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Summary. Some micromagnetic phenomena in rigid (ferro-)magnetic ma-
terials can be modelled by a non-convex minimisation problem. Typically,
minimising sequences develop finer and finer oscillations and their weak
limits do not attain the infimal energy. Solutions exist in a generalised sense
and the observed microstructure can be described in terms of Young mea-
sures. A relaxation by convexifying the energy density resolves the essen-
tial macroscopic information. The numerical analysis of the relaxed prob-
lem faces convex but degenerated energy functionals in a setting similar to
mixed finite element formulations. The lowest order conforming finite ele-
ment schemes appear instable and nonconforming finite element methods
are proposed. An a priori and a posteriori error analysis is presented for a pe-
nalised version of the side-restriction that the modulus of the magnetic field
is bounded pointwise. Residual-based adaptive algorithms are proposed and
experimentally shown to be efficient.
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1. Introduction

This paper concerns the numerical treatment of the Euler-Lagrange equa-
tions of a degenerated convexified minimisation problem for a magnetisa-
tionm and a potentiak: Givenf € L?(w)? and bounded Lipschitz domains

w CC 2 CC R?, seeku € H () andm € L%(w)? with jm| < 1 almost
everywhere inv which satisfy
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Fig. 1. A coarse grid where a non-zero magnetisatioforn 75 provides a solution to the
homogeneous discrete problem

(1.2) /Vu-dea::/m‘dea:,
9] w

@2 [V (- mde < [ (6 ) - 6" ()

w

forallw € H}(2) andp € L?(w)? with |u| < 1 almost everywhere iw.

The mathematical model is explained in detail in Sect. 2 where we prove
uniqueness of solutions in the uniaxial cagé(m) = (m - e )?/2 for
perpendicular unit vectors ande . e is called the easy axis because of
¢**(te) = 0andD¢**(te) = 0 for all t € R. The physical setting and the
relation of (1.1)—(1.2) to major activities in computational micromagnetics
literature will be discussed in Sect. 2 as well. For the sake of this introduction,
we focus on the mathematical aspects of the numerical analysis of (1.1)—
(1.2) which we found interesting.

At first glance, it is surprising that a natural conforming discretisation
which replaced} (£2) by a standard conforming1-finite element scheme
andL?(w)? by piecewise constants finite elements fails, e.g., for the standard
mesh7 of Fig. 1 on the unit square.

Example 1.1.Let my|y, = (—=1)/(1,1)/V2, w = int(Ty UTy) = (1/3,
2/3)* C 2 = (0,1)and notice by direct calculation thit my,- V. dz =

0 for each hat functionp, (the nodal basis function for conformirig-
piecewise affine finite elements). In the uniaxial case with (1,1)/v/2
we havep™ (mj) = 0. Hencef mj, andu;, = 0 satisfy the discrete version
of (1.1)-(1.2) forf = 0 and anyt € R with |t| < 1. A discrete Helmholtz
decomposition (cf. [AF]) shows whyn,, is the piecewise curl of a noncon-
forming hat functiony, (v, = 1 onTy NT> and zero at midpoints of other
edges obw) and is parallel te. One remedy in this particular situation is
to change the mesh by taking the other diagonals in Fig. 1 or, equivalently,
transform the situation te = (1, —1)/v/2.
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At second glance, ignorinfy ¢**, and the saturation conditiom| < 1,
the resulting system in (1.1)-(1.2) is a mixed system and so a conforming
P1-Q0-finite element discretisation may expected to be instable, but non-
conforming P1-finite elements may be stable. The uniqueness of discrete
solutions for Crouzeix-Raviart elements will be proved in Sect. 3. In Sect. 4
below, we will study what quantities can be controlled and at which conver-
gence order for the lowest order conforming and nonconforming method.

As the side restrictionm| < 1 in (1.2) yields a variational inequality,
optimal convergence results cannot be expected>If0 is a small penalty
parameter to penalisen| < 1 we proveO(e + v/h) for the conforming
andO(e + h) for the nonconforming lowest order finite elements for some
error terms as the piecewise derivativesuof- u; and the components
(m—my,)- e, . We regard the estimaté¥c + h) as being optimal i and
in h.

It should be emphasised that the estimates are optimal in casg¢*that
is uniformly convex. Hence, we may say that the penalisation of the side
restriction|m| < 1 is treated in an optimal way. It is the degenerated not
strictly convex part ofp** that causes poorer estimates as in convexified
two-well problems [CP1,CP2].

The underlying assumption of smooth solutions is an open question and
it may be believed that the boundary of the §ete w : |m| = 1} (un-
known a priori) gives rise to non-smooth solutions. Here, self-refining adap-
tive finite element schemes might be an efficient tool and hence we study
residual-based a posteriori error estimates in Sect. 5. They are either effi-
cient (optimal weights of local mesh-sizes) or reliable (in the sense that no
regularity assumption on the unknown solution is made) but not both. In
Sect. 6 we report on humerical examples to monitor the optimality of the
estimates.

The notation for Lebesgue spaces is standard,|e-dy, 2 := || - | 1o ()
denotes the normin (any power dff ({2) andH*({2) are the usual Sobolev
spacesq{ € R) for a bounded Lipschitz domaif? with boundaryl". Let
| k2w == II - l#@) a@nd| - |gx(. denote the norm and semi-norm in
HF*(w) for w C 2 and an integek.

2. Mathematical model

Micromagnetic phenomena in a rigid (ferro-)magnetic bady R?, d =
2, 3, are described in terms of the magnetisation w — R and the scalar
potentialu : 2 — R in the larger simply connected domaih ¢ R? that
surroundsv C {2.
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The classical model of Weiss, Landau, and Lifshitz [B] assumes the
energyE(m) to be a sum of exchange, anisotropic, exterior (i.e., from a
given magnetisatiofi) and magnetostatic energies

E(m) :a/w|Vm|2 da:+/w¢(m) do

1
(2.1) —/f-mdac—l—/ \Vul? da.
w 2 k0]

For eachm € L?(w)? there exists a unique € H}({2) that satisfies
Maxwell's equations which result in

(2.2) —Au+div(my,) =0 in H ().

Here,x,, is the characteristic function of the seti.e.,x,(z) = 1lif r € w
andy,(z) = 0if not.

In many physical applications? = R? is the full space and proper
radiation conditions are required as boundary conditions at infinity. In this
paper we focus on a bounded domahwhere the interface conditions
state that the magnetic fluX is perpendicular to the wadlf2 which yields
H -t = 0u/ds = 0 with the tangential unit vectarand derivative) /ds
with respect to the arc-length alog. Thus,u is constant on the connected
boundaryds? and so we suppose without loss of generality—= 0, i.e.,

u € Hi ().

Below a critical temperature (Curie point), the modulusmefis fixed

pointwise and (assuming constant temperature) we suppose

(2.3) lm| =1 almost everywhere iw.

Then, theMinimisation Problem (M,) reads as followsGivenf <
L?(w)? minimise the energy (2.1) subject to (2.2) and (2.3)

For small positivex, the minimisers of §/,,) show fine oscillations of
ana-depending length scale that is much smaller than a realistic mesh-size.
Macroscopic phenomena depend very much on the remaining lower order
terms. Following [ADS, T], we therefore study a relaxation of the limit case
(Mp) in this paper, where the exchange enemg&) ]Vm]Q dz is neglected
in(2.1),i.e.,a =0.

