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Abstract The effective behaviour of stationary
micromagnetic phenomena is modelled by a convexified
Landau-Lifshitz minimization problem for the limit of
large and soft magnets 2 with no exchange energy.
The numerical simulation of the resulting minimiza-
tion problem has to overcome difficulties caused by the
pointwise side-constraint |[m| < 1 and the stray-field en-
ergy on the unbounded domain R%. A penalty method
models the side-constraint and the exterior Maxwell
equation is recast via a nonlocal integral operator L.
This paper gives an overview of the available results
and implementational details.
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1 Introduction

Stationary micromagnetic phenomena of static or quasi-
static processes are usually based on a variational model
named after Landau and Lifshitz [4,17,19,20]. The mag-
netic body Q is a bounded Lipschitz domain in R¢ for
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d = 2,3 on which the microscopic vector-valued
magnetization

ma:Q—HRd

minimizes the magnetic energy E,(m) subject to the
constraint |m| = constant depending on the tempera-
ture. The effective magnetization vector m : Q — R?
is a spatial average of the microscopic magnetization
m,, and so averages out the small oscillations which m,,
is enforced to develop for small values of the exchange
energy parameter « > 0, cf. [18,21,22]. The energy com-
prises of four terms known as exchange energy, aniso-
tropic energy, exterior field (or Zeeman) energy and
stray-field (or magnetostatic) energy, namely

E,(m) :=/¢(m)dx—/f~mdx

Q Q
1 ) ) 1)
+§/|Vu| dx+a/|Vm| dx.
Q

Rd

For large and soft magnets, the parameter « vanishes in
the magnetic energy E,. This is justified in [12], where
it is proven that the effective model for ¢« — 0is Ep(m)
and the effective magnetization m : Q@ — R? obeys
the averaged constraint jm| < 1 (with the aforemen-
tioned constant normalized to 1). In fact, Egy is non-
convex owing to the non-convex side restriction and
infimizing sequences are enforced to develop oscilla-
tions of smaller and smaller length-scale (in contrast
to E4 where @ > 0 determines some smallest length-
scale). In the limit, the oscillations describe a measure
rather than a Lebesgue function. The expected value
of this limiting Young measure is the effective or mac-
roscopic magnetization m in the model and can in fact
directly be computed by some relaxed energy density.
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Note that this effective model is the mathematical foun-
dation of the so-called phase theory in micromagnetics
[17]. This paper follows [8,9,11] and adopts the effective
model directly. The relaxed problem (RP) [12,29] reads:
minimize

E§*(m) ::/¢**(m)dx—/f-mdx
Q Q

1 @
4= / |Vu|? dx
2
R4
subject to the side-constraint
im(x)| <1 for almost every x € Q. 3)

Given some direction e € R?, called easy axis with |e| =
1, and an orthonormal basis (e, 2,23, . . ., zz) of R%, for
uniaxial materials such as Cobalt the anisotropic energy
density ¢** in (2) reads

d
¢ (m) = % jzzz(m . z]~)2 for allm € RY. 4)

This specifies the first term out of three of (2), and we
restrict to the uniaxial case in the following. The second
is alinear relation with a given applied magnetizationf
L?(2;RY); here and below we employ standard notation
for Lebesgue spaces: hence, f € L?(RQ2) e.g. means that f
is measurable and L? integrable (i.e. fQ If(x)|2 dx < 00),
while L2(Q;R?) denotes L%(2) x - -- x L2() in d com-
ponents. The third term in (2) models the stray field
energy in R?. Given a magnetization m (as the argu-
ment in Ej*(m)), the associated magnetic potential u
solves a Laplace equation

Au=divm inR? in the sense of distributions. (5)

Note that (5) involves interface conditions [du/dn] =
—m - n for the jump on 2. Here and below, m is an L*®
function on @ and extended by zero outside the mag-
netic domain Q. Then, Vu is uniquely determined and
belongs to L2(R%;R%); hence the third energy term is
finite. This concludes the short description of the effec-
tive model via (RP). In fact, (RP) has solutions [12]
which are unique [8,25].

