, Numerische
DL 10100500 110 12-04004 Mathematik

Effective postprocessing for equilibration a posteriori
error estimators

C. Carstensen - C. Merdon

Received: 22 June 2011 / Revised: 2 May 2012 / Published online: 13 September 2012
© Springer-Verlag 2012

Abstract Guaranteed error control via fully discrete a posteriori error estimators is
possible with typical overestimation between 1.25 and 2 in simple computer bench-
marks. The equilibration techniques due to Braess and that due to Luce—Wohlmuth are
efficient tools with an accuracy limited by the hyper-circle threshold. This motivates
postprocessing strategies and the analysis of successive improvements of guaranteed
upper error bounds with a few pcg iterations result in reduced overestimation factors
between 1 and 1.25. Numerical simulations for three classes of applications illustrate
the efficiency for the Poisson model problem with and without jumping coefficients
or a simple obstacle problem.

Mathematics Subject Classification 65N30 - 65R20 - 65N15

1 Introduction

The a posteriori error control of the energy norms of errors in computational PDEs has
attracted high attention over the last decades [1,6,7,9,17,25,28]. The particular aspect
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426 C. Carstensen, C. Merdon

of guaranteed upper bounds with all explicit constants has risen particular interest and
is also relevant for effective simulations even in terms of goal functionals [1,7,21].

This paper addresses the most accurate energy norm error estimators which can
be written as equilibrium error estimators [4,12]. At least since the unified approach
[10,11] it is clear and visible more and more [29] that the essential task in a posteriori
error control is the computation of upper bounds for some residual Res € H~1(Q),
the dual of the standard first-order Sobolev space HOl (€2) with homogeneous boundary
values, of the form

Res(p) = /(f(p —g-Vg)dx forallp € H} (). (1.1
Q

The given 2D data are the Lebesgue integrable functions f € L?(£2) and the numerical
flux g € L%(Q; R?) (piecewise constant in practical examples). The form (1.1) results
from a weak formulation of some equilibration equation

f+dive =0 (1.2)
with exact flux o € H (div, ) and its residual

Res := f +divg = div(g — o) € H(Q).

Here and throughout this paper, we use standard notation for Lebesgue and Sobolev

spaces and their norms; V := HO1 (2) is endowed with the energy norm || - || :=
IV ll2(@ = I'|g1(q) and the dual norm || - ||, in H~Y(Q). The relevant dual norm
IResl = lldiv(oc — g)llx <, (1.3)

is the targeted quantity and the aim is to find some computable upper bound 7.
This is the essential step in the guaranteed error control for many problems like
the benchmarks for the two Poisson model problem, two interface problems and
one obstacle problem of this paper. The standard modification of the energy norm
-1l == |2V - 12() 18 understood for the interface problems with jumping
coefficients. Although all experiments employ conforming first-order finite element
methods, the theory also applies to nonconforming methods [14].

The class of equilibration techniques takes the input data f and g and computes
some g € H(div, 2) such that the triangle inequality implies

lldivie — )l = lf +divglle < I f +divglls + lldivig — &)l

This leads to the explicit bound 7 in (1.3) equal to

n:=Ilf+divgll +lldiv(g — &)l

In case that certain piecewise integrals of f + div g vanish, e.g. for the first three
examples of Table 1, one may further deduce some local oscillation term osc( f) and
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Equilibration estimator postprocessing 427

Table 1 Equilibration a posteriori error estimators

No. Error estimator Equilibration Mesh 7 References
1 nB divgg = — f1 T ,red(T) [6,8]

2 IMFEM divgmrem = —fT red(7) [6,8]

3 nmw divgrw = —f~ T~ (191

4 LS None red(7) [12]

5 "Repin None red(7) [25,26]

an explicit constant C with

Ilf +divgll. < Cosc(f).

For instance, the Braess a posteriori error estimator from Table 1 designs some gp €
RTo(7) and leads to elementwise oscillations osc(f) = osc(f,7) = ||h7(f —
Sl2q) and C = 1/7. Here, f7 denotes the piecewise integral mean of f and A
denotes the local mesh-size. This results in the computable guaranteed upper bound

g = osc(f, T)/m + ligs — gll 2 (1.4)

for the error estimate (1.3). In many benchmark examples, the efficiency of this esti-
mator

eff (nB) := n/lIRes|l.

lies in the range of 1.3-2. Section 2 discusses the hyper-circle identity and the related
threshold of the efficiency indices for all the error estimators of Table 1. To overcome
this hyper-circle threshold further improvements of ¢ say on refined meshes or of
higher polynomial degrees are necessary to minimise the upper bound |lg — gll;2(q)
under the side restriction that f + div ¢ maintains the above integral mean properties.
This paper makes the explicit alternative ansatz that, given any ¢ from Table 1 as well
as for any possible future suggestion of this kind, ¢ is substituted by ¢ — Curl v for
some v € H'(Q)/R. Since Curl v = (dv/dx2, —dv/dx1) is divergence-free in n = 2
dimensions, the volume term f + div ¢ remains unchanged, while the total new upper
bound

Mnew :=o0sc(f,T)/mr + min [lg — g — Curlv| 2 (1.5)
veH (Q)/R

may be much smaller than 1 from (1.4). The theoretical main results of this paper state
that this improvement is significant and even asymptotic exactness of [tpey iS possible
in the Poisson model problem.

