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Abstract An adaptive nonconforming finite element method is developed and ana-
lyzed that provides an error reduction due to the refinement process and thus guaran-
tees convergence of the nonconforming finite element approximations.The analysis
is carried out for the lowest order Crouzeix-Raviart elements and leads to the linear
convergence of an appropriate adaptive nonconforming finite element algorithm
with respect to the number of refinement levels. Important tools in the convergence
proof are a discrete local efficiency and a quasi-orthogonality property. The proof
does neither require regularity of the solution nor uses duality arguments. As a
consequence on the data control, no particular mesh design has to be monitored.

1 Introduction and Main Result

An adaptive finite element method (AFEM) is an efficient and reliable algorithmic
tool in the numerical solution of partial differential equations. The method invokes
the solution of the finite element discretized problem (SOLVE), the a posteriori
error estimation of the global discretization error (ESTIMATE) by easily com-
putable local quantities as an indication to mark selected elements (MARK) for
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refinement, and the refinement strategy (REFINE) itself. Thus, AFEMs typically
consist of successive loops of the sequence

SOLVE → ESTIMATE → MARK → REFINE . (1.1)

The development and implementation of efficient and reliable a posteriori error
estimators has been the subject of intensive research in the past and has reached
some level of maturity (see, e.g., the monographs [3,4,6,21,30] and the refer-
ences therein). On the other hand, a rigorous convergence analysis of (1.1) relying
on appropriate error reduction properties has so far only been done for conform-
ing AFEMs [26,27] and, very recently, by the authors for a mixed finite element
method (MFEM) in [17]. The main ingredients are a local discrete efficiency and a
quasi-orthogonality property. The latter substitutes the Galerkin orthogonality for
conforming finite element schemes and is the first main difficulty in the conver-
gence analysis for the nonconforming finite element schemes as well. The second
additional difficulty is the nonconformity in the sense that the finer discrete space
Vh does not include the coarser space VH .

This paper aims at a convergence result for a sequence of discrete fluxes com-
puted by an adaptive nonconforming finite element method (NFEM) of the form
(1.1) applied to the variational formulation of a model 2D Poisson equation with
homogeneous Dirichlet boundary conditions: Given a bounded, simply connected
domain� ⊂ R

2 with polygonal boundary � = ∂� and f ∈ L2(�), find u ∈ V :=
H 1

0 (�) such that

(grad u, grad v)0,� = (f, v)0,� for all v ∈ V. (1.2)

Here and throughout the paper (·, ·)0,� denotes the L2(�) inner product both for
square integrable functions and vector fields with square integrable components.

We discretize (1.2) by the lowest-order nonconforming P1 finite elements
(Crouzeix-Raviart elements) with respect to a shape-regular triangulation TH of
the Lipschitz domain � into triangles. With the associated NFEM space VH :=
CR1(TH ), the NFEM reads: find uNH ∈ VH such that

∑

T ∈TH

(gradH u
N
H , gradH v

N
H )0,T = (f, vNH )0,� for all vNH ∈ VH . (1.3)

Here and throughout, gradH denotes the elementwise gradient (with respect to
TH ); further details on the lowest order Crouzeix-Raviart elements are provided in
Section 2; cf. also [8,11,18].

We note that efficient solvers for (1.3) such as multigrid methods and multilevel
preconditioned iterative solvers have been developed, analyzed and implemented
in [9,10,22,28].

The step ESTIMATE in (1.1) essentially consists of a postprocessing procedure
to compute the residual-type a posteriori error estimator [15,14,19,23,24]

η := (
∑

E∈EH (�)
η2
E)

1/2 with η2
E := hE‖[pNH ]‖2

0,E. (1.4)

Here and throughout EH (�) denotes the set of interior edges and, for any such edge
E = T+ ∩ T− of length hE shared by two adjacent elements T± ∈ TH , [pNH ] stands
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for the jump [pNH ] := pNH |T+ − pNH |T− of the discrete flux pNH := gradHu
N
H accross

E. With the unit normal and tangent vector νE and τE along E ∈ EH , the constant
vector [pNH ] allows a decomposition in normal and tangential components:

|[pNH ]|2 = ([pNH ] · νE)2 + ([pNH ] · τE)2.
Theorem 3.5 below implies that we may omit the normal component and focus on
the tangential component [pNH ] · τE =: [∂pNH/∂s].

