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Abstract

Discontinuous Galerkin discretizations promise to become a very flexible tool in sp-adaptive space-time discreti-
zations. This is very attractive for moving interphase problems such as the free boundary between the elastic and plastic
phase in elastoplastic time evolution. The mathematical model of which involves variational inequalities and so the
distributional time derivative is not obviously generalized to discontinuous test functions. This paper motivates and
introduces a discontinuous Galerkin (dG) time discretization. Solution algorithms and examples are established which
support feasibility and accuracy of the proposed schemes dG(0) and dG(1). The methods are compared with a back-
ward Euler and Crank—Nicholson scheme.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

The numerical simulation of elastoplastic evolution problems is even today a challenge in the core of
computational mechanics. Backward Euler (bE), Crank—Nicholson (CN), or other (generalized) mid-point
rules yield time discretizations followed by a finite element space-discretization in each time step [12,20].
The second-order schemes appear less stable and not always superior to the robust implicit Euler method.
Hence, higher order methods are not frequently employed in practise. Moreover, it seems false to believe
that a mid-point rule generates results which are always superior to, or more accurate than, those of a bE
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scheme. The lack of higher order regularity [17,18] is only partly responsible for this. We refer, e.g., to [2]
for a counter example where one time step of the first-order scheme is exact and the CN scheme is not. Our
interpretation is that the implicit Euler scheme has additional exactness properties which make it favorable
in some examples.

A hierarchy of time discretizations is desirable, e.g., to access the time discretization and so steer the
time-step size within time adaptive algorithms. In this paper we propose discontinuous Galerkin schemes
(abbreviated dG) of order 0,1,2,3,... and compare them with difference schemes for time discretization.
The Fig. 1 displays a stress component ¢;; at a point in the time interval 0 <7< 1 computed with the
implicit or bE scheme, the CN scheme, and the discontinuous Galerkin schemes dG(0) and dG(1) for an
example discussed in Section 6. Therein, one observes oscillations for CN after five time steps when the
material behavior becomes inelastic. The approximations from dG(0) are drawn as horizontal line seg-
ments, those of dG(1) as piecewise affine segment. The curve is non-monotone and one might speculate
whether bE gives the best result. Although the exact solution is unknown to us, bE appears more accurate
then CN, while dG(1) seems superior to dG(0). We conjecture that the jumps of dG(1) are a proper in-
dicator for smaller time steps. Discontinuous Galerkin methods hence are very desirable for adaptive
multilevel error assessments. The main difficulty in their design is the correct interpretation of a time deri-
vative of a non-smooth function or even a discontinuous function. This is much more involved than for
time evolution equations [19,21].

The aim of this paper is to design dG(k) time discretizations for elastoplastic evolution problems and
prove that the methods dG(0) and dG(1) are feasible. We derive numerical algorithms and establish some
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Fig. 1. History of discrete stress component ay;(10.2729,0.1125,¢) at a point A’ as a function of time in the time interval [0, 1].
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numerical comparisons. A forthcoming paper [3] will explore the convergence behavior of the schemes from
a theoretical and experimental point of view.

The rest of the paper is organized as follows. The strong and weak evolution problem are stated for a
model in elastoplasticity in its primal and dual formulation in Section 2. The time discretization by gen-
eralized mid-point rules is explained in Section 3. The new discontinuous Galerkin time-discretization
scheme is derived in Section 4 with emphasis on distributional time derivatives of discontinuous functions.
The discrete conditions within each time step are not easily resolved and so Section 5 is concerned with
solution algorithms for the implementation. Two quantitative examples are presented in Section 6 for a
validation and illustration of the new schemes.

2. Primal and dual formulation

This section is devoted to the strong form of a model example in elastoplasticity with hardening and the
weak primal and dual form [12]. The generalized stress and generalized plastic strains are given as

2= (0,7) and P=(p,<),

respectively. The stress variable ¢ and the total (linear Green) strain,
g(u) :=sym Du = (u;; +uc;)/2 jk=1,2,...,d,

are linked with the irreversible plastic strain p through an additive split
eu)=Clo+p

of small strain plasticity. The fourth-order elasticity tensor C acts as

Cq = itr(q)1 +2ug for all ¢ € R¥?

sym

with trace tr(q) :=qi1 + - + qa, the d X d unit matrix 1, and the Lamé constants A, u > 0. The dis-
placement field u is supposed to satisfy Dirichlet boundary conditions in the form

u=up onlp

for a fixed closed part I'p of 0Q2 = I' of positive d — 1 dimensional (surface) measure. Equilibrium reads in
local form

c=0¢' and dive+f=0 inQ
plus Neumann boundary conditions
on—=g¢g OHFNI:F\FD

on the remaining part of the boundary.
The internal energy assumes the form

F(e,&):=1/2(e:Ce+ ¢ -HE)

for the fourth-order elasticity tensor C and a symmetric and positive definite hardening tensor H. Internal
(hardening) variables & are written (symbolically) as m dimensional vectors (e.g., the m components of a
symmetric d x d tensor for kinematic hardening or scalar, m = 1, for linear isotropic hardening). Hence, &,
x € R™ and

[I_[l 6 Rmxm

sym
is identified with a symmetric and positive definite m x m matrix. Then &(u) = e + p and
6 =0F(e,£)/0e =Ce and y = —0F(e,&)/0¢ = —HE.
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The Prandtl-ReuB, flow rule reads (p denotes the time derivative of p)

PEN(E):={Q R x R" : VT € K,Q% (T — X) <0},

sym

where the set of admissible generalized stresses K ¢ R?*? x R™ is determined by the yield function (e.g., the

sym
von-Mises yield function) @ : RY x R” — R via

K :={T € R” x R": &(T) < 0}.

sym

Throughout this paper, we distinguish between the scalar products -, :, %, defined for vectors u, v, d X d
matrices p, ¢, and generalized stresses or strains P, Q by u-v =wujvy + -+ ugvg, p: q := Z‘Zkzlp_,«kq_,-k, and
P*kQ=(p,)*(q,21)=p:q+< 1.

