 �r�x;B� ÿ r�x;A�� : �Bÿ A�; �2:5�
jr�x;B� ÿ r�x;A�j6 c4jBÿ Aj: �2:6�

A typical example for such a nonlinear material behaviour is named after Hencky [19], where

r̂�x; e� � �k� l� tr�e�Id�d � lD2u�jdev ej2� �2:7�
and D2u is the Hessian matrix of all partial derivatives of second-order of a smooth monotone increasing
function u : �0;1� ! R: Under further conditions and u; it is shown in [19, Section 62] that r̂�x; �� is
uniformly monotone and Lipschitz continuous in the sense of (2.5) and (2.6). From the general theory of
monotone operators we have existence of a unique (weak) solution u to (2.1)±(2.5) in the Sobolev space
H 1�X�.

To approximate the (unknown) exact solution u with a ®nite element method, we consider a triangu-
lation T of the bounded Lipschitz domain X � Rd ; d � 2; 3; [5,12] (the domain is matched exactly)
with piecewise af®ne Lipschitz boundary C � oX � CD [ CN; i.e., T consists of a ®nite number of closed
subsets of �X; that cover �X � [T: Each element T 2T is either a triangle T � convfa; b; cg or a para-
llelogram T � convfa; b; c; dg if d � 2 or a tetrahedron T � convfa; b; c; dg or a parallelepiped
T � convfa; b; c; d; e; f ; g; hg if d � 3: The extremal points a; . . . ; h are called vertices, the faces E � oT such
as E � convfa; bg if d � 2; or E � convfa; b; cg; respectively a parallelogram convfa; b; c; dg if d � 3 are
called edges. The set of all vertices and all edges appearing for some T in T are denoted as N and E.

For T 2T; let PT :� P1�T � if d � 1; or if T is a triangle and d � 2; or if T is a tetrahedron and d � 3; let
PT : Q1�T � if T is a parallelogram and d � 2; or a parallelepiped and d � 3: Here, Pk�K�; respectively, Qk�K�
denotes the set of algebraic polynomials in d variables on K of total respectively, partial degree 6 k: The
(nonconforming) discrete space L1�T� is the set of all U 2 L1�X� with restrictions in PT ; i.e., U jT 2 PT for
all T in T while L0�T� denotes the set of T-piecewise constant functions. Then, let

S1�T� :�L1�T� \ C�X� and S1
D�T� :� fvh 2 S1�T� : vhjCD � 0g: �2:8�

We allow hanging nodes and suppose that there is set N of regular nodes (i.e., the vertices de®ned above
which are not hanging nodes), such there exist a nodal basis �uz : z 2N� of the space S1�T�; respectively
�uz : z 2K� of the space S1

D�T� de®ned by the orthogonality-property that uz�z� � 1 and uz�x� � 0 for all
x; z 2N with x 6� z. Continuity of the basis functions for all uz is understood such that for d � 3 and any
face E 2 E, uzjE is either on Q1�E� or P1�E� for all uz with uzjE 6� 0. That means, a parallelpiped cannot
share a face of positive surface measure with a tetrahedron. Finally, K :�N n CD is the set of free nodes
while N \ CD are the regular nodes on the Dirichlet boundary.
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The number of hanging nodes is limited by the condition that

max
z2K

Lip�uz�6 c5=hz; where hz :� diam�xz� �2:9�

and Lip�/� denotes the Lipschitz constant of /; diam�xz� is the diameter of the patch

xz :� fx 2 X : 0 < uz�x�g: �2:10�
Let uh 2S1�T�d denote the Galerkin approximate to u which is de®ned by the Dirichlet boundary con-
ditions

uh�z� � uD�z� for z 2N \ CD �2:11�
and the Galerkin-property, for all vh 2 S1

DT
d ,Z

X
r̂�x; e�uh��x�� : e�vh� dx �

Z
X

f :vh dx�
Z

CN

g:vh ds: �2:12�

The existence of uh is assumed and guaranteed, e.g., for Hencky's material (2.7). Then, we de®ne

rh :� r̂�x; e�uh��x�� �2:13�
and its piecewise constant approximation (jT j denotes the area or volume of T)