Besides the edge contributions in (1.4), volume contributions play a dominant
role in the adaptive algorithm below. Given the right-hand side f ∈ L2(�) and
the piecewise constant mesh-size function H , defined by H |T := hT := |T |1/2 ≈
diam(T ) on T ∈ TH , the volume contribution reads

µH := ‖H f ‖0,� = (
∑

T ∈TH

|T |‖f ‖2
0,T )

1/2. (1.5)

The essential role in the step MARK in (1.1) is played by refinement indicators
based on the bulk criterion from [7,20,26] for displacement-based AFEMs. Given
the universal constants �1 with 0 < �1, �2 < 1, the outcome of MARK is a set
of edges M ⊂ EH such that

�1

∑

E∈EH

hE‖[∂uNH/∂s]‖2
0,E ≤

∑

E∈M
hE‖[∂uNH/∂s]‖2

0,E. (1.6)

The refined regular triangulation Th from REFINE generated by refining at least
all the edges in M (and possibly further edges to avoid hanging nodes) with the
new mesh-size h ≤ H is supposed to satisfy

�2‖H f ‖2
0,� ≤ ‖h f ‖2

0,�. (1.7)

Subsection 7.1 discusses a realisation of (1.7) with a choosen �2 and resulting
�2 := 1 − �2/2 < 1. Figure 1 illustrates suitable refinements of the triangles
T ∈ TH in the step REFINE to maintain shape-regularity.

The main result of this paper is to prove the following error reduction property
(1.8) for the ANFEM under consideration. Therein, uNh and uNH denote the NFEM
approximations to uwith respect to the triangulations Th and TH , respectively, with
flux approximations pNh := gradhu

N
h and pNH := gradHu

N
H to the flux p = grad u.

Theorem 1.1 (error reduction property) Under the preceding assumptions, there
exist positive constants �1 < 1 and C1 which depend exclusively on �1 and the
shape regularity of the triangulation such that

(‖p − pNh ‖2
0,�

‖h f ‖2
0,�

)
≤

(
�1 C1
0 �2

) (‖p − pNH‖2
0,�

‖H f ‖2
0,�

)
. (1.8)

(Therein, a ≤ b for vectors a, b means aj ≤ bj for all j = 1, 2.)
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Fig. 1 Illustration of possible refinements of one triangle T in the step REFINE. Data represen-
tations and a MATLAB realization are provided in [16].
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The result on one loop of (1.1) implies R-linear convergence with a reduction
factor max{√�1,

√
�2} for the sequence of pairs (‖p − pNh ‖0,�, ‖h f ‖0,�).

Moreover, given the parameters of (1.8), set e2
H := ‖p − pNH‖2

0,� + 2C1/(1 −
�2)‖H f ‖2

0,� and define e2
h correspondingly. Then, (1.8) implies the Q-linear con-

vergence

e2
h ≤ max{�1, (1 + �2)/2} e2

H .

The remaining part of this paper is organized as follows: Section 2 provides
notational details and auxiliary results. The main arguments in the proof are the
reliability of the estimator, a strict discrete local efficiency, and some quasi-orthogo-
nality derived in Section 3, Section 4, and Section 5, respectively. Section 6 finalizes
the proof of Theorem 1.1 on the error reduction property.A few remarks on the real-
ization of (1.7), an example for MARK, and extensions to 3D and mixed boundary
conditions plus one numerical illustration in Section 7 conclude this paper.