Then, given data up, f, and g as functions in time [0, 7] and space, given consistent homogeneous initial
conditions (i.e., up = 0 = f = g for t = 0) the elastoplastic time evolution determines u, g, y, p and ¢ as
functions on [0, T] x Q with

o=0"=C(e(u) —p), dive+/=0, (p,&)€Nk(o,z) in[0,T]xQ
and the boundary conditions
u=upon[0,7]xI'p and on=gon [0,7] x I'y.

Following [6,12] the primal and dual formulation differ in the treatment of the elastoplastic evolution law.
Convex analysis [10,22] reveals that the above formulation allows an equivalent reformulation via

P € N¢(X) <= X € dsuppg(P).
The first inclusion is defined above and, given K via a yield function @, reads

®(2)<0 and forall 7 € R x R” with &(T) <0, there holds P% (T — £) <0.

sym
The second inclusion involves the support function
suppg(Q) :=supQO* T = sup O*T
Tek

B(T)<0
and its subdifferential dsuppy, e.g.,
X € Osuppg (P) <= X(Q — P) <suppy(Q) — suppy(P) for all O € R4 x R™,

sym

The corresponding weak formulations are derived by a principle of virtual displacements or by testing with
a test function. The two resulting variational inequalities are summarized below; we refer to [4,12] for
further details.

Primal formulation: Seek (u,p, &) :[0,T] — RY x Rfyxnf x R™ with homogeneous initial values and, for
almost every time ¢ € (0, T) there holds

/Q Cle(u(t)) — p(t)) = (e(v) — ple) + g) dx — / &) H( — &) d
< / 7(6) - vdx + / g()-vds + / supp (g, {) dx — / suppy (p(1), &(1)) dx

I'p

for all ve HL(Q):={we H'(Q)':w=0on I'p} and all (q,{) € L*(; R{w x R") plus the Dirichlet
boundary condition u(t) = up(¢) on I'p.



J. Alberty, C. Carstensen | Comput. Methods Appl. Mech. Engrg. 191 (2002) 4949-4968 4953

The test function spaces are based on standard Lebesgue and Sobolev spaces, respectively,
L}(Q) = {v : Q — R : v measurable with/ o] dx < oo},
Q

HY(Q) == {ve[}(Q):Vj=1,....d,0v/dx; € [}(Q)}

and powers thereof (i.e., all components belong to the respective space); 0v/0x; is a weak derivative [9,22].
Dual formulation: Seek (u,0,y) : [0,T] x Q — R? x Rfyf]f x R™ with homogeneous initial values and, for
almost every time ¢ € (0, T), there holds

/a(t) ce(v)dx = /f(t) : vder/ g(t) - vds
Q Q Iy
for all v € H}(Q) and ®(a(¢), x(¢)) <0 and, for all (z,¥) € L*(2; RV x R™) with @(t, ) <0 there holds

/Q(S(it(f)—C*Id(t))) 1 (T—U(t))dx—/QJ‘((I)*H’I(IP—X(I))dX<0

plus the Dirichlet boundary condition u(¢) = up on I'p.

Remark 2.1. Dual and primal formulation are, on the continuous level, equivalent [4,12]. The role of the
time derivative as well as the choice of the (main) variables are different.

3. Discretization

This section is devoted to generalized mid-point time discretization and finite element space discreti-
zation of the primal and dual formulation of the elastoplastic model problem. Within the framework of
Section 2 we describe a general-time difference scheme that includes the bE and the CN scheme for ® =1
and © = 1/2, respectively.

The time interval (0, 7] is partitioned in L subintervals /; = (¢,_;,;] (open at the left and closed at the
right), j=1,..., L, according to

h=0<ti<h<---<t; =T, f:{ll,lz,...,IL}.

Given discrete data xg,x,...,x; the associated piecewise affine and globally continuous interpolant % is
given by

)NC(t) = (lj — t)/ijjfl + (t — tjfl)/ijj' for l‘j,1 < tétj = tj,1 +kj

We write ¥ € 4! (S X) for .7 piecewise affine and globally continuous X-valued functions. Notice that x has
a derivative on [;, namely ¥(¢) = (x; — x;_1) /k; for t € I;. (Here, we follow the convention that X(¢#;) equals its
left-sided time derivative.) The idea of finite difference schemes (in time) is to replace derivatives, e.g.,

(b(0), (1)) or (i(1), (1), 7()), by the discrete time derivatives, e.g., ((p(1,) — p(t;-1)) /s, (E(5) — E(t;-1))/)
or ((u(t;)) —u(tiz1)) /k;, (a(t;) — a(t;-1))) ks ((x(t;) — x(ti-1))/k;), and replace the evaluation at time 7 by the
evaluation at a mid-point ¢;_; + Ok; for some @, 0 < @ < 1. Before we state the resulting identities for the
primal and dual formulation, we will specify the space discretization.