�rh 2L0�T�d�d
sym with �rhjT :�

Z
T

rh dx=jT j for T 2T: �2:14�

The proper averaging functions of S1�T�d�d
have to approximate the static boundary conditions (2.2). To

make this possible, it is required that the averaging function r� 2S1�T�d�d
may be nonsymmetric and that

g satis®es some compatibility conditions. Let EN :� fE 2 e : E � CNg denote the edges or faces at the
Neumann boundary. For each E 2 EN, let nE denote the (constant) outer unit normal along the ¯at surface
piece E. To enable a nodal interpolation

r��z� � nE � g�z� for all z 2N \ E with E 2 EN �2:15�
we require some continuity on g. At those nodes z on CN; where CN is ¯at and so the normal vectors
coincide, nE1

� nE2
, for two distinct neighbouring E1;E2 2 EN, the continuity of r� at z 2 E1 \ E2 \N

implies that the restrictions gjE1
and gjE2

coincide at z. Then, the set

Q�T; g� :� fr� 2 S1�T�d�d
: r� satisfies �2:15�g �2:16�

is nonvoid. Note that Q�T; g� � S1�T��d�d�
in the case of pure Dirichlet conditions.

The global averaging estimator is de®ned by

gZ :� min
r�2Q�T;g�

krh ÿ r�kL2�X� �2:17�

The subsequent result is a precise statement of (1.4) with c1 � 1 under mixed boundary conditions. Let
hT 2L0�T� denote the local mesh-size, i.e., hTjT :� hT :� diam �T � for T 2T, and let hE 2L0�SE�
de®ne the local edge-size on the skeleton

S
E of all edges by hEjE :� hE :� diam�E� for E 2 E.

Theorem 2.1. Let u 2 H 1�X�d solve (2.1)±(2.4) and let uh 2S1�T�d solve (2.11) and (2.12). Suppose
f 2 H 1�X�d , g 2 H 1�CN� and uD 2 H 2�CN�. Then,

gZ ÿ min
r�2Q�T;g�

krÿ r�hkL2�X�6 rÿ rhkL2�X�6 c2 gZ

�
� krÿ �rhkL2�X� � kh3=2

E o2uD=os2kL2�CD�

� kh3=2
E og=oskL2�CN� � kh2

Trf kL2�X�
�
: �2:18�

The meshsize-independent constant c2 > 0 depends on c3; c5 and the shape of the elements and patches only.
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Remarks 2.1. (i) Since kuÿ uhkH1�X� � O�h� for the maximal mesh-size h! 0, the remaining terms such as

jjh2
Trf jjh3=2

E o2uD=os2kL2�CD� or kh3=2
E og=oskL2�CN� are of higher order and so are minr�2Q�T;g� krÿ r�kL2�X� and

krÿ �rhkL2�X�. Therefore, (2.18) proves (1.4) with c1 � 1. It seems interesting that h.o.t. on the right-hand
side of the estimate (2.18) depends on the smoothness of the given loads only and hence it can be checked if
this is true. Conversely, the h.o.t. on the left-hand side of the estimate (2.18) (unknown) smoothness of the
exact solution r.

(ii) Let us emphasise from the proof in Section 4 that the derivatives along C are required only
E-piecewisely while f needs to be patch-wise (not only elementwise) in H 1 and so f 2 H 1�X�. For
nonsmooth right-hand side f, kh2

Trf kL2�X� may be replaced by a patch-wise L2-best-approximation error in
the approximation through constants of f.

(iii) It is shown in [6,11] that the edge-contributions (jump di�erences in the normal ¯uxes components
across edges) dominate in standard residual a posteriori error estimates [2,4,5,9,14,18]. Arguing as in
[13,16,17] one can hence derive alternative proofs of (2.18).

(iv) In an L1-estimate of [15] it is suggested to average over a domain of size O�h log�1=h�� instead of
merely patches or the entire domain to obtain asymptotic exact results.