Typically, ¢(m) > 0 has a finite number of zero states related by some
symmetry group, e.g¢ even andp(m) = 0 if and only if m = +e for
some unit vectoe (the easy axis). Itis known in this case that Probléig )
may have no classical solution [JK]: in general, the infimal energy is not
attained. Minimising sequences exist, are bounded, contain weakly converg-
ing subsequences, but show higher and higher oscillations which prohibit
strong convergence. The weak limit does describe the macroscopic mag-
netisation but does not characterise the microscopic mechanism of energy
minimisation.
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Remark 2.1.For a survey of the state of the art in micromagnetics, we refer
to the recent monograph of Hubert and &l [HS] and the works quoted
therein, or related journals suchl@EE TRANSACTIONS ON MAGNET-

1cs. In most of these contributions, problem/{) is addressed numeri-
cally by a finite element scheme similar to the conforming discretisation of
Sect. 3. For an exchange constant 10~11.J/m, observed micromagnetic
phenomena in samples of permalloy (like Bloch walls) then show a charac-
teristic length of approximatel§nm. Physicists are interested in those fine
structures and hence are restricted to very small magnets, where is.g.,
rectangle of sizéum x 2um, according to limited computer power. Adap-
tive schemes are in use to allow three-dimensional calculations. However,
the numerical results depends very much on starting values for the iterative
solver (cf. Sect. 6 for our strategy in the same spirit). The mathematical
foundations of those numerical experiments still have to be developed, and
this work is devoted to contribute in this direction. Consequently, the main
motivation in this paper is to understand the limit problebdyj and its
sound numerical analysis before addressing its perturbatif. (

From a variational point of view [D], model{) has to be generalised
to allow measure valued solutions [P1, R, T] and be well-posed. On the other
hand, the main interestis often on the averaged (macroscopic) magnetisation
properties of the ferromagnet. To obtain those informations it is sufficient to
consider a modified minimisation problem (R). The relaxation of the present
example is analysed in [ADS] and essentially means a convexification of
¢ and of (2.3). Letp(m) denote the lower convex envelopé&*(m) of ¢
if j/m| < 1 andg(m) = oo if not. The lower convex envelopg*™ is the
largest convex function below. Then, theRelaxed Problem (R)reads:
Seek a minimisam € L?(w) of the relaxed energy

(2.4) RE(m) = / o(m)dz — / f-mdx + % /Q \Vu|® da

subject to (2.2).

Since minimising sequences of (R) have bounded magnetisation and so
a bounded potential, there exist weakly convergent subsequences. Owing to
the convexification, the relaxed energy functioR& is sequentially weakly
lower semi-continuous and there exist solutions of (R) [ADS]. Each solution
of (R) solves the Euler-Lagrange equations (1.1)-(1.2) and, if we involve a
further Lagrange multiplier with respect to the constréaint < 1, solves
Problem (P): Seek: € H}(£2), m € L?(w)?, and\ € L?(w) satisfying

(2.5) / Vu - Vw dx:/m~Vw dr (w € Hy(2)),
0 w
(2.6) Vu+ D™ (m)+m=1f a.e.inw,
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(27) 0<X |m|<1, and ANl1—|m|); =0 a.e.inw.

Here,(s)+ := max{s, 0} denotes the non-negative part and the last condi-
tion in (2.7) states that + 0 is possible only fofm| = 1 as a consequence
of Am € 9v(m) for the convex characteristic functional: R? — [0, oo]
defined byy)(m) = 0 if |m| < 1 andy(m) = oo if not.

Remark 2.2.According to (2.5), the stray-fielWu = L(x.m), where
L(m) = VAR div (x,m) andAS' : H~Y(2) — H(2) denotes the
solution operator for the Laplace problem with homogeneous Dirichlet
boundary data. Then, the Euler-Lagrange equation of (2.4) r&afim +
D¢™*(m) + Am = f in L?(w)2. One can prove that this indeed implies
(2.6).

Remark 2.3.The oscillations of minimizing sequences of Problem (P) can-
notbe observedinthe Relaxed Problem (R) with a (possibly) smooth solution
m but can be computed from it. For instance, the Young measure generated
by minimising sequences is

(2-8) Vp = )‘(m)(str(m) + (1 - )‘<m)>5m*(m)7
m*(m) :=+(1 - (m-e,)?)"?e+ (m-e )e,, and
1 m-e

(2.9) A(m) := 3 + 21— (m -6 )2)1/2

in the uniaxial case with easy axisc R? (see [ADS] for a proof). We refer
to [LM, Pr] for a direct minimisation approach fér= 0.

As shown in [ADS, Thm 4.2], any solution of (R) solves (P) and, in
particular, Problem (P) has solutions. Their uniqueness is claimed in a mis-
leading way in [P2,P3] and is discussed in a simplified setting in [ADS].
Therefore, we conclude this section with a clarification of uniqueness in the
present model: for the important uniaxial case there exists a unique solution
while, in general, the number of solutions may be infinite.

Theorem 2.1. In the uniaxial case, wherg**(m) = % (m - e )? for some

unit vectore € R? and its normak | , there exists only one solution in Prob-
lem (P) and in Problem (R). In general, there are infinitely many minimisers
in the cubic case, wher(m) = m3m3 for m = (my, my) € R2

Proof. Supposé€m;, \;, u;) solves (P) foy = 1,2 and denote := uy—u,
andd = ms — my. According to (2.5), we have

(2.10) / Ve-ddx=|el}yq.
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From the monotonicity of the subgradients we infer frapm; € 0v)(m;)
that \;m;(m;;; — m;) < 0for j = 1,2 andm3 := m;. This shows

0 < (Aomgy — A\ymy) - § almost everywhere iw. Similar arguments show
0 < (D¢**(mgz) — Dp**(my)) - § and we deduce with (2.6) and (2.10) that
all the three terms in

| Vel o+ / (D™ (my) — D™ (my)) - 6 de

(211) +/()\2m2 — )\1m1) c0dx=0

are non-negative and hence vanish= 0, (Aamy — A\;ym;) - 6 = 0 and
(D¢**(mz) — D¢** (m;)) - = 0 almost everywhere.

In the uniaxial casé**(m) = 3(m - e )?, we haveD¢**(m) = (m -
ey ) e, and so infer

(212) 0= (D¢™(my) — D$**(my)) -6 = (6 -e1)”.

On the other hand; = 0 and (2.10) imply thab is divergence-free in the
sense of distributions. This means div= 0 almost everywhere i but
alsoéd -n = 0 on the boundargw with unit normal vector: (in a weak sense
according to the formula of integration by parts). Let us extédny zero
outsidew. Since the normal components are continuous on the boundary
Ow, the extended functiod belongs toH (div; R?) and is divergence-free.
Hence,§ = curly := (n2,—n1) for somen € H!(w), cf. e.g., [GR,
Theorem 3.1 on page 37]. Outside a ball that includeg = 0 and so
7 is constant there. Without loss of generalify= 0 on the connectivity
componenty, of the boundaryw that includesv.

Because of (2.12)n is parallel toe, i.e., the directional derivative of
in the directione | vanishes almost everywheredn Sincen = 0 on~ and
is constant along almost all lines in paralleldéansidew (and according
to the extension o8, 7 is constant in bounded componentsRif\ w) we
deducey = 0. This shows) = 0 and evems = \; by (2.6).

In the cubic case, the convexificatigri* of ¢ is zero form equal to
(£1,0) and (0, £1). Consequentlyy™* vanishes on their convex hull and
so, in particular, on the balB(0,1/2). Givenf = 0, one solution with
minimal zero energy isn = 0, v = 0, A\ = 0. However, for any smooth
with compact support iv which is small (by scaling with a small factor),
i.e.,|Vn| < 1/2 almost everywhere iw the functionan = curln, u = 0,
and\ = 0 solve (P). This shows that there are infinitely many solutions in
the cubic case.
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3. Conforming and nonconforming discretisation and penalisation

In the first part of this section, we consider the lowest order conforming
finite element method and show that inist feasible. This favours the use
of nonconforming finite element schemes for which we prove stability and
optimal a priori error estimates.