For d = 2, the numerical analysis of the effective
model was initiated by [11]. Therein, the effective mag-
netization m is discretized by a 7 -piecewise constant
ansatz and the side-constraint is enforced by a penalty
method, where 7 is a triangulation of Q. The entire
space R? in (5) is replaced by a bounded domain Q
containing €2, and the potential equation is solved with
respect to homogeneous boundary values in Hé (). For
the solution of the potential equation, [11] uses noncon-
forming P1 elements, since the coupling of conforming
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P0-P1 finite elements leads to instabilities. These can be
overcome by adding a certain stabilization term based
on jumps over edges/faces of the triangulation 7, cf.
[13]. While [11] provides a priori and a posteriori error
control, [13] states only some a priori error estimates. In
all these results the L2-norm of the error §;, = m — my,
is only controlled in the z;-directions, i.e. there are no
estimates for |8, - €|/ ;2(q)- The only estimate concerning
the latter term can be found in [28]. Therein a (much
more complicated) higher order discretization of m and
ue H(l) (ﬁ) is considered, which is stabilized again with
certain jump terms. The a priori result states a reduced
convergence order |8, -e|l;2(q) = O(h'/?), whereas |18}, -
zjll;2(q) = O(h) asin [11,13]. Unfortunately, the techni-
cal details of the proof remain unclear, and no numerical
experiments for this discretization are given.

In contrast to [11,13,28], the entire space R? in (5) is
considered in [8,9] by use of an integral operator L. For
a 7T -piecewise constant magnetization my, the potential
up = Lmy is computed exactly. The main advantage of
this ansatz is that one only has to deal with one discret-
ization for my, instead of with a coupled discretization
as before. Moreover, it follows that the a priori and
a posteriori results from [11] essentially carry over to
this discretization and can be generalized to cover the
3D case, as well [8]. As before, the error estimates are
only concerned with (|8 - zjll;2(q)- Recently, it could
be proven that, for d = 2, this discrete model leads
to fully weak convergence 8, — 0 in L2(S:R%) and,
moreover, the use of an appropriate stabilization yields
181l 22y = ORY/?), cf. [10].

This paper reviews the full model and its discreti-
zation from [8,9] accompanied by an a priori and a
posteriori error analysis in Sect. 2. The focus is then on
numerical aspects of the solution of the discrete model.
We compare the performance of the simple Newton—
Raphson scheme with a gradient method for which
global convergence is proven in Sect. 3. Adaptive mesh-
refinement is discussed and underlined with a numerical
example from [8]. Section 4 summarizes a few observa-
tions and comments on future developments.

2 Preliminaries and error estimates

This section presents the effective model proposed for
the numerical simulation in more detail. It introduces
the reformulation of the stray field energy contribution
by a non-local integral operator P as well as the penalty
formulation for the constraint m| < 1. Recalling the dis-
crete model from [8-10], we continue with the review
of the corresponding a priori and a posteriori error
control.
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2.1 The exact model

Let m = (my,...,m,) be a magnetization, and denote
by G : R?\{0} — R the Newtonian kernel,

_ )/271 log | x| ford =2,

G(x):
® v /2 —d)x*¢ ford > 2,

(6)
for x # 0, where the positive constant y, is the surface

measure of the unit sphere, e.g. y» = 2m, y3 = 47. Given
the convolution operator

d
Lm:= > (3G/dxj)»m; inR’,
j=1

toc (RY) satisfies Pm :=
Vu € L*(R?;RY) and (5). The Helmholtz projection
operator

one can prove that u = £m € H!

P LARGRY) — LHREGRY

is the L? orthogonal projection onto the linear and
closed subspace of all the gradients [14,22,27]. Hence,
the stray field energy in Ej§*(m) reads

/qu|2dx:/(Pm)-mdx.
R4 R4

The Géateaux derivative (also called first variation) of
E** yields the Problem (RP): Find (A,m) € L%(Q) x
L?($2; R%) such that

Pm+ Vo™ m)+im=f ae. inQ, (7)
A>0,m <1, A(1—-—|m|) =0 a..in Q. 8)

The variable A is the Lagrange multiplier for the side-
constraint [m| < 1, and (8) are the associated Kuhn-
Tucker conditions. Note that (7) has to be solved on
the bounded magnetic domain 2 only, although Pm
has global support R¥. This problem (RP) is well-posed
in the sense that there exists a unique solution m €
L2(S:;RY). According to convexity, m is the unique min-
imizer of Ej* satisfying the side-constraint (3).

