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Summary. Somemicromagnetic phenomena in rigid (ferro-)magnetic ma-
terials can be modelled by a non-convex minimisation problem. Typically,
minimising sequences develop finer and finer oscillations and their weak
limits do not attain the infimal energy. Solutions exist in a generalised sense
and the observed microstructure can be described in terms of Young mea-
sures. A relaxation by convexifying the energy density resolves the essen-
tial macroscopic information. The numerical analysis of the relaxed prob-
lem faces convex but degenerated energy functionals in a setting similar to
mixed finite element formulations. The lowest order conforming finite ele-
ment schemes appear instable and nonconforming finite element methods
are proposed. An a priori and a posteriori error analysis is presented for a pe-
nalised version of the side-restriction that the modulus of the magnetic field
is bounded pointwise. Residual-based adaptive algorithms are proposed and
experimentally shown to be efficient.

Mathematics Subject Classification (1991):64M07, 65K10, 65N30, 73C50,
73S10, 65N15, 65N30, 65N50

1. Introduction

This paper concerns the numerical treatment of the Euler-Lagrange equa-
tions of a degenerated convexified minimisation problem for a magnetisa-
tionm and a potentialu: Givenf ∈ L2(ω)2 and bounded Lipschitz domains
ω ⊂⊂ Ω ⊂⊂ R

2, seeku ∈ H1
0 (Ω) andm ∈ L2(ω)2 with |m| ≤ 1 almost

everywhere inω which satisfy
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Fig. 1. A coarse grid where a non-zero magnetisation onT1 ∪ T2 provides a solution to the
homogeneous discrete problem

∫
Ω
∇u · ∇w dx =

∫
ω
m · ∇w dx,(1.1) ∫

ω
(f −∇u) · (µ−m)dx ≤

∫
ω
(φ∗∗(µ)− φ∗∗(m))dx,(1.2)

for all w ∈ H1
0 (Ω) andµ ∈ L2(ω)2 with |µ| ≤ 1 almost everywhere inω.

The mathematical model is explained in detail in Sect. 2 where we prove
uniqueness of solutions in the uniaxial caseφ∗∗(m) = (m · e⊥)2/2 for
perpendicular unit vectorse ande⊥. e is called the easy axis because of
φ∗∗(t e) = 0 andDφ∗∗(t e) = 0 for all t ∈ R. The physical setting and the
relation of (1.1)–(1.2) to major activities in computational micromagnetics
literaturewill bediscussed inSect. 2aswell. For thesakeof this introduction,
we focus on the mathematical aspects of the numerical analysis of (1.1)–
(1.2) which we found interesting.

At first glance, it is surprising that a natural conforming discretisation
which replacesH1

0 (Ω) by a standard conformingP1-finite element scheme
andL2(ω)2 bypiecewise constants finite elements fails, e.g., for the standard
meshT of Fig. 1 on the unit square.

Example 1.1.Let mh|Tj = (−1)j(1, 1)/
√

2, ω = int(T1 ∪ T2) = (1/3,
2/3)2 ⊂ Ω = (0, 1)2 andnotice bydirect calculation that

∫
ω mh ·∇ϕz dx =

0 for each hat functionϕz (the nodal basis function for conformingT -
piecewise affine finite elements). In the uniaxial case withe = (1, 1)/

√
2

we haveφ∗∗(mh) = 0. Hence,tmh anduh = 0 satisfy the discrete version
of (1.1)-(1.2) forf = 0 and anyt ∈ R with |t| ≤ 1. A discrete Helmholtz
decomposition (cf. [AF]) shows why:mh is the piecewise curl of a noncon-
forming hat functionψz (ψz = 1 onT1 ∩ T2 and zero at midpoints of other
edges of∂ω) and is parallel toe. One remedy in this particular situation is
to change the mesh by taking the other diagonals in Fig. 1 or, equivalently,
transform the situation toe = (1,−1)/

√
2.
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At second glance, ignoringf , φ∗∗, and the saturation condition|m| ≤ 1,
the resulting system in (1.1)-(1.2) is a mixed system and so a conforming
P1-Q0-finite element discretisation may expected to be instable, but non-
conformingP1-finite elements may be stable. The uniqueness of discrete
solutions for Crouzeix-Raviart elements will be proved in Sect. 3. In Sect. 4
below, we will study what quantities can be controlled and at which conver-
gence order for the lowest order conforming and nonconforming method.

As the side restriction|m| ≤ 1 in (1.2) yields a variational inequality,
optimal convergence results cannot be expected. Ifε > 0 is a small penalty
parameter to penalise|m| ≤ 1 we proveO(ε +

√
h) for the conforming

andO(ε+ h) for the nonconforming lowest order finite elements for some
error terms as the piecewise derivatives ofu − uh and the components
(m−mh) ·e⊥. We regard the estimatesO(ε+h) as being optimal inε and
in h.

It should be emphasised that the estimates are optimal in case thatφ∗∗
is uniformly convex. Hence, we may say that the penalisation of the side
restriction|m| ≤ 1 is treated in an optimal way. It is the degenerated not
strictly convex part ofφ∗∗ that causes poorer estimates as in convexified
two-well problems [CP1,CP2].

The underlying assumption of smooth solutions is an open question and
it may be believed that the boundary of the set{x ∈ ω : |m| = 1} (un-
known a priori) gives rise to non-smooth solutions. Here, self-refining adap-
tive finite element schemes might be an efficient tool and hence we study
residual-based a posteriori error estimates in Sect. 5. They are either effi-
cient (optimal weights of local mesh-sizes) or reliable (in the sense that no
regularity assumption on the unknown solution is made) but not both. In
Sect. 6 we report on numerical examples to monitor the optimality of the
estimates.

The notation for Lebesgue spaces is standard, e.g.,‖ · ‖p,Ω := ‖ · ‖Lp(Ω)
denotes the norm in (any power of)Lp(Ω) andHs(Ω) are the usual Sobolev
spaces (s ∈ R) for a bounded Lipschitz domainΩ with boundaryΓ . Let
‖ · ‖k,2,ω := ‖ · ‖Hk(ω) and| · |Hk(ω) denote the norm and semi-norm in
Hk(ω) for ω ⊆ Ω and an integerk.

2. Mathematical model

Micromagnetic phenomena in a rigid (ferro-)magnetic bodyω ⊂ R
d, d =

2, 3, are described in terms of the magnetisationm : ω → R
d and the scalar

potentialu : Ω → R in the larger simply connected domainΩ ⊂ R
d that

surroundsω ⊂ Ω.
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The classical model of Weiss, Landau, and Lifshitz [B] assumes the
energyE(m) to be a sum of exchange, anisotropic, exterior (i.e., from a
given magnetisationf ) and magnetostatic energies

E(m) = α

∫
ω
|∇m|2 dx +

∫
ω
φ(m) dx

−
∫
ω
f ·m dx +

1
2

∫
Ω
|∇u|2 dx.(2.1)

For eachm ∈ L2(ω)2 there exists a uniqueu ∈ H1
0 (Ω) that satisfies

Maxwell’s equations which result in

−∆u + div (mχω) = 0 in H−1(Ω).(2.2)

Here,χω is the characteristic function of the setω, i.e.,χω(x) = 1 if x ∈ ω
andχω(x) = 0 if not.

In many physical applications,Ω = R
d is the full space and proper

radiation conditions are required as boundary conditions at infinity. In this
paper we focus on a bounded domainΩ where the interface conditions
state that the magnetic fluxH is perpendicular to the wall∂Ω which yields
H · t = ∂u/∂s = 0 with the tangential unit vectort and derivative∂/∂s
with respect to the arc-length along∂Ω. Thus,u is constant on the connected
boundary∂Ω and so we suppose without loss of generality,u = 0, i.e.,
u ∈ H1

0 (Ω).
Below a critical temperature (Curie point), the modulus ofm is fixed

pointwise and (assuming constant temperature) we suppose

|m| = 1 almost everywhere inω.(2.3)

Then, theMinimisation Problem (Mα) reads as follows:Given f ∈
L2(ω)2 minimise the energy (2.1) subject to (2.2) and (2.3).

For small positiveα, the minimisers of (Mα) show fine oscillations of
anα-depending length scale that is much smaller than a realistic mesh-size.
Macroscopic phenomena depend very much on the remaining lower order
terms. Following [ADS,T], we therefore study a relaxation of the limit case
(M0) in this paper, where the exchange energyα

∫
ω |∇m|2 dx is neglected

in (2.1), i.e.,α = 0.
Typically,φ(m) ≥ 0 has a finite number of zero states related by some

symmetry group, e.g.,φ even andφ(m) = 0 if and only if m = ±e for
some unit vectore (the easy axis). It is known in this case that Problem (M0)
may have no classical solution [JK]: in general, the infimal energy is not
attained.Minimising sequences exist, are bounded, containweakly converg-
ing subsequences, but show higher and higher oscillations which prohibit
strong convergence. The weak limit does describe the macroscopic mag-
netisation but does not characterise the microscopic mechanism of energy
minimisation.
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Remark 2.1.For a survey of the state of the art in micromagnetics, we refer
to the recent monograph of Hubert and Schäfer [HS] and the works quoted
therein, or related journals such asIEEE Transactions on Magnet-
ics. In most of these contributions, problem (Mα) is addressed numeri-
cally by a finite element scheme similar to the conforming discretisation of
Sect. 3. For an exchange constantα ≈ 10−11J/m, observedmicromagnetic
phenomena in samples of permalloy (like Bloch walls) then show a charac-
teristic length of approximately6nm. Physicists are interested in those fine
structures and hence are restricted to very small magnets, where e.g.,ω is a
rectangle of size1µm× 2µm, according to limited computer power. Adap-
tive schemes are in use to allow three-dimensional calculations. However,
the numerical results depends very much on starting values for the iterative
solver (cf. Sect. 6 for our strategy in the same spirit). The mathematical
foundations of those numerical experiments still have to be developed, and
this work is devoted to contribute in this direction. Consequently, the main
motivation in this paper is to understand the limit problem (M0) and its
sound numerical analysis before addressing its perturbation (Mα).

