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Abstract A unified and robust mathematical model for compressible and incom-
pressible linear elasticity can be obtained by rephrasing the Herrmann formu-
lation within the Hellinger-Reissner principle. This quasi-optimally converging
extension of PEERS (Plane Elasticity Element with Reduced Symmetry) is called
Dual-Mixed Hybrid formulation (DMH). Explicit residual-based a posteriori error
estimates for DMH are introduced and are mathematically shown to be locking-
free, reliable, and efficient. The estimator serves as a refinement indicator in an
adaptive algorithm for effective automatic mesh generation. Numerical evidence
supports that the adaptive scheme leads to optimal convergence for Lamé and
Stokes benchmark problems with singularities.

Mathematics Subject Classification (2000) 65N30 · 65N15 · 74B05

1 Introduction and motivation

It is well known that for nearly incompressible and incompressible materials, i.e.
for a value of the Poisson ratio near or equal to 0.5, finite element computations
based on a standard displacement formulation fail due to the onset of the locking
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phenomenon (see [12] for numerical evidence). A valid alternative to locking-
affected methods is represented by dual-mixed formulations, that provide mathe-
matical models capable of treating under an unified framework both compressible
and incompressible linear elasticity problems (see [3,21]). However, the quasi-opti-
mal convergence rate of such methods can be unfavorably degraded, for example,
by the presence of singularities in the computational domain. In such an event, the
convergence performance can be improved by resorting to a robust mesh-refinining
algorithm for an efficient automatic mesh-design. A list of contributions proposing
and analyzing robust and effective adaptive finite element methods in compressible,
nearly incompressible and pure incompressible solid and fluid mechanics includes
references [4,11,12,14,13,20,28,29,5,22,23].

In the sequel, we will deal with a dual-mixed formulation obtained by rephras-
ing the Herrmann approach [25] within the Hellinger-Reissner principle. This
quasi-optimally converging extension of PEERS (Plane Elasticity Element with
Reduced Symmetry) is called Dual-Mixed Hybrid formulation (DMH) and in the
case of isotropic materials reads: Given the linear functionals G(τ) and F(v), find
(σ, u, γ, p) ∈ �gN

× U × W × Q such that

a(σ ; τ) + b(u, γ, p; τ) = G(τ) ∀ τ ∈ �0,

b(σ ; v, θ, q) + c(p; q) = F(v) ∀ (v, θ, q) ∈ U × W × Q.
(1)

Therein,�gN
(respectively,�0) denotes the Sobolev space� = H(div ; �) account-

ing for nonvanishing (respectively, vanishing) traction boundary conditions on �N ,
while U , W and Q are Lebesgue spaces over the bounded domain � ⊂ R

d with
Lipschitz boundary � = �D ∪ �N for Dirichlet and traction boundary conditions.
The bilinear forms a(·, ·), b(·, ·), and c(·, ·) are defined by

a(σ ; τ) = 1

2µ

∫
�

σ : τ dx ∀σ, τ ∈ �,

b(v, θ, q; τ) =
∫

�

v · div τ dx +
∫

�

θ : τ dx +
∫

�

�

2
q Tr τ dx

∀(v, θ, q) ∈ U × W × Q ∀τ ∈ �0,

c(p; q) =
∫

�

� p q dx ∀p, q ∈ Q,

(2)

where we set σ : τ = ∑d
i,j=1 σij τij and Tr τ = ∑d

i=1 τii . The linear forms G(τ)

and F(v) are defined by

G(τ) =
∫

�D

uD · τ n ds and F(v) = −
∫

�

f · v dx ∀τ ∈ � ∀v ∈ U.

The parameter � is a continuous function (also in the incompressible limit) of the
compressibility modulus λ of the material, while µ is the second elastic Lamé
coefficient, We refer the reader to Section 2 for the remaining details of notation.

Quasi-optimal and robust a priori error estimates for DMH were proved in [16].
Robustness here is referred to the performance of the DMH method in the sense
that, for small values of the mesh size, the error is independent of the compressibil-
ity parameter. As anticipated before, the quasi-optimal convergence rate of DMH
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can be degraded by the presence of singularities in the computational domain, this
demanding to resort to a robust mesh-refinining algorithm for an efficient automatic
mesh-design. With this aim, we introduce in this paper explicit residual-based a
posteriori error estimates for the DMH formulation. These a posteriori error esti-
mates are used in an adaptive algorithm for effective automatic mesh generation
(cf. Section 5).

For d = 2, we propose the following error estimator with volume contri-
bution ηK and edge contribution ηE : Given the computed discrete approximation
(σh, uh, ph, γh), we compute on each element K in the triangulation Th the volume
part of the refinement indicator

η2
K = h2

K

µ2 ||f + div σh||20,K + h2
K ||curl(

1

2µ
σh + �

2
phδ + γh)||20,K

+ 1

µ2 ||As σh||20,K + ||�
2
(ph + 1

2
Tr σh)||20,K .

Here and throughout the paper, As τ = τ12 − τ21 for d = 2, while ‖ · ‖0,S

denotes the L2 = H 0 norm ‖ · ‖L2(S) on a domain, face or edge S. On each edge
E ∈ Eh = E� ∪ED ∪EN , where E� denotes the set of interior edges, ED and EN the
sets of edges on the Dirichlet and Neumann boundary, respectively, we compute
the jump contribution to the refinement indicator

η2
E =




hE ||J ((
1

2µ
σh + �

2
phδ + γh)tE)||20,E if E ∈ E�,

hE‖( 1

2µ
σh + �/2 phδ + γh − ∇uD)tE‖2

0,E if E ∈ ED,

hE

µ2 ||σh nE − gN ||20,E if E ∈ EN.

The error estimator associated with the DMH formulation, then reads

�(σh; Th)
2 :=

∑
K∈Th

�2
K with �2

K := η2
K +

∑
E⊆∂K

η2
E. (3)

The reliability of the error estimator is expressed by the following result.

Theorem 1 Let Th be a regular triangulation of � and let (σh, uh, ph, γh) be
the DMH finite element approximation of the solution of problem (1). Then, there
exists a positive constant Crel independent of the mesh-size h and of the material
parameter λ ∈ [0, ∞], such that

(2µ)−1/2||σ − σh||0,� + (2µ)1/2||γ − γh||0,�

+||p − ph||0,� ≤ Crel �(σh; Th). (4)

The efficiency in a local form of the error estimator is expressed by the following
result.

