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Abstract

Following some de Rham complex, Arnold and Winther have recently proposed a symmetric mixed finite element method (MFEM)
in linear elasticity. This paper describes the implementation of the symmetric MFEM and its 30 � 30 local stress stiffness matrices and
studies the implementation of the lowest-order scheme for general boundary conditions. Numerical experiments in model examples in
computational mechanics illustrate the robust locking-free convergence behavior and support the theoretically predicted experimental
convergence rates.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The paper investigates the mixed finite element solutions
of the 2D Lamé system in linear elasticity due to Arnold
and Winther [3] for some plane elastic body X � R2 with
boundary oX ¼ C ¼ CD [ CN decomposed into some
closed part CD of positive length for displacement bound-
ary conditions uD and its complement CN ¼ C n CD subject
to applied surface loads g with exterior unit normal m.
Given a volume force f : X! R2 and a traction
g : CN ! R2, we seek the displacement field u 2 H 1ðX; R2Þ
and the stress tensor r 2 Hðdiv;X; SÞ2 satisfying

� divr ¼ f and r ¼ CeðuÞ in X;

u ¼ uD on CD and rm ¼ g on CN :
ð1:1Þ

Here and throughout, eðvÞ ¼ 1
2
ðrvþ ðrvÞTÞ denotes the

linearized Green strain tensor, C is the symmetric fourth
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order bounded and positive definite elasticity tensor, and
S :¼ R2�2

sym denotes the space of symmetric matrices. As a
consequence of Korn’s inequality and the Lax–Milgram
lemma, problem (1.1) has a unique solution ðr; uÞ 2 L2

ðX; SÞ � H 1ðX; R2Þ.
For nearly incompressible materials, i.e., for a Poisson

ratio near to 1/2, the Lamé constant k in C is very large
and the standard computation of a displacement finite ele-
ment solution uh fails in the sense of locking: The constant
CðkÞ in the error estimate

kC1=2eðu� uhÞkL2ðXÞ 6 CðkÞha ð1:2Þ

(for small mesh-sizes h) tends to infinity as k!1; we refer
to [10] for a numerical illustration. The design of mixed fi-
nite element methods overcomes this locking in the sense
that, in different norms in the a priori estimates, the con-
stant CðkÞ in (1.2) remains bounded as k!1.

The design of mixed FEM (MFEM) in elasticity faces
some difficulties with the symmetry constraint explained
in [6] which led to the former discretisations with unsym-
metric stresses [1,9,10,12]. This paper is devoted to a recent
suggestion of a symmetric MFEM due to Arnold and

mailto:cc@math.hu-berlin.de


C. Carstensen et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3014–3023 3015
Winther [3] illustrated in Fig. 1.1 and its algorithmic
realisation.

For completeness we restate the central convergence
results of [3] for the lowest-order case implemented in this
paper with

r 2 Hðdiv;X;SÞ :¼ L2ðX; SÞ \ Hðdiv;XÞ2 and

u 2 L2ðX; R2Þ;

with their discrete counterparts rh 2 Rh, defined in Section
2, and the (discontinuous) piecewise affine displacement
uh 2 P1ðT; R2Þ.

Theorem 1 (Arnold and Winther [3]). There exists some

constant c which is independent of k and independent of the

sufficiently small mesh-size h such that, for sufficiently
smooth r and u, there holds

kr� rhkL2ðXÞ 6 chmkrkHmðXÞ for 1 6 m 6 3;

kdivðr� rhÞkL2ðXÞ 6 chmkdivrkHmðXÞ for 0 6 m 6 2;

ku� uhkL2ðXÞ 6 chmkukHmþ1ðXÞ for 1 6 m 6 2:

The remaining parts of the paper are organized as fol-
lows. Section 2 describes some notation, the discrete sub-
spaces, the weak form, and the implementation of the
subspaces Rh and V h and the MFEM. Sections 3 and 4 con-
tain some numerical examples to study experimental con-
vergence rates for uniform and graded meshes and
provides numerical evidence of the locking-free conver-
gence behavior of Theorem 1. Some remarks in Section 5
conclude this paper.
2. Mixed finite element formulation