3. Adaptive algorithms

The numerical examples provide experimental evidence of the e�ciency, reliability and robustness of the
a posteriori error estimate as the superiority of the following adaptive re®nement Algorithms �A#

Z� and �A#
A�

over a uniform mesh-re®ning.
Instead of gZ we calculate gA :� krh ÿArhkL2�X� with the averaging operator A based on a function

r�h 2S1�T�2�2
which satis®es g�z� � r�h�z�nE�z� for each endpoint z of an edge E on CN. We de®ne

Arh :� r�h :�
X
z2N

Iz�rh�uz; �3:1�

where I : L2�X�2�2 !S1�T�2�2
for z 2N=CN is, with

R
--xz

rh dx denoting the integral mean of rh over xz,

Iz�rh� :�
Z
--
xz

rh dx:

For z 2 CN we distinguish between the following cases (i) and (ii) to ful®l the discrete Neumann condition
g�z� � r�h�z�nE at z.

(3.2.i) In case z 2 E1 \ E2 for two distinct edges E1;E2 � CN with linearly independent outer unit normals

nE1
and nE2

on E1;E2; respectively, we choose Iz�rh� to be the unique solution
x11 x12

x21 x22

� �
of the linear

system

n1;E1
n2;E1

0 0

0 0 n1;E1
n2;E1

n1;E2
n2;E2

0 0

0 0 n1;E2
n2;E2

0BBB@
1CCCA

x11

x12

x21

x22

0BBB@
1CCCA �

g1jE1
�z�

g2jE1
�z�

g1jE2
�z�

g2jE2
�z�

0BBB@
1CCCA:

(3.2.ii) In the remaining cases z 2 E1 \ CD or z 2 E1 \ E2 with two parallel outer unit normals nE1
; nE2

we
choose tE1

to be the unit tangent to X at z that is perpendicular to nE1
and let Iz�rh� be the solution

x11 x12

x21 x22

� �
of the uniquely solvable system

n1;E1
n2;E1

0 0

0 0 n1;E1
n2;E1

t1;E2
t2;E2

0 0

0 0 t1;E2
t2;E2

0BBB@
1CCCA

x11

x12

x21

x22

0BBB@
1CCCA �

g1jE1
�z�

g2jE1
�z�R

--xz
�rh;11; rh;12�dx

� �
tE1R

--xz
�rh;21; rh;22�dx

� �
tE1

0BBBBB@

1CCCCCA:
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This amounts in the error indicator gA;T, for each T 2T,

gA;T :� krh ÿArhkL2�T �: �3:3�

For each T 2T we de®ne the error indicator gZ;T by

gZ;T :� krh ÿPrhkL2�T �; �3:4�

where P denotes the L2-projection onto Q�T; g�.
We will illustrate the e�ciency of gA in comparison with gZ and a residual based error estimate gR, i.e.,

g2
R :�

X
T2T

g2
R;T ; where g2

R;T :� 1

l
khTf k2

L2�T � � lkh1=2
E �rh � n�k2

L2�oT �: �3:5�

Recall that �rh � n� denotes the stress jumps on interior edges, de®ne it as rh � nÿ g on CN, and set formally
�rh � n��x� :� 0 if x 2 CD.

For the adaptive approaches we use the following Algorithm �A#
A�; �A#

Z�; and �A#
R�. They di�er only in

the used error indicator and generate meshes that are either unperturbed (relative to T0) for # � 0 and
randomly perturbed for # � 1 in step (f).

Algorithm. �A#
A�; �A#

Z�; respectively �A#
R�:

(a) Start with a coarse mesh T0; k � 0.
(b) Solve the discrete problem with respect to the actual mesh Tk with N degrees of freedom and errror
eN :� jjjrÿ rhjjj :� kCÿ1=2e�uÿ uh�kL2�X�.
(c) For Algorithm �A#

A� compute, for all T 2Tk,

gT � gA;T :� krh ÿArhkL2�T �:

For Algorithm �A#
Z� compute, for all T 2Tk,

gT � gZ;T :� krh ÿPrhkL2�T �:

For Algorithm �A#
R� compute, for all T 2Tk gT � gR;T as in (3.5)

(d) Compute a given stopping criterion and decide to terminate or to go to (e).
(e) Mark the element T (red re®nement) provided,

1

2
max
T 02Tk

gT 0 6 gT :

(f) Mark further elements (red±green±blue-re®nement) to avoid hanging nodes. Generate a new triangu-
lation ~Tk�1 using edge-midpoints if # � 0 and points on the edges at a random distance at most 0:3hE

from the edge-midpoints if # � 1. Perturb the nodes z 2Nk�1 of the mesh ~Tk�1 at random with values
taken uniformly from a ball around z of radius #2ÿk=15. Correct boundary nodes by orthogonal projec-
tion onto that boundary piece they are expected such that X;CD;CN are matched by the resulting mesh
Tk�1 exactly. Update k and go to (b).