2.2 The discrete model

The spatial discretization of (RP) is done with a penal-
ized Galerkin method which is based on a finite partition
7T of Q into measurable subsets (of 2). We suppose that,
for T € 7, the interior of T is a connected Lipschitz
domain. Then, £°(7) denotes the linear subspace of
T-piecewise constants; one such function is the mesh-
size function /4 := h1 € £9(7T) defined by

hlt = hr :=diam(T) forall T € 7.

[Recall that (-)|7 denotes the restriction of a function
(-) onto T.] Another example would be f7 € LO(T;RY),
the piecewise integral mean of the given right-hand side
f e L?(;R?) which is defined by

7|7 = |T|_1/f(x)dx forall T e T. 9)
T

Suppose that o(-,-) is a positive semi-definite bilinear
form on £°(7)%. Then, the (stabilized) discrete problem
(RP; ) reads as follows: Given a penalization parameter
e € L2(T) with & > 0, find m;, € £°(7)? such that

(Pmy, + Vo™ (my) + Apmy 3 ny) 72 + o (my, ny)
=(f;mny);2 (10)

for allmy, € £9(7)?, where the discrete Lagrange multi-
plier A, € £%(7) is defined by

_1 (jmy,| — D+

[my,|
The discrete model (RP,j) can be reformulated as a
minimization problem to apply the direct method of
the calculus of variations and to show well-posedness,
i.e. the unique existence of solutions [8]. The numerical
computation of the unique solution my, is the topic of
the subsequent sections.

Ap=¢ with ()4 := max{-,0}. (11)

Remark 1 (a) Note that, according to (11), (RP.z)
leads to the solution of a nonlinear system of equa-
tions. In [8,9] this is done via a Newton—Raphson
method which performs very efficiently, although
convergence could not be proven.

(b) In Sect. 3 we will consider the stabilization

o (my,ny) = (hmy ; hny) ;2 (12)
to prove global convergence of a gradient method.

(c) The consideration of functions &,4 € £%(7) in-
stead of scalars reflects the treatment of adaptive
mesh-refinement to obtain 7.

Remark 2 Let T be aregular triangulation of @ C R? in
the sense of Ciarlet. Suppose that the elements T € 7
are triangles, and denote by SY(T) the usual P1 finite
element space consisting of all continuous and 7 -piece-
wise affine functions. In [10], the stabilization

o (my,ny) = 3{(d — THmy, ; (id — THny) 2

1
+f (hVIImy, ; hVIIng) ;2

is used to prove that [[m —my||;2q) = Oh/?) provided
m,im € H'(Q;R?). Here, I denotes the L? projection

(13)
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onto S'(7)? and C > 0is an appropriate constant which
only depends on the shape of the elements in 7, but nei-
ther on size nor number. [In fact, C > 0 is chosen with
respect to an inverse estimate.] This result is the first full
convergence result for the lowest order discretization.
However, we have to stress that we are unaware of any
regularity properties of m and .

2.3 A priori error control

Throughout this section, let (A,m) and (i, my) denote
solutions of (RP) and (RP, ), respectively. Then, there
is a 7 - and o-independent constant C > 0 such that
IPm — Py |75 o) + V4™ (M) — Vo™ my) 175 g,

+IAm — Apmy175 o)

+o(m7 —my,, m7 —my) + o (my, my)

< CA + el @) (Im = m 112, g,
2
HIVg™ m) — (V¢ m) 7|2, o,
+lpm = G712, g, + o (mr,m))

+C(Ilell @ IVE Aml2 g, + o (Gam)7, 7))

+o (my, (Am)7 — Apmy). (14)
Recall that here and below (-)7 denotes the 7 -piecewise
integral mean (9). Hence the first three terms on the
right-hand side of (14) are best approximation errors.
The last term C||8||Lm(g)||ﬁkm||iz(9) of order O(£?) is
the penalty error. Furthermore, the estimate involves
some stabilization errors. The most problematic term is
the last stabilization term on the right-hand side of (14),
since it is not an a priori term. For the proposed stabil-
ization terms in (12) and (13), o (my,, (Am)7 — Ajmy) can
be absorbed on the left-hand side: for (12), there holds

o (my, (Am)7 — Aymy)
1 1
< EU(mmmh) + EG(()»m)T, (Am)7) — o (my, L)

and o (my, £,) > 0. For (13), it can be proven that

o (my,my) < Somymy) + 11— €43 + 51— exl3.