2 Notations and Preliminaries

2.1 General Notations

Here and in the sequel we assume that � ⊂ R
2 is a bounded, simply connected

domain with polygonal boundary �. The paper adopts standard notion for Le-
besgue spaces and norms. Moreover, H(div;�) stands for the Hilbert space of
vector fields q ∈ L2(�)2 such that div q ∈ L2(�), equipped with the graph norm;
H(div0;�) := {q ∈ H(div;�) | div q = 0} refers to the subspace of solenoidal
vector fields.

Throughout the rest of the paper the abbreviation A � B has the meaning
A ≤ CB with a mesh-size independent, generic constantC > 0. Moreover,A ≈ B
abbreviates A � B � A.

2.2 Shape-Regular Triangulations

The domain� is discretized by the shape-regular simplicial triangulations TH and
Th; Th is some refinement of TH where each triangle T in TH is refined by one of
the rules of Figure 1.

A shape-regular triangulation T in 2D is a set of closed triangles T of positive
area |T | such that any two distinct triangles T1 and T2 are either disjoint T1 ∩T2 = ∅
or share exactly one vertex z, T1 ∩ T2 = {z}, or have one edge E = T1 ∩ T2 in
common.

The set of vertices and edges in the triangulation TH are denoted by NH and
EH , respectively. For any (closed or open) set D ⊂ � ,

NH (D) := NH ∩D and EH (D) := {E ∈ EH : E ⊂ D}
denote the respective nodes and edges inD. In particular, EH (�) and EH (�) denotes
the set of interior and boundary edges in TH .

For T ∈ TH with area |T |, define its size hT := |T |1/2 ≈ diam(T ) and its
center of gravity xT := mid(T ). For E ∈ EH (T ), recall that hE is its lenght while
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νE and τE are the unit normal and unit tangential vector. For any E ∈ EH (�) let
ωE := int(T+ ∪ T−) (the interior of T+ ∪ T−) denote its edge-patch consisting of
its (at most two) neighboring triangles T± ∈ TH with E = T+ ∩ T−.

The same notation with h instead of H is adopted for the fine mesh Th.

2.3 Data oscillations

For the fixed right-hand sidef ∈ L2(�) and any domainD ⊂ �with area |D| > 0,
the real number fD denotes the integral mean of f over D, i.e.,

fD := |D|−1
∫

D

f (x) dx.

In this context, fH ∈ P0(TH ) and fh ∈ P0(Th) denote the piecewise integral means,
e.g., fH |T := fT for T ∈ TH .

The weighted L2(D) norm of the difference f − fD is called the oscillation of
f over D and written

osc(f,D) := |D|1/2 ‖f − fD‖L2(D).

In particular, given anyE ∈ EH (�) and the integral meanfωE := |ωE|−1
∫
ωE
f (x)dx

of f with respect to the patch ωE , set

oscE := osc(f, ωE) ≈ hE‖f − fωE‖0,ωE

and oscH := (
∑

E∈EH (�) osc2
E)

1/2.
A Poincaré inequality for f ∈ H 1(�) reveals that oscH is of second order and

hence of higher-order than the error terms.

2.4 Crouzeix-Raviart NFEM

The Crouzeix-Raviart NFEM space VH := CR1
0(TH ) is given by

CR1
0(TH ) := {vH ∈ L2(�)| ∀T ∈ TH , vH |T ∈ P1(T );

∀E ∈ EH (�), vH is continuous at mid(E);
∀E ∈ EH (�), vH (mid(E)) = 0}.

Here and throughout Pk(T ) , k ≥ 0, denotes the linear space of polynomials of
degree ≤ k on T ∈ TH . The solution uNH ∈ VH := CR1

0(TH ) of (1.3) is called
the Crouzeix-Raviart NFEM approximation of u ∈ H 1

0 (�), and the elementwise
gradients pNH := gradHu

N
H are referred to as the discrete fluxes.

The edge-oriented basis functions of VH are denoted by (ψE : E ∈ EH (�)),
i.e., given any E ∈ EH (�) the function ψE is defined by ψE(mid(E)) = 1 and
ψE(mid(F )) = 0 for any other edge F ∈ EH .

Algorithms and data structures as well as documented MATLAB implementa-
tions are given in [5].