The implementation is performed on triangles in Matlab as suggested in [1] using analytic formulae in the
calculation of the sti�ness matrix. Since C in (4.1) is a linear operator in our examples, the linear system of
equations can be solved directly. In order to approximate the right-hand side for a given function
g 2 L2�CN�2 we compute

R
CN

gvh ds via a three-point Gaussian quadrature rule on any edge E. The Dirichet
boundary conditions are satis®ed at the boundary nodes.

4. Numerical experiments

Three examples provide numerical evidence that all three a posteriori error indicators improve the
convergence rate of the discretisation, that the error estimator gZ is reliable and e�cient on unstructured
(rather degenerated) meshes, that the reliability is robust with respect to k!1, and that our adaptive
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scheme �A#
A� is e�cient in practise. Experimentally, the quotient of error over estimator increases with

larger perturbations as a possible consequence of lacking local symmetry in the mesh or of degenerating
triangles (see Fig. 4).

4.1. L-shaped domain with analytic solution

Let us consider the linear problem (2.1) and (2.2) with

r��� � k tr�e�12�2 � 2le �4:1�

and k � Em=��1� m��1ÿ 2m��; l � E=�2�1� m�� for Young's modulus E � 100 000 and the Poisson coe�-
cient 0:36 m < 0:5.

The model example on the L-shaped domain shown in Fig. 1 models singularities at reentrant corners.
Using polar coordinates �r; h�;ÿp < h6 p, centered at the origin, the exact solution u with radial com-
ponent ur reads

ur�r; h� � ra

2l
�ÿ�a� 1� cos��a� 1�h� � �C2 ÿ �a� 1��C1 cos��aÿ 1�h��;

uh�r; h� � ra

2l
��a� 1� sin��a� 1�h� � �C2 � aÿ 1��C1 sin��aÿ 1�h��:

The parameters are C1 � ÿ cos��a� 1�x�= cos��aÿ 1�x�;C2 � 2�k� 2l�=�k� l�; where a � 0:54448373 . . .
is the positive solution of a sin 2x� sin 2xa � 0 for x � 3p=4. The exact solution is traction free, g � 0, on
the Neumann boundary CN. Starting from the initial mesh T0 from Fig. 1, we run Algorithm �A0

A�. The
resulting mesh after 21 adaptive re®nements and a zoom at the re-entrant corner is shown in Fig. 2 and
displays a rather high mesh-re®nement near the singularity.

Error and error estimators gA are displayed versus the number of degrees of freedom N for
m � 0:3; 0:49; 0:499 for uniform meshes and adaptively re®ned meshes with Algorithm �A0

A� in Fig. 3. The
slope -1/2 corresponds to an experimental convergence rate 1 owing to N / hÿ2 in two dimensions. For the
sequences of uniform meshes we obtain experimentally convergence � 0:54 which coincides with the the-
oretically expected rate a. The adaptive mesh-re®ning Algorithm �A0

A� improves this experimental con-
vergence order to 1 which is expected to be optimal for the used family of ®nite elements spaces. This
numerical experiment con®rms numerically that the a posteriori error estimate is h-independent.

The used FEM for the displacement formulation shows incompressibility locking phenomena in Fig. 3,
i.e., the error in energy norm is not bounded (for a given number of unknowns) as m! 1=2. (Further details
of this model problem and nonlocking ®nite elements are given in [8] and in Part II of this paper [10].)

