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The a priori convergence of finite element methods is based on the density property of
the sequence of finite element spaces which essentially assumes a quasi-uniform mesh-
refining. The advantage is guaranteed convergence for a large class of data and solutions;
the disadvantage is a global mesh refinement everywhere accompanied by large computa-
tional costs.
Adaptive finite element methods (AFEMs) automatically refine exclusively wherever their
refinement indication suggests to do so and consequently leave out refinements at other
locations. In other words, the density property is violated on purpose and the a priori
convergence is not guaranteed automatically and, in fact, crucially depends on algorith-
mic details. The advantage of AFEMs is a more effective mesh in many practical examples
accompanied by smaller computational costs; the disadvantage is that the desirable conver-
gence property is not guaranteed a priori. Efficient error estimators can justify a numerical
approximation a posteriori and so achieve reliability. But it is not theoretically justified
from the start that the adaptive mesh-refinement will generate an accurate solution at all.
In order to foster the development of a convergence theory and improved design of AFEMs
in computational engineering and sciences, this paper describes a particular version of an
AFEM and analyses convergence results for three model problems in computational me-
chanics: linear elastic material (A), nonlinear monotone elastic material (B), and Hencky
elastoplastic material (C). It establishes conditions sufficient for error-reduction in (A), for
energy-reduction in (B), and eventually for strong convergence of the stress field in (C) in
the presence of small hardening.

© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Three model problems (A), (B), and (C) in computational mechanics with increasing degree of complexity are addressed
in this paper: linear elasticity (A), nonlinear elasticity (B), and Hencky elastoplasticity with small hardening (C) as illustrated
in Fig. 1. Their a posteriori error control is an important and, over the last decades, reasonably well-established topic; cf.
the books [1,4,21,29,37] plus some select references [3,8,12,14,16,24,26,30,31] in elastoplasticity. Numerical experiments re-
ported in those references clearly provide evidence for the extreme success of adaptive finite element methods (AFEMs). This
success, however, although very welcome in practice, is not understood in theory and hence not guaranteed in the forth-
coming computation. The literature on the recent theory of a priori convergence of the AFEMs is still small [6,17,19,27,36].
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Fig. 1. Illustration of three standard stress–strain relations to model linear elasticity (A), (monotone) nonlinear elasticity (B), and Hencky elastoplasticity (C).
The arrays indicate loading and unloading along the stress–strain path to emphasize that there are two different tangents involved in (C) modeled by a
variational inequality.

This paper enlarges that theory (established for the Laplacian and the p-Laplacian) to problems in linear and nonlinear
computational mechanics [22,32] and studies Algorithm 1.1 below with recursive loops of the form

SOLVE → ESTIMATE → MARK → REFINE. (1.1)

For the step SOLVE and ESTIMATE we refer to the aforementioned literature plus [2,14].
This papers follows [6,20,27] and adopts the bulk-criterion in the step MARK for edge-oriented contributions, written

η
(�)
E for any edge or face E . The carefully analyzed adaptive algorithm generates a sequence of strongly convergent stress

approximations!
All three stationary materials (A), (B), and (C) allow for a finite element (FE) displacement u� and a FE stress approxima-

tion σ� to the exact displacement field u and the exact stress σ at each level � of the AFEM.
In linear elasticity (A), an error-reduction property of the FE stress approximation in terms of the energy norm ||| · |||, that

is

|||σ − σ�+1|||2 � �|||σ − σ�|||2 + C OSC2
� for all � = 0,1,2, . . . (1.2)

can be guaranteed with some factor � < 1. The oscillation term OSC� in (1.2) is of higher-order when the given right-hand
sides are smooth (and material properties are constant throughout the material body).

For nonlinear elasticity (B), let E(v) denote the elastic energy and δ� := E(u�)− E(u) the difference of the discrete energy
E(u�) to the minimal energy E(u). The energy-reduction property

δ�+1 � �δ� + C OSC2
� for all � = 0,1,2, . . . (1.3)

can be guaranteed provided the energy E is uniformly convex and its derivative D E is Lipschitz continuous. Then, energy
decrease and error decrease are equivalent and the R-order of convergence (up to higher-order terms) reads

|||σ − σ�|||2 � ��δ0 +
�−1∑
k=1

C��−1−k OSC2
k for all � = 1,2,3, . . . . (1.4)