For simplicity, let7 be aregular triangulation ¢? andw with polygonal
boundary in the sense of Ciarlet [BS]; i.4.,is a finite partition of(2 in
closed triangles such that two distiriétand7” in 7 are either disjoint, or
T UT'is acomplete edge or acommon node of EB@nd7T”. We suppose
thatw is covered exactly by the sub-triangulatiph, = {T € T : T C &}.

Given T, let £ denote the set of all edges and denote the set of all
nodes inf2; V is partitioned into free nodes in the interiér:= N’ Nw and
those on the outer boundaty N 9¢2. The set of all midpoints of edgds
in £ is denoted byM.

The class of lowest order finite element spaces under consideration is
defined by

LYT|.) :={V € L®w) : VT € T|,, V|r constan},
(T):={V eC(2): VT € T,V|r affine},
(T):={VeSYT): V=00nd0},
SUNC(T) :={V e L®(2) : VT € T, V| affine A

Vz e MN {2, V continuous at},
SyNUT) = {V e SNO(T) : Vz e M\ 2, V(z) = 0}.

Definef; € £°(T|.) byfr|r = [, f dx/|T|, where|T| denotes the area of
T € T.The number of degrees of freeddvn= dim(S) +2 dim(L°(T,,))
serves as a reference to the spatial discretisgfiowhereS = S (7)) or
1,NC

Sy (7).

TheDiscrete Problem (Py):=(P|S3(T) x L%(T|.)? x £L%(T|.)) for
the conforming finite element method reads as folloBesek(uy,, mp,, \p,)
in SHH(T)x LO(Tw)?x LO(T|.) satisfying

(3.1) / Vuy, - Vo de = / my -V de - (wy, € SHT)),
9] w

(3.2) Vup + D¢™ (mp) + A\pmy, = 5 a.e.inw,
(83)0< A, |myl <1, and A(1—|my|)y =0 ae.inw.

To describe the nonconforming finite element method, we defin@the
piecewise gradienVs by VU (z) := VU|rp(x) forx € T € T, which
may be different from the distributional gradievit/ € D’(£2). Therefore,
the discrete energy spacefi8 (7)),
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HY(T) == H*(| ] int(T))
TeT
(3.4) ={Vel?Q): VT eT, V|lr € HYT)}.

TheDiscrete Problem (PYC):=(P|Se™VC (T) x L£O(T1.)? x L2(T.,))
for the nonconforming finite element method reads as foll@eeK v, my,,
An) in SyNE (T x L£O(T )2 x £O(T).,) satisfying

(3.5) / Vruy, - Vywy, de = / my, - Vyw, dv - (wy, € Sy (T)),
(p] w

(3.6) Vrup + D™ (myp) + \pmy, = £ a.e. inw,
B7)0< XN, |myl <1, and M(1—|my|)y+ =0 ae.inw.

For a positives and the conforming resp. nonconforming discrete space
S, theDiscrete Penalised Problem (BS x £°(T|.)? x £°(T].)) abbre-

viated (P. y) for § = Sj(T) resp.(PYY) for S = SyNY(T) reads as
follows: Seek(uy,, my, A,) in Sx L9(T )2 xL(T|.) satisfying

(3.8) / Vrup - V3w, de = / my, - Vywy dx  (wp, € S),
2 w

(3.9 Vrup + De™ (my) + \pymy, = £ a.e. inw,
(3.10) A= Hmy| —1)4/|jmy|  ae.inw.

Here,(1 — |my|)+/|my| is understood to vanishih;, = 0 (andV could
be replaced by in the conforming cas& = S} (7).

The existence of discrete solutions follows as in the continuous case from
the variational problem. Example 1.1, illustrated in Fig. 1, shows tha} (P

does allow multiple solutions for the uniaxial case in general whijéC(P
does not.

Theorem 3.1. In the uniaxial case, wher¢**(m) = % (m - e, )? for some

unit vectore € R? and its normale, Problems (B/¢) and (PV§)) have
unigue solutions.

Proof. Supposg(u;, m;, \;) solves (B/©) for j = 1,2 and denote: :=

ug —uy € S&’NC(T) andd := my — m; € L£%(T|,)? (we neglect the
lower indexh in this proof for simplicity). According to (3.8), we have

(3.11) / Vre-ddx=||Vrel3q.
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Subtracting the two equations in (3.9) for= 1,2 and multiplying the
results withd we infer with (3.11) that

V7 el o+ / (D6* (ma) — D™ (my)) - & de
(3.12) w
+/(/\2m2—)\1m1) -ddx = 0.

All the terms in (3.12) are non-negative and so will vanish separately. This
follows for the second term in (3.12) from the convexity@f (i.e., the
monotonicity of D¢**) as we havé < (D¢**(b) — D¢p**(a))(b — a) for

all a,b € R2. This is also true for the last term according to (3.10) and the
elementary inequality

3.13)  0<((Iol = 1)+b/[b] = (la| = 1)+a/lal) - (b — a)

foralla, b € R2. (To prove (3.13) we may assume in the first dage< 1 <

|b|, where (3.13) is obvious, and in the remaining second taséa| < |b],
where (3.13) follows from a straight forward calculation that shows that
(o] = 1)(|] = |a]) = (la] = 1)(|b|] — |a]) > 0is a lower bound of the right-
hand side of (3.13).) Hence, (3.12) implies- 0 andd - e, = 0. A discrete
Helmholtz decomposition of € L?(2)? (extended by zero outside of
yields

(3.14) 6 =Vra,+curls, a.e.inf?

for someq, € Sé’NC(T) andgy, € SY(T)/R [AF]. From (3.8) ande = 0
(with w, = a4,) we deducer, = 0 according to thel ?-orthogonality
of Vr a4, and curlg;,. With § = curl 5;, parallel toe we conclude that
0B /0e, = 0 almost everywhere ifi2. Note thaté = 0 and soV 3, = 0
on 2 \ w. Hence 3 is constant on the connected open&et w, without
loss of generality3;, = 0 on {2 \ w. Integrating along lines parallel t®;
we deduce that;, = 0 almost everywhere of? and sod = 0. The proof is
finished for (P'5).

The proof of uniqueness for solutions oﬁt{ﬁ) is analogous except that
the non-negativeness of the last term in (3.12) is verified with the monotone
relationin (3.7). An elementary analysis with < Ao reveal®) < (Ao mo—
A1m;) - (my — my) pointwise almost everywhere. The remaining details
are omitted. O

This section is concluded with an example which shows that, in general,
the magnetisation isot necessarily convergent ifi?(w)?. As a conse-
guence, we must not expect to prove error estimatesfeor my, in the
L?-norm and have to analyse which quantities can be estimated in the fol-
lowing sections.
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Example 3.1.Suppos€T |, = {11, T>,... ,T»s} is a structured triangula-
tion of w which consists of halved squar@s = Tp;_1UTs;,j =1,...,J,
as in Example 1.1 with a diagonal parallel to the easy axis (1,1)/v/2
in the uniaxial case (cf. Fig. 1). Suppo8e m, \) solves (1.1)-(1.2) while
(up, mp, Ap) is a solution to (R) or (P-, ). Then,

J
S min{[ 1= [m[ 2, 0 11— ][220, )}
7=1

3.15 <4 max |m—nmy %,
(3.15) - (uh,mh,xh)u b2

where (uy, 1y, Ap,) denotes an arbitrary solution to P or (P- ). Note

that the left-hand side of (3.15) is uniformly positive (for a mesh-size tending
to zero) if, for instance, the s¢t: € w : |m(x)| < 1 — &} has no interior
pointforall0 < § < 1.