If we suppose m and A to be smooth, i.e. m,Am €
H'(Q;RY), then (14) verifies
IPm — Pmy||2gay + VO™ m) — Vo™ (mp) |12
+||Am — )\,hmh”LZ(Q) = 0(8 + h)

in the non-stabilized case. This suggests the choice ¢ = h
for the penalization parameter. Moreover, we see that
the stabilization term on the right-hand side of (14)
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should satisfy at least o (n7,n7) = O(h?) for a smooth
function n € H!(Q;RY).

The Galerkin orthogonality does not involve the term
(m — m) - e, but only V¢p**(m) — V¢**(my,). This is why
the error estimates in [8,11,13] all lead to the term

d
IVe™ (m) — V™ mp) |72, = D Ilm —my) - 2175 o)
j=2

on the left-hand side and do not give control over | (m —
my)-ell;2q). (Here, we used the Definition of ¢** in the
uniaxial case and Parseval’s identity.)

While the cited result applies for 2D and 3D, the fol-
lowing arguments are so far restricted to 2D only. One
can prove that the error 8, = m — my, in the H'(Q)-
norm (i.e. the dual norm of H'(2) with respect to the
extended L?-scalar product) satisfies

[m— mh”f]l(Q;RZ) (15)

<C (||Pm — Pmy |l 222y + |(m —my) - Z2||L2(Q))-

Here, the terms on the right-hand side are controlled
by (14). In particular, we obtain fully weak convergence
of my, towards m in L%(Q;R?), with the same order of
convergence as before [10].

The second stabilization term on the left-hand side
of (14) provides an additional convergence property
that has not been used so far. Considering the stabil-
ization (13), one can derive

m —my|2qre) = O(h+ 5)1/2)- (16)

Details will appear in [10]. Although this result is the
only full L? convergence result for the proposed low-
est order discretization, the numerical experiments give
evidence that one can do better: even for the non-sta-
bilized discretization we observe full L*> convergence of
optimal order O(h + ¢).

2.4 A posteriori error control

So far, a reasonable a posteriori error analysis has only
been established for the non-stabilized discretization.
Using the notation from the previous section, we have

[Pm — th||2L2<Rd) + V™ am) — Vo™ (my,) ”2L2<s2>
< 2{lle Aumpll75 g
+lelapmy [{(E — £7) — (Pmy, — (Pmp) )} 11q)
+((—t7) — (Pmy, — (Pmy)7) s m—m7);2}. (17)

The right-hand side of (17) is not fully computable as it
contains m — my. Since |m| < 1 there follows
m —m7| %@ <2 and, hence, by Holder’s inequality
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(€ —f7) — (Pmy, — (Pmy)7) ;m —m7),> F(x) := ((Pmy, + V¢** (my) + Apmy, — £ 5 9j) 2
<2|(f —f7) — (Pmy, — (th)T)||L1(Q)- +g(mh,(pj))]4i\g —0eRWN (19)

For m € Who°(Q;RY), the Poincaré estimate leads to

(& —f7) — (Pmy, — (Pmy)7) ;m—m7);>
< ClM{E —t7r) — (Pmy, — (Pmp) )} 1)

with a constant C = CP ||mllwl00(g2)

The two resulting a posteriori error estimates are
reliable (in the first case, as no assumption on the smooth-
ness of the unknown solution m is included) but not effi-
cient (as the estimate behaves too coarsely — cf. [8] and
the numerical examples below); or, conversely, efficient
(as the second estimate gives the higher convergence
rates) but not reliable (or it appears doubtful to assume
a higher order of smoothness such asm € W (Q: Rd)).
This phenomenon is called reliability-efficiency gap in
[6]: What is reliable is not efficient and what is efficient
is not reliable. The reason is again the lack of control
over the term [|m — my || ;2(q).

We expect to overcome this drawback by an appro-
priate stabilization. This problem is topic of our current
research.

3 Implementational aspects

This section presents the details on the numerical algo-
rithms with emphasis on a globally convergent gradient
method versus the classical Newton—Raphson solver.
The affect of the small penalty parameter is studied in
[9] and not discussed in detail here. It can be observed
in numerical experiments with smooth solution that one
has to choose ¢ = O(h).