The a posteriori error control in elastoplasticity is more delicate and the convergence result covers just convergence up to
higher-order terms in the sense of

lim inf
�→∞ OSC� = 0 ⇒ lim inf

�→∞ |||σ − σ�||| = 0. (1.5)

A typical adaptive algorithm is sketched below where the discrete stress σ� is piecewise constant with respect to a
triangulation T� with the set E� of edges and faces in 2D and 3D, respectively. Then, for each edge or face E ∈ E� of
diameter hE := diam(E) and with unit normal νE , the contribution

η
(�)
E := h1/2

E

(∫
E

∣∣[σ�]νE
∣∣2

ds

)1/2

(1.6)

accounts for the jump [σ�]νE of the discrete stresses across the interior edge E in the normal direction.

Algorithm 1.1 (Adaptive Algorithm (AFEM)).
Input: Coarse shape-regular triangulation T0 of Ω into triangles with set of edges E0; 0 < Θ < 1.
For � = 0,1,2,3 . . . do (a)–(e):
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Fig. 2. Possible refinements of a triangle. Thick lines indicate reference edges in the sense of [6,10,13] for red-green-blue and newest-vertex bisection
refinement. The reference edge indicates that edge which has to be refined if the triangle has to be refined — an information inherited in each refinement.
For the understanding of this paper it suffices to know that there exists some refinements as depicted and the closure algorithm can be arranged to
maintain shape-regularity.

(a) Solve the discrete problem with respect to the actual mesh T� and corresponding FE spaces. Let u� denote the FE
displacement and let σ� denote the discrete stress field.

(b) Compute η
(�)
E for all edges or faces E ∈ E� and η� := (

∑
E∈E�

(η
(�)
E )2)1/2 as stress-error indication.

(c) Generate a set M� of edges or faces in E� such that

Θη2
� �

∑
E∈M�

(
η

(�)
E

)2
. (1.7)

(d) Control oscillations OSC� and (possibly) add further edges to M� to decrease OSC�+1.
(e) Run closure algorithm to avoid hanging nodes; refine all triangles T with some edge or face E in M� with bisc5(T) and

all other elements with red-green-blue or newest-vertex bisection refinement after Fig. 2. Let T�+1 denotes the resulting
shape-regular triangulation.

Output: Sequence of discrete stress fields σ0, σ1, σ2, . . . in L2(Ω;Rd×d
sym).

The proofs of (1.2)–(1.4) generalize techniques in [27] for a simple Poisson problem with arguments from convex analysis
[32,35,39]. We adopt standard notation for Lebesgue and Sobolev spaces and norms.

2. Comments

Several remarks on modifications of the aforementioned algorithm as well as on empirical wisdom complement the
theoretical proofs below.

2.1. Monitor oscillations

One important aspect from the theoretical point of view in the convergence analysis is the focus of the oscillation terms.
For globally constant volume and piecewise constant surface forces, those oscillations vanish and (d) can be canceled in the
adaptive algorithm. Otherwise, the terms have to be monitored even though they may be of higher order and even if they
decrease automatically. A simple way to achieve this is to compare OSC� with η� . For instance, fix some constant c and if
cη� � OSC� , then red-refine elements (i.e. add all three edges to M�) such that

OSC�+1 � ϑ OSC� with some parameter ϑ < 1.

2.2. Bulk-criterion VS maximum-criterion for MARK

The bulk criterion (1.7) dates back to [20]. Prior to that and still in the majority of papers nowadays, the maximum
criterion is employed: Mark the element T for (red) refinement provided

Θ max
K∈T�

ηK � ηT .

This maximum criterion is motivated by an equi-distribution principle in 1D [5], but not theoretically supported in higher
space dimensions. There is huge empirical evidence in the literature that the maximum criterion effectively leads to accurate
approximations.

2.3. Computational complexity

This paper is concerned with error reduction in terms of numbers of levels but not in terms of numbers of degrees of
freedom. Coarsening led to the first proof of optimal complexity [6] for a model Poisson problem before Stevensen [33]
provided optimal complexity for extremely small bulk parameter and small oscillations in AFEM. Those results are expect
to hold for linear elasticity as well. The optimal strategy to involve oscillations is under current investigations [19]. The
adoption for nonlinear elasticity is less clear [15] and the adoption for variational inequalities is still open. It appears that
the present theory for optimal computational complexity does not fully explain the success of AFEMs in practice.
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3. Mathematical and numerical models in elasticity

3.1. Strong formulation in elasticity

The material body Ω ⊂ Rd is viewed as a bounded Lipschitz domain with polygonal or polyhedral boundary ∂Ω = ΓD ∪
ΓN for d = 2 or d = 3 dimensions. It is loaded by applied volume forces f ∈ L2(Ω;Rd) and surface tractions g ∈ L2(ΓN ;Rd)

on some (relatively open) part ΓN of the boundary ∂Ω with exterior unit normal ν . The material body is supported on the
remaining closed part ΓD := ∂Ω \ ΓN of positive surface area. The displacement field is prescribed there by the Dirichlet
part uD ∈ H1(Ω;Rd) (piecewise affine below for simplicity).