From a variational point of view [D], model (M0) has to be generalised
to allowmeasure valued solutions [P1,R,T] and bewell-posed. On the other
hand, themain interest is often on the averaged (macroscopic)magnetisation
properties of the ferromagnet. To obtain those informations it is sufficient to
consider amodifiedminimisation problem (R). The relaxation of the present
example is analysed in [ADS] and essentially means a convexification of
φ and of (2.3). Letϕ(m) denote the lower convex envelopeφ∗∗(m) of φ
if |m| ≤ 1 andϕ(m) = ∞ if not. The lower convex envelopeφ∗∗ is the
largest convex function belowφ. Then, theRelaxed Problem (R)reads:
Seek a minimiserm ∈ L2(ω) of the relaxed energy

RE(m) =
∫
ω
ϕ(m)dx−

∫
ω
f ·mdx +

1
2

∫
Ω
|∇u|2 dx(2.4)

subject to (2.2).
Since minimising sequences of (R) have bounded magnetisation and so

a bounded potential, there exist weakly convergent subsequences. Owing to
the convexification, the relaxedenergy functionalRE is sequentiallyweakly
lower semi-continuous and there exist solutions of (R) [ADS]. Each solution
of (R) solves the Euler-Lagrange equations (1.1)-(1.2) and, if we involve a
further Lagrange multiplier with respect to the constraint|m| ≤ 1, solves
Problem (P): Seeku ∈ H1

0 (Ω),m ∈ L2(ω)2, andλ ∈ L2(ω) satisfying∫
Ω
∇u · ∇w dx =

∫
ω
m · ∇w dx (w ∈ H1

0 (Ω)),(2.5)

∇u + Dφ∗∗(m) + λm = f a.e. inω,(2.6)
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0 ≤ λ, |m| ≤ 1, and λ(1− |m|)+ = 0 a.e. inω.(2.7)

Here,(s)+ := max{s, 0} denotes the non-negative part and the last condi-
tion in (2.7) states thatλ /= 0 is possible only for|m| = 1 as a consequence
of λm ∈ ∂ψ(m) for the convex characteristic functionalψ : R

2 → [0,∞]
defined byψ(m) = 0 if |m| ≤ 1 andψ(m) = ∞ if not.

Remark 2.2.According to (2.5), the stray-field∇u = L(χωm), where
L(m) = ∇∆−1

D div (χωm) and∆−1
D : H−1(Ω) → H1

0 (Ω) denotes the
solution operator for the Laplace problem with homogeneous Dirichlet
boundary data. Then, the Euler-Lagrange equation of (2.4) readsL�Lm +
Dφ��(m) + λm = f in L2(ω)2. One can prove that this indeed implies
(2.6).

Remark 2.3.The oscillations of minimizing sequences of Problem (P) can-
notbeobserved in theRelaxedProblem(R)witha (possibly) smoothsolution
m but can be computed from it. For instance, the Young measure generated
by minimising sequences is

νx = λ(m)δm+(m) + (1− λ(m))δm−(m),(2.8)

m±(m) := ±(1− (m · e⊥)2)1/2e + (m · e⊥)e⊥, and

λ(m) :=
1
2

+
m · e

2(1− (m · e⊥)2)1/2
(2.9)

in the uniaxial case with easy axise ∈ R
2 (see [ADS] for a proof). We refer

to [LM,Pr] for a direct minimisation approach forf = 0.

As shown in [ADS, Thm 4.2], any solution of (R) solves (P) and, in
particular, Problem (P) has solutions. Their uniqueness is claimed in a mis-
leading way in [P2,P3] and is discussed in a simplified setting in [ADS].
Therefore, we conclude this section with a clarification of uniqueness in the
present model: for the important uniaxial case there exists a unique solution
while, in general, the number of solutions may be infinite.

Theorem 2.1. In the uniaxial case, whereφ∗∗(m) = 1
2(m · e⊥)2 for some

unit vectore ∈ R
2 and its normale⊥, there exists only one solution in Prob-

lem (P) and in Problem (R). In general, there are infinitely many minimisers
in the cubic case, whereφ(m) = m2

1m
2
2 for m = (m1,m2) ∈ R

2.

Proof. Suppose(mj , λj , uj) solves (P) forj = 1, 2anddenotee := u2−u1
andδ = m2 −m1. According to (2.5), we have∫

ω
∇e · δ dx = | e |21,2,Ω.(2.10)
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From the monotonicity of the subgradients we infer fromλjmj ∈ ∂ψ(mj)
that λjmj(mj+1 − mj) ≤ 0 for j = 1, 2 andm3 := m1. This shows
0 ≤ (λ2m2 − λ1m1) · δ almost everywhere inω. Similar arguments show
0 ≤ (Dφ∗∗(m2)−Dφ∗∗(m1)) ·δ and we deduce with (2.6) and (2.10) that
all the three terms in

‖∇e ‖22,Ω +
∫
ω
(Dφ∗∗(m2)−Dφ∗∗(m1)) · δ dx

+
∫
ω
(λ2m2 − λ1m1) · δ dx = 0(2.11)

are non-negative and hence vanish:e = 0, (λ2m2 − λ1m1) · δ = 0 and
(Dφ∗∗(m2)−Dφ∗∗(m1)) · δ = 0 almost everywhere.

In the uniaxial caseφ∗∗(m) = 1
2(m · e⊥)2, we haveDφ∗∗(m) = (m ·

e⊥) e⊥ and so infer

0 = (Dφ∗∗(m2)−Dφ∗∗(m1)) · δ = (δ · e⊥)2.(2.12)

On the other hand,e = 0 and (2.10) imply thatδ is divergence-free in the
sense of distributions. This means divδ = 0 almost everywhere inω but
alsoδ ·n = 0 on the boundary∂ωwith unit normal vectorn (in aweak sense
according to the formula of integration by parts). Let us extendδ by zero
outsideω. Since the normal components are continuous on the boundary
∂ω, the extended functionδ belongs toH(div; R2) and is divergence-free.
Hence,δ = curlη := (η,2,−η,1) for someη ∈ H1(ω), cf. e.g., [GR,
Theorem 3.1 on page 37]. Outside a ball that includesω, δ = 0 and so
η is constant there. Without loss of generality,η = 0 on the connectivity
componentγ0 of the boundary∂ω that includesω.

Because of (2.12),∇η is parallel toe, i.e., the directional derivative ofη
in the directione⊥ vanishes almost everywhere inω. Sinceη = 0 onγ and
is constant along almost all lines in parallel toe insideω (and according
to the extension ofδ, η is constant in bounded components ofR

2 \ ω) we
deduceη = 0. This showsδ = 0 and evenλ2 = λ1 by (2.6).

In the cubic case, the convexificationφ∗∗ of φ is zero form equal to
(±1, 0) and(0,±1). Consequently,φ∗∗ vanishes on their convex hull and
so, in particular, on the ballB(0, 1/2). Given f = 0, one solution with
minimal zero energy ism = 0, u = 0, λ = 0. However, for any smoothη
with compact support inω which is small (by scaling with a small factor),
i.e., |∇η| ≤ 1/2 almost everywhere inω the functionsm = curlη, u = 0,
andλ = 0 solve (P). This shows that there are infinitely many solutions in
the cubic case.
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3. Conforming and nonconforming discretisation and penalisation

In the first part of this section, we consider the lowest order conforming
finite element method and show that it isnot feasible. This favours the use
of nonconforming finite element schemes for which we prove stability and
optimal a priori error estimates.

For simplicity, letT be a regular triangulation ofΩ andωwith polygonal
boundary in the sense of Ciarlet [BS]; i.e.,T is a finite partition ofΩ in
closed triangles such that two distinctT andT ′ in T are either disjoint, or
T ∪T ′ is a complete edge or a common node of bothT andT ′. We suppose
thatω is covered exactly by the sub-triangulationT |ω = {T ∈ T : T ⊂ ω}.

GivenT , let E denote the set of all edges andN denote the set of all
nodes inΩ;N is partitioned into free nodes in the interiorK := N ∩ω and
those on the outer boundaryN ∩ ∂Ω. The set of all midpoints of edgesE
in E is denoted byM.