2.1. Weak mixed formulation

This paper exploits standard notation for Lebesgue
L2ðXÞ and Sobolev spaces H 1ðXÞ and concerns the spaces
Fig. 1.1. Illustration of the 30 degrees of freedom of the Arnold–Winther
MFEM for the lowest-order stresses (left) and displacements (right). The
three dots at the three vertices of the triangle (left) represent point
evaluations for all three components of r 2 S while the three dots in the
interior denote the integral means for all three components. The arrows
represent the moments of order 61 of the two components of the
boundary stress vector rm. The six dots in the triangle (right) represent the
degrees of freedom for the two components of the (globally discontinuous)
P 1 displacement approximation.
R :¼ Hðdiv;XÞ2; V :¼ L2ðX; R2Þ; S :¼ R2�2
sym ;

Rg :¼ fs 2 Hðdiv;XÞ2 \ L2ðX; SÞjZ
CN

w � ðsmÞdsx ¼
Z

CN

w � gdsx for all w 2 Rg;

Hðdiv;XÞ :¼ fq 2 L2ðX; R2Þjdivq 2 L2ðXÞg:

The weak formulation of (1.1) reads: Given the data
uD 2 H 1ðX; R2Þ, f 2 L2ðX; R2Þ, g 2 L2ðCN ; R2Þ, seek
ðr; uÞ 2 Rg �V withZ

X
r : C�1sdxþ

Z
X

u � divsdx

¼
Z

CD

uD � ðsmÞdsx for all s 2 R;Z
X

v � divrdx ¼ �
Z

X
f � vdx for all v 2V:

ð2:1Þ

Here and throughout, � and : denote the scalar product in
R2 and S :¼ R2�2

sym.

2.2. Arnold–Winther MFEM

On each triangle T in the regular triangulation T, the
local discrete counterparts of R and V read

RT ¼ fs 2 P3ðT ; SÞjdivs 2 P1ðT ; R2Þg and

V T ¼ P1ðT ; R2Þ: ð2:2Þ

For each triangle T ¼ convðP 1; P 2; P 3Þ with vertices P 1; P 2,
and P 3 2 R2 with the barycentric coordinates k1; k2, and k3

on T

kjðP kÞ ¼ djk for;k ¼ 1; 2; 3 ð2:3Þ

(with Kronecker’s delta djk) form the nodal basis of
P1ðT ; RÞ. One basis /1; . . . ;/10 of P3ðT ;RÞ reads

/1 ¼ k1; /2 ¼ k2; /3 ¼ k3; /4 ¼ k1k2;

/5 ¼ k2k3; /6 ¼ k3k1; /7 ¼ k1k2ðk1 � k2Þ;
/8 ¼ k2k3ðk2 � k3Þ; /9 ¼ k1k3ðk3 � k1Þ; /10 ¼ k1k2k3:

An arbitrary function r 2 P3ðT ;SÞ assumes the form

r :¼
X10

k¼1

/k

ak ck

ck bk

� �
ð2:4Þ

with 30 coefficients a1; . . . ; a10, b1; . . . ; b10, and c1; . . . ; c10.
Since RT has dimension 24, one needs to design 24 basis
functions of RT in terms of the real coefficients ak; bk; ck.
According to [3], the natural degrees of freedom
n1; . . . ; n24 on the triangle among the coefficients in (2.4)
are specified in (i)–(iii) as follows:

(i) the values of the three components of r at each vertex
P j of T (9 degrees of freedom), i.e.,
rðP jÞ ¼
n3j�2 n3j

n3j n3j�1

� �
;
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(ii) the values of the moments of degree 0 and 1 of the
two normal components of r on each edge Ej of T

(12 degrees of freedom), i.e.,
jEjj�1

Z
Ej

rmEj dsx ¼
n4jþ6

n4jþ7

� �
;

jEjj�2

Z
Ej

ððx�midðEjÞÞsEjÞrmEj dsx ¼
n4jþ8

n4jþ9

� �
:

Here and throughout this paper, sEj ? mEj denotes the
unit tangential vector along the edge Ej with mid-
point midðEjÞ;

(iii) the value of the three components of the integral
mean of r on T (3 degrees of freedom), i.e.,
jT j�1

Z
T

rdx ¼
n22 n24

n24 n23

� �
:

Fig. 2.1. Triangle T = conv{P1, P2, P3} with vertices P 1; P 2; P 3 (ordered
counterclockwise by convention) and edges E1 = conv{P1, P2},
E2 = conv{P2, P3}, E3 = conv{P3, P1} of respective lengths jE1j; jE2j; jE3j.
The degrees of freedom n25; . . . ; n30 represent the sum of
coefficients of the P 3 basis which belong to the quadratic
terms of divr. The restriction divr 2 P1ðT ; R2Þ implies that
these degrees of freedom must be zero.