Theorem 2 For each K ∈ Th, there exists a positive constant Ceff,K independent
of the mesh-size h and of the material parameter λ ∈ [0, ∞], such that

ηK ≤ Ceff,K

(‖σ − σh‖0,K + ‖p − ph‖0,K

+‖γ − γh‖0,K + hK‖f − fK‖0,K

)
. (5)
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Moreover, for each E ∈ Eh, there exists a positive constant Ceff,E independent of
the mesh-size h and of the material parameter λ ∈ [0, ∞], such that

ηE ≤ Ceff,E

(‖σ − σh‖0,ωE
+ ‖γ − γh‖0,ωE

+ ‖hE(f − fTh
)‖0,ωE

+h
1/2
E ‖gN − gN,E‖0,E∩�N

+ h
1/2
E |uD − uD,E |1,E∩�D

)
, (6)

where for the two neighbouring elements T± ∈ Th with T+ ∩ T− = E, we set
ωE = T+ ∪ T−.

Details on the aformentioned notation are given in Sects. 2 and 3. The proof of
Thm. 1 combines a unified approach from [10] with several arguments from [11,
12,14,13,7]. Efficiency holds in a local form up to higher-order terms.

The local refinement indicator �K from (3) serves in an adaptive algorithm for
effective automatic mesh generation. Numerical evidence in Section 6 supports that
the resulting DMH adaptive scheme is characterized by optimal convergence rates
when applied to the numerical solution of Lamé and Stokes benchmark problems
with singularities.

The remaining part of the paper is organized as follows. Section 2 is devoted
to the strong form of the linear elasticity problem and its related dual-mixed weak
formulation. The numerical approximation of the DMH problem is then consid-
ered, and a priori quasi-optimal error estimates are reviewed for the method, with
emphasis on their robustness with respect to the compressibility parameter. Sec-
tion 2 concludes with some details on the efficient implementation of the dual-
mixed method through the hybridization procedure; cf. [1,2,16]. A proof of the a
posteriori error estimate (4) is given in Section 3 while efficiency of �(σh; Th) is
discussed in Section 4. Section 5 illustrates the adaptive algorithm implemented
in the computer code to drive the automatic mesh generation process. Numerical
experiments on several benchmark problems illustrate in Section 6 the reliability
and the efficiency of our robust a posteriori error estimate as well as the performance
of the proposed adative refinement strategy.

2 Model problem, dual-mixed formulation, and finite element approximation

2.1 Mathematical model

Let � ⊂ R
d be the reference configuration of an elastic material with Lipschitz

boundary ∂� = �D ∪ �N , �D �= ∅, �D ∩ �N = ∅, and its outward unit normal
vector n. The linear elasticity problem reads: Given a volume force f : � → R

d ,
a displacement uD : �D → R

d , a traction gN : �N → R
d , find a displacement

u : � → R
d and a stress σ : � → Md×d

sym = {τ ∈ R
d×d : τ = τT } satisfying

−div σ = f in �,

σ = Cε(u) in �,

u = uD on �D,

σ n = gN on �N

(7)
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with strain tensor ε(v) = 1
2 (∇v + (∇v)T ) and stress tensor

σ = Cε(u) = 2µε(u) + λ Tr ε(u)δ (8)

in the isotropic case. In (8), λ, µ are the Lamé constants and δ is the d ×d identity
matrix. Plain strain or plane stress conditions can be recovered by taking in (7)
appropriate values of the coefficients λ and µ (see [26], p.83).

Korn’s inequality and Lax-Milgram lemma ensure that problem (7) admits a
unique (weak) solution (σ, u) ∈ L2(�; Md×d

sym ) × H 1(�)d . In order to construct
the DMH variational formulation of (7) we introduce two additional unknowns, p
and γ , through the relations

p = − 1

d
Tr σ and ε(u) = ∇u − γ. (9)

The variable p is a pressure parameter that allows for a straightforward dis-
crete treatment of the incompressible case (λ = +∞) and is the main novelty of
the DMH formulation with respect to the original PEERS approach [2]. Denoting
by p the hydrostatic pressure, in the case d = 3 we have that p = p, while when
d = 2, p = ((λ + µ)/(λ + 2µ/3))p in the case of plain strain conditions and
p = 3 p/2 in the case of plane stress conditions. The variable γ is the infinitesimal
rotation tensor that allows to weaken the symmetry constraint on σ .

Introducing (9) into (7), we obtain the following equivalent formulation of the
linear elasticity problem [16]: Find u : � → R

d , σ : � → Md×d , p : � → R,
and γ : � → Md×d

skew = {η ∈ Md×d : η + ηT = 0} such that

−div σ = f in �,

σ = C̃(∇u − γ ) − µ� p δ in �,

p = − 1

d
Tr σ in �,

As σ = 0 in �,
u = uD on �D,
σ n = gN on �N

(10)

where C̃ = 2µ and � = λ/(µ(λ+2µ/d)), with lim
λ→∞ � = 1/µ. In the incompress-

ible case, system (10) can be conveniently interpreted as the conservative form of
the Stokes equations in fluid dynamics

−div σ(u) = f in �,
σ = 2νε(u) − pδ in �,
div u = 0 in �,
u = uD on �D,
σ(u) n = gN on �N

(11)

with kinematic viscosity ν = µ and where u is to be intended as a velocity field.
To show the equivalence of system (11) with the Stokes problem in conservative
form, we use the definition of γ in (10)2, take the trace of this latter relation, and
use the definition of C̃ and p, obtaining

Tr ε(u) = div u = 1

2µ
(Tr σ + µ� pd) = p d

2µ
(µ� − 1).

For λ = +∞, the incompressibility constraint div u = 0 is thus recovered.
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2.2 DMH weak formulation

In order to introduce the DMH weak formulation of problem (10), we define the
Sobolev space

H(div ; �) = {σ ∈ L2(�; Md×d) : div σ ∈ L2(�)d};
and, given uD ∈ L2(�D)d , gN ∈ L2(�N)d and f ∈ L2(�)d ,

�gN
= {σ ∈ H(div ; �) : σn = gN on �N },

U = L2(�)d, W = L2(�; Md×d
skew), Q = L2(�).