Given a displacement field u ∈ H1(Ω;Rd), its (linearized) Green strain tensor reads

ε(v) := (
D v + (D v)T )

/2 := sym D v.

In the setting of infinitely small strains, an elastic material relates the stress σ through a C1 and (strongly) monotone
mapping A : Rd×d

sym → Rd×d
sym via

σ := A
(
ε(u)

)
in Ω. (3.1)

Details on the nonlinear situation will follow in Section 6 while, here, the focus is on the linear elastic material (A)

σ := Cε(u) := λ tr
(
ε(u)

)
I + 2με(u). (3.2)

Two positive Lamé parameters λ and μ define the fourth-order isotropic material tensor C. This fourth-order tensor C and
its inverse C−1 gives rise to the energy norm for stress fields defined by

‖τ‖C−1 := (
τ : C−1τ

)1/2
for all τ ∈ Rd×d

sym .

Here and throughout, Cτ denotes the action of C on τ and colon (i.e. :) denotes the scalar product of two matrices, e.g.
τ : γ := ∑

j,k=1,...,d τ jkγ jk for any τ ,γ ∈ Rd×d
sym with components τ jk and γ jk . The linear situation (3.2) is understood as a

particular case of (3.1).
In the aforementioned notation, the strong form of boundary value problem (the Lamé–Navier equations in linear elastic-

ity) reads: Seek u := H1(Ω;Rd) with (3.2) and

−divσ = f and σ = A
(
ε(u)

)
in Ω, (3.3)

u = uD on ΓD and σν = g on ΓN . (3.4)

3.2. Weak formulations in elasticity

The weak form consists of the (possibly nonlinear mapping) a(u; v) and the linear functional b(v), defined by

a(u; v) :=
∫
Ω

A
(
ε(u)

) : ε(v)dx =
∫
Ω

Cε(u): ε(v)dx, (3.5)

b(v) :=
∫
Ω

f · v dx +
∫
ΓN

g · v ds (3.6)

for all u, v ∈ H1(Ω;Rd). Then, the weak formulation of the elastic boundary value problem reads: Seek u ∈ U := {w ∈
H1(Ω;Rd): u = uD on ΓD} and

a(u; v) = b(v) for all v ∈ V := H1
D

(
Ω;Rd) := {

v ∈ H1(Ω;Rd) : v = 0 on ΓD
}
.

3.3. Meshes and finite element spaces

The finite element method in level � of the adaptive algorithm is based on a shape-regular triangulation T� of the domain
Ω in closed nondegenerating simplices. In other words, T� has no hanging nodes and is locally quasiuniform.

Throughout this paper, E� abbreviates the set of all edges in 2D and the set of all faces in 3D and N� is the set of all
nodes (or vertices of some triangle) in the triangulation T� .

The hat function ϕz of some node z ∈ N� is defined by the values ϕz(x) for a node x ∈ N� , namely ϕz(z) = 1 and
ϕz(x) = 0 for x ∈ N� \ {z}, followed by linear interpolation on each triangle. Then, the patch of a node is the open set
ωz := {x ∈ Ω: 0 < ϕz(x)} which is the interior of the union of the set T (z) of neighboring elements,

ωz =
⋃

T (z) where T (z) = {T ∈ T : z ∈ T }.
The set of free nodes K� := N� \ΓD consists of all vertices which have a positive distance to the Dirichlet boundary ΓD ; the
remaining nodes on the Dirichlet boundary are N D := N� \ K� .
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For any subset ω (patch, triangle, face, or edge), let Pk(ω) denote the vector space of all algebraic polynomials viewed
as real-valued functions on ω of total degree at most k = 0,1,2. Then,

Pk(T�) := {
vh ∈ L∞(Ω): ∀T ∈ T�, vh|T ∈ Pk(T )

}
denotes the piecewise polynomials of degree � k and the P1 finite element spaces reads

V� := P1
(

T�;Rd) ∩ V and U� := P1
(

T�;Rd) ∩ U .