The domain Q is partitioned into triangles, parallelograms for 2D and tetrahedra for 3D. The resulting
triangulation 7 is supposed to be regular in the sense of Ciarlet [5,8]. For each element T, P,(T) denotes the
algebraic polynomials on 7 of total degree < k if 7T'is a triangle or tetrahedron or of partial degree <kif T
is a parallelogram. Then, the required finite element function spaces read
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SUNT) ={v e L (Q):VT € T,v|; € P(T)},
INT) = (LT nC@),

Sp(7) = Hp (NS (T),
L(7) = {(p.&) € (&R x R") : pp, & € L°(7)} = LT3 RG) x LT3 R").

The finite element approximation is denoted by a subindex /4 (which is neglected for its continuous
counterpart) although the underlying discretization is based on a partition .# in time and  in space. The
substitution of the continuous functions by their discrete approximations in the finite difference scheme
leads to the following two discrete generalized mid-point difference schemes. Set w0, pro, <10, G40, X0 €qual
to zero.

O-discrete-primal formulation: Given (ujj_1,pp;-1,¢5;-1) and j=1,2,... L —1, seek u; € upy,;+
So(T) and (puj, &y) € L(T) with

/QC(S(uh,fH@) = Puj-1+0) : ((vn) = (Pay — Prj—1) /k; + qn) dx
- /Q hjrro - H(G — (& — Enjor) k) dx
< /Qf(tjfbr@) 'UhdeF/F g(ffw@)'UhdSJF/QSUPPK(fImCh)dx
= [ SupDe(s = prs-1) s (= Enge0) )
for all v, € #,(Q) and all (g,,{,) € L(F); here, uy,; 110,110, ¢hj-1+0 abbreviate

(1 =O)upj1 + Ouyy, (1 =0O)pyjo1+Opyy, (1 =0)E,,1+ 6O,

Le., Uy(ti-110), Dp(ti-110), f(tj_1+@), respectively.

O-discrete dual formulation: Given (w1, 051, ;1) and j = 1,2,...,L — 1, seek uy; € up ; + 5”]13(9”)
and (0,4, 15,;) € L(7") with

/Gh.j—H@ te(up) dx = /f(f./—1+9)'vhdx+/ g(ti-140) - vads
Q I'n
for all v, € ¥},(7) and D(01, 1) <0 and, for all (t4,,) € L(F) with ®(t4,,) <0 there holds
/(8((“111 wj-1)/k;) = C " (0hy = 0ny-1)/K) = (= Ohj1:0) dx
Q

- / (tny = 2ny)/ - H (W = 4jo110) dx <0
Q
Again, up; 110, Onj-110, Li-1+0 abbreviates

(1= 0O)upj1 + Oupy, (1= O)op; 1+ Oay;, (1= 0) ;-1 + Oy
ie., #p(ti-1+0), G4(tic140), 7(ti—1+0), respectively.

Remark 3.1. Recall that the most prominent versions are the Crank—Nicholson time discretization (CN for
short) for ® = 1/2 and backward Euler scheme (abbreviated bE) for @ = 1 [12,20].
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Remark 3.2. The above described numerical scheme is simplified in that the time-evaluation point ¢;_;.¢ is
described by one global parameter and the finite element spaces are fixed in each time step. The more
general situation for flexible time steps and different @ for different time steps can be easily extrapolated
from the given descriptions. The presentation of the @-discrete finite difference scheme suffices to model the
numerical examples of Section 6.

Remark 3.3. The implementation and convergence analysis of the @-discrete finite difference schemes
may be found in [2,12-15,20]; particular attention to the mesh-design within one time step is paid in
[4,6,7,11,16].

4. Discontinuous Galerkin time discretization

This section is devoted to the motivation and design of a new class of discontinuous Galerkin time
discretizations (abbreviated dG and dG(k) for the kth-order dG scheme) of elastoplastic evolution prob-
lems. The point of departure is the concept of a distributional derivative of discontinuous .#-piecewise
smooth functions.

Example 4.1 (distributional derivative of Heaviside function). A well-known result in the theory of distri-
butions ' reads

H =6in%

and means: For any ¢ € Z(R), i.e., ¢ is ¥ and has compact support in R, there holds

_AH@W@m:¢@:w&@

for the Heaviside function H(¢) := 0 for t <0 and H(¢) = 1 for t > 0 and Dirac’s delta distribution ¢ (which
acts by taking the value of the test function at zero). The proof is by integration by parts (or fundamental
theorem of calculus) on a large interval (—¢, +¢) such that ¢ vanishes outside (—¢,+¢). Then,

¢
/H - [ 001 =—0(0) + 9(0) = 9(0)
0
(since @(¢) = 0 for sufficient large /).

Example 4.2 (distributional derivative of .#-piecewise smooth functions). Let .# denote the partition of the
time domain (0, 7] introduced in the previous section. Let u € ¥'(.#) denote the set of all functions
u € L*(R) with uf, € %'[t;1, ;] and constants U oo = u(07) and u| ;) := u(T") outside (0, T]. For such
u, the one-sided limits exists,

lim u(z) =: u(tjc),
t—»tji

ie., hmHt+ u(t) = limy, 5, u(t) and lim,ﬂt; u(t) = limy5,, u(t) and Iy := (—00,0], I, := (T, 00), and we
may define the j jumps

], ;== u(t]) —u(t;) forj=0,1,2,...,L
Finally, since u|, , i %' there exists u, := u’' on each (¢, ;,¢;). The composition u, is the .# piecewise time

derivative of u, ur| p=u |t ., for j=0,1,... L, which vanishes outside (0,7). Then, the distributional
derivative # is defined by
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/it(t)v(t) dr = —/u(t)i;(t) dr for all v € 2(R)

and the point is that the right-hand side is well-understood since © is smooth. In abstract terms, the dis-
tributional derivative # is the sum of the piecewise contribution u, and, owing to the preceding example, the
jump on each ¢;, namely,

L

i=u+Y [ud, inZ(R).

j=0

Here [u], is a scalar factor and ¢, is the delta distribution supported at ¢, i.e., (8,,v) = v(t;). This means
that, for any v € Z(R),

/R()()dt / dt+z

The proof follows by the linearity of the distributional derivative and the jump identity in the preceding
example. A direct proof via an integration by parts is left to the reader.