In the case �N = ∅, in order to preserve the uniqueness of the solution, the defi-
nition of the pressure space Q must be modified into Q = L2

0(�), the space of
square integrable functions over � having null average on �. Multiplying each
equation in (10) by a proper test function and using integration by parts, we obtain
the DMH weak formulation (1) of the linear elasticity problem. Under proper reg-
ularity assumptions on the solution of (10), an existence and uniqueness result of
the solution of (1) has been proved in [16].

2.3 Finite element approximation

In view of the numerical approximation of problem (1) we assume henceforth that
� is a bounded domain in R

2 and we introduce a regular partition Th [17] of �

into triangles K such that � = ⋃
K∈Th

K and let Eh = E� ∪ ED ∪ EN be the set of
edges associated with Th. For each element K ∈ Th with boundary ∂K , we denote
by |K| and hK the area and the diameter of K , respectively, while for each edge
E ∈ Eh we denote by hE the length of E and choose one unit normal nE along E
(pointing outwards � for E ∈ EN ). We set h = maxK∈Th

hK . Then, for k ≥ 0, we
denote by Pk(K) the space of polynomials in two variables of total degree at most
k on the element K and we let D(K) = (RT0(K) ⊕ BK)2, where RT0(K) is the
lowest order Raviart-Thomas finite element space [27] on K and BK = curl(bK),
bK being the cubic bubble function on K [9]. The finite element spaces for the
DMH approximation are defined as follows

�gN,h = {σh ∈ H(div ; �) : ∀E ∈ EN, σhn|E = P0,E(gN);
∀K ∈ Th, σh|K ∈ D(K)},

Uh = {uh ∈ U : ∀K ∈ Th, uh|K ∈ (P0(K))2},
Wh = {γh ∈ C0(�; M2×2

skew) : ∀K ∈ Th, γh|K ∈ P1(K; M2×2
skew)},

Qh = {qh ∈ Q : ∀K ∈ Th, qh|K ∈ P0(K)}.

(12)

Therein, for any E ∈ Eh, P0,E is the orthogonal projection in L2(E) onto the space
of constants (P0(E))2 on E, i.e. P0,E is the integral norm operator.

The discretization of problem (1) reads: Find (σh, uh, γh, ph) ∈ �gN,h ×Uh ×
Wh × Qh such that

a(σh; τh) + b(uh, γh, ph; τh) = G(τh) ∀ τh ∈ �0,h,

b(σh; vh, θh, qh) + c(ph; qh) = F(vh) ∀ (vh, θh, qh) ∈ Uh × Wh × Qh. (13)
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Existence and uniqueness of the solution of the discretized problem (13) have been
proved in [16] and in the same reference, under appropriate (minimal) regularity
assumptions on the solution of problem (1), the following quasi-optimal a priori
error estimates have been established

||σ − σh||0,� + ||p − ph||0,� � h(|σ |1,� + |p|1,� + |γ |1,�),

||u − uh||0,� � h(|σ |1,� + |p|1,� + |u|1,� + |γ |1,�),

||γ − γh||0,� � h(|σ |1,� + |p|1,� + |γ |1,�).

(14)

Here and throughout this paper, A ≤ CB is abbreviated as A � B when C is
a positive (generic) constant independent of h and independent of the compress-
ibility parameter λ; for any integer m ≥ 0 we denote by || · ||m,S and | · |m,S the
norm and seminorm on the Sobolev space Hm(S), respectively, S ⊂ R

d . It is
important to notice that the above estimates are uniformly robust with respect to
the compressibility parameter λ, i.e. they maintain their validity even in the exactly
incompressible regime characterized by the value λ = +∞.

Remark 1 The computer implementation of (13) leads to solving a linear sparse
system of algebraic equations of large size. In order to reduce the computational
complexity of the problem, it is convenient to resort to the hybridization of the
dual-mixed formulation (13). This amounts to relaxing the H(div ; �)-continuity
requirement for interelement normal stresses that is contained in the definition of
the finite element space �gN,h at the expense of introducing a further variable λh

into the system (13) (see [1,2] and [19]). The variable λh is defined only over the
edges of Eh and plays the role of a Lagrangian multiplier that enforces back the int-
erelement traction reciprocity of the discrete stress σh. The resulting discontinuous
finite element spaces for σh and λh are defined as

�h = {σh ∈ L2(�; M2×2) : ∀K ∈ Th, σh|K ∈ D(K)},
�uD,h = {λh ∈ L2(Eh)

2 : ∀E ∈ Eh, λh|E ∈ (P0(E))2,

∀E ∈ ED, λh|E = P0,EuD}.
(15)

Since the stress σh is now a priori fully discontinuous over the triangulation Th,
it can be statically eliminated at the element level together with the element dis-
placement uh, leading to a condensed system in the sole unknowns γh, ph, λh (see
[12,15] for the algorithmic details of the procedure). The interelement variable λh

has the physical meaning of edge displacement and can be shown to enjoy a higher
convergence rate than the corresponding element variable uh (see [16] and also [1,
21] and [18]).

3 A posteriori error estimate

This section is devoted to prove Theorem 1. Beforehand, we need to introduce
some notation that will be useful in the following.
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3.1 Notation

For each edge E ∈ Eh with fixed normal nE (that coincides with the exterior nor-
mal to � if E ⊂ �), define the jump of a function v (that is continuous on each of
the neighbouring elements K+ and K− but, in general, discontinuous along their
intersection E) across the edge E as

J (v)|E := (v|K+|E) − (v|K−|E),

K+ being the triangle whose outward unit normal vector coincides with nE . If
E = K ∩ �, we set

J (v)|E := (v|K |E).

For each normal nE we denote by tE its associated tangent unit vector, such that
nE points to the right side defined by the orientation of tE .

Moreover, for all φ ∈ H 1(�), u ∈ H 1(�)2 and σ ∈ H 1(�; M2×2), we define

Curl φ = (φ,2 − φ,1), curl φ =
(

φ,2
−φ,1

)
;

Curl u =
(

u1,2 −u1,1
u2,2 −u2,1

)
, curl u = u2,1 − u1,2;

curl σ =
(

σ12,1 − σ11,2
σ22,1 − σ21,2

)
, div σ =

(
σ11,1 + σ12,2
σ21,1 + σ22,2

)
.