The complete mapping ða1; b1; c1; . . . ; a10; b10; c10Þ 7!
ðn1; n2; . . . ; n30Þ is given through the 30 � 30 matrix C
specified below. Then the coefficients of the basis func-
tions rj are given by solving the linear system of
equations

Cða1; b1; c1; . . . ; a10; b10; c10ÞT ¼ ðn1; n2; . . . ; n30ÞT: ð2:5Þ

A direct calculation eventually leads to the following repre-
sentation of the 30 � 30 matrix C given in the sequel. Here
and throughout the paper, 0 represents a zero block. Since
all blocks are rectangular, the dimensions of this block 0
follows from consistency, e.g., the three symbols 0 in the
first row of C have the respective dimensions 9 � 9,
9 � 9, and 9 � 3. The matrix C is partitioned as

C ¼ 1

60

60I9 0 0 0

R30;5 S10;0 S0;�1 0

20eI 5eI 0 I3

0 0 eQ Q4

0BBBBB@

1CCCCCA ð2:6Þ

with the k � k identity matrix Ik, eI ¼ I3; I3; I3ð Þ,eQ ¼ Q1; Q2; Q3ð Þ, and

Q‘ ¼ 60diamðT Þ
DxW ð‘Þ 0 DyW ð‘Þ

0 DyW ð‘Þ DxW ð‘Þ

 !

for

W ð1;...;4Þ ¼

3ðk1 � k2Þ �k3 k3 k3

k1 3ðk2 � k3Þ �k1 k1

�k2 k2 3ðk3 � k1Þ k2

0BB@
1CCA:
The matrices Rk;m and Sk;m are defined by

Rk;m ¼

kN ð1Þ kN ð1Þ 0

�mN ð1Þ mN ð1Þ 0

0 kN ð2Þ kN ð2Þ

0 �mN ð2Þ mN ð2Þ

kN ð3Þ 0 kN ð3Þ

mN ð3Þ 0 �mN ð3Þ

0BBBBBBBB@

1CCCCCCCCA
;

Sk;m ¼

kN ð1Þ 0 0

mN ð1Þ 0 0

0 kN ð2Þ 0

0 mN ð2Þ 0

0 0 kN ð3Þ

0 0 mN ð3Þ

0BBBBBBBB@

1CCCCCCCCA

with N ðjÞ ¼ mðjÞ1 0 mðjÞ2

0 mðjÞ2 mðjÞ1

 !
for the kth component mðjÞk of

the outer unit normal mðjÞ on the jth edge Ej of the triangle
of Fig. 2.1. Note that the matrix C is mesh-size independent
because of the appropriate scaling of the degrees of
freedom.

Finally, the piecewise affine and globally discontinuous
ansatz functions for VT ¼ P 1ðT; R2Þ read ðk1; 0Þ; ðk2; 0Þ;
ðk3; 0Þ; ð0; k1Þ; ð0; k2Þ; ð0; k3Þ in terms of the barycentric
coordinates k1; k2, and k3 of T 2T.
2.3. Local stiffness matrix

For each triangle T, its local stiffness matrix

AT :¼ Að1Þ Að2Þ

Að2ÞT 0

 !
2 R30�30

sym ð2:7Þ
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is defined by

Að1Þjk :¼
Z

T
C�1rj : rkdx for j; k ¼ 1; . . . 24; ð2:8Þ

Að2Þjk :¼
Z

T
divrj � vkdx for j ¼ 1; . . . 24; k ¼ 1; . . . ; 6: ð2:9Þ

Following the definition in [7], the fourth-order material
tensor C and its inverse read

C :¼
2lþ k k 0

k 2lþ k 0

0 0 l

0B@
1CA and

C�1 ¼

kþ2l
4lðkþlÞ

�k
4lðkþlÞ 0

�k
4lðkþlÞ

kþ2l
4lðkþlÞ 0

0 0 1=l

0BB@
1CCA:

Let rj and rk, j; k ¼ 1; . . . ; 24, denote two basis functions
constructed above. In Voigt notation, they are both of
the format

rj ¼
aj cj

cj bj

 !
and

aj

bj

cj

0B@
1CA :¼

P10

‘¼1

aðjÞ‘ /‘

P10

‘¼1

bðjÞ‘ /‘

P10

‘¼1

cðjÞ‘ /‘

0BBBBBBBB@

1CCCCCCCCA
ð2:10Þ

for the coefficients from (2.5). The entry Að1Þjk is then com-
puted by

Að1Þjk ¼
Z

T
C�1rj : rkdx ¼ ðaj; bj; cjÞC�1ðak; bk; ckÞ

T

¼ C�1
1;1

Z
T
ðajak þ bjbkÞdxþ C�1

1;2

Z
T
ðajbk þ bjakÞdx

þ C�1
3;3

Z
T

cjckdx:

The integrals contain products of known constants coeffi-
cients and basis functions /‘ and can thus be integrated ex-
actly over T. For example,Z

T
ajbkdx ¼

X10

m¼1

X10

n¼1

aðjÞm bðkÞn

Z
T

/m/ndx ¼ jT jaðjÞT MbðkÞ

with the 10 � 10 mass matrix

M :¼ 1=2520

420 210 210 84 42 84 14 0 �14 14

210 420 210 84 84 42 �14 14 0 14

210 210 420 42 84 84 0 �14 14 14

84 84 42 28 14 14 0 2 �2 4

42 84 84 14 28 14 �2 0 2 4

84 42 84 14 14 28 2 �2 0 4

14 �14 0 0 �2 2 3 �1 �1 0

0 14 �14 2 0 �2 �1 3 �1 0

�14 0 14 �2 2 0 �1 �1 3 0

14 14 14 4 4 4 0 0 0 1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

:

According to (2.9) and the subsequent calculations, the sec-
ond part of the local stiffness matrix reads

Að2Þ ¼ jT j
12

2 1 1 0 0 0

1 2 1 0 0 0

1 1 2 0 0 0

0 0 0 2 1 1

0 0 0 1 2 1

0 0 0 1 1 2

0BBBBBBBB@

1CCCCCCCCA

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
D:

By definition of the ansatz functions, divrj equals some P 1

function with coefficients dðjÞ‘ , namely, for j ¼ 1; . . . ; 24,

divrj ¼
dðjÞ1 /1 þ dðjÞ3 /2 þ dðjÞ5 /3

dðjÞ2 /1 þ dðjÞ4 /2 þ dðjÞ6 /3

 !
:

For the coefficient matrix D ¼ ðdð1Þ; . . . ; dð24ÞÞ 2 R6�24 with
dðjÞ ¼ ðdðjÞ1 ; . . . ; dðjÞ6 Þ

T, there holds

D ¼
L1 L2 L3 L2 0 L3 L2 0 �L3 0

L1 L2 L3 L1 L3 0 �L1 L3 0 0

L1 L2 L3 0 L2 L1 0 �L2 L1 0

0B@
1CAX

with

X ¼ ðxð1Þ; . . . ; xð24ÞÞ 2 R30�24;

xðjÞ ¼ ðaðjÞ1 ; b
ðjÞ
1 ; c

ðjÞ
1 ; a

ðjÞ
2 ; . . . ; cðjÞ10 Þ

T 2 R30;

Lk :¼
Dxkk 0 Dykk

0 Dykk Dxkk

� �
:

2.4. Local load vector and Neumann boundary conditions

Let EDðT Þ denote the set of Dirichlet edges of the trian-
gle T. Then the local load vector bT ¼ ðbD; bf ÞT reads

bD;j :¼
X

E2EDðT Þ

Z
E

uD � ðrjmEÞds for j ¼ 1; . . . ; 24;

bf ;k :¼ �
Z

T
f � vkdx for k ¼ 1; . . . ; 6:

ð2:11Þ

Note that, in general, a one point Gauss quadrature of bT

does not lead to optimal convergence rates of the scheme
and we suggest at least three Gauss point quadrature (in
case of smooth data and otherwise even more accurate
integration).

In the mixed formulation of (1.1), Neumann boundary
conditions are essential conditions to be imposed strongly
using Lagrange multipliers W. With some boolean matrix
B, with respect to the degrees of freedom which belong to
the Neumann boundary, and some vector bN the global lin-
ear system of equations reads

A BT

B 0

 !
x

W

� �
¼

b

bN

� �
:



3018 C. Carstensen et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3014–3023
To satisfy rh 2 Rg it suffices to fix the degrees of freedom
representing the integral mean of rhm on each edge. Numer-
ical experiments suggest that this leads to a suboptimal
convergence order of h1=2 as reported briefly in Fig. 3.4.
To achieve an optimal convergence order of h3, it is neces-
sary to approximate g more accurately: fix the degrees of
freedom corresponding to the moment of order one and
the point evaluations rðP iÞ of Section 3.2.