Proof of (3.15). Let y; := max{|my|r,, ,, |mp|z,; } and suppose with-
out loss of generality that; = [my|r,; forallj = 1,...,J. Setm,, €

LO(T) with Mp|7,, . = (1= py)4 (—DF(1,1)/V2forj=1,...,J,
k = 1,2. Arguing as in Example 1.1, we observe that, m;, £ Mj,, A\p)
is also a discrete solution. A triangle inequality shows

(3.16)

| My |

1 1
2w < §||m—mh+Mh||2,w+§Hm—mh—MhHZ,w < M,

whereM denotes the right-hand side of (3.15). Young’s inequality is applied
t00 <1—|m| <1-|my|+ |m— my|and shows

1 J J
B St ={ml 3, <Y 1= || 15, + > lm—my |3,
j=1 j=1 j=1

J
(3.17) <M?+4 Z I M [[5,7,, < 2 M7
j=1
because of the definition &1, and (3.16). a

Remark 3.1.This understanding of instable and stable numerical schemes
for problem (M) might lead to some rigorous insight in the resonance of
instable numerical schemes with oscillating microstructures for problem
(Ma).
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4. A priori error estimates

To describe the a priori error estimates in the conforming discrete model
(P- ), let (-)7 denote theT-piecewise integral means such asy €
£°(T|.) given by

4.1) my|r = /Tm dx/|T)| (T €T,)

and letP; : H}(£2) — S1(T) denote the Galerkin projector.

Theorem 4.1. Suppose(u, m, \) solves Problem (P) anduy, mp, \p,)
solves the Discrete Problem{R). Then we have

1 1
5” V(U — Uh) “%2(9) + 5 /w 5)\}21|mh|2dl‘
+ [ (D67 m) = Do () - (m — )

1 2 1 2 1 2
<5 [ Vet SIE=tr gy + 5lm—mr [,
4.2) 4 V(u— Pru)[[72ig) + [lm —my [20]| V(v = Pru) || 2(0).

To establish convergence of the discrete functigin,, towardsAm,
we suppose that** satisfies, for alin;, m, € R?,

c1|D¢** (mgy) — D™ (my)
(43) < ((D(Z)**(mg) — D¢**(m1)) . (m2 — ml)

for some constanf; > 0. Note that this covers the uniaxial case with= 1.
Let (Am)7 € £°(T) denote theT -piecewise integral mean ofm.

Theorem 4.2. Suppose thap** satisfies (4.3) and thatu, m, \) solves
Problem (P) and(u;,, mp, A,) solves the Discrete Problem {R). Then,
there exists atv-independent constant > 0 such that

IV (u = up) [72(0) + [| D™ (m) — D™ (mp) |72,
] Am — Apmy, (172,
< eo(llen3eqe) + 1 £ = Er B + | m — mr |3,
Ham — ()7 |22, + | V(= Pru) [3q
(4.4) = my, 0] V(u = Pra) .0).

The constant,; depends om; and the shape of the elements but neither on
their sizeshs nor onf, m, u, A, {2, w, my, up, OF Ap.
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Remarks 4.1(i) Since¢™ is convex0 < (D¢**(m) — D¢**(M)) - (m —
M) for all m, M € R? and so(D¢**(m) — D¢**(my,)) - (m — my,) is
non-negative pointwise almost everywhere. Hence, the lower bound in (4.8)
consists of non-negative summands. For the uniaxial case wlighe) =

%(m : eJ_)Q,
(4.5)
/ (D¢*(m) — D™ (my,)) - (m — my)de = || (m — my) - e, |3

all the theorems in this section yield estimates for #ienorm of thee | -
component of the error in the magnetisation.

(i) In case of multiple exact or discrete solutions, any selection of a pair of
them is considered in the theorems.

(iii) Under sulfficient regularity of the exact solution, the above theorems
provide the estimate

(4.6) || V(u—un) llr2) + || (m—my) ey |12 = O + Vh)

in the uniaxial case and the conforming scheme.

(iv) The last term in (4.2) is the limiting quantity in the upper bound and
causes the result to be suboptimal, in general. In fact, thejtenn my, ||2,,

can only be controlled by the Lebesgue measure of the damgluns higher
order terms (cf. Example 3.1).

(v) The generic convergence order in (4.6) suggests the cheic®(v/h).
Numerical evidence in the examples of Sect. 7 convinced us to prefer
O(h).

To describe our result for the nonconforming scheme,llet. €
Sy (T) denote the interpolation for the Crouzeix-Raviart finite element

defined by

4.7) ITu(z) = hi! / uds (ze ENM, E€€)
E
foranyu € HZ(£2). Theweight.r € £°(T) represents the local mesh-size,
hr|p = hy :=diam(T) forT € T.

Theorem 4.3. Suppose(u, m, \) solves Problem (P) anduy, mp, \p,)
solves the Discrete Penalised Problenf’ﬁf). Then, there exists ahr-
independent constang > 0 such that

1 1
ST (=) ey + 5 [ Xl

+ / (D™ (m) — D™ (mp)) - (m — my)de
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1 1
<5 [ Xdat Gl triay +lim—mr s,
3
(4.8) 5V (u = Iru) 720 + esll ATV (m — Vu) |72
The constant; depends only on the shape on the elements but neither on
their sizes nor oif, m, u, A, £2, w, my,, uy, Or \j,.

Theorem 4.4. Suppose that** satisfies (4.3) and thatu, m, \) solves
Problem (P) andus, my, A,) solves the Discrete Problem ). Then,
there exists atv-independent constant > 0 such that

/ IV (u— up)|* de
2
+/ |D¢** (m) — D¢** (my,)|*dx +/ |Am — \pmy|*dz

<o [ Ndos |t tr B+ m - mr s,
+H Vr(u = Iru) 5.0 + [ b7 Vr(m — V7u) 200
(49) -+ Am— () a,).

The constant, depends or; and the shape of the elements but neither on
their sizesh nor on f, m, u, A\, £2, w, my, up, OF Ap.

Remarks 4.2 (i) Under sufficient regularity of the exact solution, the above
two theorems provide the estimate

(4.10) | V7(u—up) |22 + | (m—my) - el ||z2@) = O+ h)

in the uniaxial case and the nonconforming scheme.

(if) The generic convergence ord@(e + h) suggests the choiece= O(h)
in agreement with numerical experience reported in Sect. 7 below.

(iii) The proof of Theorem 4.3 reveals thﬁ e\2dx on the right-hand side
of (4.8) could be replaced by the smaller contribut@}r}l eX?dz on the
smaller domainwy, := {z € w: Ax(x) > 0}. This observation will affect
the a posteriori error estimates of Sect. 5.

The remaining part of this section is devoted to the proofs the four the-
orems of this section.

Proof of Theorem 4.3. In the first part of the proof, the convexity of the
indicator functiony and the penalisation in (3.10) yield the estimate

(4.11) §|mh\2)\% < (Am — Apmy) - (m —mp) + g)\Q.
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Indeed, direct calculations which merely involls| < 1 and Cauchy’s
inequality reveal

(4.12) —dm - (m—my) < A(|my| — 1) = A\, |my|,
(4.13) eX?my,|? < Apmy, - (my, — m).

Adding (4.12) and (4.13) we obtain (4.11) with Young’s inequalkyy,e
|mh| < %)\2 + %|mh|2)\%
In the second step we provide the identity

(4.14) /(mh —m7) - Vy(u—Iru)dr =0

which follows elementwise from (4.7): An integration by parts gives
/ Vr(u— Iyu)dz = / (u — ITu)n ds
T oT

(4.15) = ZnE/ (u—Iyu)ds =0

since the normal vectory on the edger € £ is constant. Becausa,, —
m7 € £L°(T,), (4.15) proves (4.14).