The class of lowest order finite element spaces under consideration is
defined by

L0(T |ω) := {V ∈ L∞(ω) : ∀T ∈ T |ω, V |T constant},
S1(T ) := {V ∈ C(Ω) : ∀T ∈ T , V |T affine},
S1

0 (T ) := {V ∈ S1(T ) : V = 0 on∂Ω},
S1,NC(T ) := {V ∈ L∞(Ω) : ∀T ∈ T , V |T affine ∧

∀z ∈M∩Ω, V continuous atz},
S1,NC

0 (T ) := {V ∈ S1,NC(T ) : ∀z ∈M \Ω, V (z) = 0}.
DefinefT ∈ L0(T |ω) by fT |T =

∫
T f dx/|T |, where|T | denotes the area of

T ∈ T . The number of degrees of freedomN = dim(S)+2 dim(L0(T |ω))
serves as a reference to the spatial discretisationT , whereS = S1

0 (T ) or
S1,NC

0 (T ).
TheDiscrete Problem (PN ):=(P|S1

0 (T ) × L0(T |ω)2 × L0(T |ω)) for
the conforming finite element method reads as follows:Seek(uh,mh, λh)
in S1

0 (T )× L0(T |ω)2× L0(T |ω) satisfying∫
Ω
∇uh · ∇wh dx =

∫
ω
mh · ∇wh dx (wh ∈ S1

0 (T )),(3.1)

∇uh + Dφ∗∗(mh) + λhmh = fT a.e. inω,(3.2)

0 ≤ λh, |mh| ≤ 1, and λh(1− |mh|)+ = 0 a.e. inω.(3.3)

To describe the nonconforming finite element method, we define theT -
piecewise gradient∇T by∇T U(x) := ∇U |T (x) for x ∈ T ∈ T , which
may be different from the distributional gradient∇U ∈ D′(Ω). Therefore,
the discrete energy space isH1(T ),
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Hk(T ) := Hk(
⋃
T∈T

int(T ))

:= {V ∈ L2(Ω) : ∀T ∈ T , V |T ∈ Hk(T )}.(3.4)

TheDiscrete Problem (PNC
N ):=(P|S1,NC

0 (T )×L0(T |ω)2×L0(T |ω))
for thenonconformingfiniteelementmethod readsas follows:Seek(uh,mh,

λh) in S1,NC
0 (T )× L0(T |ω)2× L0(T |ω) satisfying

∫
Ω
∇T uh · ∇T wh dx =

∫
ω
mh · ∇T wh dx (wh ∈ S1,NC

0 (T )),(3.5)

∇T uh + Dφ∗∗(mh) + λhmh = fT a.e. inω,(3.6)

0 ≤ λh, |mh| ≤ 1, and λh(1− |mh|)+ = 0 a.e. inω.(3.7)

For a positiveε and the conforming resp. nonconforming discrete space
S, theDiscrete Penalised Problem (Pε|S × L0(T |ω)2 ×L0(T |ω)) abbre-
viated (Pε,N ) for S = S1

0 (T ) resp.(PNC
ε,N ) for S = S1,NC

0 (T ) reads as
follows:Seek(uh,mh, λh) in S× L0(T |ω)2×L0(T |ω) satisfying

∫
Ω
∇T uh · ∇T wh dx =

∫
ω
mh · ∇T wh dx (wh ∈ S),(3.8)

∇T uh + Dφ∗∗(mh) + λhmh = fT a.e. inω,(3.9)

λh = ε−1(|mh| − 1)+/|mh| a.e. inω.(3.10)

Here,(1− |mh|)+/|mh| is understood to vanish ifmh = 0 (and∇T could
be replaced by∇ in the conforming caseS = S1

0 (T )).

The existence of discrete solutions follows as in the continuous case from
the variational problem. Example 1.1, illustrated in Fig. 1, shows that (PN )
does allow multiple solutions for the uniaxial case in general while (PNC

N )
does not.

Theorem 3.1. In the uniaxial case, whereφ∗∗(m) = 1
2(m · e⊥)2 for some

unit vectore ∈ R
2 and its normale⊥, Problems (PNC

N ) and (PNC
ε,N ) have

unique solutions.

Proof. Suppose(uj ,mj , λj) solves (PNC
N ) for j = 1, 2 and denotee :=

u2 − u1 ∈ S1,NC
0 (T ) andδ := m2 −m1 ∈ L0(T |ω)2 (we neglect the

lower indexh in this proof for simplicity). According to (3.8), we have

∫
ω
∇T e · δ dx = ||∇T e||22,Ω.(3.11)
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Subtracting the two equations in (3.9) forj = 1, 2 and multiplying the
results withδ we infer with (3.11) that

||∇T e||22,Ω +
∫
ω
(Dφ∗∗(m2)−Dφ∗∗(m1)) · δ dx

+
∫
ω
(λ2 m2 − λ1 m1) · δ dx = 0.

(3.12)

All the terms in (3.12) are non-negative and so will vanish separately. This
follows for the second term in (3.12) from the convexity ofφ∗∗ (i.e., the
monotonicity ofDφ∗∗) as we have0 ≤ (Dφ∗∗(b) −Dφ∗∗(a))(b − a) for
all a, b ∈ R

2. This is also true for the last term according to (3.10) and the
elementary inequality

0 ≤ ((|b| − 1)+b/|b| − (|a| − 1)+a/|a|) · (b− a)(3.13)

for all a, b ∈ R
2. (To prove (3.13) wemay assume in the first case|a| ≤ 1 <

|b|, where (3.13) is obvious, and in the remaining second case1 < |a| ≤ |b|,
where (3.13) follows from a straight forward calculation that shows that
(|b| − 1)(|b| − |a|)− (|a| − 1)(|b| − |a|) ≥ 0 is a lower bound of the right-
hand side of (3.13).) Hence, (3.12) impliese = 0 andδ ·e⊥ = 0. A discrete
Helmholtz decomposition ofδ ∈ L2(Ω)2 (extended by zero outside ofω)
yields

δ = ∇T αh + curlβh a.e. inΩ(3.14)

for someαh ∈ S1,NC
0 (T ) andβh ∈ S1(T )/R [AF]. From (3.8) ande = 0

(with wh = αh) we deduceαh = 0 according to theL2-orthogonality
of ∇T αh and curlβh. With δ = curlβh parallel toe we conclude that
∂βh/∂e⊥ = 0 almost everywhere inΩ. Note thatδ = 0 and so∇βh = 0
onΩ \ ω. Hence,βh is constant on the connected open setΩ \ ω, without
loss of generality,βh = 0 onΩ \ ω. Integrating along lines parallel toe⊥
we deduce thatβh = 0 almost everywhere onΩ and soδ = 0. The proof is
finished for (PNC

ε,N ).
The proof of uniqueness for solutions of (PNC

N ) is analogous except that
the non-negativeness of the last term in (3.12) is verified with the monotone
relation in (3.7). Anelementary analysiswithλ1 ≤ λ2 reveals0 ≤ (λ2 m2−
λ1 m1) · (m2 −m1) pointwise almost everywhere. The remaining details
are omitted. !"

This section is concluded with an example which shows that, in general,
the magnetisation isnot necessarily convergent inL2(ω)2. As a conse-
quence, we must not expect to prove error estimates form − mh in the
L2-norm and have to analyse which quantities can be estimated in the fol-
lowing sections.
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Example 3.1.SupposeT |ω = {T1, T2, . . . , T2J} is a structured triangula-
tion ofω which consists of halved squaresQj = T2j−1∪T2j , j = 1, . . . , J ,
as in Example 1.1 with a diagonal parallel to the easy axise = (1, 1)/

√
2

in the uniaxial case (cf. Fig. 1). Suppose(u,m, λ) solves (1.1)-(1.2) while
(uh,mh, λh) is a solution to (PN ) or (Pε,N ). Then,

J∑
j=1

min{‖ 1− |m| ‖2L2(T2j−1), ‖ 1− |m| ‖2L2(T2j)}

≤ 4 max
(uh,m̃h,λh)

‖m− m̃h ‖2L2(ω),(3.15)

where(uh, m̃h, λh) denotes an arbitrary solution to (PN ) or (Pε,N ). Note
that the left-hand side of (3.15) is uniformly positive (for amesh-size tending
to zero) if, for instance, the set{x ∈ ω : |m(x)| < 1 − δ} has no interior
point for all0 < δ < 1.

Proof of (3.15). Let µj := max{|mh|T2j−1 , |mh|T2j} and suppose with-
out loss of generality thatµj = |mh|T2j for all j = 1, . . . , J . Setmh ∈
L0(T ) withMh|T2j−2+k

:= (1 − µj)+ (−1)k (1, 1)/
√

2 for j = 1, . . . , J ,
k = 1, 2. Arguing as in Example 1.1, we observe that(uh,mh ±Mh, λh)
is also a discrete solution. A triangle inequality shows

‖Mh ‖2,ω ≤ 1
2
‖m−mh + Mh ‖2,ω +

1
2
‖m−mh −Mh ‖2,ω ≤M,

(3.16)

whereM denotes the right-hand side of (3.15). Young’s inequality is applied
to 0 ≤ 1− |m| ≤ 1− |mh|+ |m−mh| and shows

1
2

J∑
j=1

‖ 1− |m| ‖22,T2j
≤

J∑
j=1

‖ 1− |mh| ‖22,T2j
+

J∑
j=1

‖m−mh ‖22,T2j

≤M2 +
J∑
j=1

‖Mh ‖22,T2j
≤ 2M2(3.17)

because of the definition ofMh and (3.16). !"