On each edge E on the Neumann boundary CN , one
computes bN jE ¼ ðd1; d2; d3; d4ÞT via

ðd1; d2ÞT ¼ jEj�1

Z
E

gðxÞdsx;

ðd3; d4ÞT ¼ jEj�2

Z
E
ððx�midðEÞÞ � sEÞgðxÞdsx:

For each node N on the Neumann boundary CN , we have
to consider the three cases (a) – (c) of Fig. 2.2. If the Neu-
mann node is either connected to the Dirichlet boundary
(a) or the edges connected to it build a straight line (b) we
have two equations rðNÞm ¼ gðN ; mÞ for the three un-
knowns of rðNÞ, which we include directly in our global
system. In the third case, i.e., a corner node in the interior
of the Neumann boundary (c), we have four equations
rðNÞmE1

¼ gE1
ðNÞ and rðNÞmE2

¼ gE2
ðNÞ, where mE1;2

de-
note the outer unit normal vectors of the two incident
edges. In general, this over-determined system does not
have a solution so we include the least square constraints
in our global system of equations. For consistent data
and a smooth stress, however, this computes the unique
rðNÞ.

A proper scaling of B with the lengthes of the Neumann
edges preserves the condition number of the system.

2.5. Assembling the global linear system of equations

Given the regular triangulation T of X in the sense of
Ciarlet [4,5,7,11] into triangles with the set of vertices N
and the set of edges E, the global degrees of freedom con-
sist of

(i) three dofs on each vertex for the nodal stress,
(ii) four dofs on each edge for the edge stress moments of

order 0 and 1,
(iii) three dofs on each element for the integral mean of

the stress,
(iv) six dofs on each element for the (discontinuous)

displacement.

The total number of degrees of freedom is 3jNjþ
4jEj þ 9jTj with the cardinality or counting measure j � j.
Γ
D Γ

N

N

Γ
N

N

a b

Fig. 2.2. Different neighbourho
The global basis functions are defined by a unique glo-
bal choice of the orientation of edges as vectors connecting
the two end-points ðP 1; P 2Þ in a fixed order. Since the com-
putation of the local basis functions assumed outward
pointing normals, one needs to subtract the entries corre-
sponding to the edge stress moments of order 0 instead
of adding them (the edge stress moments of order 1 do this
automatically because of the oriented integration).

The resulting discretised weak form scales in the local
stiffness matrix (2.7) in block Að1Þ like h2 and in block Að2Þ

like h (because of the divergence operator in the integrand).
A multiplication of Að2Þ and the corresponding part of the
right-hand side bf with hT , combined with a multiplication
of the resulting coefficients of uh with hT to reverse this mod-
ification, takes care of this. The same procedure must also
be applied to the data of edges on CN to achieve the almost
h independent condition numbers illustrated in Fig. 3.6.

Our implementation was performed in MATLAB in the
spirit of [2,8,10].

3. Numerical experiments with Quasi-Uniform meshes

The first example illustrates the application of the
Arnold–Winther MFEM to the classical Cook membrane
problem while the second smooth academic example stud-
ies the experimental convergence rates for different treat-
ments of the Neumann data.

3.1. Cook membrane problem

A tapered panel is clamped on one end and subjected to
a surface load in vertical direction on the opposite end with
f ¼ 0 and gðx; yÞ ¼ ð0; 1Þ if ðx; yÞ 2 CN with x ¼ 48 and
g ¼ 0 on the remaining part of CN , E ¼ 2900, and
m ¼ 0:3. The linear elastic simulation is often called Cook’s
membrane problem, constitutes a standard test for bending
dominated response. Fig. 3.2 displays the deformed mesh
and a grey scale for the modulus of the deviatoric part of
the stress approximation based on a mesh T1 :¼ redðT0Þ
and T0 from Fig. 3.1. A red refinement divides each trian-
gle into four congruent sub-triangles by connecting the
three edges’ midpoints through straight lines.