Fig. 1. System and initial mesh in Section 4.1.
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Besides Algorithm �A0
A�, we run Algorithm �A0

Z� and obtained results (not displayed) similar to those in
Fig. 3; the entries for the error indicators gZ have the same slopes and the meshes resulting from Algorithm
�A0

A� are of the same quality.
Super-convergence properties are frequently believed to be responsible for the good performance of

averaging techniques for a posteriori error control in practice. To study the in¯uence of local symmetries in
the mesh, Algorithms �A1

A�; �A1
Z�; and �A1

Z� perturb the nodes in step (f). Fig. 4 shows a sequence of per-
turbed re®ned meshes from Algorithm �A1

A��m � 0:3� with optimal experimental convergence order 1.
For perturbed and nonperturbed meshes from Algorithms �A#

A� and �A#
Z� we display the extreme quo-

tients of the error estimator gA (respectively gZ) over the error in energy norm eN versus 1=2ÿ m, i.e., the
displayed constants are minfgA=eNg, maxfgA=eNg, minfgZ=eNg, and maxfgZ=eNg for di�erent values of N
corresponding to T1; . . . ;Tk for k as implicitly shown in Fig. 3. The values for gZ are always smaller than

Fig. 2. Mesh T21 and magni®ed detail at the re-entrant corner for Section 4.1.

Fig. 3. Errors eN and error indicator gA vs N for uniform and adaptive meshes from Algorithm �A0
A� of Section 4.1.
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those that correspond to gA as predicted by the theory. Fig. 5 shows also that the reliability constant is
bounded from above and the ef®ciency constant from below independently from the Poisson ratio m. This
numerical example supports that also for perturbed meshes the estimate (1.4) is reliable and ef®cient.

Fig. 4. T0; . . . ;T11 generated by Algorithm �A1
A� in Section 4.1.

Fig. 5. Computed reliability/e�ciency constants vs 1=2ÿ m for perturbed and nonperturbed meshes from Algorithms �A#
A� and �A#

Z� of

Section 4.1.
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4.2. Cook's membrane problem

As a further test example we consider a tapered panel clamped on the left end as depicted in Fig. 6
subject to a shearing load on the right end, i.e., g � �0; 1000� on the right edge of X; g � 0 on the remaining
part of CN; u � 0, on CD, and f � 0. The material constants are E � 100 000 and m � 1=3 or 0:499 and the
initial mesh T0 is displayed in Fig. 6.

A plot of the approximated von-Mises stress after 11 re®nements generated by Algorithm �A0
A� as some

magni®ed detail near the re-entrant corner (zoom of �0; 10� � �36; 46�) is given in Fig. 7. (For visualisation
the grey scalebar shows the stress only up to a ®xed limit despite the maximal stress is unbounded.) The
calculated von-Mises stress is in agreement with corresponding pictures in the literature.

The errors eN for m � 1=3 (left) and m � 0:499 (right) computed with uniform and adaptive re®nements
are given in Fig. 8. the error eN is computed using Galerkin orthogonality, via e2

N � jjjrjjj2 ÿ jjjrhjjj2. For
given m, extrapolated energies Gm :� jjjrjjj are calculated from a sequences of approximations such as
G0:3 � 0:235093 and G0:499 � 0:218128.

The adaptive mesh-re®ning Algorithms �A0
Z� and �A0

R� yield convergence order 1 which is asymptot-
ically better than uniform re®nement as observed in Fig. 8. The posteriori error estimates gA; respectively
gR overestimate the error in a range of (0.69, 1.02), respectively (3.3, 25, 6) for all tested

Fig. 6. Cook's membrane problem. System and initial mesh in Section 4.2.

Fig. 7. Mesh T11 generated by Algorithm �A0
A� and magni®ed detail at (0, 44) of Section 4.2.
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m 2 f1=3; 0:45; 0:49; 0:499g. For coarse uniform meshes, gR seems to fail for m � 0:499. By Algo-
rithm �A0

A� we obtain meshes with slightly smaller errors eN and quantities gR and gZ than generated by
Algorithm �A0

Z� and to reach a given error tolerance Algorithm �A0
R� needs more adaptive iterations

than �A0
A�.