A discrete Poincaré inequality for nonconforming functions concludes this sub-
section on Crouzeix-Raviart NFEM.
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Lemma 2.1 Given some fixed T ∈ TH let Th(T ) denote the triangulation of T
with respect to the fine mesh as illustrated in Figure 1. Let VT := CR1

0(Th(T ))
denote the Crouzeix-Raviart NFEM space (without boundary conditions) on T .
Then, there holds

min
w∈R

‖wh − w‖0,T ≈ hT ‖gradhwh‖0,T for all wh ∈ VT .

Proof The left and right-hand side of the assertion define norms on the finite-
dimensional vector space VT /R (e.g., the subspace of functions in VT with integral
mean zero). Since those norms are equivalent, there holds the claimed equiva-
lence. A transformation argument to the reference triangle proves that, for each of
the finite configurations of Figure 1, the equivalence constants do not depend on
the mesh-size and solely depends on the minimum angle in the triangle T . 
�

2.5 Raviart-Thomas MFEM

The Raviart-Thomas MFEM space RT0(�; TH ) and the linear space of element-
wise constants P0(TH ) are given by

RT0(TH ) := {qH ∈ H(div, �) |∀T ∈ TH ∃a ∈ R
2 ∃b ∈ R ∀x ∈ T ,

qH (x) = a + bx},
P0(TH ) := {vH ∈ L∞(�) |∀T ∈ TH , vH |T ∈ P0(T )} .

The MFEM approximation of (1.2) amounts to the computation of uMH ∈
P0(TH ) and pMH ∈ RT0(TH ) such that for all qH ∈ RT0(TH ) and vH ∈ P0(TH )
there holds [12]

(pMH , qH )0,� + (uMH , div qH )0,� = 0 , (2.1)

(divpMH , vH )0,� = − (fH , vH )0,� . (2.2)

The spaces CR1
0(Th), RT0(Th), and P0(Th) as well as the NFEM and MFEM

approximations uNh , p
N
h and uMh , p

M
h are defined analogously.

2.6 Equivalence of Crouzeix-Raviart and Raviart-Thomas FEM

The discrete fluxes pNH and pMH defined by the respective Crouzeix-Raviart and
Raviart-Thomas FEM are related.

Lemma 2.2 ([5,25]) For T ∈ TH recall fT := ∫
T
f (x) dx/|T | and xT :=

mid(T ). Then there holds

pNH |T (x) = pMH (x)|T + 1

2
fT (x − xT ) for all x ∈ T ∈ TH . 
� (2.3)

An immediate consequence of Lemma 2.2 (given without further proof) con-
cludes this subsection.

Lemma 2.3 There holds ‖pNH − pMH ‖0,� � ‖H f ‖0,�. 
�
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3 Reliable error estimators

The reliability of error estimators for NFEM approximations has been studied in
[1,2,13–15,19,23,24,29].

Those works established the following theorem stated in the notation of the
previous sections.

Theorem 3.1 ([19]) There holds ‖p − pNH‖0,� � η + ‖H f ‖0,�. 
�
A refined version thereof appeared in [13–15] where the volume term ‖H f ‖0,�

is substituted by edge contributions plus oscillations.

Theorem 3.2 ([13]) There holds ‖p − pNH‖0,� � η + oscH . 
�
A new proof of Theorem 3.2 is based on the following identity.

Lemma 3.3 Given any interior edge E ∈ EH (�), let ψE ∈ CR1
0(TH ) be the edge-

basis function with supp ψE ⊂ ωE . Then there holds

[pNH ] · νE = h−1
E (f,ψE)0,ωE . (3.1)

Proof Since [pNH ] · νE ∈ P0(E) ≡ R, we have

hE [pNH ] · νE = ([pNH ], νE)0,E = ([pNH ] · νE,ψE)0,E.
SinceψE isL2-orthogonal onto constants on all edges exceptE, since divH pNH = 0
and since ψE is an admissible test function for the NFEM with support in ωE , the
application of Green’s formula yields

([pNH ] · νE,ψE)0,E = ([pNH ] · νE,ψE)0,E + ([pNH ] · νE,ψE)0,∂ωE
= (pNH , gradH ψE)0,ωE + (divH p

N
H ,ψE)0,ωE

= (f, ψE)0,ωE .