3.2. Optimal convergence rates

This example with known smooth solution illustrates
empirical convergence rates and robust approximation for
m! 1=2. Given the unit square X ¼ ð0; 1Þ2 with
CD ¼ f0g � ½0; 1� and CN ¼ oX n CD of Fig. 3.3, let the elas-
tic modulus be E ¼ 105 and the Poisson ratio be m ¼ 0:3,
ΓΝ

N

c

ods of a Neumann node N.



DΓ

Γ
N

48 mm

16 mm

44 mm

B

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Fig. 3.1. Cook’s membrane problem. Geometry (left) and initial mesh (right).
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Fig. 3.2. Deformed mesh with a magnification factor of 50 and jdevðrhÞj
in a gray scale for the deviatoric part devðrhÞ of rh in Section 3.1.
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and choose the data f ; g; and uD in such a way that the exact
solution reads u ¼ sinð2ðxþ 1ÞÞ cos2ðy þ 1Þ; cosðpðxþ 1Þ
sin2ðy þ 1ÞÞ and belongs to H 2ðXÞ2.
ΓD

10 mm

10
 m

m

ΓN

Fig. 3.3. Smooth benchmark problem of Section
The sequence of meshes is generated uniformly by T0

from Fig. 3.3 through successive red refinements. Fig. 3.4
repeats various convergence rates for different discretisa-
tions of the Neumann conditions as discussed in Section
2.4. Different treatments exhibit various experimental con-
vergence rates of h3, h3=2, and h1=2 for the stress error (left),
while rates of h2, h2, and h for the displacement error
(right). The conclusion is that it pays off to treat the bound-
ary conditions with full care of Section 2.4: One needs to fix
the stress approximations in all nodal values on CN and the
moment conditions for each edge on CN .

To test the locking-free approximation, various Poisson
ratios are tested and reported in Fig. 3.5. For different
choices of m ¼ 0:3; 0:49; and 0:499, the relative stress error
kf k�1

L2ðXÞkr� rhkL2ðXÞ coincides for all error graphs with an
experimental convergence rate of h3. The displacement
error ku� uhkL2ðXÞ (right) coincides asymptotically for dif-
ferent choices of m with an experimental convergence rate
of h2.
3.3. Notes on the condition number

A formulation of the problem with Neumann boundary
condition seems to lead to an almost m-independent condi-
−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

3.2. Geometry (left) and initial mesh (right).
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Fig. 3.5. Illustration of the robust convergence behavior in the Poisson ratio m for the example of Section 3.2 for the stress error (left) and the displacement
error (right).
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tion number of A as seen in Fig. 3.6. For the different prob-
lem with oX ¼ CD, and uD and f from the same exact solu-
tion u of Section 3.2, which we do not display for brevity,
we observed that condðAÞ ! 1 as m! 1=2.

4. Numerical experiments with graded meshes

Corner singularities enforce lower experimental conver-
gence rates for uniform meshes. The first subsection studies
some benchmark on the L-shaped domain for a uniform
mesh. It is commonly believed that a class of graded
meshes [4] improves the convergence rates. However, Sec-
tion 4.2 illustrates that the meshes are too degenerated
for large grading parameters. A graded mesh algorithm is
introduced which leads to optimal convergence.
4.1. Benchmark on L-shaped domain

The L-shaped domain X of Fig. 4.1 with CD ¼ oX gives
rise to a singularity at the re-entrant corner. Using polar
coordinates ðr; hÞ, �p < h 6 p the exact solution u with
radial component ur reads

urðr; hÞ ¼
ra

2l
ð�ðaþ 1Þ cosððaþ 1ÞhÞ

þ ðC2 � ðaþ 1ÞÞC1 cosðða� 1ÞhÞÞ;

uhðr; hÞ ¼
ra

2l
ððaþ 1Þ sinððaþ 1ÞhÞ

þ ðC2 þ a� 1ÞC1 sinðða� 1ÞhÞÞ:
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Fig. 4.2. Convergence history in Section 4.1 for the stress error kr� rhkL2ðXÞ (l
the numbers of degrees of freedom in both axes with logarithmic scalings for
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Fig. 3.6. Condition number of the global stiffness matrix A vs. degrees of
freedom for different choices of m and all other data as in Section 3.2. For
m! 1=2 the graphs almost coincide between 107 and 108.
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The parameters are C1 ¼� cosððaþ 1ÞxÞ= cosðða� 1ÞxÞ,
C2 ¼ 2ðkþ 2lÞ=ðkþ lÞ, where a¼ 0:54448 . . . is the positive
solution of a sin 2xþsin 2xa¼ 0 for x¼ 3p=4; the Young
modulus is E ¼ 105, the Poisson ratio is m¼ 0:3, and the
volume force is f � 0. The sequence of red-refined
uniform meshes is based on T0 of Fig. 4.1. The resulting
stress and displacement errors are shown in Fig. 4.2 for var-
ious values of the Poisson ratio m¼ 0:3;0:49;and 0:499. In
contrast to Section 3.2, the convergence rates are far from
optimal which is expected in the presence of the corner-
singularity.
4.2. Graded meshes