In the example, jumps and one-sided limits are written for real-valued functions; the notation is adopted
for Lebesgue- and Sobolev-functions as well.

The two preliminary examples describe the action of i for u € ¢'(.#) onto continuous test functions. A
dG scheme allows discontinuous test functions for which we establish a proper meaning of #. The starting
point focuses on one fixed interval /;. Given v € %'(.#) with v = 0 outside I; we define a globally continuous
and piecewise %' function v, by vf( ) := 7(¢)o(¢) with

(t—ti_1)/e+1 fort_ —e<t<t,

() 1 fort/1<t<tj—a,
Le\l) = (t;—1)/e for t; — e <t <4,
0 elsewhere.
Remark 4.1. Here we suppose that v, € %'[t;_1,1;] can be extended to the left onto v € €'[t,- ,t;]. This

is no restriction for the polynomial fest function v in the discrete scheme. The final result w111 be inde-
pendent of this %' extension.

The evaluation of [}, i(t)v,(f)dt for u € '(.#) and the test function v, follows with the above formula
and reads

/Rit(t)vg(t)dt: /_ ()0, (6) A+ [u]v,(ty ).

Here we used v,(¢;) = 0 and the continuity of v, at #;_,. The right-hand side is analyzed in the limit ¢ — 0.
Since u.v, is bounded, the first term yields

lj

lin’ol u (v, (¢)dt = /ur(t)v(t) dr.
0 Sy I
Since y/(¢,-1) = 1, the second term equals

[”]b,‘flvé:(tjfl) = [u]j—lv(tjtl)

(the value v(# ) is zero and we extended v onto (#;; — ¢,1;) around #_; with this value v(z/))).
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Up to this point we were concerned with one time interval /; and obtained

lim i u(t)v(r)de = /1 u ()o(t) de + [u] v.(¢] ).

e—0

The same procedure for a general v € %' (.#) with the test function v/ := (extension of v| ;%)) and their sum
v, results into

lim Ru(ivﬁ) dr = /OTuT(t)v(t)dZJr ZL: [u],_o(t] ).

The right-hand side makes sense for u, v € ¥'(.#) and shall be employed to replace the derivative i eval-
uated for the test function v.

Remark 4.2. Since, for a continuous test function v € ¢'(R) C €'(.#), the last right-hand side coincides
with the distributional derivative # tested with v, the last expression is one generalization of the distribu-

tional time derivative of u.

Remark 4.3. Given u € ¢'(.#), there are various different ways of generalizations of the expression

Jgu(t)v(r)dt for discontinuous v. For example, the choices
(t—t;0)/e for g <1<t +e, (t=t0)/e  for 41 <i<t+e,
o 1 for ¢, +e<t<t; —, or 7(t) = 1 for t;_ | +e<t<ty,
(t;—1t))e  fort;—e<t<y, (tj H)fe+1 fort;<t<t +e,
0 elsewhere elsewhere

lead to different formulae. The first case misses the jump contributions and the second (with v extended
continuously to (#,_1,¢ + ¢)) yields a forward formula Wlth the jumps [u];v(¢;). The objection against the
first choice of y/ is that it yields no generalization of [, i(r)v(¢) dt for contlnuous v. The objection against the
second choice is simply that is does not lead to a single-step method in the end. (This latter outcome will
become transparent in the next section.)

We are now in the position to state the dG(k) methods, £ =0,1,2,..., where the discrete solution and
the test function belong to #*(.7; ¥ (7)! x (7)),

PHNIX) = {v:[O,T] — X VI, 6],1)|,j Eﬂk(lj;X)},
P21 X) 7{1; I, —X: Hvo,vl,...,vkEXVtGIj,v(t):vo+vlt+-~~+vktk}.

dG(k)-discrete dual formulation: Seek (u;,X),) € 3"(% NIV x L)), 24 = (on, 1), With (uy, 04,
1) (t) = 0 for £ <0, uy(t) = up4(¢t) on I'p and P (o, x;,)(¢) <0 for 0 <t < T; furthermore there holds

/ /oh e(vy)dxde = / /f v,,dxdt—&-/ / g - v,dsdt

for all v, € Z*(#; L(7)) and, for all T; := (t;,,) € L*(F;1L(T)) with &(t;,,)(¢) <O for 0<¢< T,
there holds

//P,” (T, — =) dxdt+Z/P;,jl — Z)(t),) dx <0,

where P, := (e(uy) — C 'ay, —H'y,) € 275 L(T)). .
The dG(k) discrete dual formulation is straight-forward in that a time derivative P, % (7}, — X) is sub-
stituted by the aforementioned formula. The corresponding situation is rather more involved for the primal



4958 J. Alberty, C. Carstensen | Comput. Methods Appl. Mech. Engrg. 191 (2002) 4949-4968

formulation where, in addition, the term supp, (P,) requires a discrete formulation. The difficulty is that the
function suppy (think of it as a modulus function) does not commute with time derivatives and is, in
general, not even differentiable.