In the sequel, the mesh-size is regarded as a (piecewise constant) L∞ function,
i.e. hTh

(respectively, hEh
) is Th-piecewise constant (respectively, Eh-piecewise

constant) with hTh
|K = hK = diam(K) for each K ∈ Th (respectively hEh

|E =
hE = diam(E) for each E ∈ Eh). Similarly, the piecewise action of differential
operators on (in general discontinuous) piecewise sufficiently smooth functions is
denoted by a subindex, e.g. CurlTh

means

(CurlTh
v)|K = Curl(v|K) for v ∈ H 1(K), ∀K ∈ Th.

For brevity, let (·, ·)0,S denote the L2 scalar product in L2(S) for a domain, edge,
etc., and let ‖ · ‖0,S denote the induced norm. Similarly, ‖ · ‖1,S and | · |1,S denote
the norm and seminorm in H 1(S), respectively. Set H 1

D(�) := {v ∈ H 1(�)2 :
v = 0 on �D} and H 1

0 (�) := {v ∈ H 1(�)2 : v = 0 on �} and

L := {σ ∈ L2(�; M2×2
sym ) :

∫
�

Tr (σ ) dx = 0} and V := H 1
0 (�)2 if �N = ∅;

L := L2(�; M2×2
sym ) and V := H 1

D(�) if �N �= ∅.

Let ‖ · ‖L := ‖ · ‖0,� and ‖ · ‖V := ‖ · ‖1,�. With the elasticity tensor C from (8)
and the positive parameters µ and λ one defines the energy norms

‖ε(v)‖C := (Cε(v), ε(v))
1/2
0,� and ‖τ‖

C
−1 := (C−1τ, τ )

1/2
0,�

for any ε(v) or τ in L2(�; M2×2).
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3.2 Mathematical preliminaries

Given the exact and discrete solution (σ, u, γ, p) and (σh, uh, γh, ph) inH(div; �)×
U × W × Q, define σ̃h := sym σh, the symmetric part of σh and let w ∈ H 1(�)2

be some Sobolev function with w = uD on �D .
Since, σ̃h does, in general, not equal Cε(ũh) for some ũh ∈ H 1

D(�), we con-
sider ũh + w with the minimal distance with respect to Cε(ũh) as defined by the
following Helmholtz decomposition.

Lemma 1 (Helmholtz decomposition for symmetric tensor fields, [11]) Sup-
pose that �N is a finite union of connected components �0, . . . , �M and either
�N = ∅ or (�N �= ∅ and �D have a positive distance). Then there exists ũh ∈
H 1

D(�) and � ∈ H 2(�) with
∫
�

� dx = 0, Curl � = cj on �j , cj ∈ R
2,

j = 1, . . . , M , c0 = 0, such that

σ̃h − Cε(w) = Cε(ũh) + Curl Curl �. �� (16)

Lemma 2 ([11]) There exists some λ-independent constant C1 (which depends on
�N , �, and µ but not on λ or on �) such that

‖�‖2,� = ‖ Curl Curl �‖0,� ≤ C1‖ Curl Curl �‖
C

−1 . ��
Theorem 3 Let A : L × V → (L × V )′ be defined by

(A(σ, u))(τ, v) := (C−1σ, τ)0,� − (σ, ε(v))0,� − (τ, ε(u))0,�

for all σ, τ ∈ L and u, v ∈ V . Then, the operator A is bounded and bijective and
the operator norms of A and A−1 are λ-independent.

Proof The case �N = ∅ is proved in [7, Theorem 5.1] and the proof in the case
�N �= ∅ is sketched in the sequel for convenient reading. We refer the reader
to [6,9] for the general theory of mixed formulations. The continuity and inf-sup
condition on the bilinear form (σ, ε(u)) (with λ-independent constants) are well
established. The kernel of this bilinear form reads

Z := {σ ∈ L : div σ = 0 in � and σ n = 0 on �N }.
The remaining non-trivial point is to verify that the bilinear form (C−1σ, τ) is con-
tinuous andZ-elliptic withλ-independent constants.The first property is immediate
from the expression of C

−1. To check the latter property, given σ ∈ Z, we employ
the arguments of Lemma 1 and obtain

σ = Cε(v) + Curl Curl �

for v ∈ H 1
D(�) and � with properties stated in the lemma. Since div σ = 0 in �

and σ n = 0 = Curl Curl �n on �N we deduce v = 0. From Lemma 4.2 in [11]
we have

‖ Curl Curl �‖0,� ≤ C1‖ Curl Curl �‖
C

−1

for a λ-independent constant C1 (which depends on �N , �, and µ but not on �).
Since σ = Curl Curl �, the last inequality reads C−2

1 ‖σ‖2
L ≤ (C−1σ, σ ). For more

details cf. [7]. ��
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3.3 Proof of reliability.

Recall that w ∈ H 1(�)2 denotes a function with w = uD on �D and recall from
(16), that

σ − σ̃h = Cε(u − w − ũh) − Curl Curl �.

Theorem 3 is then applied to (σ − σ̃h, u−w − ũh) and yields existence of (τ, v) ∈
L × V with ‖(τ, v)‖L×V � 1 uniformly bounded such that

‖σ − σ̃h‖L + ‖u − w − ũh‖V

= (A(σ − σ̃h, u − w − ũh))(τ, v)

= (C−1(σ − σ̃h), τ )0,� − (σ − σ̃h, ε(v))0,�

−(τ, ε(u − w − ũh))0,�

= −(C−1(Curl Curl �), τ)0,� − (σ, ε(v))0,� + (σh, ε(v))0,� (17)

because of C
−1σ = ε(u) and σ̃h : ε(v) = σh : ε(v).

In the next steps, we estimate the right-hand side of (17).
Using (σ, ε(v))0,� = (f, v)0,� + ∫

�N
gN v ds and an integration by parts in

the term (σh, ∇ v)0,� we obtain

‖σ −σ̃h‖L+‖u − w − ũh‖V = (−C
−1(Curl Curl �), τ)0,� − (div σh + f, v)0,�

+(σh, ε(v) − ∇v)0,� +
∫

�N

(σh n − gN)v ds.