3.1 Computation of discrete solution

To compute the unique solution my, of (RP; j) numer-
ically, we consider a basis representation of my. With
respect to a triangulation 7 = {77, ..., T} the discrete
equations lead to the unknown coefficients x € R of

N d

my, = > > Xjulja € L°(QRY.
j=1 a=1

(18)

Here, one abbreviates [j,1] := j and [},2] := j+ N in
2D (and furthermore [f,3] := j + 2N for 3D) to fix the
order of the coefficients and basis functions ;4 =
XT;€a, where XT; denotes the characteristic function of
T; and ey, is the a-th standard unit vector. If we identify
the coefficient vector x with my, the discrete problem
(RP, ) is recast into a nonlinear system of equations

and then solved by an iterative solver. In [8,9] we sug-
gested the use of a (classical) Newton—Raphson scheme.
But since F is not continuously differentiable (accord-
ing to the definition of 1), convergence of the classical
Newton-Raphson scheme is unclear.

3.2 A globally convergent gradient method

We recall an abstract result from [2] stated in the spirit
of [24]: let X be a Hilbert space, and let a;(-,-) be a
sequence of equivalent scalar products on X, i.e. there
are constants o, M; > 0 such that, for allx,y € X,

ajllx% < aj(x,x) and aj(x,y) < Mjlxllxlylx. (20)

Let E : X — R be a Géteaux-differentiable energy
functional on X such that there are constants 8,L > 0
with

Bllx = yll} + DE)(y — x) < E(y) — E(x),
(DE() = DE()(x —y) < Llx = yl%,

(21)
(22)
for all x,y € X. Then, one can prove that the functional
E has a unique minimizer x* € X. Given an arbitrary

initial value xg € X and a successively defined sequence
(%),
aj(xj — xj41,-) = DE(xj) € X* forjeN, (23)

one can prove convergence provided that0 < +a;—L,
More precisely, there holds for §; := E(xj) — E(x*) > 0

(24)
(25)

841 < (1 —4B(B +aj — LIM; )3,
e = xil5 < MPB2(B + — L)™' (8 — 8j41).

In particular, the energy sequence E(x;) ismonotonously
decreasing. Provided there are constants «g, My > 0
such that ey < @j < M; < M for all j € N, one ob-
tains convergence lim x; = x* in X. We apply this result
— 00

to compute the uilique solution of (RP,;), where we
consider the stabilization (12) and g = hZ . /2 with the
minimal mesh-size Anyjn := min 4.

Corollary 1 Let sz) e LY9T) be an arbitrary initial

value, and define a sequence of magnetizations m}l’) in

L9 inductively forj € N by
i1 . 1 . .
mg+ )= mg) - al (ng))T + Vo** (mg))

+am) — £ + h*m) ] (26)
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with any o > 2 + 3/emin and epin = mine. Then, (mf({))
converges to the unique solution my, of (RP, ) stabilized
by (12), i.e. o (my,my) = (hmy, ; hny) ;2.

Proof With respect to the abstract notation, we have
X = £%T)% equipped with the usual L? norm and

1 1
E(my) = §/|th|2dx+ §/|¢**(mh)|2dx
R4 Q

1
—/f.mhd.x—i—%/(lmﬂ—l)idx (27)
Q Q

1
+ 5o (my, my).

Note that E is convex and (Fréchet-) differentiable with
derivative

DE(my)(ny) = (Pmy, + V™ (my) — £+ Apmy, 5 mp) 2
+o (my, ny)

for all ny, € £°(7)“. Therefore, (RP, ) is equivalent to
DE(my,) = 01in £O(T;RY*, i.e. x* = my. To verify (21)
for B = hZ,/2, we check the estimate for each energy
contribution separately. Obviously, for scalars a,b € R
there holds 2a(b — a) < (a — b)? + 2a(b — a) = b*> — a%.
If we apply this elementary calculation to the occurring
bilinear forms, we obtain

(Pmy, s nj, —my); 2
1 2 1 2
= Ellpnh”LZ(Rd) - E”th”LZ(Rd)’
(Vo™ (my) 5y —my) 2
1 2 1 2
= §||¢**(nh)||L2(Q) - EI|¢**(mh)||L2(Q)’
Blmy, —my |17, + o (my,my, — my,)