Fortunately, suppy(P,) is not an arbitrary function, but related to the set of admissible generalized
stresses K via a dual pairing. We employ

suppg (P,) = supR % P,

ReK

in the time-domain integral

T T
/ /suppK(Ph)dxdt:/ /supR*Phdxdt. (4.1
0 Q 0 Q Rek

In the discrete setting, we replace the last integral by

sup / /Rh * P, dxds (4.2)

RyeL* (s (T

and evaluate the aforementioned formula P, = P,, + Z = ,+ [Ph] = for R,. This motivates the interpre-
tation of fo Jo suppg (P) dxdt in the discretization as

sup / /Rh*PthxdtJrZ/Rh _dx
ReLH (T

and results in the following discrete scheme.
dG(k)-discrete-primal ~ formulation:  Seek  (uy,P)) € L5, ST ) x L(T)), Pi= (pu, &), with
(n, pry €4) (1) = 0 for £ <0, uy(f) = upy(t) on I'p for 0< < T, and

// &(un) — pn) + ((vs) = e + gn) dxds — //th — &po)dxds

_Z/C uh ph /l @hlldx'f'z:/éh,l Ch,1
< //f-v,,dxdt—f—/ g-v,dsdr + sup //Rh (qn, Cy) dxde
0JQ I'n ReL¥ (T (T
L
— sup //Rh*P;”dde Z/ [Ph] dx
RyeLX (7T =

for all (vs, (q1,(y)) € gk(f;,?{)(f) x L(7)).
Remark 4.4. On the continuous level one can prove
T T
sup / /R(t)*Q(t)dxdt = / ( sup /R*Q ) dt = / / ( sup R x Q(x,t)) dxds.
oR)<0 Jo Ja 0 ®(R) <0 O(R)<0
This justifies the replacement of (4.1) by (4.2).

The two discrete dG schemes are written in integral form and will be recast into single-step methods in
the subsequent section.
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Remark 4.5. The derivation of the two dG schemes appears heuristic. At some points, various different
choices would have resulted in other methods. The mathematical justification of the schemes introduced in
this section is two-fold. Firstly, this Part I will show that the methods are feasible, i.e., they lead to single-
step methods and there are algorithms to solve the discrete problems. Moreover, the schemes lead to
reasonable results in two applications in Section 6. Secondly, the forthcoming paper [3] will provide an a
priori error analysis with asymptotic convergence rates. Moreover, the theoretical results are verified ex-
perimentally in a test example. Then, after the analysis is established, the fact that the schemes are practical
and convergent, finally justifies our particular choices made in this section.

5. Numerical algorithms

This section is devoted to single-step descriptions of the discrete dG(k) primal and dual formulation for
k =0 and k£ = 1. The situation for £ = 0 is very similar to the bE scheme.

dG(0) single-step primal formulation: Given (uy,;_1, ppj-1,¢p-1) and j = 1,2,.. ., L — 1, seek u;; € up; +
Fo(T) and (py;, &) € L(F) with

/QC(SWW) — Puy) : (e(on) = (Pnj — Prj—1) + qn) dx — /Q Sy MG = (&hy — &yr)) dx

tj ]
< / / 7(6) - vydrdr + / / g(t) - vydsdi + / suppg (s, Ly) dx
tig JQ tio1 JIN Q

- / SuPPK(Ph,j — Dhj-1, fh,j - fh.j—l)dx
Q

for all v, € #,(2) and all (g,,{,) € L(T).
dG(0) single-step dual formulation: Given (w1, 04,1, (5,;-1) and j=1,2,..., L — 1, seek up; € upy,; +
So(T) and (o4, 1,;) € L(T) with

L 4
kj/O’h‘/IEI(Uh)dx:/ /f(t)vhdxdt+/ / g(t)-vhdsdt
Q tip JQ ti1 JIN

for all v, € (7)) and (04, 15;) <0 and, for all (t4,¥,) € L(J) with ®(t4,,) <0, there holds

/ (e(uny — upj1) — Cil(oh,j —0nj1)) i (T — opy)dx — / (Xh«,j - Xh,jfl) : H_l(‘//h - th)dxgo'
o Q

Theorem 5.1. The discrete problems dG(0) for the single-step primal and dual formulation have unique dis-
crete solutions. The resulting piecewise constant approximation

(un, Pr) € L°(F ST ) x L(T))
and (u;, Z) € LI SN(T) x L(T)) solves the dG(0)-discrete-primal and dual formulation, respectively.

Proof. Since the dG(0) single-step versions can be regarded as bE scheme with a modified right-hand side
(fand g), there exist solutions for the same reasons that guarantee the feasibility of the bE scheme. Then, it
is not hard to see that the resulting respective .# piecewise constant vectors solve the (total-step) discrete
formulations. (Recall for the primal problem that supp, is homogeneous of degree 1 and so may be
multiplied with the time-step k; followed by a change of test-functions.) O
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More notation is required to present more details on dG(1). In the time step for I; = (z4,#), we are given
ug, Py, Xy as the left-sided limits at ¢, and seek an affine function (uy, B, 2;) in time,

(M,P,Z)(t) = (MA,PA7ZA) + (t*tA)/k(uB *L{A,PB *PA7ZB *ZA) for ty < t<tp.