3.4. Oscillations

For the volume load f and the mesh T� , let

OSC�( f ) :=
( ∑

z∈K�

h2
z

∫
ωz

∣∣ f (x) − fωz

∣∣2
dx

)1/2

, (3.7)

where fωz := ∫
ωz

f (x)dx/|ωz| abbreviates the integral mean of the right-hand side f over the patch ωz of volume |ωz| and
size hz := diam(ωz). For the surface tractions g , let gE abbreviate the integral mean of the right-hand side g over the edge
or face E ∈ EN := {E ∈ E�: E ⊂ ΓN } and set

OSC�(g) :=
( ∑

E∈EN

hE

∫
E

∣∣g(x) − gE
∣∣2

dx

)1/2

. (3.8)

Throughout this paper we set OSC� := OSC�( f ) + OSC�(g).

3.5. Discrete solution

For each level � = 0,1,2, . . . , the discrete problem of the elastic boundary value problem reads: Seek u� ∈ U� such that

a(u�; v�) = b(v�) for all v� ∈ V�.

For the ease of this presentation, suppose that uD is continuous and piecewise affine in the sense that

uD ∈ {
w ∈ C0(ΓD;Rd): ∀E ∈ E0 with E ⊂ ΓD , uD |E ∈ P1(E)

}
.

Then u�(z) = uD(z) for all z ∈ N D is equivalent to u� = uD along ΓD . Under standard assumptions there exists a unique
discrete solution u� and one defines the error e� := u − u� ∈ H1(Ω;Rd) and its residual R� := b − a(u�; ·) ∈ V ∗ .

4. Preliminaries

This section is devoted to reliability and discrete local efficiency. In all three models (A), (B), and (C), there is a discrete
stress field σ� such that the residual is a dual functional defined by

R�(v) :=
∫
Ω

f · v dx +
∫
ΓN

g · v ds −
∫
Ω

σ� : ε(v)dx for all v ∈ V . (4.1)

The energy norm, which plays a prominent role in all three models, reads

|||τ ||| :=
(∫

Ω

∥∥τ (x)
∥∥2

C−1 dx

)1/2

for all τ ∈ L2(Ω;Rd×d
sym

)
(4.2)

and yields a norm for the displacements in V via

‖v‖V := ∣∣∣∣∣∣Cε(v)
∣∣∣∣∣∣ for all v ∈ H1(Ω;Rd).

Then, the dual norm

‖R�‖V ∗ := sup
v∈V \{0}

R�(v)

‖v‖V

can be bounded in terms of explicit or implicit error estimators [1,4,21,37]. Estimator A typical error contribution η
(�)
E

denotes the jump of the discrete stress in normal direction (1.6) while

(
η

(�)
E

)2 := hE

∫
E

|g − σ�νE |2 ds for E ∈ EN and η
(�)
E := 0 if E ⊂ ΓD . (4.3)



2124 C. Carstensen / Applied Numerical Mathematics 59 (2009) 2119–2130
Theorem 4.1. There exist mesh-size-independent constants C1 and C2 such that there holds

‖R�‖2
V ∗ � C1 η2

� + C2 OSC�( f )2.

Proof. A simple proof employs the Galerkin orthogonality R�(v) = R�(v − v�) for some discrete v� ∈ V� defined in [9].
Although [9,18] study solely scalar problems, the arguments therein apply to the vectorial situation as well [38]; we omit
further details. �

One key argument in the proof of (1.2) is the following assertion valid for all the three problems (A), (B), and (C) because
only the discrete equilibrium enters.

Theorem 4.2. There exist mesh-size-independent constants C3 and C4 such that there holds∑
E∈M�

(
η

(�)
E

)2 � C3|||σ�+1 − σ�|||2 + C4 OSC2
� .

Proof. In the design of T�+1, the interior edge E in M� is bisected and so its midpoint mid(E) ∈ N�+1 and the two
neighboring triangles T± ∈ T� have a new inner nodes mid(T±) ∈ N�+1. The nodal basis functions φmid(E), φmid(T±) (with
respect to T�+1) of the two or three mentioned new nodes allow for a discrete function

ψE := φmid(E) − α+φmid(T+) − α−φmid(T−) ∈ W 1,∞
0 (ωE ) ∩ P1(T�+1)

with proper and bounded α± ∈ R such that∫
E

ψE ds = 1

2
and

∫
T±

ψE dx = 0.