Since
∫
K

(f + div σh) dx = 0 for any K ∈ Th we have, with vh ∈ (P0(Th))
2

defined by vh|K := |K|−1
∫
K

v(x) dx for all K ∈ Th, that

−(div σh + f, v)0,� = −(div σh + f, v − vh)0,�

≤ ‖hTh
(f + div σh)‖0,� ‖h−1

Th
(v − vh)‖0,�

� ‖hTh
(f + div σh)‖0,�

(owing to an elementwise Poincare inequality ‖h−1
Th

(v − vh)‖0,� ≤ 1/π ‖∇v‖0,�

≤ 1). Since σh n|E = P0,EgN for each E ∈ EN , a similar argument shows that
∫

�N

(σh n − gN)v ds =
∫

�N

(σh n − gN)(v − vEh
) dx

≤ ‖h1/2
Eh

(gN − σh n)‖0,�N
‖h−1/2

Eh
(v − vε)‖0,�N

� ‖h1/2
Eh

(gN − σh n)‖0,�N

(owing to an elementwise trace inequality and a proper choice of an edge-wise
vEh

).
Since (σh, ε(v) − ∇v)0,� = (As σh,

1
2 curl v)0,�, this term is bounded by

||As σh||0,�||ε(v)−∇v||0,� � ||As σh||0,� (where we employed Korn’s inequality
and ||v||V ≤ 1 in the last step).
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Altogether, we deduce

‖σ − σ̃h‖L + ‖u − w − ũh‖V � ‖ Curl Curl �‖L + ‖hTh
(f + div Th

σh)‖0,�

+‖h1/2
Eh

(gN − σhn)‖0,�N
+ ‖As σh‖L. (18)

Lemma 4 There exists a constant C2 > 0 independent of λ and h, such that

‖ Curl Curl �‖
C

−1 ≤ C2

(
‖hTh

CurlTh
(C̃

−1
σh + �/2 phδ + γh)‖0,�

+ ||�
2
(ph + 1

2
Tr σh)||0,�

+ ‖h1/2
Eh

J (C̃
−1

σh + �/2 phδ + γh)tE‖0,(E�∪�D)

)
.

Proof Notice that

C
−1σ̃h = σ̃h/(2µ) − λ/(2µ)(Tr σ̃h)δ/(2λ + 2µ)

= C̃
−1

σ̃h − �

4
Tr (σh)δ = C̃

−1
σ̃h + �

2
phδ,

and abbreviate

σ̂h := C̃
−1

σh + �/2 phδ + γh.

The orthogonality in the Helmholtz decomposition (16) leads to

‖ Curl Curl �‖2

C
−1 =

∫
�

Curl Curl � : (C−1σ̃h − ε(w)) dx

= (Curl Curl �, σ̂h)0,� − (Curl Curl �, �/2(ph

+1/2 Tr (σh)))δ)0,� − (Curl Curl �, ∇w)0,�

where we have already used the aforementioned notation and the fact that Curl Curl �
is symmetric (and so orthogonal to asymmetric σh − σ̃h and γh). Lemma 2 yields

‖ Curl Curl �‖2
L � (Curl Curl �, σ̂h − ∇w)0,�

+‖�/2(ph + 1/2 Tr (σh))‖0,�‖ Curl Curl �‖L.

The estimation of (Curl Curl �, σ̂h)0,� essentially follows the technique of [11,
Lemma 5.1]. The first observation is that b := Curl � ∈ H 1(�)2 is constant on
each of the connectivity components �j of �N . Taking nodal interpolation as a
boundary condition on �N and a Clement-type weak interpolant, e.g. bh(z) :=
|ωz|−1

∫
ωz

b(x) dx for a node z �∈ �N with patch ωz := int(∪{K ∈ Th : z ∈ K})
and bh(z) := b(z) = cj for z ∈ �j , one defines bh ∈ C(�)2 ∩ (P1(Th))

2 with
b − bh = 0 on �N and so is Curl bn = 0 = Curl bhn almost everywhere �N .
Furthermore,

‖h−1
Th

(b − bh)‖0,� + ‖h−1/2
Eh

(b − bh)‖0,Eh
� |b|1,� � |�|2,�. (19)
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Since Curl bh ∈ P0(T ; M
2×2) with div Curl bh = 0, τh := Curl bh ∈ �0,h and

(13)1 yield
∫

�D

uD · τh n ds = (C̃
−1

σh, τh)0,� + (γh, τh)0,�

+(�/2 ph, Tr τh)0,� = (̂σh, τh)0,�.

This and τhn = 0 along �N plus an integration by parts show that

(σ̂h, τh)0,� =
∫

�D

wD · Curl bhn ds =
∫

�

w · Curl bhn ds = (Curl bh, ∇w)0,�.

Therefore,

(Curl Curl �, σ̂h − ∇w)0,� = (Curl(b − bh), σ̂h − ∇w)0,�.

A standard piecewise integration by parts yields

(Curl Curl �, σ̂h − ∇w)0,� = (b − bh, CurlTh
σ̂h)0,�

−
∫

∪E�

(b − bh) · J (σ̂h)tE ds

−
∫

�D

(b − bh)(σ̂htE − ∂uD/∂s) ds.

From this, using Cauchy inequalities, trace estimates and (19), we eventually con-
clude the proof; cf. [11] for further details. ��

Lemma 4 and inequality (18) show that

‖σ − σ̃h‖L + ‖u − w − ũh‖V � ‖hTh
CurlTh

(C̃
−1

σh + �/2 phδ + γh)‖0,�

+‖h1/2
Eh

J (C̃
−1

σh + �/2 phδ + γh)tE‖0,E�∪�D

+‖hTh
(f + div Th

σh)‖0,� + ‖h1/2
Eh

(gN − σhn)‖0,�N

+‖As σh‖L + ‖�/2(ph + 1/2 Tr (σh))‖0,�. (20)

Lemma 5 There exists a constant C3 > 0 independent of λ and h, such that

2µ‖∇u − σ̂h‖0,� ≤ C3�(σh; Th).