Let (¢,...,¢,) be a (standard) nodal basis of #L(7)? C H}(Q) and define the discrete right-hand sides
F = (F',F?) € R" by

JrJ

Rl / ”1 [ =t ko, p(iarar+ / ”1 [ =k, -s0 asar
R = / [ =0 /ko, -y v+ / [ =/k0,- sy dsar

for all £ =1,...,n. The scalar product in time is described by the fourth-order tensor M and the corre-
sponding bilinear form

(4,B)M(C,D) :=k/6(4:B+2B:C+24:D+B:D) for4,B C,Dc R

sym ?

(4,B)M(C,D) :=k/6(A% B +2B%* C +24% D+ B*D) for 4,B,C,D € RY x R".

sym

Then, the time step in the dG(k)-discrete dual formulation reads, in the above notation as follows.
One time step in dG(1)-dual formulation: Seek u,, uz € &' (f)d with uy = up 4(t4), ugp = up,(t3) on I'p
and X,, X3 € L(7) with

P(2,)<0, P(2p)<0, 2y=1(04,1%4), 2= (08 13)

such that

/Q<oA,oB>M<a<(p_,->,e<<pk>>dx=<F,-1+F,3> Gk=1,...n)

and, for each T € 7 and all Ty = (t4,¥,), Ts = (ts,¥) € [R{fyxn‘f x R™ with @&(T,) <0, &(T3) <0 and for

Py :=(&(uo) — C oo, —H " 1)l 7> Pa = (6(us) = C 'aa —H ™' 7)|7> Ps := (6(up) — C a5, —H " 1] € REH %
R™, there holds

1/2(Ps — Py) % (Ty — 4+ Ts — Zp) + (Ps — Ry) % (Ty — 24) <0.

The time integration of the supp term is slightly more involved and discussed below.
One time step in dG(1) primal formulation: Seek uy, uzy € &' (F)d with uy = up,(t4), up = upx(tg) on I'p
and Py = (p4, &y), Pz = (ps, &p) € L(T) such that

o4 = (Ce(uy) — pa), o5 := (Ce(ug) — ps),
Za= (ou,—HENl,  Za = (05, ~HE)|, € R x R”

sym

satisfy
[ GraMieto) oo ds = (7 +F) Gk =1.....n)

and, for each 7 € .7 and all Q,, 0z € R¢ x R™,

(24, 25)M(Qu, O8) — 1/2(24 + Z5) K (Pg — Py) — 24Kk (Py — )
< sup (Q4, Q)M(R4,Rg) — sup (1/2(Py — Py) % (R4 + Rp) + (Py — Py) X R,).

B(Ry) <0 (R <0
®(Rg)<0 ?(Rp) <O
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Example 5.1 (linear kinematic hardening). The von-Mises yield function

d: R« R" - R

sym

is written for R” = R (i.e., the m = d(d + 1)/2 entries of R" are ordered canonically to define a sym-

sym

metric d X d matrix),

®(0, 1) = |dev(o + 1)| = v/2/30,.

Then
suppy (p, £) = \/ /30ylp| if tr(p) =0 and p = ¢,
else.
Furthermore, for any S, = (p4, 4), Sz = (ps, &5) € [R{‘:yxnf x R™,
V2/3(|pal + Ipsl) if tr(pa) = tr(pp) =0,
sup (Ry* Sy + Rp*Sp) = and py = &4, pp = &5,
D(Ry)<0
B(Rp) <0 +00 else.

This enables a direct evaluation of the inequality in one time step in the primal formulation.

In order to simplify the variational inequality further, observe that M(Q,, Q) is an arbitrary test
functional (i.e., the linear operator .# behind the bilinear form associated with M is bijective). Hence
M (Qy4, Oz) may be substituted by (Q4, Op). This and direct calculations show

*(Q4 — (Ps+Py)/2+ Py) + 2k (Qp — (Ps — P4)/2)
< suppx(Qu) — suppx ((Ps + P4)/2 — Py) + suppg(Op) — suppx ((Ps — P4)/2)

for all Q4, Op € Rfyﬁ’ x R™. This system is equivalent to two separate variational inequalities which, in

terms of subgradients in convex analysis, read
2, € Osuppg((Py + P3)/2 — Py) and ZXp € Osuppg((Ps — Py)/2).

Example 5.2 (linear kinematic hardening). In continuation of Example 5.1, we assume that H is A times the
identity and remark that the inclusions for

2y = (Cle(ua) = pa), —HE4) and - Zp = (C(e(us) — ps), —HEp).

lead to explicit representations. Indeed, the conditions on py, pg, &4, &5 € [R{fyf;’ read

Pa=2Ss ps=2Cp tr(pa) = tr(pp) =0,

devCe(us) — (2u+ H)ps € /2/30,0] - |((ps + 1) /2 — po),

devCe(us) — (2u+ H)ps € \/2/35,0| - |((ps — p4)/2).
The subgradient 9| - | of the modulus function in Rfyfj reads 0| - |(0) = {q € Rfyff lg/ <1} and 9] - |(¢) =
{a/lal} for ¢ € RGN\ {0} ie.,

q€9-|(p) = (p="0and |¢|<1) or (p# 0 and g = p/|p|).

The example illustrates, that, given u, and ug, the variational inequalities can be solved elementwise very
directly for particular hardening laws. In the example we failed to give explicit formulae for p, and pp as a
function of &(uy), £(up), and py. There is, however, the following algorithm to compute them.