�

An immediate consequence of (3.1) is the following result.

Lemma 3.4 There holds

hE ‖f ‖0,ωE ≈ (
∑

E∈EH (�)
hE‖[pNH ] · νE‖2

0,E)
1/2 ± oscE (3.2)

in the sense that hE‖f ‖0,ωE � h
1/2
E ‖[pNH ] · νE‖0,E + oscE and

h
1/2
E ‖[pNH ] · νE‖0,E � hE‖f ‖0,ωE + oscE .

Proof Lemma 3.3 and
∫
ωE
ψEdx = |ωE|/3 show

hE ‖fωE‖0,ωE � |ωE| |fωE |
= 3 |(fωE , ψE)0,ωE |
≤ 3 |(fωE − f,ψE)0,ωE | + 3 |(f, ψE)ωE |
� hE ‖f − fωE‖0,ωE + h

1/2
E ‖[pNH ] · νE‖0,E.

This proves one assertion of the lemma. Its converse follows by the same arguments.

�
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The announced new proof of Theorem 3.2 simply replaces the volume contri-
bution ‖H f ‖0,� in Theorem 3.1 by its upper bound




∑

E∈EH (�)
h2
E‖f ‖2

0,ωE




1/2

�




∑

E∈EH (�)
hE‖[pNH ] · νE‖2

0,E




1/2

+ oscH .

This argument can be used also to replace the normal components in the right-
hand side of Theorem 3.1. In this way, one deduces the following reliability result
the authors have not found in the literature.

Theorem 3.5 (Reliability) There holds

‖p − pNH‖0,� � (
∑

E∈EH (�)
hE‖[∂uH/∂s]‖2

0,E)
1/2 + ‖H f ‖0,�. 
�

4 Discrete Local Efficiency

This section provides the first of two main arguments for error reduction. Unlike
for conforming AFEM, there is no further restriction in REFINE throughout this
paper.

Theorem 4.1 (Strict discrete local efficiency) Suppose thatE = ∂T+∩∂T− ∈ EH
is an edge in TH [shared by the triangles T+, T− ∈ TH ] which is bisected in the
refinement, i.e., E = E1 ∪ E2 �∈ Eh and mid(E) = E1 ∩ E2 ∈ Nh for two distinct
E1, E2 ∈ Eh. Then there holds

h
1/2
E ‖[∂uNH/∂s]‖0,E � ‖pNh − pNH‖0,ωE . (4.1)

Proof Let ϕE be a multiple of the conforming P1 FEM basis function with respect
to the nodal point mid(E) such that ϕE(mid(E)) = hE[pNH ] · τE . Notice that

‖ �curl ϕE‖2
0,ωE � hE ‖[pNH ] · τE‖2

0,E. (4.2)

Stokes’ theorem shows

1

2
hE‖[∂uH/∂s]‖2

0,E = (ϕE, [pNH ] · τE)0,E = ( �curlϕE, p
N
H )0,ωE .

Since ∂ϕE/∂s is constant along any edge F of the refined triangulation Th and
since [uNh ] has vanishing integral mean along F , all integrals of [uNh ]∂ϕE/∂s over
F vanish. This, an integration by parts, and divh �curl ϕE = 0 yield

( �curlϕE, p
N
h )0,ωE = ([uNh ], ∂ϕE/∂s)0,E = 0.

The two preceding identities imply

1

2
hE ‖[pNH ] · τE‖2

0,E = ( �curl ϕE, p
N
H − pNh )ωE

≤ ‖ �curl ϕE‖0,ωE ‖pNh − pNH‖0,ωE .

The combination of this with (4.2) proves (4.1). 
�
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5 Quasi-Orthogonality

The second main argument for error reduction is a generalization of the Galerkin
orthogonality in the conforming AFEM [20,26,27].