For the remaining part of the proof, we abbreviate= v — uy, § :=
m—my, and letwy, ;= —up+I7u € 81 NC(T). In step three we perform a
standard calculation [BS] for non- conformlng finite elements. The Galerkin-
orthogonality for (2.5) and (3.8) leads to

(4.16)

/ Ve Vywy, de — / 6 - V5w, dr = / (Vu—m) - ng[wp] ds,
N w ue

where [w,] denotes the jump ofy;, along the edger € £ with normal
vectorng andm = 0 outside ofw.

In step four, we consider the difference of (2.6) and (3.9) and multiply
with 4 to obtain finally that

/5-V76dx:/(m—m7)-(f—f7)dx
- / (D6 (m) — D§™*(mp) - & da
(4.17) - / (Am — Apmy,) - & da

(notice [(my, — my) - (f — f7)dz = 0).
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Inthe final step we collect the preceding estimates. Rewriting (4.17) with
adding|| V¢ |3 , and then employing (4.16) we obtain with Cauchy’s and
Young'’s inequalities

/(Dd)**(m) — D¢* (my)) - 6 do + /()\m — Apmy) - 6 dz

w

+H Ve

1 1
%,(2_§Hm_m7’ %,Q—§Hf—fﬂ§,(z

< / Vre- (Vye—é)dx
2

= / (Vu—m) -ng [ITu — up) ds
ué

(4.18) —i—/ Vr(u—Iru) - (Vre —d)dz.
2

According to (4.14), the last contribution of the right-hand side in (4.18)
equals

(4.19) /Q V7(u—Iyu) - Vye dr — / Vr(u—Iru) - (m — my)dx

< || Vreloollu—Irul2o + || v — ITu]

2.0] M — M7 |20

A standard argument for the jumpsru — ] with £-piecewise integral
mean zero shows

/ (Vu —m) - ng [ITu — up] ds
ué

(4.20) <Ves||hrVr(Vu —m) |20l Vre 2,0

with anh-independent constaag > 0 (which only depends on the shapes
of the elements) [BS]. Using this in (4.18) and owing to (4.11), we finally
deduce (4.8) by absorbing the error terms on the right-hand side. O

Proof of Theorem 4.4. Let(Am)7 € £°(T|,,) be defined by Am) 7| =
JpAmdaz/|T|for T € T. Set
A= ||V (u—upn)ll2,0 + [| D™ (m) — D™ (my) 2.0
+Am — (Am)7 ||2.4,
B:=|f—fr|2w+[m-my|20+ [ Am— (Am)7 []20
+| Vr(u—Iru) |20 + || -7V T(8 — V7u) ||2,0-
Subtract (3.6) from (2.6) and test with the admissible functidm); —
Apmy, to infer
[Am — Apmy, [20 < A+ [[f — £ [l20 + | Am — (Am) 7 ||20

(4.21) < %4(3 + (/ % d:z:)l/z).

w
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Because of

Anlmy 2 = X mf* = (Ap[my| + Ajm|) (A Jmy,| — Ajm])
(4.22) < (Anlmg] + Alm]) [Aymy, — Am|

and Cauchy’s inequality, we can conclude from (4.21) that
[ O = )| < (2 [ (P + 3P o)

X (/ !)\hmh — )\m‘QdiL‘) 2

1/2
(4.23) < C4C5A< / Az + 32) ”

1/2

Multiply (4.23) with /2 and recast it into

1 1
/5)\2|m|2dx§ /6/\i|mh|2dx
2 /., 2

w

1/2
(4.24) +%6 A(/ 222 m|? dz + &2 B2) .

w

Adding this to (4.8) and employing (4.3) we conclude the proof of (4.9) by
absorbing the first and second contributiordin O

Proof of Theorem 4.1. The arguments in the proof of Theorem 4.4 apply
to the conforming situation as well and jumps disappear (e.g., in (4.16),
(4.18)). From (3.5) we obtain

(4.25) /Q Ve (Ve —9d)dx = /Q V(u— Piu) - (Ve — d)dz,

using the Ritz-Galerkin projectiaoR; . Note that (4.14) is no longer available
and so we end up with

/Q Ve (Ve - 8)da

(4.26) < V(u— Pru) 2,0 (1 8 ll2w + || V(u — Pru) [|2,.0). .

Proof of Theorem 4.2. Following the proof of Theorem 4.1 with the mod-
ification
(4.27) B:=|f —f7 [l20 + [ m —m7 [l20 + [[ Am — (Am) 7 |2,

1/2 1/2
+ | V(u— Pru) a0l m —my |52 V(u— Pru) |13/g

we verify Theorem 4.2. O
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5. Reliable or efficient a posteriori error estimates

The a posteriori error estimates differ essentially for conforming and non-
conforming schemes. First, our results are stated, then discussed and proved
at the end of this section. Numerical tests on adaptive algorithms for auto-
matic mesh-refining will be reported on in the subsequent section.

The discrete functiom;, — Vuy, is T-piecewise constant and its jump
across aninterior edde € £ with achosen unitnormal vectag; and length
hg iswritten[my,—Vuy]-n . We abbreviate thé-piecewise constant edge-
size and the chosen normat on the skeletoné = Upc9T (the union of
all points which belong to an edge) by € L>°(U€) andng € L (UE)?
defined by(he)|g := hg := diam(E) and (ng)|g := ng for E € £ in
2. On the outer boundary we formally sets)|s, = 0 such that all terms
disappear there. A crucial role plays the sub-domajrof w where),, is
positive,

(5.1) wp={z€w:0< M)}

Theorem 5.1. Suppose thap™* satisfies (4.3)) < ¢ < min{1,¢;}, and
that (u, m, \) solves Problem (P) anduy, my, \;) solves the Discrete
Problem (R ). Then there exists af, hr, he)-independent constamt
with

IV (u = un) 172 + c1ll D™ (m) — D™ (my) |72,

< 3+ 1/en)| hmy, 22, + /(m Cmp) - (- £) da

1/2
(5.2) + £ —fr ||%2(wh) +¢| hg/ [mp, — Vuy] - ng ||%2(2,ug)-
The constant; depends on the shape of the elementg ibut neither on
their sizes nor on the dathor solutionsu, m, A, u;, my,, Ap.

The situation is more involved for nonconforming schemes. The non-
conformity is controlled by an edge terffiuy /0s], whered/ds denotes
the derivative with respect to the arc-length aldiige £ and[Juy,/0s] is
the jump acros€ of duy,/Js from either sides. We regaf@u;,/0s] as a
function onUE which is—0duy /0s on 012.

Theorem 5.2. Suppose thap** satisfies (4.3)) < ¢ < min{1,¢}, and
that(2is simply connected. Lét, m, \) solve Problem (P) and I€t;,, my,,
An) solve the Penalised Discrete Problem{). Then there exists an
(e, hT, he)-independent constang with

I V7 (u—un) 1200y + c1ll D™ (m) — D™ (my) |13,
< 2+ Vel ednmy T2,y + £ = F7 172,
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63 42 [ (m—m) (£~ ) do -+ b0 /0] |12

The constantg depends on the shape of the elementg ibut neither on
their sizes nor on the datf or solutionsu, m, A, up, mpy, Ap.

In case that the exact solution is smooth, ira.;- Vul|, € W (w)?,
we have

I V7 (u—un) 200y + c1ll D™ (m) — D™ (my) |13,
< 2+ 1/en)llednmy (2, + 1 =7 (72,

(5.4) +2 / (m — mT) . (f — fT) dx + CSH h?[auh/ﬁs] HLl(UE)

for an (e, h, hg)-independent constamry > 0 which depends ohm —
Vu|w ‘Wl,oo(w).