Proof The proof follows the lines of that in [11, Lemma 5.3] with minor modi-
fications (partly) related to the change of C into 2 µ. The main ingredients are:

(a) the Helmholtz decomposition ∇u − σ̂h = C̃
−1

Curl f + ∇q and
∫
�

σ̂h :
Curl Rhf dx = 0 (in the notation of [11]); (b) the property ‖ε(q)‖

C̃
≤ ‖ε(q)‖C

at one stage; (c) the use of [11, Lemma 4.1] for estimating ‖p−ph‖0,�. The details
are omitted. ��

Observing that the symmetric part of the stress error ‖σ − σ̃h‖L provides a
control on the complete stress error ‖σ − σh‖L (see [10], Sect. 4.4), combining
(20) and Lemma 5 yields the reliability estimate (4).
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4 Efficiency

Given the reliable error estimator with ηK and ηE , this section aims to establish
the reverse estimate for ηK and ηE given by (5) and (6), respectively.

Notice that the last term ‖hK(f − fK)‖0,K in (5), with the integral mean fK

of f on K , is an oscillation of the right-hand side and is of higher order (provided
f ∈ H 1(K)). The proof of (5) is by a standard inverse estimate technique due to
Verfürth [28]. We therefore give an example for ‖hK(Curl σ̂h)‖0,K =: �1(σ̂h) and

the polynomial σ̂h := C̃
−1

σh + �/2 phδ + γh ∈ P2(K).
On the finite-dimensional vector space P2(K), �1 is a seminorm and so is �2,

defined by

�2(τ̂h) := min
v∈H 1(K)

‖τ̂h − ∇v‖0,K for τ̂h ∈ P2(K).

Notice that �2(τ̂h) = 0 implies that τ̂h is a gradient and hence �1(τ̂h) = 0. Owing
to the equivalence of norms on finite dimensional vector spaces (here, a quotient
space of P2(K) factorized by the set of gradients) one deduces that �1 � �2. A
scaling argument reveals that the constant C in �1 ≤ C�2 on P2(K) is independent
of hK . Therefore, we have that

‖hK Curl σ̂h‖0,K � ‖C̃
−1

(σ − σh) + �/2(p − ph)δ + γ − γh‖0,K

and triangle inequalities yield the associated result in (5). The remaining assertions
in (5) are easier to prove; we therefore omit further details on ηK .

The interior edge contributions ηE for E ∈ E� satisfy

h
1/2
E ‖J ((C̃−1σh + �/2 phδ + γh)tE)‖0,E

� ‖σ − σh‖0,ωE
+ ‖p − ph‖0,ωE

+ ‖γ − γh‖0,ωE
+ ‖hT (f − fT )‖0,ωE

(21)

with a right-hand side that is the sum of the right-hand side in (5) for the two
neighbouring elements K = T±, ωE = T+ ∪ T− and T± ∈ Th with T+ ∩ T− = E.
The proof of (6) follows the lines of that of (5) on the finite dimensional space
P2(T+) ⊕ P2(T−) of piecewise polynomial functions on ωE (and ‖τ̂h − ∇v‖0,ωE

)
in the definition of �2. We therefore omit further details and, instead, mention the
standard technique for the proof of (5)–(6) which employs cubic and quadratic
bubble-functions and an integration by parts. In this way, one can prove that ηE is
efficient for E ∈ ED ∪ EN in the following sense

ηE � h
1/2
E ‖σhnE − gN‖0,E

� ‖σ − σh‖0,ωE
+ ‖hE(f − fTh

)‖0,ωE
+ h

1/2
E ‖gN − gN,E‖0,E

for all E ∈ EN , and

ηE � h
1/2
E ‖(C̃−1

σh + �/2 phδ + γh − ∇uD)tE‖0,E

� h
1/2
E ‖(C̃−1 + �/2 phδ + γh − ∇uD,E)tE‖0,E

+h
1/2
E ‖∂/∂s (uD − uD,E)‖0,E

� ‖σ − σh‖0,ωE
+ ‖p − ph‖0,ωE

+‖γ − γh‖0,ωE
+ h

1/2
E |uD − uD,E |1,E
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for all E ∈ ED .
Therein, ωE = K ∈ Th is the neighbouring element of E ⊆ K ∩ � and, at

least for smooth data gN and uD , gN,E and uD,E are their constant and affine
approximations on E, respectively. Further details on the adopted arguments can
be found in [11,12] and are therefore omitted here.

5 Adaptive algorithm

The efficiency in the local form asserted above motivates the usage of �2
K as a

refinement indicator in an adaptive mesh-refining algorithm.
The following adaptive Algorithm (A) has been implemented in the framework

of a Matlab computer code:

a. Start with a coarse mesh Th,0, k = 0, and a fixed tolerance tol> 0.
b. Solve the discrete problem with respect to the present mesh Th,k with N degrees

of freedom.
c. Compute �K for all K ∈ Th,k with a sum over all the edges E of K .
d. Compute the error estimate

�k = �k(σh; Th,k) = ( ∑
K∈Th,k

�2
K

)1/2

corresponding to the mesh Th,k . Terminate if �k ≤ tol�0.

e. Mark the element K for further refinement if �K ≥ 1

2
max

K ′∈Th,k

�K ′ .

f. Perform red-green-blue refinement on all the marked elements and run a clo-
sure algorithm to avoid hanging nodes.

g. Generate the new mesh Th,k+1, set k → k + 1, and go to (b).

Details on the red-green-blue refinement and closure algorithms can be found
in [29,20,8]. The numerical performance of Algorithm (A) will be illustrated in
Section 6 in the solution of several compressible and incompressible benchmark
problems with singularities.