Remark 3.1.This understanding of instable and stable numerical schemes
for problem (M0) might lead to some rigorous insight in the resonance of
instable numerical schemes with oscillating microstructures for problem
(Mα).
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4. A priori error estimates

To describe the a priori error estimates in the conforming discrete model
(Pε,N ), let (·)T denote theT -piecewise integral means such asmT ∈
L0(T |ω) given by

mT |T =
∫
T

m dx/|T | (T ∈ Tω)(4.1)

and letP1 : H1
0 (Ω) → S1(T ) denote the Galerkin projector.

Theorem 4.1. Suppose(u,m, λ) solves Problem (P) and(uh,mh, λh)
solves the Discrete Problem (Pε,N ). Then we have

1
2
‖∇(u− uh) ‖2L2(Ω) +

1
2

∫
ω
ελ2

h|mh|2dx

+
∫
ω
(Dφ∗∗(m)−Dφ∗∗(mh)) · (m−mh)dx

≤ 1
2

∫
ω
ελ2dx +

1
2
‖ f − fT ‖2L2(ω) +

1
2
‖m−mT ‖2L2(ω)

+‖∇(u− P1u) ‖2L2(Ω) + ‖m−mh ‖2,ω‖∇(u− P1u) ‖L2(Ω).(4.2)

To establish convergence of the discrete functionλhmh towardsλm,
we suppose thatφ�� satisfies, for allm1,m2 ∈ R

2,

c1|Dφ��(m2)−Dφ��(m1)|2
≤ ((Dφ��(m2)−Dφ��(m1)

) · (m2 −m1)(4.3)

for someconstantc1 > 0. Note that this covers the uniaxial casewithc1 = 1.
Let (λm)T ∈ L0(T ) denote theT -piecewise integral mean ofλm.

Theorem 4.2. Suppose thatφ∗∗ satisfies (4.3) and that(u,m, λ) solves
Problem (P) and(uh,mh, λh) solves the Discrete Problem (Pε,N ). Then,
there exists anhT -independent constantc2 > 0 such that

‖∇(u− uh) ‖2L2(Ω) + ‖Dφ��(m)−Dφ��(mh) ‖2L2(ω)

+‖λm− λhmh ‖2L2(ω)

≤ c2

(
‖ ελ ‖2L2(ω) + ‖ f − fT ‖22,ω + ‖m−mT ‖22,ω

+‖λm− (λm)T ‖2L2(ω) + ‖∇(u− P1u) ‖22,Ω
+‖m−mh ‖2,ω‖∇(u− P1u) ‖2,Ω

)
.(4.4)

The constantc2 depends onc1 and the shape of the elements but neither on
their sizeshT nor onf ,m, u, λ,Ω, ω,mh, uh, or λh.
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Remarks 4.1.(i) Sinceφ∗∗ is convex,0 ≤ (Dφ∗∗(m)−Dφ∗∗(M)) · (m−
M) for all m,M ∈ R

2 and so(Dφ∗∗(m) − Dφ∗∗(mh)) · (m −mh) is
non-negative pointwise almost everywhere. Hence, the lower bound in (4.8)
consists of non-negative summands. For the uniaxial case whereφ∗∗(m) =
1
2(m · e⊥)2,

∫
ω
(Dφ∗∗(m)−Dφ∗∗(mh)) · (m−mh)dx = ‖ (m−mh) · e⊥ ‖22

(4.5)

all the theorems in this section yield estimates for theL2-norm of thee⊥-
component of the error in the magnetisation.
(ii) In case of multiple exact or discrete solutions, any selection of a pair of
them is considered in the theorems.
(iii) Under sufficient regularity of the exact solution, the above theorems
provide the estimate

‖∇(u− uh) ‖L2(Ω) + ‖ (m−mh) · e⊥ ‖L2(ω) = O(ε +
√
h)(4.6)

in the uniaxial case and the conforming scheme.
(iv) The last term in (4.2) is the limiting quantity in the upper bound and
causes the result to be suboptimal, in general. In fact, the term‖m−mh ‖2,ω
can only be controlled by the Lebesguemeasure of the domainω plus higher
order terms (cf. Example 3.1).
(v) The generic convergence order in (4.6) suggests the choiceε = O(

√
h).

Numerical evidence in the examples of Sect. 7 convinced us to preferε =
O(h).

To describe our result for the nonconforming scheme, letIT u ∈
S1,NC

0 (T ) denote the interpolation for the Crouzeix-Raviart finite element
defined by

IT u(z) = h−1
E

∫
E
u ds (z ∈ E ∩M, E ∈ E)(4.7)

for anyu ∈ H1
0 (Ω). TheweighthT ∈ L0(T ) represents the localmesh-size,

hT |T = hT := diam(T ) for T ∈ T .
Theorem 4.3. Suppose(u,m, λ) solves Problem (P) and(uh,mh, λh)
solves the Discrete Penalised Problem (PNC

ε,N ). Then, there exists anhT -
independent constantc3 > 0 such that

1
2
‖∇T (u− uh) ‖2L2(Ω) +

1
2

∫
ω
ελ2

h|mh|2dx

+
∫
ω
(Dφ∗∗(m)−Dφ∗∗(mh)) · (m−mh)dx
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≤ 1
2

∫
ω
ελ2dx +

1
2
‖ f − fT ‖2L2(ω) + ‖m−mT ‖2L2(ω)

+
3
2
‖∇T (u− IT u) ‖2L2(Ω) + c3‖hT∇T (m−∇u) ‖2L2(Ω).(4.8)

The constantc3 depends only on the shape on the elements but neither on
their sizes nor onf ,m, u, λ,Ω, ω,mh, uh, or λh.

Theorem 4.4. Suppose thatφ∗∗ satisfies (4.3) and that(u,m, λ) solves
Problem (P) and(uh,mh, λh) solves the Discrete Problem (PNC

ε,N ). Then,
there exists anhT -independent constantc4 > 0 such that∫

Ω
|∇T (u− uh)|2 dx

+
∫
ω
|Dφ��(m)−Dφ��(mh)|2dx +

∫
ω
|λm− λhmh|2dx

≤ c4

(∫
ω
ε2λ2dx + ‖ f − fT ‖22,ω + ‖m−mT ‖2L2(ω)

+‖∇T (u− IT u) ‖22,Ω + ‖hT∇T (m−∇T u) ‖2L2(Ω)

+‖λm− (λm)T ‖2L2(ω)

)
.(4.9)

The constantc4 depends onc1 and the shape of the elements but neither on
their sizeshT nor onf,m, u, λ,Ω, ω,mh, uh, or λh.

Remarks 4.2.(i) Under sufficient regularity of the exact solution, the above
two theorems provide the estimate

‖∇T (u− uh) ‖L2(Ω) + ‖ (m−mh) · e⊥ ‖L2(ω) = O(ε + h)(4.10)

in the uniaxial case and the nonconforming scheme.
(ii) The generic convergence orderO(ε+ h) suggests the choiceε = O(h)
in agreement with numerical experience reported in Sect. 7 below.
(iii) The proof of Theorem 4.3 reveals that

∫
ω ελ

2dx on the right-hand side
of (4.8) could be replaced by the smaller contribution

∫
ωh

ελ2dx on the
smaller domainωh := {x ∈ ω : λh(x) > 0}. This observation will affect
the a posteriori error estimates of Sect. 5.

The remaining part of this section is devoted to the proofs the four the-
orems of this section.

Proof of Theorem 4.3. In the first part of the proof, the convexity of the
indicator functionψ and the penalisation in (3.10) yield the estimate

ε

2
|mh|2λ2

h ≤ (λm− λhmh) · (m−mh) +
ε

2
λ2.(4.11)
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Indeed, direct calculations which merely involve|m| ≤ 1 and Cauchy’s
inequality reveal

−λm · (m−mh) ≤ λ(|mh| − 1) = ελλh|mh|,(4.12)

ελ2
h|mh|2 ≤ λhmh · (mh −m).(4.13)

Adding (4.12) and (4.13) we obtain (4.11) with Young’s inequality,λλhε
|mh| ≤ ε

2λ
2 + ε

2 |mh|2λ2
h.

In the second step we provide the identity∫
ω
(mh −mT ) · ∇T (u− IT u)dx = 0(4.14)

which follows elementwise from (4.7): An integration by parts gives∫
T
∇T (u− IT u)dx =

∫
∂T

(u− IT u)n ds

=
∑
E∈E

nE

∫
E∩∂T

(u− IT u) ds = 0(4.15)

since the normal vectornE on the edgeE ∈ E is constant. Becausemh −
mT ∈ L0(T |ω), (4.15) proves (4.14).

For the remaining part of the proof, we abbreviatee := u − uh, δ :=
m−mh and letwh := −uh+IT u ∈ S1,NC

0 (T ). In step threewe perform a
standard calculation [BS] for non-conforming finite elements. TheGalerkin-
orthogonality for (2.5) and (3.8) leads to

∫
Ω
∇T e · ∇T wh dx−

∫
ω

δ · ∇T wh dx =
∫

∪E
(∇u−m) · nE [wh] ds,

(4.16)

where[wh] denotes the jump ofwh along the edgeE ∈ E with normal
vectornE andm = 0 outside ofω.