The convergence rates of uniform triangulations are lim-
ited because of corner-singularities (see Fig. 4.2). To obtain
the optimal convergence rates of Section 4.1, a graded
mesh as in Fig. 4.3 is necessary. Note that in b-graded
meshes, which are usually employed, the minimum angle
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eft) and the displacement error ku� uhkL2ðXÞ (right) plotted as functions of
uniform refinements of a L-shaped domain.
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Fig. 4.3. Six graded mesh which results in optimal convergence rates in Section 4.2 with a zoom near the re-entering corner on the right.
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depends strongly on b. Because we are dealing with a
higher-order method, b ¼ 6 is large if one wants to obtain
optimal convergence rates, and therefore leads to huge con-
dition numbers (not displayed). This limited the applicabil-
ity of the MFEM dramatically. (see Fig. 4.4)

To circumvent this difficulty we employ the newest ver-
tex bisection to obtain a mesh which exhibits optimal con-
vergence rates while the minimum angle depends only on
the initial triangulation.

Algorithm GRADMESH. Input: Grading parameter
0 < l < 1, global mesh-size H, initial triangulation T

Until M ¼ ; do
(i)
M :¼ fE 2 EðTÞj9T 2T with E � oT and diam ðT Þ > H jmidðT Þjlg
(ii) T ¼ newestVertexBisectionðT;MÞ od
Output: Triangulation T.

The algorithm GRADMESH generates a mesh which is
refined locally towards the origin, but can be modified
for a more general situation. For details on newest vertex
−1 −0.5 0 0.5 1 1.5 2
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−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4.4. Mesh produced by algorithm GRADMESH (left) w
bisection we refer to [4]. In the present examples, the strat-
egy leads to right isosceles triangles and is similar to the
classical red-green-blue refinement. From the marking
strategy in step (i) of GRADMESH it follows that the typical
grading property diamðT Þ 6 H jmidðT Þjl holds for all
T 2T with center of mass midðT Þ. Note that the grading
parameter l is chosen independently of the parameters in
a b-grading.
4.3. Benchmark on L-shaped domain on graded meshes

The algorithm GRADMESH run with a grading parameter
l ¼ 0:9 on the L-shaped domain results in an optimal
experimental convergence rate. In fact, all error graphs
almost coincide with respective experimental convergence
rates of h4 and h2 in Fig. 4.5. This is a surprisingly fast
and robust empirical convergence.

It is conjectured that the right-hand side f ¼ 0 in this
example might result in a higher-order convergence h4 in
the stress error of Fig. 4.5.
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ith a zoom near the re-entering corner on the right.
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Fig. 4.5. Convergence history for the stress error kr� rhkL2ðXÞ (left) and the displacement error ku� uhkL2ðXÞ (right) of Section 4.3 plotted as functions of
the numbers of degrees of freedom both in logarithmic scalings for different choices of m ¼ 0:3; 0:49; 0:499.
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5. Conclusions

(a) This paper supports the theoretical predictions and
expectations for uniform and graded meshes. The
convergence rates confirm the proven robustness as
k!1 (see Figs 3.5 and 4.5); in conclusion, the sym-
metric MFEM overcomes locking.

(b) As illustrated in Fig. 3.4, various treatments of Neu-
mann boundary conditions of Section 2.4 lead to sub-
optimal convergence phenomena.

(c) Our numerical experiments suggest the conjecture
that for some right-hand-sides (e.g. f � const), the
empirical stress convergence rates are super-optimal
(cf. Fig. 4.5).

(d) The suggested discrete system appears to be reason-
ably conditioned, the condition number seems k and
h-independent (cf. Fig. 3.6) for small numbers of
degrees of freedom as a result of the scaling described
in Section 2.5.

(e) Our numerical experience demonstrates that the use
of the Arnold–Winther MFEM can indeed be recom-
mended to practitioners for various applications in
solid mechanics.
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