Then the test function bE := hE [σ�]νE ψE ∈ V�+1 satisfies

1

2

(
η

(�)
E

)2 =
∫
E

bE · [σ�]νE ds =
∫
ωE

σ� : DbE dx.

An integration by parts in the last step adopts divσ� = 0 on each T± . Since∫
ωE

σ�+1 : DbE dx =
∫
ωE

f · bE dx

(there is no contribution from g as, here, E is an interior edge) and since
∫
ωE

f E · bE dx = 0 for any constant f E , this proves

1

2

(
η

(�)
E

)2 =
∫
E

bE · [σ�]νE ds =
∫
ωE

(σ� − σ�+1) : DbE dx +
∫
ωE

( f − f E ) · bE dx.

Cauchy inequalities and bounds on various norms of bE eventually prove the assertion provided E is an interior edge.
In the situation where E ⊂ ∂Ω , a similar argument leads to local contributions of OSC�( f )+OSC�(g); we omit the details

and refer to [1,4,20,27,37] for similar arguments. �
5. Error reduction for linear elasticity

This section is devoted to the analysis of the error reduction (1.2) for linear elasticity (A). Throughout this section, let u
and u� solve the continuous and discrete problem and

|||σ − σ�|||2 = ‖R�‖2
V ∗ . (5.1)

Theorem 5.1. There exists mesh-size-independent constants � and C such that (1.2) holds.

Proof. The combination of stability (5.1), Theorem 4.1, and the bulk criterion (1.7) leads to

|||σ − σ�|||2 � C1

Θ

∑
E∈M�

(
η

(�)
E

)2 + C2 OSC2
� . (5.2)

This and the discrete local efficiency of Theorem 4.2 yield

|||σ − σ�|||2 � C1C3 |||σ�+1 − σ�|||2 +
(

C1C4 + C2

)
OSC2

� . (5.3)

Θ Θ
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A final essential ingredient in (A) is the Galerkin orthogonality

|||σ�+1 − σ�|||2 = |||σ − σ�|||2 − |||σ − σ�+1|||2. (5.4)

A substitution of |||σ�+1 − σ�|||2 from (5.4) in (5.3) followed by some rearrangements give (1.2) with � = 1 − Θ/(C1C3) and
C = (C4 + ΘC2/C1)/C3. �
6. Energy reduction for nonlinear elasticity

This section is devoted to a hyperelastic material (B) where the Lipschitz continuous A := DW is the functional matrix
of some smooth strongly convex function W : Rd×d

sym → R. That means that there exist positive constants α and L := Lip(A)

with

α|A − B|2 � W (B) − W (A) − A(A) : (B − A) and (6.1)∣∣A(A) − A(B)
∣∣ � L|A − B| for all A, B ∈ Rd×d

sym . (6.2)

A typical example with (6.1), (6.2) is the nonlinear Hencky material or nonlinear Hooke’s law of [28, Section 3.3] and [39,
Section 62.8] where

W (A) := 1

2
k
(
tr(A)

)2 + κϕ
(|dev A|2)

for material constants k and κ and some nonlinear function ϕ : [0,∞) → [0,∞) with (non-displayed) smoothness and
growth conditions on ϕ , ϕ′ , ϕ′′ .

Throughout this section, let u and u� denote the minimizer in the continuous and discrete setting of the energy

E(v) :=
∫
Ω

W
(
ε(v)

)
dx − b(v) for all v ∈ U . (6.3)

Theorem 6.1. There exists mesh-size-independent constants � and C such that (1.3) holds.

Proof. The assumptions (6.1), (6.2) guarantee that E is uniformly convex, D E is Lipschitz continuous, and (5.1) holds in the
form of

|||σ − σ�|||2 � C5‖R�‖2
V ∗ . (6.4)

To see this, take A := Du(x) and B := Du�(x) in (6.1), which yields an expression for almost every x in Ω . Thus, its integral
satisfies

α‖u − u�‖2
H1(Ω)

�
∫
Ω

(σ − σ�) : ε(u − u�)dx.