4.3. Components tension specimen

A compact tension specimen in Fig. 9 is loaded with a surface load g � �0; 100� on CN �
f�x; y� 2 C : jyj � 60g and f � 0; E � 100000 and m � 0:3 and 0:499. The specimen is subjected to a ver-
tical elongation. As the problem is symmetric, one half of the domain was discretized. We ®xed the hor-
izontal displacement with the constraint that the integral mean of all horizontal displacements is zero. For
coarse meshes, the problem behaves like a problem with re-entrant corner at A � �50; 0� and hence we
expect a higher mesh-re®nement. The numerical solution for this problem with m � 0:3 and N � 21503 and
a magni®cation of the adaptively re®ned mesh around A is provided in Fig. 10. The approximated energies
for this example are G0:3 � 0:520590 and G0:499 � 0:490950. The resulting improvement of the convergence
is outlined in Fig. 11, where the error eN and the a posteriori error estimates gA and gR are plotted versus
the number of degrees of freedom N. The convergence rate of nA and nR is approximately 1 for the adaptive
meshes and (computed from the last two meshes) 0.45, respectively 0.14 for uniform meshes. Similar as in
Subsections 4.1 and 4.2 the overestimation factors corresponding to nA and nR lie here in a range of

Fig. 8. Errors eN and error indicators gA and gR vs N for uniform and adaptive meshes from Algorithms �A0
A� and �A0

R� of Section 4.2.

(m � 1=3 left ; m � 0:499 right).

Fig. 9. System and initial mesh in Section 4.3.
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(0.6, 1.04), respectively (2, 94, 45.4) for all tested m 2 f0:3; 0:45; 0:49; 0:499g. Both adaptive mesh-re®ning
Algorithms �A0

A� and �A0
R� improve this experimental convergence order to the optimal order one. The error

estimator gR fails for m � 0:499 (in the range of considered meshes) and so proves to be nonrobust for
incompressibility.

5. Proof of Theorem 2.1

The proof of e�ciency is relatively easy and follows from the triangle inequality

krh ÿ r�kL2�X�6 krÿ rhkL2�X� � krÿ r�kL2�X� �5:1�

for all r� 2 Q�T; g�. Taking the in®mum over r� in (5.1) we deduce with (2.17)

gZ 6 krÿ rhkL2�X� � inf
r�2Q�T;g�

krÿ r�kL2�X� �5:2�

and conclude the proof of the lower inequality in (2.18).
The proof of reliability is more involved and we base our proof on a certain global interpolation op-

erator J from [6,7,11].

Fig. 10. Mesh T10 generated by Algorithm �A0
A� and magni®ed detail at A of Section 4.3.

Fig. 11. Errors eN and error indicators gA and gR vs N for uniform and adaptive meshes from Algorithms �A0
A� and �A0

R� of Section

4.3. (m � 0:3 left ; m � 0:499 right)
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De®nition 5.1. For each regular node z 2N nK on the Dirichlet boundary we choose a neighbouring free
node f�z� 2K and f�z� � fzg if z 2K. For z 2K set I�z� � f~z 2N : f�~z � zg and

w�z� :�
X
f2I�z�

uf and Xz :� fx 2 X : 0 < wz�x�g: �5:3�

Remarks 5.1.

(i) Note that �uz : z 2N� and �wz : z 2N� are Lipschitz continuous partitions of unity with supports of
a ®nite overlap. The functions wz are designed by adding neighbouring hat functions in (5.3) for this pur-
pose.
(ii) The choice of a neighbouring free node f�z� means Xz connected. If all nodes of an element belong to
the Dirichlet boundary we are forced to choose a second neighbour, etc. The constants below depend on
this choice and it is only required that the degree of neighbourhood stays bounded and Xz is connected.
(iii) If z 2K lies far apart from CD we have wz � uz according to I�z� � fzg. Note that uz 6� wz implies
that CD \ �oXz� has positive surface measure.

De®nition 5.2. For w 2 H 1
D�X�d let Jw �Pz2K wzuz be defined; for z 2K,

�Jw��z� � wz :�
Z

Xz

wwz dx
�Z

wz

uz dx:

Lemma 5.1. ([6,7,11]) The operator J : H 1
D�X�d !S1

D�T�d has the following properties for all w 2 H 1
D�X�d

kJwkH1�X� � khÿ1
T �wÿ Jw�kL2�X� � khÿ1=2

E �wÿ Jw�kL2�X�6 c6krwkL2�X� �5:4�

and locally for all z 2K and hz :� diam�Xz�,
kwzuz ÿ wwzkL2�X�6 c7hzkrwkL2�X�: �5:5�

The constants c6; c7 > 0 depends on the shape of the elements and patches only neither on z, w or any mesh-
size.