< Eo(mh — Ny, my —ny) + o (my,n, —my)

1 1
= Eﬁ(nh,llh) - zd(mh,mh)-

Since the third term in (27) is linear, it remains to esti-
mate the penalization contribution. This follows from
the pointwise estimate

H (=1 .

o Sy —x) < Iyl - DA — (x| - DA

for all x,y € RY, which is easily checked by direct cal-
culations. To verify the Lipschitz condition (22) with
L = 2+ 3/emin + B we proceed analogously. The only
point of interest is the Lipschitz continuity of the map-
ping A : £9T)? — £%T)?,my, — i,my with respect
to the L2 norm and Lipschitz constant 3/emin. But this
follows from the pointwise estimate

(W=D (yl=Ds
K 1

Y| <3x -yl
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for all x,y € R? which is again obtained by a direct
calculation. Note that « satisfies 0 < 8 + o — L. Now,
consider the scalar product aj(my,n,) = a(my ;ny);>2
and oj = a = M; so that (20) is satisfied. According

to (23) the inductive definition of mg),

. "
oz(m;l’) — m;lH ) ;)2
= (Pm) + v mP) + 20 m) — £ ny),5
+(hmy, ; hny) 2,

for allmy, € £%(7)?, defines a convergent sequence with
limit my,. Recalling that the mapping m — my is the L?

projection onto £°(7)%, we can exchange Pm}l’) and f by

(ng))'f and f7, respectively. Testing the last equation

with the basis functions yields (26). |
The computation of the L2 scalar product

Afjalikpl = (PPljal s Plkp) 12

required for the evaluation of F(x) in (19) is possible
with a closed form formula,

Afjallk,pl ‘= / (Pix.p1) - @rja) dx (28)
Rd
= —/ / G(x—y)vg)(X)vék)(y)dsydsx
AT; 3Ty

(with outer normal vectors v and v® on the bound-
aries d7; and 9T}, respectively), cf. [27]. The computa-
tion of the double boundary integral can be performed
exactly [7,15,23]. In particular, (Pmy)7 occurring in
Corollary 1 can be computed analytically.

Remark 3 It is possible to apply H-matrix techniques
[3] to treat the matrix A efficiently [8,9,16,26,27]. This
allows to reduce the numerical cost for both storage and
matrix—vector multiplication down to (almost) linear.

The factor A := 1/« in (26) can be interpreted as
a damping factor for the step size, where the search
direction is given by the gradient of the energy func-
tional. A priori @ has to be relatively large and this is
also confirmed by the numerical experiments. Even if
we combine the introduced gradient method with a line
search method, the number of iterations remains to be
a couple of thousands even on a uniform mesh with
less than 500 elements. On the other hand, as has been
studied in [9], the classical Newton—Raphson scheme be-
haves perfectly and converges in less than 20 iterations.
This makes the above algorithm impractical for real-life
experiments. For the numerical experiments in [8,9], we
used a classical Newton—Raphson scheme with initial
value obtained by prolongation of coarse grid solutions.
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The corresponding algorithm can be stated quite effi-
ciently. It is shown in [9] that — up to one matrix-vector
multiplication with A —the computation of residual F(x)
and Jacobian DF(x) can be performed in O(N) opera-
tions, where N denotes the number of elements.

3.3 Adaptive mesh-refinement

The nested Newton—Raphson solver is part of a mul-
tilevel scheme driven by an adaptive algorithm. The a
posteriori estimate (17) gives rise to the error estimators

1 1
2 2
W= (z MZT) and n:= (Z nzT) (29)
TeT TeT
with the refinementindicators ur, nr,for T € 7, defined
by

ET = (8)\.h|mh|)|T = maX{O’ |mh|T| - 1}’
12 = A+ )| — 1) — (Pmy, — (Pmp) )l 17y

+|T|3, (30)
g = (hr + L) — f7) — (Pmy — (Pmy) D) 11 7y
+|T65.

The estimator u is reliable, i.e. an upper bound for the
error [|Pm—Pmy|l ;2 ga) + V™ (m) — V™ (my) [ 12
up to a multiplicative constant, but cannot be efficient,

i.e also a lower bound; the estimator 7 is reliable solely
for m € Wh°(Q; RY), but expected to be efficient.