Theorem 5.1 (Quasi-orthogonality) There holds

|(p − pNh , p
N
H − pNh )0,�| � ‖H f ‖0,�

(‖p − pNh ‖0,� + ‖p − pNH‖0,�
)
. (5.1)

The rest of this section is devoted to the proof of Theorem 5.1. The left-hand
side in the assertion (5.1) is split as

(p − pNh , p
N
H − pNh )0,� = (p − pNh , p

M
H − pMh )0,�

+ (p − pNh , (p
N
H − pMH )− (pNh − pMh ))0,�. (5.2)

Lemma 2.3 can be applied to estimate the L2 norm of pNH − pMH on the coarse
mesh as well as that of pNh − phH on the fine mesh with the same upper bound
� ‖H f ‖0,�. This and (5.2) lead to

(p − pNh , p
N
H − pNh )0,� � (p − pNh , p

M
H − pMh )0,�

+‖H f ‖0,�‖p − pNh ‖0,�. (5.3)

An elementwise application of Green’s formula is followed by −div pMh = fh
and −div pMH = fH and the observation that emerging boundary integrals van-
ish because (pMH − pMh ) · νE is constant along E ∈ Eh(�) and

∫
E

[u − uNh ]ds =∫
E

[uNh ]ds = 0. Hence,

(p − pNh , p
M
h − pMh )0,� =

∑

T ∈Th

(p − pNh , p
M
H − pMh )0,T

=
∑

E∈Eh(�)
([u− uNh ], (pMH − pMh ) · νE)0,E

+
∑

T ∈Th

(u− uNh , fH − fh)0,T

= (u− uNh , fH − fh)0,�. (5.4)

It is essential to observe that on each T ∈ TH , the piecewise constant fH − fh has
integral mean zero. Hence an elementwise Poincaré inequality for e := u− uNH ∈
H 1(T ) with integral mean eT ∈ R shows

(u− uNH , fH − fh)0,T = (e − eT , fH − fh)0,T

≤ hT /π‖gradHe‖0,T ‖fH − fh‖0,T .

Lemma 2.1 allows a corresponding argument for (uNH − uNh , fH − fh)0,T and
wh := uNH − uNh and w := (wh)T ∈ R and leads to

(wh, fH − fh)0,T = (wh − w, fH − fh)0,T

� hT ‖gradhwh‖0,T ‖fH − fh‖0,T .
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The combination of the preceding two inequalities and their sum over all triangles
in T ∈ TH shows (after further triangle inequalities)

(u− uNh , fH − fh)0,� � ‖Hf ‖0,T (‖p − pNh ‖0,� + ‖p − pNH‖0,�). (5.5)

The combination of (5.3)–(5.5) concludes the proof of (5.1). 
�

6 Error Reduction

This section is devoted to the proof of Theorem 1.1 and combines the reliability
estimate, the bulk criterion, the discrete local efficiency and the quasi-orthogonal-
ity.

The first argument is the reliability from Theorem 3.5, namely

‖p − pNH‖0,� � (
∑

E∈EH (�)
hE‖[∂uNH/∂s]‖2

0,E)
1/2 + ‖H f ‖0,�. (6.1)

A reformulation with the bulk criterion (1.6) and the set of refined edges M reads
∑

E∈EH (�)
hE‖[∂uNH/∂s]‖2

0,E �
∑

E∈M
hE‖[∂uNH/∂s]‖2

0,E. (6.2)

Since at least allE ∈ M are refined, the discrete efficiency estimate of Theorem 4.1
leads to the upper bound (4.1). The sum of all such estimates leads to

∑

E∈M
hE‖[∂uNH/∂s]‖2

0,E �
∑

E∈M
‖pNh − pNH‖2

0,ωE � ‖pNh − pNH‖2
0,�. (6.3)