Owing to the equilibrium condition on σ , namely f + divσ = 0 in Ω plus boundary conditions, its weak form yields∫
Ω

σ : ε(u − u�)dx = b(u − u�). (6.5)

The combination of the latter two estimates results in (6.4), namely

α ‖u − u�‖2
H1(Ω)

� b(u − u�) −
∫
Ω

σ� : ε(u − u�)dx = R�(u − u�) � ‖R�‖V ∗ ‖u − u�‖V .

Furthermore, the residual is of the form of Theorems 4.1 and 4.2. The proof therefore might follow that of Theorem 5.1.
However, one additional difficulty in the proof of (1.3) is the lack of a Galerkin orthogonality in (B).

The new argument involves (6.1) twice: First, with A = ε(u�) and B = ε(u) and integration over Ω and with (6.5), (6.1)
yields

δ� + α
∥∥ε(u − u�)

∥∥2
L2(Ω)

�
∫
Ω

(σ − σ�) : ε(u − u�)dx.

Since (6.2) and Young’s inequality, this is bounded from above by α
2 ‖ε(u − u�)‖2

L2(Ω)
+ C6|||σ − σ�|||2. Hence

δ� + α ∥∥ε(u − u�)
∥∥2

L2(Ω)
� C6|||σ − σ�|||2. (6.6)
2
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Second, with A = ε(u�+1) and B = ε(u�) and integration over Ω and substitution∫
Ω

σ�+1 : ε(u�+1 − u�)dx = b(u�+1 − u�),

(6.1) yields in terms of E(u�+1) and E(u�) that

α
∥∥ε(u�+1 − u�)

∥∥2
L2(Ω)

� δ� − δ�+1. (6.7)

With (6.4), Theorem 4.1, and Theorem 4.2 plus the bulk criterion as in the convergence analysis of problem (A), there follow
(5.2), (5.3). The combination of (5.3) with (6.6), (6.7) and (6.2) yields positive constants C7 and C such that

δ� � C7(δ� − δ�+1) + C7 OSC2
� .

This implies (1.3) with � = 1 − 1/C7. �
7. Convergence for primal Hencky elastoplasticity

The irreversible part p ∈ L2(Ω;Rd×d
sym) of the elastoplastic strain is modeled in (C) via an additive split

ε(u) = C−1σ + p (7.1)

of the total Green strain ε(u) with an elastic (reversible) part C−1σ . The internal variables are summarized in a vector
α ∈ L2(Ω;Rm) of m components and lead to the generalized stress and strains linked, in each time-step, by some variational
inequality written

(p,α) ∈ ∂ j(σ ,α) or (σ ,α) ∈ ∂ j∗(p,α) (7.2)

for some dissipation functional j : Rd×d
sym × Rm → R ∪ {+∞} and its dual j∗ and subgradient ∂ j.

The list of examples [3,7,12,22,32] includes isotropic hardening, kinematic hardening, combined isotropic and kinematic
hardening, perfect plasticity, and viscoplasticity. Since internal variables and the plastic strain are local variables (with a
history separately for each material point), they can be eliminated. With some given data K ∈ L∞(Ω;Rd×d

sym), σY > 0 and
η � 0, this leads to (6.3) with an energy density

W (A) = 1

2
A : CA − 1

4μ(1 + η)
max

{
0,

∣∣ dev(A − K )
∣∣ − σY

}2
for all A ∈ Rd×d

sym . (7.3)

The crucial parameter is η � 0. If η is positive there hold (6.1), (6.2) and hence Theorem 6.1 applies and proves the energy-
reduction property (1.3). However, the constant � depends on the small parameter η in a very crucial way: limη→0 � = 1.
For η = 0, the functional analytical frame is no longer correct [23,25,34]—the displacements belong to BD(Ω) rather than to
H1(Ω;Rd); see [34,35] for details.

Since the following result has some overlap with the results of the energy reduction of [17], we solely outline an alter-
native technique for the proof of convergence based on [11].

Theorem 7.1. If u − u� remain bounded in V , (1.5) holds.

Proof. From [11, Proposition 7.7], we recall

1

2

∣∣DW (A) − DW (B)
∣∣2
C−1 � W (B) − W (A) − DW (A) : (B − A) for all A, B ∈ Rd×d

sym . (7.4)

With A = ε(u�+1) and B = ε(u�) in (7.4) there follows

1

2
|||σ�+1 − σ�|||2 � δ� − δ�+1.

The point is that · · · ⊂ V� ⊂ V�+1 ⊂ · · · implies that δ� is a Cauchy sequence and so

lim
�→∞|||σ�+1 − σ�||| = 0.