In step four, we consider the difference of (2.6) and (3.9) and multiply
with δ to obtain finally that∫

ω
δ · ∇T e dx =

∫
ω
(m−mT ) · (f − fT )dx

−
∫
ω
(Dφ∗∗(m)−Dφ∗∗(mh)) · δ dx

−
∫
ω
(λm− λhmh) · δ dx(4.17)

(notice
∫
T (mh −mT ) · (f − fT )dx = 0).
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In the final stepwe collect the preceding estimates. Rewriting (4.17) with
adding‖∇T e ‖22,Ω and then employing (4.16) we obtain with Cauchy’s and
Young’s inequalities∫

ω
(Dφ∗∗(m)−Dφ∗∗(mh)) · δ dx +

∫
ω
(λm− λhmh) · δ dx

+‖∇T e ‖22,Ω −
1
2
‖m−mT ‖22,Ω −

1
2
‖ f − fT ‖22,Ω

≤
∫
Ω
∇T e · (∇T e− δ)dx

=
∫

∪E
(∇u−m) · nE [IT u− uh] ds

+
∫
Ω
∇T (u− IT u) · (∇T e− δ)dx.(4.18)

According to (4.14), the last contribution of the right-hand side in (4.18)
equals

(4.19)
∫
Ω
∇T (u− IT u) · ∇T e dx−

∫
ω
∇T (u− IT u) · (m−mT )dx

≤ ‖∇T e ‖2,Ω‖u− IT u ‖2,Ω + ‖u− IT u ‖2,ω‖m−mT ‖2,ω.
A standard argument for the jumps[IT u − uh] with E-piecewise integral
mean zero shows∫

∪E
(∇u−m) · nE [IT u− uh] ds

≤ √c3‖hT∇T (∇u−m) ‖2,Ω‖∇T e ‖2,Ω(4.20)

with anhT -independent constantc3 > 0 (which only depends on the shapes
of the elements) [BS]. Using this in (4.18) and owing to (4.11), we finally
deduce (4.8) by absorbing the error terms on the right-hand side. !"
Proof of Theorem 4.4. Let (λm)T ∈ L0(T |ω) be defined by(λm)T |T =∫
T λm dx/|T | for T ∈ T . Set

A := ‖∇T (u− uh) ‖2,Ω + ‖Dφ∗∗(m)−Dφ∗∗(mh) ‖2,ω
+‖λm− (λm)T ‖2,ω,

B := ‖ f − fT ‖2,ω + ‖m−mT ‖2,ω + ‖λm− (λm)T ‖2,ω
+‖∇T (u− IT u) ‖2,Ω + ‖hT∇T (δ −∇T u) ‖2,Ω.

Subtract (3.6) from (2.6) and test with the admissible function(λm)T −
λhmh to infer

‖λm− λhmh ‖2,ω ≤ A + ‖ f − fT ‖2,ω + ‖λm− (λm)T ‖2,ω
≤ c4

2

(
B +

(∫
ω
ελ2 dx

)1/2)
.

(4.21)
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Because of

λ2
h|mh|2 − λ2|m|2 =

(
λh|mh|+ λ|m|)(λh|mh| − λ|m|)

≤ (λh|mh|+ λ|m|)∣∣λhmh − λm
∣∣(4.22)

and Cauchy’s inequality, we can conclude from (4.21) that∣∣∣∫
ω

(
λ2
h|mh|2 − λ2|m|2)dx∣∣∣ ≤ (2∫

ω

(
λ2
h|mh|2 + λ2|m|2)dx)1/2

×
(∫

ω

∣∣λhmh − λm
∣∣2dx)1/2

≤ c4c5A
(∫

ω
λ2dx +B2

)1/2
.(4.23)

Multiply (4.23) with ε/2 and recast it into

1
2

∫
ω
ελ2|m|2 dx ≤ 1

2

∫
ω
ελ2

h|mh|2 dx

+
c6
2
A
(∫

ω
ε2λ2|m|2 dx + ε2 B2

)1/2
.(4.24)

Adding this to (4.8) and employing (4.3) we conclude the proof of (4.9) by
absorbing the first and second contribution inA. !"
Proof of Theorem 4.1. The arguments in the proof of Theorem 4.4 apply
to the conforming situation as well and jumps disappear (e.g., in (4.16),
(4.18)). From (3.5) we obtain∫

Ω
∇e · (∇e− δ)dx =

∫
Ω
∇(u− P1u) · (∇e− δ)dx,(4.25)

using theRitz-Galerkin projectionP1. Note that (4.14) is no longer available
and so we end up with∫

Ω
∇e · (∇e− δ)dx

≤ ‖∇(u− P1u) ‖2,Ω
(‖ δ ‖2,ω + ‖∇(u− P1u) ‖2,Ω

)
.(4.26) !"

Proof of Theorem 4.2. Following the proof of Theorem 4.1 with the mod-
ification

(4.27) B := ‖ f − fT ‖2,ω + ‖m−mT ‖2,ω + ‖λm− (λm)T ‖2,ω
+ ‖∇(u− P1u) ‖2,Ω‖m−mT ‖1/22,ω‖∇(u− P1u) ‖1/22,Ω

we verify Theorem 4.2. !"
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5. Reliable or efficient a posteriori error estimates

The a posteriori error estimates differ essentially for conforming and non-
conforming schemes. First, our results are stated, then discussed and proved
at the end of this section. Numerical tests on adaptive algorithms for auto-
matic mesh-refining will be reported on in the subsequent section.

The discrete functionmh −∇uh is T -piecewise constant and its jump
acrossan interior edgeE ∈ E withachosenunit normal vectornE and length
hE iswritten[mh−∇uh]·nE .Weabbreviate theE-piecewise constant edge-
size and the chosen normalnE on the skeleton∪E = ∪T∈T ∂T (the union of
all points which belong to an edge) byhE ∈ L∞(∪E) andnE ∈ L∞(∪E)2

defined by(hE)|E := hE := diam(E) and(nE)|E := nE for E ∈ E in
Ω. On the outer boundary we formally set(nE)|∂Ω = 0 such that all terms
disappear there. A crucial role plays the sub-domainωh of ω whereλh is
positive,

ωh = {x ∈ ω : 0 < λh(x)}.(5.1)

Theorem 5.1. Suppose thatφ∗∗ satisfies (4.3),0 < ε < min{1, c1}, and
that (u,m, λ) solves Problem (P) and(uh,mh, λh) solves the Discrete
Problem (Pε,N ). Then there exists an(ε, hT , hE)-independent constantc7
with

‖∇(u− uh) ‖2L2(Ω) + c1‖Dφ∗∗(m)−Dφ∗∗(mh) ‖2L2(ω)

≤ (3 + 1/c1)‖ ελhmh ‖2L2(ωh) +
∫
ω
(m−mT ) · (f − fT ) dx

+‖ f − fT ‖2L2(ωh) + c27‖h1/2
E [mh −∇uh] · nE ‖2L2(2,∪E).(5.2)

The constantc7 depends on the shape of the elements inT but neither on
their sizes nor on the dataf or solutionsu,m, λ, uh,mh, λh.

The situation is more involved for nonconforming schemes. The non-
conformity is controlled by an edge term[∂uh/∂s], where∂/∂s denotes
the derivative with respect to the arc-length alongE ∈ E and[∂uh/∂s] is
the jump acrossE of ∂uh/∂s from either sides. We regard[∂uh/∂s] as a
function on∪E which is−∂uh/∂s on∂Ω.
Theorem 5.2. Suppose thatφ∗∗ satisfies (4.3),0 < ε < min{1, c1}, and
thatΩ is simply connected. Let(u,m, λ) solveProblem (P) and let(uh,mh,
λh) solve the Penalised Discrete Problem (PNC

ε,N ). Then there exists an
(ε, hT , hE)-independent constantc8 with

‖∇T (u− uh) ‖2L2(Ω) + c1‖Dφ∗∗(m)−Dφ∗∗(mh) ‖22,ω
≤ (2 + 1/c1)‖ ελhmh ‖2L2(ωh) + ‖ f − fT ‖2L2(ωh)
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+2
∫
ω
(m−mT ) · (f − fT ) dx + c28‖h1/2

E [∂uh/∂s] ‖L2(∪E).(5.3)

The constantc8 depends on the shape of the elements inT but neither on
their sizes nor on the dataf or solutionsu,m, λ, uh,mh, λh.

In case that the exact solution is smooth, i.e.,m−∇u|ω ∈W 1,∞(ω)2,
we have

‖∇T (u− uh) ‖2L2(Ω) + c1‖Dφ∗∗(m)−Dφ∗∗(mh) ‖22,ω
≤ (2 + 1/c1)‖ ελhmh ‖2L2(ωh) + ‖ f − fT ‖2L2(ωh)

+2
∫
ω
(m−mT ) · (f − fT ) dx + c29‖h2

E [∂uh/∂s] ‖L1(∪E)(5.4)

for an (ε, hT , hE)-independent constantc9 > 0 which depends on|m −
∇u|ω |W 1,∞(ω).