6 Numerical experiments

To provide experimental evidence of the robustness and accuracy of the DMH
method with adaptive mesh refinement and of the reliability, efficiency and robust-
ness of the a-posteriori error estimator, we investigate several model problems, both
in the incompressible (Stokes problem) and in the compressible regime. We also
compare the results provided by algorithm (A) with uniform mesh-refinement. In
the following, the parameter N represents the total number of degrees of freedom
associated with a certain mesh, while h represents an average mesh size (in the
case of uniform refinement).
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6.1 Stokes flow in an L-shaped domain

The first numerical example deals with the solution of the Stokes problem in the
L-shaped domain shown in Fig. 1, with f = 0 and viscosity µ = 1. The boundary
values, prescribed as specified in Fig. 1 (left), are computed from the exact solution,
which reads as a function of the polar coordinates (r, θ)

u = rα((1 + α) sin(θ)w(θ) + cos(θ)wθ (θ)),

v = rα(−(1 + α) cos(θ)w(θ) + sin(θ)wθ (θ)), (22)

p = −r(α−1)((1 + α)2wθ(θ) + wθθθ (θ))/(1 − α),

with

w(θ) = (sin((1 + α)θ) cos(αω))/(1 + α) − cos((1 + α)θ)

−(sin((1 − α)θ) cos(αω))/(1 − α) + cos((1 − α)θ),

and where α = 0.54448373 is the positive solution of the equation α sin(2ω) +
sin(2ωα) = 0, with ω = 3π/4.

A plot of the initial mesh is given in Fig. 1 (right), while in Fig. 2 we show the
mesh generated by Algorithm (A) after 12 refinement steps and a magnified detail
of the mesh around the re-entrant corner at (0, 0). Notice the strong nonuniformity
of the computational mesh and the high refinement performed by the automatic
mesh generation algorithm near the singularity.

The experimental convergence rate for the uniform refinement tends to the
theoretically expected rate α which results from the approximation of singular
functions like (22) (see [24]). The convergence rate we obtain with the adaptive
mesh refinement is improved to the optimal order 1. These results are shown in
Fig. 3, where the error |||σ − σh||| = ||C̃−1/2(σ − σh)||0,� and the error estimator
�(σh; Th) are displayed as functions of N on uniform and adaptive meshes (notice
that in Fig. 3, a slope 1/2 corresponds to a convergence rate of 1).

In Tab. 1 we show the error |||σ−σh||| and the error ||u−uh||0,�, both computed
using a high-order Gauss quadrature formula on each mesh element.

�

�

�

�

��

��

��

��

��

��

�

�

Fig. 1 Computational domain (left) and initial mesh (right) for the numerical example of Sub-
section 6.1
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Fig. 2 Adaptive mesh generated by Algorithm (A) after 12 refinement steps with a magnified
detail around the re-entrant corner at (0, 0) for the numerical example of Subsection 6.1
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Fig. 3 Error and error estimator for the numerical example of Subsection 6.1 on uniform and
adaptive meshes

The experimental convergence rate CR is defined as the corresponding (nega-
tive) slope in Fig. 3. We observe that the quotient �(σh;Th)

|||σ−σh||| remains bounded from
above in agreement with estimate (4).

In Tab. 2 we show the individual contributions to the error estimator, defined
as follows

ηcurl = ( ∑
K∈Th

||curl(C̃
−1

σh + ρ

2
phδ + γh)||20,K

)1/2
,

ηAs = ( ∑
K∈Th

1

µ2 ||As σh||20,K

)1/2
,
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Table 1 Error and convergence rates on uniform meshes for the numerical example of Subsec-
tion 6.1

N h |||σ − σh||| CR ||u − uh||0,� CR �(σh;Th)
|||σ−σh|||

187 1.4142 2.052e+00 – 8.728e+00 – 0.0592
721 0.7071 4.673e−01 2.135 5.643e−01 3.951 0.0730
2833 0.3536 3.118e−01 0.584 1.940e−01 1.540 0.0961
11233 0.1770 2.169e−01 0.523 8.188e−02 1.244 0.1036
44737 0.0884 1.505e−01 0.527 3.716e−02 1.139 0.1063
178561 0.0442 1.038e−01 0.534 1.740e−02 1.094 0.1075

Table 2 Individual contributions to the error estimator on uniform meshes

N h ηcurl CR ηAs CR ηE CR

187 1.4142 1.939e+01 – 1.010e+01 – 2.685e+01 –
721 0.7071 3.405e+00 2.509 2.071e+00 2.286 5.001e+00 2.424
2833 0.3536 1.475e+00 1.207 1.167e+00 0.827 2.638e+00 0.922
11233 0.1770 9.156e−01 0.688 7.725e−01 0.595 1.716e+00 0.620
44737 0.0884 6.156e−01 0.572 5.238e−01 0.560 1.161e+00 0.563

178561 0.0442 4.195e−01 0.553 3.577e−01 0.550 7.935e−01 0.550

ηE = ( ∑
e∈E�∪ED

hE ||J ((C̃
−1

σh + ρ

2
phδ + γh)tE)||20,E

+
∑
e∈EN

hE

µ2 ||σh nE − gN ||20,E

)1/2
.

The remaining contributions to the error estimator, ηdiv = (
∑

K∈Th

h2
K

µ2 ||f +
div σh||20,K)1/2 and ηT r = (

∑
K∈Th

||ρ
2 (ph + 1

2 Tr σh)||20,K)1/2, here as well as in

the following examples, are of negligible size compared to the other contributions.

6.2 Stokes flow over a backward facing step

As a next example, we consider a fluid flow through a backward facing step as
shown in Fig. 4, with µ = 1/50. On �N we set

g = (68, (2y − 3)/1100) x = 0, y ∈ [1, 2],
g = (17, (1 − y)/4400) x = 8, y ∈ [0, 2],

while homogeneous boundary conditions are enforced on �D .
In Fig. 5 we show the refined mesh and a magnified detail around the corner

after 15 refinement steps with Algorithm (A). The adaptive mesh is highly refined
in correspondence of the areas of strongest stretching and curvature of the flow, in
particular around the step corner. In Fig. 6 we show the error estimator �(σh; Th) as
a function of N for adaptive and uniform meshes. The convergence rate is slightly
more than 1/2 for adaptive meshes and about 2/5 for uniform meshes.
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Fig. 4 Computational domain and boundary conditions for the numerical example of Subsec-
tion 6.2

Fig. 5 Adapted mesh after 15 iterations of Algorithm (A) and magnified detail around the corner
for the numerical example of Subsection 6.2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

uniform
adaptive

N 

1/2 

1 

1 

2/5 

Fig. 6 Error estimator as a function of the number of degrees of freedom for uniform and adaptive
refinement for the numerical example of Subsection 6.2

6.3 L-shaped compressible material domain

We now apply the adaptive refinement algorithm (A) to the numerical solution
of the linear elasticity system (7) in both compressible and quasi incompressible
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Fig. 7 Computational domain (left) and initial mesh (right) for the numerical example of Sub-
section 6.3

regimes. With this aim, we consider an L-shaped domain as in Fig. 7. The radial
and tangential components of the exact solution expressed as functions of the polar
coordinates (r, θ) read

ur(r, θ) = rα

2µ
(−(α + 1) cos((α + 1)θ) + (C2 − (α + 1))C1 cos((α − 1)θ)),

uθ (r, θ) = rα

2µ
((α + 1) sin((α + 1)θ) + (C2 + α − 1)C1 sin((α − 1)θ)), (23)

where α is the same value as in test case 6.1, ω = 3π/4 and

C1 = − cos((α + 1)ω)/ cos((α − 1)ω), C2 = 2(λ + 2µ)/(λ + µ).