The quasi-orthogonality of Theorem 5.1 shows

‖pNh − pNH‖2
0,� + ‖p − pNh ‖2

0,� − ‖p − pNH‖2
0,�

= −2(p − pNh , p
N
h − pNH )0,�

� ‖Hf ‖0,�(‖p − pNh ‖0,� + ‖p − pNH‖0,�). (6.4)

In the combination of (6.1)–(6.4), there is some positive constant κ < 1/2 inde-
pendent of h,H such that

3κ ‖p − pNH‖2
0,� ≤ ‖p − pNH‖2

0,� − ‖p − pNh ‖2
0,� + ‖H f ‖2

0,�

+‖Hf ‖0,�(‖p − pNh ‖0,� + ‖p − pNH‖0,�). (6.5)

Two Young’s inequalities for the last term in (6.5) lead to

‖Hf ‖0,�(‖p − pNh ‖0,� + ‖p − pNH‖0,�) ≤ (2κ)−1‖Hf ‖2
0,� + κ‖p − pNh ‖2

0,�

+κ‖p − pNH‖2
0,�. (6.6)

The combination of (6.5)-(6.6) shows the claimed estimate

‖p − pNh ‖2
0,� ≤ �1 ‖p − pNH‖2

0,� + C ‖Hf ‖2
0,� (6.7)

of Theorem 1.1 with �1 := (1 − 2κ)/(1 − κ) < 1 and C1 := (1 + (2κ)−1)/(1 − κ)
� 1. 
�
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7 Remarks

The notation and technicalities were kept minimal throughout this work. Some
comments on algorithms and extentions conclude this paper.

7.1 Data Reduction

Since the Crouzeix-Raviart NCFEM is edge-oriented, the following edge-oriented
quantities are involved with equivalent weights. For each edge E ∈ EH (�) (with
respect to the coarse triangulation TH ) set

µ2
H,E := |T+|

m+
‖f ‖2

0,T+ + |T−|
m−

‖f ‖2
0,T− (7.1)

where E = T+ ∩ T− for the two neighboring triangles T± ∈ TH with integers
m± := card(EH (�) ∩ EH (T±)). (The number m± ≥ 1 counts the number of inte-
rior edges amongst the edges of the element T± and hence, the multiplicity of the
contribution in the sum over all edges in EH (�).) In this way we have

µ2
H :=

∑

E∈EH (�)
µ2
H,E =

∑

T ∈TH

|T | ‖f ‖2
0,T = ‖H f ‖2

0,�.

With a new parameter�2 with 0 < �2 < 1, the data reduction (1.7) is realized by

�2

∑

E∈EH (�)
µ2
H,E ≤ µ2

H :=
∑

E∈M
µ2
H,E. (7.2)

Lemma 7.1 Suppose (7.2) and that (at least) any edge in M is refined in Th. Then
there holds (1.7) with �2 := (1 −�2/2) < 1.

Proof Consider one triangle K ∈ Th which is contained in some T ∈ TH with
EH (T ) ∩ M �= ∅. Then K ⊂ T is at least halved and hence |K| ≤ |T |/2. As a
consequence,

µ2
h ≤ 1/2

∑

E∈M
µ2
H,E +

∑

E∈EH (�)\M
µ2
H,E = µ2

H − 1/2
∑

E∈M
µ2
H,E.

With µH and (7.2) this reads

�2/2µ
2
H ≤ 1/2

∑

E∈M
µ2
H,E ≤ µ2

H − µ2
h. 
�

7.2 Algorithm MARK

This subsection is devoted to the realization of the step MARK in each loop (1.1)
of an adaptive algorithm to ensure (1.6)-(1.7): Given η2

H,E := hE‖[∂uNH/∂s]‖2
0,E

and µH,E (from (7.1)) for any E ∈ EH (�) initiate M0 := ∅ and k = 0.
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(a) If�1
∑

E∈EH (�) η
2
H,E ≤ ∑

E∈Mk
η2
H,E go to (b) else select some F ∈ EH (�) \

Mk with

ηH,F = max
G∈EH (�)\Mk

ηH,G

and set Mk+1 := Mk ∪ {F } and k := k + 1.
(b) If�2

∑
E∈EH (�) µ

2
H,G ≤ ∑

E∈Mk
µ2
H,E go to (c) else select some F ∈ EH (�)\

Mk with

µH,F = max
G∈EH (�)\Mk

µH,G

and set Mk+1 := Mk ∪ {F } and k := k + 1.
(c) Given Mk mark further edges to obtain the output M with the closure prop-

erty to avoid hanging nodes while maintaining the shape regularity in the
refinements indicated in Figure 1.