Remarks 5.1.(i) Note that |m| ≤ 1 pointwise almost everywhere inΩ
implies‖m−mT ‖L∞(ω) ≤ 2 and so, the first term on the right-hand side
of (5.8) is estimated by∫

ω
(m−mT ) · (f − fT ) dx ≤ 2 ‖ f − fT ‖L1(Ω).(5.5)

In casem ∈W 1,∞(ω)2, a Poincaŕe type estimate shows∫
ω
(m−mT ) · (f − fT ) dx ≤ ‖∇m ‖L∞(ω) ‖hT (f − fT ) ‖L1(ω).(5.6)

Note that‖hT (f−fT ) ‖L1(Ω) = O(‖hT ‖2∞) is of optimal order. Finally, in
theuniaxial caseφ∗∗(m) = (m·e⊥)2/2and for aneasyaxiseperpendicular
to the exterior magnetic fieldf pointwise almost everywhere, we have∫

ω
(m−mT ) · (f − fT ) dx

≤ ‖ (m−mT ) · e⊥ ‖L2(ω) ‖ f − fT ‖L2(Ω)

= ‖Dφ��(m)−Dφ��(mh) ‖L2(ω) ‖ f − fT ‖L2(Ω) ,(5.7)

and‖Dφ��(m) −Dφ��(mh) ‖L2(ω) can be absorbed. This merely results
in an additional term‖ f − fT ‖2L2(Ω) on the right-hand side.
(ii) The estimate (5.2) plus (5.5) is reliable (i.e., the error is bounded from
above by a constant times the computable bound).
(iii) The estimate (5.3) plus (5.5) is reliable in the sense that the constantc8
does not depend on the regularity ofm or∇u. In case (5.2) plus (5.5) the
constantc7 does depend on the smoothness of the exact solution which is
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uncertain. (The authors are unaware of any regularity results onm.) Con-
sequently, we have to regard (5.2) as non-reliable.
(iv) The estimate (5.3) is not efficient since the power of the jump contribu-
tions is one. This is different for (5.4) where all the terms on the right-hand
side are of optimal order.
(v) The complementary properties of the error estimates suggest to employ
(5.2) in an adaptive mesh-refining strategy but use (5.3) for reliable (but
possibly expensive) error estimation.
(vi) Note that|[mh−∇T uh] ·nE | does not appear in (5.3) while|[∂uh/∂s]|
is typical in a posteriori error estimates for nonconforming finite element
schemes.

Proof of Theorem 5.2. Throughout this proof, we abbreviatee := u−uh,
δ := m−mh and extendm,mh, andδ by zero outside ofω.

As in the first step of the proof of the a priori error estimates, we add
(4.12) and (4.13) and substitute the resulting estimate for(λm−λhmh) · δ
in (4.17) and so infer

‖∇T e ‖22,Ω +
∫
ω
(Dφ∗∗(m)−Dφ∗∗(mh)) · δ dx

≤
∫
ω
(m−mT ) · (f − fT )dx +

∫
ω
ελh|mh|(λ|m| − λh|mh|)dx

+
∫
Ω
∇T e · (∇T e− δ)dx,(5.8)

where we added‖∇T e ‖22,Ω on both sides.
To bound the second term on the right-hand side of (5.8), we employ

(2.6) resp. (3.9) to obtain expressions forλ|m| resp.λh|mh| and subtract
the two resulting formulae. This proves∫

ω
ελh|mh|(λ|m| − λh|mh|)dx

≤
∫
ω
ελh|mh|

∣∣f − fT −∇T e−Dφ∗∗(m) +Dφ∗∗(mh)
∣∣ dx

≤ (1 +
1

2c1
)
∫
ω
ε2λ2

h|mh|2dx +
1
2
‖ f − fT ‖22,ωh

+
c1
2
‖Dφ∗∗(m)−Dφ∗∗(mh) ‖22,ωh

+
1
2
‖∇T e ‖22,ωh

.(5.9)

For the last termon the right-hand side of (5.8) we first observe that∇u−
m is divergence-free in the sense of distributions onΩ. Hence, there exists
a functionb ∈ H1(Ω) with∇u−m = curl b := (∂b/∂x2,−∂b/∂x1).



Numerical analysis of relaxed micromagnetics 85

Let bh be the Clement-interpolation tob (no boundary conditions);bh is
continuous andT -piecewise affine and, ifb ∈ Hβ+1(Ω), there holds

‖h−β
T ∇(b− bh) ‖2,Ω + ‖h−(β+1)

T (b− bh) ‖2,Ω
+‖h−(β+1/2)

E (b− bh) ‖2,∪E ≤ c10 | b |β+1,2,Ω.(5.10)

The constantc10 > 0 depends only onω and the aspect ratio of the elements,
but does not depend on their sizes (or onb orB) [Cl,BS,V]. An elementwise
integration by parts shows∫

Ω
curlB · ∇T uh dx =

∫
∪E

[uh]curlB · n ds = 0(5.11)

since curlbh · n = ∂bh/∂s is continuous in the sense that there is no dif-
ference on both sides ofE and curlbh · n is constant there while[uh] has
a vanishing integral mean onE by construction of the Crouzeix-Raviart
elements.

Thediscrete counterpart∇T uh−mh is perpendicular to∇T uh inL2(Ω)
according to (3.8). Surprisingly,∇T uh − mh is perpendicular to∇u as
well. Indeed, with the interpolation (4.7) and with (3.8), we deduce with an
elementwise integration by parts that∫

Ω
∇u · (∇T uh −mh)dx =

∫
Ω
∇T (u− IT u) · (∇T uh −mh)dx

=
∫

∪E
[(u− IT u) (∇T uh −mh)] · nE ds.(5.12)

(In the last step we used thatmh is T -piecewise constant anduh is T -
piecewise affine such that divT (∇T uh −mh) = 0.) For each edgeE ∈ E ,
u − IT u has integral mean zero onE and∇T uh −mh is constant there.
Hence, even if the corresponding quantities are discontinuous onE, we have∫

Ω
∇T e · (∇T uh −mh)dx =

∫
∪E

[(u− IT u) (∇T uh −mh)] · nE ds

= 0.(5.13)

From (5.11), (5.13), and∇u−m = curl b, we deduce with an elementwise
integration by parts and Cauchy’s inequality that∫

ω
∇T e · (∇T e− δ)dx =

∫
ω
∇T e · curl(b− bh)dx

= −
∫
ω
∇T uh · curl(b− bh)dx

= −
∫

∪E
[∂uh/∂s](b− bh)dx
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≤ ‖h−1/2
E (b− bh) ‖2,∪E ‖h1/2

E [∂uh/∂s] ‖2,∪E

≤ c10 | b |1,2,Ω ‖h1/2
E [∂uh/∂s] ‖2,∪E .(5.14)

Notice that, for higher regularity ofb ∈W 2,∞(Ω) and with its nodal inter-
polantbh the arguments in (5.14) show∫

Ω
∇e · (∇T e− δ)dx ≤ c10 | b |2,∞,Ω ‖h2

E [∂uh/∂s] ‖1,∪E .(5.15)

In the final step we gather all the estimates on the right-hand side of (5.8)
in (5.5), (5.9), (5.14), and (5.15) and eventually obtain,

1
2
‖∇T e ‖22,Ω +

∫
ω
(Dφ∗∗(m)−Dφ∗∗(mh)) · δ dx

≤ (1 +
1

2c1
)
∫
ω
ε2λ2

h|mh|2dx +
∫
ω
(m−mT ) · (f − fT )dx

+
1
2
‖ f − fT ‖22,ω +

c1
2
‖Dφ∗∗(m)−Dφ∗∗(mh) ‖22,ω

+c1| b |1+α,2,ω‖h1/2
E [∂uh/∂s] ‖2,∪E .(5.16)

Absorbing|Dφ∗∗(m)−Dφ∗∗(mh)|2 with (4.3), we conclude the proof of
the theorem. We omitt details in the remaining case. !"
Proof of Theorem 5.1. Arguing as above we deduce (5.8) and estimate the
first and second term on its right-hand side as in (5.5)-(5.9). The last term
in (5.8) reads

∫
Ω
∇e · (∇e− δ)dx =

∫
Ω
∇(e− eh) · (mh −∇uh)dx,(5.17)

whereeh ∈ S1
0 (T ) denotes the Clement-interpolation toe which satisfies

estimates as in (5.10) (whereb resp.bh is replaced bye resp.eh). According
to divT (mh −∇uh) = 0, an integration by parts on the right-hand side in
(5.17) shows

∫
Ω
∇e · (∇e− δ)dx =

∫
∪E

(e− eh)[mh −∇uh] · nE ds

≤ c10 ‖∇e ‖2 ‖h1/2
E [mh −∇uh] · nE ‖2,∪E .(5.18)

The remaining parts in this proof are analogous to those in the previous and
hence omitted. !"
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6. Numerical realisation

Computational examples are provided for the uniaxial case (with the easy
axise ∈ R

2) to compare the conforming method and the nonconforming
method with respect to stability as well as convergence properties. We con-
sider the minor generalisation (P̃) of (P) on the right hand side of (6.1).

This is a small modification of Problem (P) stated in (2.5)–(2.7).