Remarks 5.1(i) Note that|m| < 1 pointwise almost everywhere if?
implies|| m — m7 ||,y < 2 and so, the first term on the right-hand side
of (5.8) is estimated by

65 [ m-mp) (-t de <2t fr oo
In casem € W1 (w)?2, a Poincaé type estimate shows
(5.6) /(m —my) - (f —f7)de < || Vm || e () | A7 (£ = £7) [| 11 (0)-

Note that| h7(f —£7) || 1) = O(|| hr ||2,) is of optimal order. Finally, in
the uniaxial case**(m) = (m-e, )?/2 and for an easy axisperpendicular
to the exterior magnetic fielfipointwise almost everywhere, we have

[ = mr) (¢ < £r)d

<|[[(m—-m7)-ey |2 [ f = f7llL2(0)
(5.7) = [ D¢™ (m) — D™ (mp) || 2(0) 1 £ = £7 [l 22(2)

and|| D¢**(m) — D¢**(my,) ||12(,,) can be absorbed. This merely results
in an additional term £ — £ H%Q(Q) on the right-hand side.

(i) The estimate (5.2) plus (5.5) is reliable (i.e., the error is bounded from
above by a constant times the computable bound).

(iif) The estimate (5.3) plus (5.5) is reliable in the sense that the constant
does not depend on the regularitymafor Vu. In case (5.2) plus (5.5) the
constantc; does depend on the smoothness of the exact solution which is
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uncertain. (The authors are unaware of any regularity resultadrCon-
sequently, we have to regard (5.2) as non-reliable.

(iv) The estimate (5.3) is not efficient since the power of the jump contribu-
tions is one. This is different for (5.4) where all the terms on the right-hand
side are of optimal order.

(v) The complementary properties of the error estimates suggest to employ
(5.2) in an adaptive mesh-refining strategy but use (5.3) for reliable (but
possibly expensive) error estimation.

(vi) Note that|[m;, — Vuy] - neg| does not appear in (5.3) whiluy, /s

is typical in a posteriori error estimates for nonconforming finite element
schemes.

Proof of Theorem 5.2. Throughout this proof, we abbreviate= v — uy,
é := m — my and extendn, my, andd by zero outside of.
As in the first step of the proof of the a priori error estimates, we add
(4.12) and (4.13) and substitute the resulting estimatéNor — A\ymy,) - &
in (4.17) and so infer

IVrelBo+ [ (Do (m) - Do (mn)) - do
< /(m —mr7) - (f — fr)dz + / ep|my,|(Am| — Ay |mp|)dz
(5.8) +/ Ve (Ve —6§)de,
2

where we added Vr¢||3 , on both sides.

To bound the second term on the right-hand side of (5.8), we employ
(2.6) resp. (3.9) to obtain expressions fdm| resp.\,|my,| and subtract
the two resulting formulae. This proves

[ vl = Ao
< / 5)\h]mh|‘f —fr —Vye —D¢™(m) + D¢**(mh)| dx
<(1+ i) / &2\ \my,|?dx + 1H f— £ |3
— 201 w h 2 T 2,wh
€1 Hk Hk 1
(5.9 +5[[D¢™(m) — D™ (my) 13,0, + Sl vre 130,

For the lastterm on the right-hand side of (5.8) we first observaihat
m is divergence-free in the sense of distributiong’arHence, there exists
a functionb € H'(£2) with Vu — m = curl b := (9b/dxs, —0b/Ox1).
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Let by, be the Clement-interpolation tolno boundary conditions}y, is
continuous and -piecewise affine and, if ¢ H%1(12), there holds

1B (b = by) [lo.02 + | 2TV (0 = b1) 12,2
(5.10) ) g P2 (b = by) llace < c10 |l 112.0

The constant;, > 0 depends only ow and the aspect ratio of the elements,
but does not depend on their sizes (obamn B) [Cl, BS, V]. An elementwise
integration by parts shows

(5.11) / curl B - Vyuy, doe = / [upleurl B-nds =0
Q UE

since curby, - n = db, /s is continuous in the sense that there is no dif-
ference on both sides df and curb, - n is constant there whil@,| has

a vanishing integral mean of by construction of the Crouzeix-Raviart
elements.

The discrete counterpaityu;, —my, is perpendicular t& 7uy, in L2(£2)
according to (3.8). Surprisinglyy 7u, — my, is perpendicular tovu as
well. Indeed, with the interpolation (4.7) and with (3.8), we deduce with an
elementwise integration by parts that

/ Vu- (Vyrup, —my)dr = / Vr(u—Iru) - (Vyup — mp)dx

2 Q

(5.12) = / [(u — ITu) (Vyup, —my)| - ngds.
uE

(In the last step we used that,, is 7-piecewise constant ang, is 7 -

piecewise affine such that gV su, — my,) = 0.) For each edg& € &,

u — I7u has integral mean zero di andVyu; — my, is constant there.
Hence, even if the corresponding quantities are discontinuos we have

/ Vre (Vyu, —mp)de = / [(u— ITu) (Vyup, —my)] - ngds
2 ué
(5.13) —0.

From (5.11), (5.13), an&¥« — m = curl b, we deduce with an elementwise
integration by parts and Cauchy’s inequality that

/ Vre- (Vre—90)dr = / Ve -curl(b— by)dz
= —/ Vruy - curl (b — by)dx

_ /U Lo /05)(b — )z
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< |l hg (b = by) lloue | g *[Oun /O] [|,0e
(5.14) <0 |blioq |y 2 [0un/0s] |2.0e-

Notice that, for higher regularity df € W2°°(£2) and with its nodal inter-
polantb;, the arguments in (5.14) show

(5.15) / Ve (Vre—38)dz < cio|bla.co. || h2[0un/s] ||1.0e-
%)

In the final step we gather all the estimates on the right-hand side of (5.8)
in (5.5), (5.9), (5.14), and (5.15) and eventually obtain,

I 9relo+ [ (D6 (m) — Do (my)) -6 da

w

1
<1+ Z) / 2} my,|?dx + /(m —my) - (f — f7)dx
1 Jw w

1 C1 *ok *k
+5|’f_f7“%,w+5”D¢ (m)_D¢ (mh) H%w

(516) il blivapll he [Oun /03]

2,UE-

Absorbing|D¢**(m) — D¢** (my,)|? with (4.3), we conclude the proof of
the theorem. We omitt details in the remaining case. O

Proof of Theorem 5.1. Arguing as above we deduce (5.8) and estimate the
first and second term on its right-hand side as in (5.5)-(5.9). The last term
in (5.8) reads

(5.17) /Q Ve - (Ve —d)dx = /Q Ve —ep) - (my — Vuy)de,

wheree;, € S}(T) denotes the Clement-interpolationdavhich satisfies
estimates as in (5.10) (whefeesp.by, is replaced by resp.e,). According

to divy-(my, — Vuy) = 0, an integration by parts on the right-hand side in
(5.17) shows

/ Ve- (Ve —9d)dx = / (e —ep)[my, — Vup] - ng ds
Q uE
(5.18) < c10 | Ve o | he*[mp = Vup] - ne [|2.e

The remaining parts in this proof are analogous to those in the previous and
hence omitted. O
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6. Numerical realisation

Computational examples are provided for the uniaxial case (with the easy
axise € R?) to compare the conforming method and the nonconforming
method with respect to stability as well as convergence properties. We con-
sider the minor generalisatiol) of (P) on the right hand side of (6.1).

This is a small modification of Problem (P) stated in (2.5)—(2.7).