4962 J. Alberty, C. Carstensen | Comput. Methods Appl. Mech. Engrg. 191 (2002) 4949-4968

Algorithm 5.1 (computing (pg,p4) in terms of €(u4), €(ug), po). In the notation of the example we are given
material parameters C, H > 0, g, > 0 and &(uy), &(us), po.

(a) Set y:=+/2/30,, 41 :=devCe(uz) — 2u+ H)po, A> := devCe(us) — 2u+ H)po, and set a := |4:|/7.
(b) If |4;] = |42| = 0 then set p; = 0 = u, and goto (k).
(c) If |4;] = 0 < |4,| =: P then set

w=F—2y)./B and = (B/y—B)/((B—21),+F/7)
and goto (k).
(d) If 0 < |4,| then set b := A, : A2/(p|4;]) and ¢ := |4, —
(e) If ¢ = 0 then follow exactly one of the following cases (e;)—(e4)
e If (a—1),<b—-1+(1—-a) -2 set u =(b—al—-2)/|b—a| and u, = (|b—a|l+2a)/
(|b —a| + 2a +2);
(@) If[p—1+(1—a),[-2<(a—1), <[b|—1set uy =0, u, = (|b| = 1)/|bl;
(e3) If || —=1<(a—1), <[b—1|set uy = (a—1),/a, u, =0;
() I [b—1]<(a—1), set gy = (a—b)/(a—b+2), i = (a+b—2)/(a+bh),
and goto (k).
(f) If ¢ #0 set Ju= (a—1),/a.
(g) If (ua+b)* + A< 1 set u, := 0 and goto (k).
(h) If (ma+b)’ +c* > 1 set i = (VB + 2= 1), Vb + .
(i) If (a — ,uzb)2 (,uzc) <1 set yy := 0 and goto (k)
( )+

2

(G) If (a — 1yb (uzc)2 > 1 solve
(o £0)) = b)) + e0)"] x = max o [(ate + 7)) gt + et
-+ 100 + 2509
for x in (0, 1). Here, f(x) := 1/ (ax + b)2 + ¢? and g(x) := max{0, f(x) — 1}. Set y, := x for the solution

xand p, :=g(uw)/ (1 + /().
(k) Given g, u, in [0, 1), let

Pa = (A1 + A2) iyt — Ay + pads) /(1 + pyp0) e+ H)) + po,
e = (A1 — A2y iy + Ay + pA2) /(1 + 1y 1) 2+ H)) + po-

Theorem 5.2. Given ¢(uy), e(ug), po in Example 5.2, the Algorithm 5.1 computes p4 and pg. Then, X, and Xp
which are the unique solutions of

2, € Osuppg((Py+ P3)/2 — Py) and ZXp € Osuppg((Pz — Py)/2).

Proof. The proof consists of laborious but essentially direct analytical considerations on the solution u; and
t of

,U1\Al - ﬂ2A2| = (‘AI - H2A2| - V(l + Hlﬂz))+7
ol Ay + As| = (A + Ao — y(1 4+ )., -

We mention that 0 <y, u, < 1 is always guaranteed and refer to [1] for further details. [

The two time-step formulations for dG(1) have unique solutions. The computation of which employs an
alternating algorithm.
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Algorithm 5.2 (computing the discrete solution). In the notation of Example 5.1 and of the dG(1)-Primal
Formulation, initialize (p,, ps) := (po,po) on each T € 7.

(a) Given (p4, pp) solve the linear system of equations
| (st CatumMla(e). o) s = (5 + F2) + [ (oM (e, al0))

for jk =1,...,n and (w4, up) € (upu(ts),upp(ts)) + SH(7)°.
(b) Given (uy,up) and T € F compute (p4|,,psly) from &(uy)|;, e(us)|s, pol; with Algorithm 5.1.
(c) Check convergence and terminate with (d) or continue with (a).
(d) Output is Uy, Up, PA, PB and ZA,ZB.

Remark 5.1 (computing the discrete solution for dual formulation). An Uzawa-type algorithm is suggested
for the dG(1) single-step dual formulation where Step (b) of Algorithm 5.2 is replaced by a regularized
version of the equilibrium equations, namely, for j=1,...,n,

/Q (e1ta), () M(e(@,), e(py)) dx = (! + F2) — / (0.4, 05)M(e(@,), e(y)) dx

Q
is solved for (u4,up) and (o4, 03) is then computed elementwise by direct solutions of the variational in-
equalities in the particular situation.

Remark 5.2 (convergence of Algorithm 5.2). A convergence proof of Algorithm 5.2 might be possible along
the arguments from [6]. In the numerical examples of Section 6 we obtained global convergence with up to a
few hundred iterations even for the finest meshes to achieve a residual vector smaller than 10~3. More
efficient multilevel or domain decomposition techniques are desirable in the future.

Remark 5.3 (dG(k) for k = 2). The main obstacle for dG(k) for k > 2 consists in the side restriction
P(2(t)) <Oforallt € I;. If k< 1, this is a simple consequence of ¢(2,) <0, ¢(25) <0, and the convexity of
®. For k > 2 this is no longer as simple as this.

6. Numerical examples

This section is devoted to two applications, Cook’s membrane and a perforated tension strip. The el-
astoplastic material is adopted from Example 5.1 and Algorithm 5.2 is used for the computations.