Output the set of marked edges M :=MARK(EH (�)).

7.3 Extension to 3D

Throughout the paper, Theorem 1.1 has been proven in a 2D setting for notational
simplicity. This subsection discusses the 3D version of Theorem 1.1 and outlines
the small modifications in its proof.

The changes in the notation from 2D to 3D are well established and hence not
repeated here; for instance, the edges E are replaced by faces and the Helmholtz
decomposition in 3D involves different notations of the curl and of the trace to
replace [∂uNH/∂s]. Details can be found in [15] along with a proof of Theorem 3.2
in 3D. Lemma 3.4 holds verbatim in 3D and so does Theorem 3.5.

One crucial detail in the 3D version of Theorem 4.1 is that the refined face E
does require an inner node mid(E) such that φE can be designed as in the proof of
Theorem 4.1. The remaining details on vanishing surface integrals and integration
by parts can be adopted from [15], in particular from Theorem 3.2 therein.

A proof of the 3D version of Lemma 2.2 is included in [5] and hence Theo-
rem 5.1 follows as well. The remaining details are immediate and hence omitted.

7.4 Mixed Boundary Conditions

The Laplace equation with homogeneous Dirichlet boundary conditions serves as
a model example in this paper for the ease of this discussion. A general mixed
boundary value problem would involve the approximation errors of the Dirichlet
data uD and the Neumann data g. The explicit terms in the reliable and efficient
error estimation (an extended version of Theorem 3.2) are derived in [14] and are
shown to contain η2

E := hE
∫
E

|g− ∂uNH/∂s|2ds for edgesE ⊂ �N as well as data
oscillations. This requires to treat corresponding data terms in g and uD plus the
displayed volume terms with f in a data reduction step (1.7). The technicalities in
the extended proofs are straightforward and hence omitted.
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7.5 Numerical Experiment

The mixed boundary value problem on the L-shaped domain� = (−1, 1)×(0, 1)∪
(−1, 0)× (−1, 0] with Dirichlet boundary �D = [0, 1] × {0} ∪ {0} × [−1, 0] and
Neumann boundary �N := ∂� \ �D ,

−�u = 0 in �,

u = 0 on �D,

∂u/∂n = g on �N

allows for an exact solution u(r, ϕ) = r2/3 sin(2ϕ/3) in polar coordinates where
the smooth Neumann data g is computed from that. Figure 3 shows the meshes
generated by the adaptive algorithm with MARK from Subsection 7.2 (with ηE
for E ⊂ �N ). The meshes refine towards the re-entering corner at (0, 0) where the
exact solution has a generic singularity. Notice that the bulk-criterion, in general,
leads to non-symmetric refinement visible in Figure 3.

Figure 2 shows the energy error norm and its approximation via the error esti-
mator as functions of the number of degrees of freedom N . The experimental
convergence rates support the optimal convergence ∝ N−1/2) for the adaptive
algorithm compared to a sub-optimal convergence ∝ N−1/3 for uniform mesh
refinements.

Fig. 2 Energy Error Norm and Error Estimator Plotted as a Function of the Degrees of Freedom
for Uniform and Adaptive Mesh Refinements.
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(a) T0 (b) T1

(c) T2 (d) T3

(e) T4 (f) T5

(g) T6 (h) T7

(i) T8 (j) T9

Fig. 3 Triangulations T0, . . . , T9 of L-shaped Domain � Generated by the Adaptive Algorithm
Based on MARK from Subsection 7.2.
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