As before in (5.2), (5.3), one derives an upper bound of ‖R�‖V ∗ in terms of |||σ�+1 − σ�||| and OSC� . Since lim�→∞ OSC� = 0,
one deduces

lim
�→0

‖R�‖V ∗ = 0.

This and another application of (7.4) conclude the proof:
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|||σ − σ�|||2 �
∫
Ω

(σ − σ�) : ε(u − u�)dx = R�(u − u�)

� ‖R�‖V ∗‖u − u�‖V � C8‖R�‖V ∗ . �
The dual formulation of elastoplasticity is studied even more frequently in applied mechanics. The variables are the

generalised stresses Σ := (σ ,χ) in some convex set K , plus displacements u in the continuous formulation∫
Ω

((
ε(u),0

) − (AΣ)
) : (Υ − Σ)dx � 0 for all Υ ∈ L2(Ω; K )

and f + divσ = 0 in Ω plus the boundary conditions from (3.4). The discrete analog seeks Σ� ∈ P0(T�; K ) and u� ∈ V� with∫
Ω

((
ε(u�),0

) − (AΣ�)
) : (Υ� − Σ�)dx � 0 for all Υ� ∈ P0(T�; K )

and ∫
Ω

σ� : ε(v�)dx =
∫
Ω

f · v� dx +
∫
ΓN

g · v� ds for all v� ∈ V�.

The convergence result and its direct proof is new and innovative.

Theorem 7.2. If u − u� remain bounded in V , (1.5) holds.

Proof. The combination of the aforementioned variational inequalities with Υ� = Σ∗
� defined as the piecewise integral mean

of Σ and Υ := Σ� leads to

|||Σ − Σ�|||2 :=
∫
Ω

A(Σ − Σ�) : (Σ − Σ�)dx

�
∫
Ω

ε(u − u�) : (σ − σ�)dx +
∫
Ω

(AΣ�) : (Σ∗
� − Σ)dx −

∫
Ω

ε(u�) : (σ ∗
� − σ)dx. (7.5)

Notice that all coefficients are (piecewise) constant and hence∫
Ω

AΣ� : (Σ∗
� − Σ)dx = 0.

Since ε(v�) ∈ P0(T�;Rd×d
sym),∫

Ω

ε(u�) : (σ ∗
� − σ)dx = 0.

Moreover, the strong and the weak form of the equilibrium conditions result into∫
Ω

ε(u − u�) : (σ − σ�)dx = R�(u − u�).

The previous three identities recast (7.5) into

|||Σ − Σ�|||2 = R�(u − u�).

This and the boundedness of ‖u − u�‖V yield with Theorem 4.1 that

|||Σ − Σ�|||2 � C9η� + C10 OSC� . (7.6)

The aforementioned arguments also prove uniqueness of the continuous stress field. This uniqueness will be used below.
Since the oscillations vanish in the limit as � → ∞, it remains to prove that (η�)� tends to zero as well. However, there

is seems no argument left to do so although the equivalent primal problem allows some refined convexity control for that.
Instead, we refine the analysis from [19] and prove: There exist some C11 > 0 and 0 < � < 1 such that, for all nonnegative
integers � and m, it holds

η2
�+m � �η2

� + C11‖σ�+m − σ�‖2
L2(Ω)

. (7.7)

Indeed, for all E ∈ E� we have either E ∈ E�+m or otherwise there exist E1, . . . , E J ∈ E�+m with E = E1 ∪ · · · ∪ E J and J � 2.
In the second case E ∈ E� \ E�+m , for any 0 < δ < θ/(2 − θ),
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J∑
j=1

η
(�+m)2
E j

=
J∑

j=1

h2
E j

∣∣[σ�+m] · νE j

∣∣2

�
J∑

j=1

h2
E j

(
(1 + δ)

∣∣[σ� · νE j ]
∣∣2 +

(
1 + 1

δ

)∣∣[σ�+m − σ�] · νE j

∣∣2)

� 1 + δ

2
η

(�)2
E +

(
1 + 1

δ

) J∑
j=1

h2
E j

∣∣[σ�+m − σ�] · νE j

∣∣2
.