We are now prepared to sketch the proof of the upper estimate of Theorem 2.1 following arguments in
[7]. Let K denote an inequality up to a constant factor C that is �hT; k�-independent but may depend on
c3; . . . ; c7, X;CD. Let e :� uÿ uh denote the displacement error. From (2.5) and Korn's inequality, we
obtain

kek2
H1�X�K

Z
X
�rÿ rh� : e�e� dx �

Z
X
�rÿ rh� : e�wÿ Jw� vÿ uh� dx; �5:6�

where employed the Galerkin property (which follows from (2.1)±(2.4) to (2.12) and (2.13) for w :� uÿ v
and v 2 H 1�X�d with v � uD on CD and minimal kuh ÿ vkH1�X�6 kekH1X. Note that kwkH1�X�6
kekH1�X� � kuh ÿ vkH1�X�6 2kekH1�X� it is shown in [Lemma 4.1, 7] that we can ®nd some v for uh with (2.10)
by extending the boundary values �uh ÿ uD�jCD such that

kuh ÿ vkH1�X�6 kh3=2
E o2

EuD=os2kL2�CD�: �5:7�

Similarly, for any r� 2 Q�T; g�, one can prove that

kh1=2
E �g ÿ r�n�kL2�CN�K kh

3=2
E oEg=oskL2�CN�: �5:8�

Cauchy's inequality, Lemma 5.1, (2.1) and (2.2) and an integration by parts show (notice wÿ Jw � 0
on CD)
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Z
X
�rÿ rh� : e�wÿ Jw�dx �

Z
X
�rÿ rh� : r�wÿ Jw�dx

�
Z

X
�rÿ r�� : r�wÿ Jw�dx�

Z
X
�r� ÿ rh� : r�wÿ Jw�dx

6
Z

CN

�g ÿ r�n� � �wÿ Jw�dx�
Z

X
�f � divr�� � �wÿ Jw�dx

� krh ÿ r�kL2�X�kwÿ JwkH1�X�

K kh1=2
E �g ÿ r�n�kL2�CN�kh

ÿ1=2
E �wÿ Jw�kL2�CN� �5:9�

�
Z

X
f � �wÿ Jw�dx� khTdivr�kL2�X�krwkL2�X�

� krh ÿ r�kL2�X�krwkL2�x�

K kekH1�X� krh

�
ÿ r�kL2�X� � kh3=2

e oEg=oskL2�CN� � khTdivr�kL2�X�
�

�
Z

x
f � �wÿ Jw�dx:

The last term is analysed utilising
P

z2K wwz � w and Jw �Pz2K wzuz; where wz 2 R satis®esR
Xz
�wwz ÿ wzuz� dx � 0 for all z 2K.
Therefore, for all fz 2 RdZ

X
f � �wÿ Jw�dx �

X
z2K

Z
X

f � �wwz ÿ wzuz�dx �
X
z2K

Z
Xz
�f ÿ fz� � �wwz ÿ wzuz�dx

K
X
z2K

hzkf ÿ fzkL2�Xz�krwkL2�Xz�K
X
z2K

h2
zkf

 
ÿ fzk2

L2�Xz�

!1=2

kekH1�X�: �5:10�

In the last step we employed a Cauchy inequality and made essential use of the fact that the patches
�Xz : z 2K� have only a ®nite overlap. A Poincar�e inequality on Xz shows

min
fz2R
kf ÿ fzkL2�Xz�K hzkrf kL2�Xz�:

Using this in (5.10), observing hz K hC for T � �Xz, and again using the ®nite overlap of the patches we
eventually inferZ

X
f � �wÿ Jw� dx K krwkL2�X�kh2

Trf kL2�X�: �5:11�

The proof focusses now on khT divr�kL2�X�. On each element T 2T, div r� is a constant vector, r� jT is
a�ne. Hence an inverse inequality [4,5,12] shows for the constant �rhjT

kdivr�kL2�T � � kdiv�r� ÿ �rh�kL2�T �K
1

hT
kr� ÿ �rhkL2�T �

and so, with a triangle inequality.

khTdivr�kL2�X�K kr� ÿ �rhkL2�X�kr� ÿ rhkL2�X� � krh ÿ �rhkL2�X�: �5:12�

Gathering (5.6) and (5.7) and (5.10)±(5.12) together we have shown that there holds

kek2
H1�X�K kekH1�X� kh3=2

E o2
EuD=o2skL2�CD�

�
� krh ÿ r�kL2�X� � krh ÿ �rhkL2�X�

� kh3=2
E oEg=oskL2�CN� � kh2

Trf kL2�X�
�
:

from which we conclude the proof.