Problem(P̃ ):Given( g, f ) ∈ L2(Ω)×L2(ω)2, seek(u,m, λ ) ∈ H1
0 (Ω)×

L2(ω)2 × L2(ω) that satisfies, for allw ∈ H1
0 (Ω) andµ ∈ L2(ω)2,∫

Ω
∇u · ∇w dx−

∫
ω
m · ∇w dx =

∫
Ω
g · w dx,(6.1) ∫

ω
∇u · µ dx+

∫
ω
(m · e⊥)(µ · e⊥) dx +

∫
Ω
λm · µ dx

=
∫
Ω

f · µ dx,(6.2)

0 ≤ λ, |m| ≤ 1, and λ(1− |m|)+ = 0 a.e. inω,(6.3)

The side constraint|m | ≤ 1 is enforced by a penalisation strategy and
leads toProblem (̃Pε) and its conforming resp. nonconformingdiscretisation
(P̃ε,N ) resp. (̃PNC

ε,N ) solved numerically by a Newton-Raphson scheme.
Let φ1, .., φJ be hat functions for each vertex of elementsT ∈ T in

the conforming scheme resp. each edge in the nonconforming scheme. Fur-
thermore, letψ1, .., ψK be the characteristic functions, for each element
in T |ω = {T1, .., TK}. The iteratesu(ν)

h :=
∑J

j=1 x
(ν)
j φj andm(ν)

h =

(
∑K

k=1 y
(ν)
k ψk,

∑K
k=1 y

(ν)
K+kψk) are assembled from(x(ν), y(ν) ) ∈ R

J ×
R

2K . The implementation of the Newton-Raphson algorithm is performed
in Matlab in the spirit of [ACF].

Algorithm 6.1. Start, e.g., with(x(0), y(0)) := (0, 0), and solve orν =
0, 1, 2, . . . until termination if|(G(ν), F (ν))| ≤ 10−12,

(
A B

−B� C + 1
ε (D(y(ν)) + E(y(ν))

)(
x(ν) − x(ν+1)

y(ν) − y(ν+1)

)
=
(
G(ν)

F (ν)

)
,

(6.4)

whereH : R → R
+
0 is the Heaviside function,12×2 is the2×2-unit matrix,

and forj, A = 1, . . . , J , k = 1, . . . ,K,

Aj� =
∫
Ω
∇T φj · ∇T φ� dx,(6.5)

(Bj,k, Bj,K+k) =
∫
ω
ψk · ∇T φj dx,(6.6)
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(
Ck,k Ck,K+k

CK+k,k CK+k,K+k

)
= |Tk| e⊥ ⊗ e⊥,(6.7)

(
Dk,k Dk,K+k

DK+k,k DK+k,K+k

)
=

H(|(y(ν)
k , y

(ν)
K+k)| − 1)

|(y(ν)
k , y

(ν)
K+k)|

×
(

y
(ν)
k

y
(ν)
K+k

)
⊗
(

y
(ν)
k

y
(ν)
K+k

)
,(6.8)

(
Ek,k Ek,K+k

EK+k,k EK+k,K+k

)
=
(|(y(ν)

k , y
(ν)
K+k)| − 1

)
+ 12×2,(6.9)

and the right-hand side of (6.4) with barycenterssTk
,(

G(ν)

F (ν)

)
=
(

A B

−B� C + 1
εE(y(ν))

)(
x(ν)

y(ν)

)
−
(
G
F

)
,(6.10)

Gj :=
1
3

∑
T�⊂suppφj

|T�| g(sT�
) ≈

∫
Ω
gφj dx,(6.11)

(
Fk

FK+k

)
:= |Tk| f(sTk

) ≈
∫
ω
fψk dx.(6.12)

Remark 6.1.The algorithm is stabilised for (Pε,N ) to select exactly one of
the possible solutions by adding the2K × 2K-diagonal matrix

diag(|T1|3/2, . . . , |TK |3/2, |T1|3/2, . . . , |TK |3/2), |Tk| denotes the area
of the elementTk, to the lower right block entryC + 1

ε (D(y(ν)) +E(y(ν))
in (6.4).

As in Theorem 5.1 and 5.2, we can prove the following bound for the
uniaxial case and the conforming scheme (PhT ,N ), i.e.,ε = hT ,

‖∇(u− uh) ‖L2(Ω) + ‖ (m−mh) · e⊥ ‖L2(ω) ≤ min
{
c11η

(0)
C , c12η

(1)
C

}
,

(6.13)

and for the nonconforming method (PNC
hT ,N ),

‖∇T (u− uh) ‖L2(Ω) + ‖ (m−mh) · e⊥ ‖L2(ω)

≤ min
{
c11η

(0)
NC , c12η

(1)
NC

}
,(6.14)

where the constantsc11, c12 do not depend onhT and the error estimators
are, forβ = 0, 1,

η
(β)
C :=

(
‖hT λhmh ‖2L2(ω) + ‖ f − fT ‖2L2(ω) + ‖hβT (f − fT ) ‖L1(ω)
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+‖hT g ‖2L2(Ω) + ‖h1/2
E [mh −∇uh] · nE ‖2L2(∪E)

)1/2
,(6.15)

η
(0)
NC :=

(
‖hT λhmh ‖2L2(ω) + ‖ f − fT ‖2L2(ω) + ‖ f − fT ‖L1(ω)

+‖hT g ‖2L2(Ω) + ‖h1/2
E [∂uh/∂s] ‖L2(∪E)

)1/2
,(6.16)

η
(1)
NC :=

(
‖hT λhmh ‖2L2(ω) + ‖ f − fT ‖2L2(ω) + ‖hT (f − fT ) ‖L1(ω)

+‖hT g ‖2L2(Ω) + ‖h2
E [∂uh/∂s] ‖L1(∪E)

)1/2
.(6.17)

The estimates (6.15) resp. (6.18)motivate error indicators for local adap-
tive mesh-refinement, namely forβ = 0, 1,

η
(β)
T,C :=

(
‖hTλhmh ‖2L2(T ) + ‖ f − fT ‖2L2(T ) + ‖hβT (f − fT ) ‖L1(T )

+‖hT g ‖2L2(T ) + ‖h1/2
E [mh −∇uh] · nE ‖2L2(∂T )

)1/2
,(6.18)

η
(1)
T,NC :=

(
‖hTλhmh ‖22,T + ‖ f − fT ‖2L2(T ) + ‖hT (f − fT ) ‖L1(T )

+‖hT g ‖2L2(T ) + ‖h2
E [∂uh/∂s] ‖L1(∂T )

)1/2
.(6.19)

Remarks 6.1. (i) Note that the a posteriori error estimates (6.15) resp.
(6.18) are reliable forβ = 0 in the sense thatc11 does not depend on the
data in contrast toc12 that depends on the (unknown) regularity of the exact
solution. The estimates are efficient forβ = 1 in the sense that the upper
bounds have optimal convergence order.
(ii) The error estimator (6.16) is not a sum of local contributions. For the
remaining estimators we have, forβ = 0, 1,

η
(β)
C = (

∑
T∈T

(η(β)
T,C)2)1/2 and η

(1)
NC = (

∑
T∈T

(η(1)
T,NC)2)1/2.(6.20)

For any choice ofηT = η
(0)
T,C , η

(1)
T,C andη = η

(0)
C , η(1)

C resp.ηT = η
(1)
T,NC

andη = η
(0)
NC , η

(1)
NC , the subsequent mesh-refining algorithm generates a

sequenceT0, T1, ... of adapted meshes.

Algorithm 6.2. 1. Start with coarse meshT0.
2. Solve the discrete problem with respect toTk.
3. ComputeηT for all T ∈ Tk.
4. Compute error boundη and terminate or goto 5.
5. Mark elementT red iff ηT ≥ 1

2 maxK∈Tk
ηK .

6. Red-green-blue-refinement (cf., e.g., [V]) to avoid hanging nodes, gener-
ate meshTk+1, setk = k + 1 and goto 2.
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7. Numerical examples

7.1. Academic example for numerical justification of theoretical results

The first example provides experimental evidence for the optimal choice
of the penalty parameterε = hβ, β > 0, and discusses its influence onto
the number of iteration steps in Algorithm 1. Stability properties and mesh-
dependencies as well as convergence analyses are studied for (P̃ε,N ) and
(P̃NC

ε,N ).
Let ω = (1/4, 3/4)2 ⊂ Ω = (0, 1)2, ω1 := {(x, y) ∈ ω : 1 ≤

sin(2π(x− .25)) sin(2π(y − .25))}, ande = (e1, e2), and define

f(x, y) =




π (cos(πx) sin(πy), sin(πx) sin(πy))
+(e1 − e2)e⊥
+5
(
(x− 3/2)2 + (y − 1/2)2

)
if (x, y) ∈ ω1,

π (cos(πx) sin(πy), sin(πx) sin(πy))
+5 sin(2π(x− .25))
×sin(2π(x− .25)) (e1 − e2)e⊥ if (x,y) /∈ ω1,

(7.1)

g(x, y) =




2π2sin(πx) sin(πy) if (x, y) ∈ ω1 ∪ (Ω \ ω),

2π2sin(πx) sin(πy)
+10π cos(2π(x− 1/4))
× sin(2π(y − 1/4))
+10π sin(2π(x− 1/4))
×cos(2π(y − 1/4)) if (x, y) ∈ ω \ ω1.

(7.2)

Then, the solution(u,m, λ) ∈ H1
0 (Ω) × L2(ω)2 × L2(ω) of Problem

(P̃ ) is given by

u(x, y) = sin(πx) sin(πy) and m = (m̃, m̃),(7.3)

m̃(x, y) =
{

1 if (x, y) ∈ ω1,
5 sin(2π(x− 1/4)) sin(2π(y − 1/4)) if (x, y) ∈ ω1,

(7.4)

λ(x, y) =
{

5
(
(x− 3/2)2 + (y − 1/2)2

)
if (x, y) ∈ ω1,

0 if (x, y) ∈ ω \ ω1.