Problem (P): Given(g,f) € L*(2)x L?(w)?,seeK u,m, \) € H}(£2)x
L*(w)? x L?(w) that satisfies, for allb € HZ(£2) andu € L?(w)?,

(6.1) /Vu-dex—/m-dex—/g-wdx,
9} w 2
/Vu~,udm~|—/(m-eL)(,u-eL)dw+/)\m-uda:
w w (9}

(6.2) = / f-udx,
Q
6.3) 0<A m|<1, and A1—|m|)y =0 a.e.inw,

The side constrairitm | < 1 is enforced by a penalisation strategy and
leads to Problent{.) and its conforming resp. nonconforming discretisation
(PE N) resp. PNC) solved numerically by a Newton-Raphson scheme.

Let ¢, .. ,¢J be hat functions for each vertex of elemefitsc 7 in
the conforming scheme resp. each edge in the nonconforming scheme. Fur-
thermore, letyq, .., ¥ be the characteristic functions, for each element

inT|w = {T1,..,Tk}. The iterateSugl”) = Zj L g”)qﬁj and m( Y) =

(K y,g”)@bk,zle y%’lkwk) are assembled frorz), ")) € RY x
R2K, The implementation of the Newton-Raphson algorithm is performed
in Matlab in the spirit of [ACF].

Algorithm 6.1. Start, e.g., with(z(®, 4(©)) := (0,0), and solve o =
0,1,2,... until termination if (G®), F®))| < 10712,

(6.4)
A B W) _ 1) _ el)
<—BT C+1DE™)+Ey®) ) \y») - y“*”) C\FW )

whereH : R — IR{(J{ is the Heaviside functiory s is the2 x 2-unit matrix,
andforj,¢=1,... ,J,k=1,... K,

(6.5) Ay = /Q Voo, - Vorde de,

(6.6) (Bjks Bjrc+k) Z/wk'vﬂbj dz,
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6.7 : , o
(2 o ) _ HIG )= 1

Dgikk Dtk K+k I(y,i )’ y%lk”

Y )
(6.8) (V) @ B
YKk+k Ytk

Epr  Erkx+k )
6.9 : : ’ 1) Lo,
( ) <EK+k,k EK+I€,K+I<: (|(yk: yK—i—k:)‘ ) 2x2

and the right-hand side of (6.4) with barycentsrs,
Gw) A B z¥) G
610 (Fo) = (oo i) () = (7).

1
(6.11) Gi=3 > ITelg(sn)%/Qgcbjd%

Ty Csuppg;

F
k > = |Tk| f(s7,) z/fwkda;.

Frik

(6.12) (

Remark 6.1.The algorithm is stabilised for (R) to select exactly one of

the possible solutions by adding th& x 2K -diagonal matrix
diag(|T1 %2, ... ,|Tx|>/2, T2, ... ,|Tk|>/?), |T}| denotes the area

of the element},, to the lower right block entr¢’ + L(D(y™)) + E(y™))

in (6.4).

As in Theorem 5.1 and 5.2, we can prove the following bound for the
uniaxial case and the conforming schem ( v), i.e.,e = hr,

(6.13)
1V (u = un) |2 + || (m = my) e |20 < min{ennty, eian’ ),

and for the nonconforming metho{'“,),
| Vr(u—up) |20 + | (m—mp) - ey |12,
(6.14) < min{ennye. conye )

where the constants, c¢12 do not depend ohr and the error estimators
are, forg =0, 1,

nE = (A [ Fag) + 1€ = €7 I3 + | RHE — 1) 1)
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1/9 1/2
(615)  +| hrg 3200 + I A *frn — Vun e ae))

0
16 = (I A Anmn 2z + 1€ = £ B2 + 11 = 7 [l

1/2
616) -+ hrgllEao) + Il he*[0un/08] l20e))

156 = (A 2 + 1€ = £ o) + I h7(E = £) o1

1/2
617) -+ hrg 320 + 1 AZ10un/05] 1))

The estimates (6.15) resp. (6.18) motivate error indicators for local adap-
tive mesh-refinement, namely f6r= 0, 1,

ot = (R Awmon 2y + 11 = B |22y + | B3E = &) 12y

)

1/9 1/2
(618)  +l\hrg 3oy + 11>l — Vun) - [Baor))

1
mohve = (Ao 3+ 1€ = £ B2y + (= £7) sy

1/2
619)  +lIh7gl3ecr) + 1| B2 (0un/05) llpaory )

Remarks 6.1. (i) Note that the a posteriori error estimates (6.15) resp.
(6.18) are reliable fos = 0 in the sense that;; does not depend on the
data in contrast te,» that depends on the (unknown) regularity of the exact
solution. The estimates are efficient fér= 1 in the sense that the upper
bounds have optimal convergence order.

(il) The error estimator (6.16) is not a sum of local contributions. For the
remaining estimators we have, fér= 0, 1,

620) 1Y =" mELHY? and nin = (O (hne) ).
TET TeT

For any choice ofyr = 77(T)C ng,)c andn = 77(0) 77(0) resp.nr = 77(T 3\[0

andn = n§3>c 775\,)0 the subsequent mesh-refining algorithm generates a

sequencéd, Ty, ... of adapted meshes.

Algorithm 6.2. 1. Start with coarse mesh.

2. Solve the discrete problem with respecfio

3. Computeyy forall T € 7.

4. Compute error boung and terminate or goto 5.

5. Mark element’ red iff ny > 1 maxxer, nK.

6. Red-green-blue-refinement (cf., e.g., [V]) to avoid hanging nodes, gener-
ate mesh/; 1, setk = k + 1 and goto 2.
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7. Numerical examples
7.1. Academic example for numerical justification of theoretical results

The first example provides experimental evidence for the optimal choice
of the penalty parameter = »”, 8 > 0, and discusses its influence onto
the number of iteration steps in Algorithm 1. Stability properties and mesh-
dependencies as well as convergence analyses are studiddl fey 4nd
(YD)

Letw = (1/4,3/4)> ¢ 2 = (0,1)?, = {(z,y) € w: 1<
sin(27(z — .25)) sin(27(y — .25))}, ande = (61, €2), and deflne

(7 (cos(mzx) sin(7y), sin(mzx) sin(7y))
+(e1 —e2)el
+5 ((z = 3/2)* + (y — 1/2)?) if (z,y) € w1,
7 (cos(mx) sin(my), sin(7wz) sin(7y))
+5sin(27(z — .25))
xsin(2m(x — .25)) (e1 — e2)e if (X,y) ¢ wi,
272sin () sin(7y) if (z,y) €w U (2\w),

(7.1) f(x,y) =

272sin () sin(7y)

(7.2) g(z,y) = { +10mcos(2m(z —1/4))

x sin(2mw(y — 1/4))

+107sin(27(z — 1/4))

xcos(2m(y — 1/4)) if (z,y) € w\wi.

_ Then, the solutiorfu, m, \) € Hg(£2) x L*(w)® x L*(w) of Problem
(P) is given by

(7.3) u(x,y) = sin(rz) sin(ry) and m = (m,m),
(7.4)
m(z,y) = { ésin(27r(ac —1/4)) sin(27(y — 1/4)) y §§ z; o
(7.5)
- e e

In order to study the effect of penalisation(ir{') and (- v), Fig. 2
displays errorg|V(u — up)||r2(0) + [[(m — my) - e |12, versus the
degrees of freedonV for different choices of = he., 6 =0.25,..,1.75,
wheree = (1,0). We added triangles to the plots to indicate the order of
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Fig. 2. Error = ||V (u — un)||p2(0) + |[(m — mp) - eL]],2(,,) versus degrees of free-
dom N in (P.n) (top) and @NS) (bottom) withe = h” on a uniform mesh for
B =.25,.5,.75,1,1.25,1.5,1.7 in the first example

convergence which is twice the negative slope. In both pictures, the conver-
gence improves il increases fron25 to 1.0. The convergence behaviour
for 5 = 1.0,1.25,1.5, and1.75 is similar. On the other hand, the compu-
tational effort (counted in number of iterations in Algorithm 6.1) increases
for higher values of, see Fig. 3, which favours the optimal chojée- 1.
Hence, we choose= h7 in all subsequent computations.