Algorithm 2 (Adaptive Mesh-Refinement) Input: /ni-
tial triangulation TO o >0,and0 <6 < 1. Setn =0
and my, := 0.

Compute forn = 1,2,... until termination

(i)OnTje TMW = {Th,....,Tn} set |1, == ¢j = h”}r_ > 0,
j=1,...,N ‘

(ii) Call Newton-Raphson scheme with start vector asso-
ciated to mﬁl"_l) and output m;l") .

(iif) Compute yu and n from (29) and indicators n; := nr,
and pj := pr; from (30) with my, substituted by m;l").

(iv) Mark an element T; € T™ provided nj >0 1H}€aXN Nk
=Kk=

(or p;j respectively).
(V) Refine the marked elements, update n and go to (i).
Output: Sequence of T™, n™, V), m;l”) forn=1,2,...,

The choice 6 = 0 in Algorithm 2 leads to uniform
mesh-refinement, whereas 6 = 1/2 leads to adapted
meshes. The following example underlines that adaptive
mesh-refinement can improve the order of convergence
up to the optimal order O (k) in terms of the mesh-size A.

To study the performance of the mesh-adaptation, we
consider an example from [8] with known non-smooth
exact solution (1, m) on the unit square Q = (0, 1)2,

Table 1 Experimental results in Sect. 3.3 for uniform (top), -adaptive, and n-adaptive (bottom) mesh-refinement with penalization

parameter ¢ = h.

k N n® £ «®) (E) n® «® () n® E® 1o 1 ® () E® /5, ®
Uniform mesh-refinement
0 4 8 0.463 0.660 1.425 0.749 0.618
1 16 7 0.275 0.376 0.361 0.435 1312 0.542 0.233 0.507
2 64 11 0.158 0.401 0.186 0.480 1.176 0.393 0.233 0.402
3 256 10 0.094 0.370 0.089 0.527 0.947 0.274 0.259 0.344
4 1024 12 0.056 0.381 0.044 0.510 0.792 0.196 0.241 0.284
5 4096 12 0.032 0.394 0.023 0.481 0.701 0.146 0.215 0.222
p-Adaptive mesh-refinement
0 4 8 0.463 0.660 1.425 0.749 0.618
3 106 9 0.122 0.537 0.144 0.553 1.185 0.327 0.285 0.373
5 331 11 0.071 0.549 0.072 0.737 1.008 0.235 0.317 0.304
7 892 11 0.045 0.373 0.048 0.469 1.063 0.184 0.256 0.246
9 4948 15 0.019 0.447 0.018 0.487 0.936 0.120 0.209 0.162
n-Adaptive mesh-refinement
0 4 8 0.463 0.660 1.425 0.749 0.618
3 100 10 0.128 0.471 0.144 0.575 1.127 0.333 0.362 0.384
5 373 9 0.068 0.765 0.068 0.578 0.995 0.229 0.333 0.299
7 1183 10 0.043 0.803 0.036 0.846 0.838 0.171 0.358 0.249
9 4516 14 0.023 0.348 0.018 0.522 0.801 0.128 0.160 0.181

The table shows the outcome of Algorithm 2 with respect to the k-th mesh 7;: the number of elements N, the number of steps 7 in the
Newton—-Raphson scheme to compute my, the error £ = ||m —my, || 12(9) and the error estimators 1 and p. Furthermore, the table shows

the experimental convergence rates k%) of the error E and the estimators 7, i, and the quotients 5/E and E/u. In contrast to the case of
uniform mesh-refinement, for the adaptive schemes the efficiency quotient /E seems to converge to a value close to 1. The reliability

quotient £/u tends to zero as for uniform mesh-refinement
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Fig. 1 Sequences of
adaptively generated meshes
70,71, ..., 712 by Algorithm 2
with refinement indicator o
(with N = 4,16,31,76,142,

208,415,586,911,1,717,2,
245,2,779). The meshes are
highly adapted towards the
right upper corner (1,1) and

along the interface
4,1 —xl =1

_|_
+
I
I
us
HHA

H-+1+I
I
|

] (), 0 forx € w,
(m(x), A(x)) := [ D e Y1) forx e Q\w
(1)

with a singular gradient at the three vertices (0, 1), (1, 0),
(1,1) on the boundary of the magnetic body 2 = (0, 1)2
leading tom ¢ H'(Q;R?). Here,