2496 C. Carstensen, S.A. Funken / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2483±2498



6. Locking

Nearly incompressible linear elastic materials yield Lam�e parameter k!1 and bounded positive l in
(4.1). Incompressibility locking is observed for standard conforming ®nite element methods in the sense
that (for uniform meshes with meshsize h)

jjjrÿ rhjjj :�
Z

X
�r

�
ÿ rh� : Cÿ1�rÿ rh�dx

�1=2

/
���
k
p

ha �6:1�

(/ denotes propotionality and a > 0 depends on corner signularities as in Section 4.1.) The empirical
observation of (6.1) is seen in Fig. 2 and can be explained as follows. The Galerkin scheme yields a quasi
optimal a priori error estimate

jjjrÿ rhjjj2 � min
vh2S1

D
�T�d

kkdiv�e
�

ÿ vh�k2
L2�X� � 2lkdeve�eÿ vh�k2

L2�X�
�

�6:2�

for the error e :� uÿ uh, respectively rÿ rh � Ce�e�. If l is bounded but k relatively large, we would expect
that, kkdiv�eÿ vh�k2

L2�X� on the right-hand side of (6.2) is of the same order as 2lkdev e�eÿ vh�k2
L2�X�. But for

standard conforming lower order ®nite element schemes this is not observed. Instead, we merely observe
that kdiv�eÿ vh�kL2�X� is of the same magnitude as kdev e�eÿ vh�kL2�X� and so

kdiv ekL2�X�P jkdev e�e�kL2�X� �6:3�
for some j > 0. Recall that the discretisation locks if (6.3) holds since the large penalty parameter k!1 in
(6.2) enforce kdiv ekL2�X� ! 0 which contradicts (6.3).

Depending on the smoothness of u we have generically (for suf®ciently small mesh sizes)

c8ha6 krekL2�X�6 c9ha �6:4�

and conclude with (6.2) that

c10

���
k
p

ha6
������������������������
k�1� j2�=2

p
krekL2�X�6 c10

���
k
p

ha6 jjjrÿ rhjjj6
���������������������
k� 2l=j2

p
krekL2�X�6 c11

���
k
p

ha: �6:5�

This is in agreement with (6.1). Notice that the failure of the scheme has nothing to do with the hopefully
good estimation of the possible poor error e.

The a posteriori error estimate from Theorem 2.1 leads in the case of (4.1) to the estimate

jjjrÿ rhjjj26 c12ke�e�kL2�X� min
r�h2S1

g�T�
krh

 
ÿ r�hkL2�X� � h:o:t:

!
; �6:6�

where the higher order terms h.o.t and the constant c12 are k-independent. Suppose that we have locking in
the sense that (6.3) is true for some j > 0. Then

ke�e�kL2�X�6
1

d

�
� 1

j2

�1=2

kdiv ekL2�X�6 kÿ1=2 1

d

�
� 1

j2

�1=2

jjjrÿ rhjjj �6:7�

which yields in (6.6) (with a j-depending constant c13) that

jjjrÿ rhjjj6 c13 min
r�h2S1

g�T�
kÿ1=2krh ÿ r�hkL2�X� � kÿ1=2 h:o:t:: �6:8�

It is directly seen from the de®nition of the inverse of the elasticity tensor that

kÿ1=2jrh ÿ r�hj6
c14

c13

jrh ÿ r�h jCÿ1
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and so (6.8) yields

jjjrÿ rhjjj6 c14 min
r�h2S1

g�T�
kÿ1=2jjjrh ÿ r�hjjj � kÿ1=2 h:o:t: �6:9�

which indicates that the Z-estimator is k-robust reliable if locking is present in the sense of (6.3). Note that
the in¯uence of h.o.t. is decreasing if k increases. This heuristic argument indicates the surprising robustness
of the Z-estimator in practice. A detailed analysis will be reported on in Part II of this paper [10].
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