(7.5)

In order to study the effect of penalisation in(P̃NC
ε,N ) and (P̃ε,N ), Fig. 2

displays errors||∇(u − uh)||L2(Ω) + ‖(m − mh) · e⊥‖L2(ω) versus the

degrees of freedomN for different choices ofε = hβT , β = 0.25, .., 1.75,
wheree = (1, 0). We added triangles to the plots to indicate the order of
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Fig. 2. Error = ||∇(u − uh)||L2(Ω) + ||(m − mh) · e⊥||L2(ω) versus degrees of free-

dom N in (P̃ε,N ) (top) and (̃P NC
ε,N ) (bottom) with ε = hβ on a uniform mesh for

β = .25, .5, .75, 1, 1.25, 1.5, 1.7 in the first example

convergence which is twice the negative slope. In both pictures, the conver-
gence improves ifβ increases from.25 to 1.0. The convergence behaviour
for β = 1.0, 1.25, 1.5, and1.75 is similar. On the other hand, the compu-
tational effort (counted in number of iterations in Algorithm 6.1) increases
for higher values ofβ, see Fig. 3, which favours the optimal choiceβ = 1.
Hence, we chooseε = hT in all subsequent computations.

To study the mesh-dependency of the solutions in (P̃hT ,N ), we run Al-
gorithm 6.1 on a uniform mesh with diagonals parallel toe = ( 1, 1)/

√
2

(aligned) or perpendicular fore = (−1, 1)/
√

2 (nonaligned). The Fig. 4
shows the approximate magnetisationmh obtained by the conforming (top)
and the nonconforming (bottom) scheme, withm̃(x, y) = 0.8sin(2π(x −
1/4)) sin(2π(y − 1/4)) if (x, y) ∈ ω instead of (7.4) such thatλ = 0
in (7.3)–(7.5) and instabilities might be enforced. While the right picture
shows a reasonable approximation, the left picture indicates instabilities.



92 C. Carstensen, A. Prohl

10
1

10
2

10
3

10
4

10
5

5

10

15

20

25

30

35

40

N

N
um

be
r 

of
 It

er
at

io
ns

β = 0.25
β = 0.5
β = 0.75
β = 1
β = 1.25
β = 1.5
β = 1.75

10
2

10
3

10
4

10
5

5

10

15

20

25

30

35

40

N

N
um

be
r 

of
 It

er
at

io
ns

β = 0.25
β = 0.5
β = 0.75
β = 1
β = 1.25
β = 1.5
β = 1.75

Fig. 3. Number of iteration steps in Algorithm 1, for solving (P̃ε,N ) (top) and (̃P NC
ε,N )

(bottom) withε = O(hβ) for different values ofβ in the first example

To assess the quality of the approximation, we show in Fig. 5 the compo-
nents of the errorm −mh in the directione⊥ (for which we proved error
estimates) and in the directione (for which any control lacks). The result
in Fig. 5 supports that‖m −mh ‖ does not converge to zero as discussed
in Example 3.1. Note that the components ine⊥-direction converge with
experimental convergence rates close to1.

To study the practical performance of the a posteriori error indicators
for uniform and adapted meshes generated by Algorithm 6.2, Fig. 6 resp. 7
show the convergence rates for the estimated error contributions (top) and
the uncontrolled magnetisation error‖m −mh ‖L2(ω) (bottom) and some
error estimators (6.20) for the conforming (Fig. 6) and the nonconforming
scheme (Fig. 7) on uniform and adapted meshes. In these figures, a label
“η(0) (η(1)-adapted)” indicates that the corresponding symbol displaysη(0)

versus the number of degrees of freedomN , for a sequenceT0, T1, .., gener-
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Fig. 4. Plot of computedmagnetisation of (P̃h,233) (top) and (̃P NC
h,520) (bottom) for uniformly

refined meshes in the first example. The gray-scale shows the modulus of the magnetisation
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Fig. 5. Errors||(m−mh) ·e⊥||L2(ω) versus degrees of freedomN in (PhT ,N ) for aligned
and nonaligned meshes in the first example
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Fig. 6. Error= ||∇(u − uh)||L2(Ω) + ||(m − mh) · e⊥||L2(ω) (top) and error= ||(m −
mh) · e||L2(ω) (bottom) and error estimatorsη = η

(β)
C versus degrees of freedomN in

(P̃h,N ) for uniform andη(β)
C -generated meshes in the first example

ated by Algorithm 6.2 with the error indicatorη(1)
T in step5. We observe an

experimental convergence rate1/2 for reliable error estimators withβ = 0
and also for the efficient error estimators withβ = 1. To our surprise,
the “efficient” error estimators forβ = 1 do not reflect the experimental
linear convergence of the true errors. This is rather pessimistic as the true
errors converge linearly. The uncontrolled error‖m−mh ‖L2(ω) does not
seem to converge for the conforming discretisation. A linear experimental
convergence is deduced for all error components fromFig. 7 for the noncon-
forming schemes. The different convergence properties ofη

(β)
NC are expected

at rate1/2 for β = 0 and rate1 for β = 1. Also, the meshes generated by
Algorithm 6.2 seem to be slightly better than a uniform discretisation. How-
ever, since the exact solution is Lipschitz continuous and at least piecewise
smooth, the use of adapted meshes is not important in this example.
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Fig. 7. Error= ||∇T (u−uh)||L2(Ω) + ||(m−mh) ·e⊥||L2(ω) (top) and error= ||(m−
mh) · e||L2(ω) (bottom) and error estimatorsη = η

(β)
NC versus degrees of freedomN in

(P̃ NC
h,N ) for uniform andη(1)

NC -generated meshes in the first example
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Fig. 8. Magnetic potentialuh (left) andmagnetisationmh (right) in a ferromagnetic rod, for
(P NC

hT ,5444) onη
(1)
NC -generated meshes, forf = (.6, 0) ‖ e = (1, 0) in the second example
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Fig. 9. Magnetic potentialuh (left) and magnetisationmh (right) in a ferromagnetic rod,
for (P NC

hT ,7874) on η
(1)
NC -generated meshes, forf = (.5, .5) ande = (1, 0) in the second

example
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Fig. 10. Magnetic potentialuh (left) and magnetisationmh (right) in a ferromagnetic rod,
for (P NC

hT ,7284) on η
(1)
NC -generated meshes, forf = (0, .9) ⊥ e = (1, 0) in the second

example

7.2. Scientific computing of an uniaxial ferromagnet
under a constant magnetisation

Theuniaxial ferromagnet covers thedomainω = (−.5, .5)×(−2.5, 2.5)⊂⊂
Ω = (−5.5, 5.5)2. It is magnetised by an exterior fieldf = (.6, 0), f =
(.5, .5), resp.f = (0, .9) ande = (1, 0). The numerical results for(PNC

hT ,N )

onη(1)
NC-generatedmeshesaredisplayed inFig. 8, 9, resp. 10 for threechoices

of f .



Numerical analysis of relaxed micromagnetics 97

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 11. Approximate volume fractionλ of related Young measuresνx in (2.8) for Problem
(M0) for situations of Fig. 8 (left), Fig. 9 (middle), resp. Fig. 10 (right)

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

1

1/2

N

es
tim

at
or

η(0) (uniform)
η(1) (uniform)
η(0) (adaptive)
η(1) (adaptive)

Fig. 12. Error estimatorsη(β)
NC versus degrees of freedomN in (P NC

hT ,N ) for uniform and

η
(1)
NC -generated meshes in the second example (cf. Fig. 9)

According to the angle between the easy axis vectore and the constant
exterior fieldf , we arrive at differentmagnetisations and potential functions.
The slightly different choices of| f | were made to obtain an intermediate
non-fully saturated state with microstructures as indicated in Fig. 11.

In the first situation,e ‖ f andmh is almost uniformly followingf
with peak values of the modulus ofmh forming a cone-like structure at the
bottom and the top of the ferromagnet. For�(e, f) = π/4 in the second
situation,mh mimics the direction off but is inhomogeneous. The cone-
like structure of peak values of|mh | is now distorted. In the final case, a
flower-like structure can be observed, with magnetisation of large modulus
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concentrated at the edge points. Note thatf ⊥ e so that we could improve
the a posteriori error estimates with Remark 5.1 (i).

The Young measure of the original Problem(M0) is computed with
(2.8)–(2.9) wherem is replaced by(max(1, |mh |)−1mh. Fig. 11 displays
the obtained approximations for the coefficientλ in the second examples
shown in Fig. 8–10. Note that we described no error estimate for the ap-
proximation toνx (which is linked to the lack of control on(m−mh) · e).
Nevertheless, there is a weak convergence of the approximations and we
conjecture that the approximation is accurate on a macroscopic level.

To assess the discretisation errors in the approximations of Fig. 8, 9, and
10, we computedη(β)

NC . Since they show almost identical behavior in the
three examples, we only plot the values for the second situation (Fig. 9) in
Fig. 12. The error estimates show an experimental convergence rate1 for
β = 1 but a modest convergence behavior forβ = 0.
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