Notice that the factor 1/2 results from J > 1 refinements (at least one bisection) of E ∈ E�\E�+m . Therefore,

∑
E∈E�+m
E⊆⋃ E�

η
(�+m)2
E � 1 + δ

2

∑
E∈E�\E�+m

η
(�)2
E + (1 + δ)

∑
E∈E�∩E�+m

η
(�)2
E +

(
1 + 1

δ

) ∑
E∈E�+m
E⊆⋃ E�

h2
E

∣∣[σ�+m − σ�] · νE
∣∣2

.

For any E ∈ E�+m with E �
⋃

E� , [σ�] · νE = 0 along E . Hence

η
(�+m)2
E = h2

E

∣∣[σ�+m − σ�] · νE
∣∣2

.

Therefore,

η2
�+m � 1 + δ

2

∑
E∈E�\E�+m

η
(�)2
E + (1 + δ)

∑
E∈E�∩E�+m

η
(�)2
E +

(
1 + 1

δ

) ∑
E∈E�+m

h2
E

∣∣[σ�+m − σ�] · νE
∣∣2

.

Since σ�+m − σ� is piecewise constant with respect to the shape regular triangulation T�+m ,

h2
E

∣∣[σ�+m − σ�] · νE
∣∣2 � C12‖σ�+m − σ�‖L2(ωE )

for the edge patch ωE of E in T�+m . Since there is only a finite overlap of all edge patches,

η2
�+m � 1 + δ

2

∑
E∈M�

η
(�)2
E + (1 + δ)

∑
E∈E�\M�

η
(�)2
E + C11‖σ�+m − σ�‖2

L2(Ω)
.

The bulk criterion leads to

1

2

∑
E∈M�

η
(�)2
E +

∑
E∈E�\M�

η
(�)2
E = η2

� − 1

2

∑
E∈M�

η
(�)2
E �

(
1 − θ

2

)
η2

�

and so to

η2
�+m � (1 + δ)

(
1 − θ

2

)
η2

� + C12‖σ�+m − σ�‖2
L2(Ω)

.

Since δ < θ/(2 − θ), the resulting estimate proves the assertion (7.7).
Repeating the argument for (7.5) with (Σ, u) replaced by (Σ�, u�), we deduce

|||Σ�+m − Σ�|||2 �
∫
Ω

(σ�+m − σ�) : ε(u�+m − u�)dx.

The discrete equilibrium leads to∫
Ω

(σ�+m − σ�) : ε(u�+m − u�)dx =
∫
Ω

(
f · (u�+m − u�) − σ� : ε(u�+m − u�)

)
dx.

Hence,

|||Σ�+m − Σ�|||2 �
∫
Ω

(
f · (u�+m − u�) − σ� : ε(u�+m − u�)

)
dx. (7.8)

The generalized discrete stresses are bounded and so are u� by assumption. With Rellich’s compactness embedding, there
exists some weakly convergent subsequence

(Σ� j ) ⇀ Σ∞,
(
ε(u� j )

)
⇀ ε(u∞) and ‖u∞ − u� j ‖L2(Ω) → 0 as j → ∞

for some limit Σ∞ ∈ L and u∞ ∈ V . Notice that ||| · −Σ�||| is sequentially weakly lower semicontinuous and so the above
weak convergence and estimate (7.8) lead, for m → ∞, to

|||Σ∞ − Σ�|||2 �
∫ (

f · (u∞ − u�) − σ� : ε(u∞ − u�)
)

dx = R�(u∞ − u�).
Ω
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Since V� ⊂ ker R� ,

|||Σ∞ − Σ�|||2 � R�(u∞).

It is clear that, for all � = 0,1,2, . . . ,

V� ⊆ ker R∞ for R∞(v) :=
∫
Ω

(
f · v − σ∞ : ε(v)

)
dx with v ∈ V .

Hence,

u∞ ∈ V∞ :=
∞⋃

�=0

V� ⊆ ker R∞

and so

lim
j→∞ R� j (u∞) = R∞(u∞) = 0.

Consequently,

lim
j→∞|||Σ∞ − Σ� j ||| = 0

and (Σ� j ) is a Cauchy sequence. This and (7.7) plus some elementary analysis show that

lim
j→∞η� j = 0.

With (7.6) and the convergence of the oscillation terms, this results in Σ∞ = Σ ∈ L2(Ω; K ) and the strong convergence of
subsequences,

lim
j→∞

|||Σ − Σ� j ||| = 0.

Since the limit Σ is unique and every subsequence converges contains a further subsequence with this limit, we deduce
convergence of the full sequence,

lim
�→∞|||Σ − Σ�||| = 0. �
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