The Young modulus is E = 100 000 and numerical computations have been per-
formed with the Poisson ratio ν ranging in the interval

ν = [0.3, 0.45, 0.49, 0.499, 0.4999, 0.49999],

the latter value corresponding to a quasi-incompressible problem. Mixed Dirichlet-
Neumann boundary conditions are computed from the exact solution and enforced
as shown in Fig. 7.

In Tab. 3 and Tab. 4 the errors and rates of convergence are displayed for
ν = 0.3 and ν = 0.49999, respectively. The experimental convergence rate tends
to the value α, as theoretically expected for solutions like (23)(see [24]). The quo-
tient |||σ−σh|||

�(σh;Th)
is seen to be bounded from above and below. In Fig. 8 and Tab. 5

we summarize the results of the computation with Algorithm (A). The final mesh
after 20 refinement steps is shown in Fig. 9 (left) with von Mises stresses (right). A
very strong refinement is produced by the algorithm around the re-entrant corner.
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Table 3 Error and convergence rates on uniform meshes for the numerical example of Subsec-
tion 6.3 with ν = 0.3

N h |||σ − σh||| CR ||u − uh||2,� CR |||σ−σh|||
�(σh;Th)

100 1.4142 2.247e-02 - 6.487e-04 - 42.719
373 0.7071 9.512e-03 1.240 9.341e-05 2.796 71.241

1441 0.3535 6.015e-03 0.661 2.958e-05 1.658 86.312
5665 0.1768 4.051e-03 0.570 1.338e-05 1.144 89.924

22465 0.0884 2.758e-03 0.554 6.651e-06 1.008 90.986
89473 0.0442 1.884e-03 0.549 3.465e-06 0.940 91.538

Table 4 Error and convergence rates on uniform meshes for the numerical example of Subsec-
tion 6.3 with ν = 0.49999

N h |||σ − σh||| CR ||u − uh||0,� CR |||σ−σh|||
�(σh;Th)

100 1.4142 2.413e-02 - 7.797e-04 - 40.191
373 0.7071 1.014e-02 1.250 9.371e-05 3.056 77.237

1441 0.3535 6.358e-03 0.674 2.869e-05 1.707 99.195
5665 0.1768 4.269e-03 0.574 1.263e-05 1.182 104.213

22465 0.0884 2.904e-03 0.555 6.114e-06 1.047 105.636
89473 0.0442 1.983e-03 0.550 3.112e-06 0.974 106.359
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Fig. 8 Error and error estimator for uniform and adaptive mesh refinement for the numerical
example of Subsection 6.3 with ν = [0.3, 0.45, 0.49, 0.499, 0.4999, 0.49999]

6.4 Plate with a hole under traction

As a final test case, we consider a plate with a circular hole, subject to a shearing
load on the right side (see Fig. 10, left).

A closed-form solution to the linear elasticity system exists in the case of an
infinitely large, thin plate with a circular hole, and the stress normal to the vertical
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Table 5 Individual contributions to the error estimator on uniform meshes for the numerical
example of Subsection 6.3 with ν = 0.3

N h ηcurl CR ηAs CR ηE CR

100 1.414214 3.229e-04 - 8.181e-05 - 4.066e-04 -
373 0.707107 7.228e-05 2.159 3.254e-05 1.330 1.073e-04 1.920
1441 0.353553 3.351e-05 1.108 2.004e-05 0.699 5.770e-05 0.896
5665 0.176777 2.105e-05 0.670 1.325e-05 0.596 3.755e-05 0.619
22465 0.088388 1.406e-05 0.581 8.923e-06 0.570 2.531e-05 0.568
89473 0.044194 9.518e-06 0.563 6.063e-06 0.557 1.720e-05 0.557
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Fig. 9 Adapted mesh (left) with a magnified detail of the re-entrant corner and von-Mises stresses
(right) with a magnified detail of the re-entrant corner after 20 refinement steps withAlgorithm (A)
with ν = 0.3 for the numerical example of Subsection 6.3
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Fig. 10 Computational domain (left) and initial mesh (right) for the numerical example of Sub-
section 6.4

plane of symmetry at point P (see Fig. 10) is σxx = 3 σ0 ([30], Eq. (36), with r = a
and θ = π/2). We set σ0 = 1, E = 100 000 and ν = 0.3. Symmetry boundary
conditions are enforced on the boundaries converging to the curved part (that is,
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Fig. 11 σxx component of the stress tensor at P as a function of the number of degrees of freedom
for the numerical example of Subsection 6.4 using uniform and adaptive refinement
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Fig. 12 Adapted mesh (left) and von Mises stresses (right) after 15 refinement steps with Algo-
rithm (A) for the numerical example of Subsection 6.4

on the axis of symmetry of the entire plate, of which Fig. 10 represents the quar-
ter that we study), while Neumann boundary conditions are enforced elsewhere.
Since point P is a node, we display the value of σxx computed by an averaged stress
approximation. Observe the significantly better result obtained with the adaptive
approximation. In Fig. 11 we plot the value σxx at P computed using both uniform
and adapted meshes. In Fig. 12 (left) we plot the adapted mesh after 15 refinement
steps with Algorithm (A) and in Fig. 12 (right) we plot the corresponding von
Mises stresses. We observe that the Algorithm (A) generates a refinement towards
the hole, where the stress gradients are higher. The results are independent of the
Poisson ratio ν.
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