1,1) —
y(x)._(,) X

iy e ={relid.n - x<1}

The unit square 2 is filled with a uni-axial magnetic
material with easy axise = (—1, /v2,0ez=(1,1)/2
in Eq. (4). The errors |[m — my|| ;2 g, the error estima-
tors n and u, and their experimental convergence rates
« in terms of the number N of degrees of freedom are
compared in Table 1 for uniform, p- and n-adaptive
mesh-refinements. The quotient £/ is bounded from
above and decreases. This is in agreement with the reli-

@ Springer

ability and the expected overestimation (owing to the
reliability-efficiency- gap). The quotients n/E are moti-
vated by an expected efficiency of  and they are, in fact,
bounded from above according to this. The convergence
rates for the error E are strongly improved by adaptive
mesh-refining in contrast to the convergence rates for
the error estimators n and p. Finally, the reliability-effi-
ciency-gap is reflected explicitly by the quite different
convergence rates « for n and u.

Figure 1 shows meshes that are obtained from our
adaptive algorithm with the refinement indicator o7, :=
[lm — m7|| LA(T))- Although there is no proof, we expect
that the p-adaptively generated meshes are somehow
optimal since they try to equidistribute the best-approx-
imation error over Q. Figure 2 displays meshes obtained
by n-adaptive mesh-refinement. Note that the generated
meshes are quite similar to the optimal meshes. This is
also reflected in the experimental convergence order of
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Fig. 2 Sequences of

adaptively generated meshes
70,71, ..., 79 (with

N =4,16,61,100,
286,373,1,114,1,183,1,912,4,516)

obtained by Algorithm 2 with
refinement indicator n and

penalization parameter ¢ = A.
Notice that we obtain meshes

which are close to the
o-adaptively generated

meshes of Fig. 1

i

the error in Table 1. Altogether, we obtain the optimal
convergence order O(N'/?) corresponding to O(h) for
2D.

4 Conclusions

The final section presents conclusions, comments, and
remarks on future developments.

4.1 Resume

In the large and soft body limit of micromagnetics, the
effective magnetization vector, i.e. the space average of
the micromagnetic magnetization vectors, can be calcu-
lated directly from an effective model (RP). Therein,
the exterior field problem can be recast via some Helm-

holtz projection operator P that allows a nonlocal prob-
lem for L°° functions on the magnetic domain . The
convexified pointwise side-restriction |m| < 1 can be
involved in a penalization strategy. The associated dis-
crete problem (RP, ;) acts on piecewise constant trial
and test functions. The work [8] presents a throughout
a priori and a posteriori error analysis of the discretiza-
tion errors which is sharpened in [10].

Iterative schemes for the solution of the linear sub-
problems occurring by the solution of (RP, ;) are sup-
ported by an H-matrix approach [3,16,26].

4.2 Effective modelling of effective magnetization
The model (RP,j;) allows the efficient simulation of

the effective magnetization vectors. This yields a mac-
roscopic approximation of a multi-scale problem with

@ Springer
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a complicated microscopic structure which would be
impossible to compute by a resolution of the fines scale
phenomena. We refer to [5] for a one-dimensional triv-
ial example of non-convex minimization problem that
illustrates that cluster of local minimizers in the high-
dimensional global non-convex minimization problem
yield an extremely difficult discrete problem one should
not assume to be able to solve accurately.

4.3 Stabilization and penalization

The penalty parameter ¢ = A% for « > 1 small, such as
& = h seems to be a good compromise between accu-
racy (« large) and the condition of the discrete system
of equations (« small). In contrast to other situations in
convexified problems [1], a further stabilization is not
necessary but might yield further convergence proper-
ties of the scheme.

4.4 Future developments

The a posteriori error estimates in this paper show the
reliability-efficiency gap for the error estimators pu
(proven to be reliable) and n (expected to be efficient).
This dramatic lack of error control requires to be over-
come in the future for reliable and accurate numerical
simulations. In the numerical experiments one obtains
full L? convergence which is not yet understood and has
to be the topic of further research. Finally, establishing
rigorous convergence properties of iterative schemes for
the solution of (RP, ;) might be an interesting task.
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