To study the mesh-dependency of the solutionsfbnr(N), we run Al-
gorithm 6.1 on a uniform mesh with diagonals parallebte- (1,1)/v/2
(aligned) or perpendicular far = (—1,1)/v/2 (nonaligned). The Fig. 4
shows the approximate magnetisatiaf obtained by the conforming (top)
and the nonconforming (bottom) scheme, witlix, y) = 0.8sin(27(x —
1/4))sin(2n(y — 1/4)) if (z,y) € w instead of (7.4) such that = 0
in (7.3)-(7.5) and instabilities might be enforced. While the right picture
shows a reasonable approximation, the left picture indicates instabilities.
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Fig. 3. Number of iteration steps in Algorithm 1, for solving’{x) (top) and PEJ\’E
(bottom) withe = O(R®) for different values of3 in the first example

To assess the guality of the approximation, we show in Fig. 5 the compo-
nents of the errom — my, in the directione ; (for which we proved error
estimates) and in the directi@an(for which any control lacks). The result

in Fig. 5 supports that m — my, || does not converge to zero as discussed
in Example 3.1. Note that the componentsein-direction converge with
experimental convergence rates closé.to

To study the practical performance of the a posteriori error indicators
for uniform and adapted meshes generated by Algorithm 6.2, Fig. 6 resp. 7
show the convergence rates for the estimated error contributions (top) and
the uncontrolled magnetisation erfpm — my, || .2(,,) (bottom) and some
error estimators (6.20) for the conforming (Fig. 6) and the nonconforming
scheme (Fig. 7) on uniform and adapted meshes. In these figures, a label
“n(© (nM-adapted)” indicates that the corresponding symbol dispj&ys
versus the number of degrees of freeddiyfor a sequencé, 71, .., gener-
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Fig. 4. Plotof computed magnetisation d?( 2s3) (top) and @7, 520) (bottom) for uniformly
refined meshes in the first example. The gray-scale shows the modulus of the magnetisation
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Fig. 5. Errors||(m —mp) - e |12, versus degrees of freedawiin (P, -, ) for aligned
and nonaligned meshes in the first example



94 C. Carstensen, A. Prohl

-
) =,
107 T 1
Lo SV
AN Nota]
. NN =~
g S %
5 NS
S
- o- error (uniform) QL
©) ¢ yi N3
—»-  n"’ (uniform) ~ p\%e
10" - |- n® (uniform) S E
-0~ error (n(o)—adap(ed) NG
-+ N (n©-adapted) RSN
- r](l) (r](u)fadapled)
> error (n“)fadap\ed)
- %= n(o) (n®-adapted)
e q® (n®-adapted)

.
10" 10 10° 10 10°

10 T T T

- o- error (uniform)
-<¢--  error (n(o)fadapled)
> error (n(l)—adapted)

NS
~
NN
NN
©
B
&L
N
N T 0 - - -
-
5t ol ]
g S BB
10'2 n n n
10" 10° 10° 10* 10°

Fig. 6. Error = ||V (u — un)||2(2) + ||(m — my) - e1||p2(. (top) and erroe= ||(m —
my,) - e||.2(,) (bottom) and error estimators = ng) versus degrees of freedoM in
(ﬁh,N) for uniform andngj)-generated meshes in the first example

ated by Algorithm 6.2 with the error indicatt)ﬂ) in step5. We observe an
experimental convergence ratg2 for reliable error estimators with = 0

and also for the efficient error estimators with= 1. To our surprise,

the “efficient” error estimators fof = 1 do not reflect the experimental
linear convergence of the true errors. This is rather pessimistic as the true
errors converge linearly. The uncontrolled erffan — my, || 72(.y does not
seem to converge for the conforming discretisation. A linear experimental
convergence is deduced for all error components from Fig. 7 for the noncon-

forming schemes. The different convergence propertiegéfare expected

at ratel /2 for 5 = 0 and ratel for § = 1. Also, the meshes generated by
Algorithm 6.2 seem to be slightly better than a uniform discretisation. How-
ever, since the exact solution is Lipschitz continuous and at least piecewise
smooth, the use of adapted meshes is not important in this example.
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-6

L

L

XX

L

DXDK

L

L

s P

-6

-4

-2

0

2

4

6

Fig. 8. Magnetic potentialk, (left) and magnetisatiom,, (right) in a ferromagnetic rod, for
(P}{\;?5444) on ngvl)c-generated meshes, b= (.6,0) || e = (1,0) in the second example
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Fig. 9. Magnetic potentiak, (left) and magnetisatiom,, (right) in a ferromagnetic rod,
for (P,ﬁ‘;?7874) on ng\})c-generated meshes, fér= (.5,.5) ande = (1,0) in the second
example
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Fig. 10. Magnetic potential:;, (left) and magnetisatiom,, (right) in a ferromagnetic rod,
for (P,{\;?7284) on ngvl)c-generated meshes, fér= (0,.9) L e = (1,0) in the second
example

7.2. Scientific computing of an uniaxial ferromagnet
under a constant magnetisation

The uniaxial ferromagnet covers the domaig= (—.5,.5)x(—2.5,2.5) CC
2 = (-5.5,5.5)2. It is magnetised by an exterior fiefd= (.6,0), f =
(.5,.5), respf = (0,.9) ande = (1, 0). The numerical results fc(lP}{VT?N)

onn](\})c-generated meshes are displayedin Fig. 8, 9, resp. 10forthree choices
of f.
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Fig. 11. Approximate volume fraction of related Young measures in (2.8) for Problem
(M) for situations of Fig. 8 (left), Fig. 9 (middle), resp. Fig. 10 (right)
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Fig. 12. Error estimatorsh(\% versus degrees of freedoivi in (P,{\;?N) for uniform and

nﬁ)c-generated meshes in the second example (cf. Fig. 9)

10”

According to the angle between the easy axis veetand the constant
exterior fieldf, we arrive at different magnetisations and potential functions.
The slightly different choices dff | were made to obtain an intermediate
non-fully saturated state with microstructures as indicated in Fig. 11.

In the first situatione || f andm;, is almost uniformly followingf
with peak values of the modulus af;, forming a cone-like structure at the
bottom and the top of the ferromagnet. kofe, f) = 7/4 in the second
situation,mj; mimics the direction of but is inhomogeneous. The cone-
like structure of peak values ¢iny, | is now distorted. In the final case, a
flower-like structure can be observed, with magnetisation of large modulus
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concentrated at the edge points. Note that e so that we could improve
the a posteriori error estimates with Remark 5.1 (i).

The Young measure of the original Probldm/,) is computed with
(2.8)—(2.9) wheren is replaced bymax(1, | my, |)~'my,. Fig. 11 displays
the obtained approximations for the coefficienin the second examples
shown in Fig. 8-10. Note that we described no error estimate for the ap-
proximation tov,, (which is linked to the lack of control ofm — my,) - €).
Nevertheless, there is a weak convergence of the approximations and we
conjecture that the approximation is accurate on a macroscopic level.

To assess the discretisation errors in the approximations of Fig. 8, 9, and

10, we computedy%%. Since they show almost identical behavior in the
three examples, we only plot the values for the second situation (Fig. 9) in
Fig. 12. The error estimates show an experimental convergence fate

£ = 1 but a modest convergence behavior fot 0.
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