16 mm N
A
/
E=100.000 v=1}
E vE
b= A=
4mm 2(1+v) 1+v)(1-2v)
b 0y=2,2 Ho=1
(0,0) fort<0
9(48,y,t) = ¢ (0,t) forte€[0,1]

(0,1) fort>1

48 mm

Fig. 2. System and initial mesh 7, for Cook’s membrane.
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Fig. 3. Calculated deformed configuration for #=1/2 and ¢ =1 in Example 6.1 with von-Mises stresses in color: (a) bE, t = 1/2;
(b) CN, 1 =1/2; (¢) dG(0), 1 = 1/2; (d) dG(1), t = 1/2; (e) bE, t = 1; (f) CN, t = 1; (g) dG(0), t = 1; (h) dG(1), r = 1.
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Fig. 4. History of discrete stress component a11(0.5000,43.9740, ¢) at a point A’ as a function of time in the time interval [0, 1].

E =206900 v»v=0,29

______________ i i _ E A= vE
F=5a+» "~ 0+na-2)
oy, =450 Hp =1

! 0,0)  fort <0,

9(z,£100,t) = { (0,450¢t) for ¢ € [0, 1],
R (0,450) for t > 1.

Fig. 5. System and initial mesh 7, in Example 6.2.

6.1. Cook membrane

The 2D elastoplastic quadrilateral body Q = conv{4,B,C,D} is defined for 4 = (0,44), B = (0,0),
C = (48,44), D = (48,60). The system, its Dirichlet boundary I'n = conv{4, B}, and its loading g(¢) in
vertical direction along conv{C, D} while g = 0 along conv{B, C} Uconv{D, 4}, is depicted in Fig. 2 to-
gether with the initial triangulation .7 and the material parameter. There is no volume force (f = 0 in Q)
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Fig. 6. Calculated deformed configuration for = 1/2 and ¢ =1 in Example 6.2 with von-Mises stresses in color: (a) bE, t = 1/2;
(b) CN, 1 =1/2; (¢) dG(0), 1 = 1/2; (d) dG(1), t = 1/2; (e) bE, t = 1; (f) CN, t = 1; (g) dG(0), t = 1; (h) dG(1), r = 1.
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and the applied surface load g(¢) is considered for a process time ¢ in the time domain (0, 1) with homo-
geneous initial and boundary conditions (up = 0).

The time discretization employed eight uniform time steps with constant time increment 0.125 with a
mesh 7 ; obtained by successive red-refinements starting with 7 from Fig. 2. (A red-refinement of a
triangle 7 is the division of 7 into four congruent sub-triangles derived from lines through the edges’ mid-
points.) Fig. 3 displays the eight numerical results obtained with bE, CN, dG(0), dG(1) for t = 1/2 and
t = 1. The displacements are magnified by a factor 20 to show the deformed configuration. The grey tones
inside display the von-Mises stress

Orer = |dev(an + 1)

The results for ¢+ = 1/2 are comparable while, for # = 1, we observe differences. The von-Mises stresses of bE
and dG(1) are comparable and similar to that of dG(0). The values for CN appear different. To explore the
reasons for this behavior and to illustrate the respective time approximation properties of the four schemes,
Fig. 4 displays the discrete stress component (a,),; at the point A’ = (0.5,43.974), center of inertia of a finite
element close to 4, as a function of time ¢ for 0 <¢ < 1. The material behavior near 4 seems to be elastic for
0 <1< 0.4. Since the plastic behavior starts near A4, we deduce that the overall material behavior is rather
elastic for # = 1/2 which explains the similar von-Mises stress fields computed by all four schemes for
¢t = 1/2. In contrast, for ¢ = 1, we have large parts of the body in the plastic state and the values for o, near
A are almost constant. While bE, dG(0), dG(1) are almost constant, the CN approximations oscillate
around the constant value. As mean value is met at the mid-point of the time interval Is, we have a per-
turbation for r = 7' = 1. Our interpretation is that Fig. 4 shows oscillations for # = 1 in the CN approxi-
mation which vanish in time and vanish in time averages.

6.2. Perforated tension strip

The second example corresponds to a benchmark [11] shown in Fig. 5. A squared domain (100, —1—100)2
without a centered circular hole of radius 10, i.e., @ = (—100,+100)> \ B(0, 10), is pulled at the upper and
lower ends by an applied surface load g; f = 0. Because of symmetry, only one quarter of the domain is
discretized with an initial mesh 7 shown in Fig. 5. The time discretization in 8 uniform time steps
with £ = 1/8 is as in the previous example, while the finite element mesh 74 with N = 8048 degrees of
freedom is generated by four successive red-refinements of 7. The eight approximations for ¢ =1/2
and ¢t = 1 computed by bE, CN, dG(0), dG(1) are shown in Fig. 6 in the same way as in the previous
example. Again we observe that the von-Mises stress approximations of bE and dG(k) are similar while
those from CN appear different. The time history of the (11) stress component is plotted in Fig. 1 which
was discussed in the introduction. The oscillations for CN are even stronger as in the Cook’s membrane
problem.

6.3. Conclusions

The numerical examples clearly show that Algorithm 5.2 is feasible and dG(0) and dG(1) lead to rea-
sonable finite element approximations. In contrast to the CN scheme, the higher order dG(1) does not show
oscillations. This is important if one wants a hierarchy of schemes for the use of multilevel refinement
indicators. The examples might suggest that dG(1) is the best amongst all four bE, CN, dG(0), and dG(1)
schemes in the two examples. All four time discretizations appear to converge in time. This is proven in
[2,12,14] in time and in [4,7,12] in space for bE and CN. A corresponding analysis with a corresponding
academic numerical example for dG(0) and dG(1) will be found in [3].
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