The estimate (1.5) coincides with a particular form of the estimate [25, (3.5.20)]
with y replaced by g — Curl v. The numerical realisation of (1.5), however, requires
a further discretisation of H!(2) based on the same or even on a refined mesh T
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from Table 1 and some global minimisation. The striking empirical result of this
paper is that a significant improvement of the overall efficiency can be obtained with
a few pcg iterations and even one iteration (i.e. one line search along the gradient)
in the discretised minimisation leads to amazing results. For the three model classes,
the efficiency is cheaply improved without any change of the subtle design of the
equilibration function g. Moreover, the improvement by successive red-refinement of
7T in Theorem 4.1 follows from arguments from the convergence of adaptive mixed
finite element methods.

The remaining parts of the paper are organised as follows. Section 2 explains the
hyper-circle threshold and how it limits the efficiency of the equilibration error estima-
tors of Table 1. This motivates the derivation of an improved error control in Sect. 3.
Section 4 proves a saturation property for the postprocessing based on red-refined
meshes. Section 5 outlines the a posteriori error estimators from Table 1 and the
design of the flux ¢. Section 6 describes the numerical realisation while Sects. 7, 8,
and 9 give numerical evidence for the improved efficiency of the postprocessed error
estimators in three different model problems. Section 10 draws some conclusions to
round up the paper.

Although the examples are all in n = 2 dimensions for simplicity, the ansatz is
feasible in any dimension as long as the problem is in divergence form and Curl v is
replaced by any divergence-free field. Finally a < b abbreviates a < Cb for some
generic constant C that depends only on the shape regularity of the triangulation, while
a~bmeansa < b < a.

2 Hyper-circle threshold

Consider a regular triangulation 7 of the simply connected and bounded Lipschitz
domain Q C R? into triangles with edges £, nodes \ and free nodes M. The midpoints
of all edges are denoted by mid () := {mid(E) | E € &} and the boundary edges along
a2 are denoted by £(0Q2) :={E € &£ | E C 9Q} while £(2) := £\ E(0R2) denotes
the set of interior edges. The diameter diam(7') of a triangle T is denoted by A7,
E(T) consists of all three edges of the triangle T € 7 and N (T') consists of all of
its vertices. The open set w; := {¢, > 0} for some node function ¢, is the interior
of its support on the subtriangulation 7 (z) := {T € 7 ’ z € N(T)}. Similarly, all
edges that share z € N giverise to £(z) := {E € £ | z € E}. The red-refinement
red(7) of 7 is a regular triangulation that refines each triangle 7 € 7 into four
congruent sub-triangles by straight lines through the midpoints of the three edges.
With the set Px(7) of elementwise polynomials of total degree < k, the lowest-order
Raviart-Thomas finite element space is given by

RTo(7) := {g € H(div, Q) |VT eT3ar,br,cr € P(T)Vx €T,
q(x) = arx + (br, cr)}.
The standard reference [6] for the FEM advertises the hyper-circle principle or

Prager-Synge estimate from [22] for a posteriori error control and gives details for an
easy postprocessing to compute gp in the lowest-order Raviart—-Thomas mixed finite
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Equilibration estimator postprocessing 429

element space RTo(7) (cf. Sect. 5 below for details on the design of g ). Lemma 9.1 of
[6] compares this with the lowest-order Raviart—-Thomas mixed FEM and its solution
gmreM in RTo(7) € H(div, ©2) in a Poisson model problem scenario f + Au = 0
with exact flux o := Vu and residual (1.1) with data f € Py(7) and g := Vuy €
Py(T; Rz) for the conforming first-order approximation u, € Pi(7) N C(R). It
follows

lgmrem — gllL2@) < llgB — &llL2(0) = 1B-
The hyper-circle principle leads for piecewise constant f (and otherwise up to oscil-
lation terms for f which are neglected in Sect. 2 for the ease of this discussion) to the
identity
This identity is obtained by an integration by parts to show fQ V(u—up)(o—q) dx =0

for any ¢ € H(div, Q) with divg + f = 0. One immediate consequence of the
aforementioned identities reads

lo = gll72q) + o — avreml}2 o) < llgs — gl172q) = -
Hence the efficieny index
eff(ng) :=n/llo — gll2e)
of the Braess a posteriori error estimator np is bounded from below,
5 ) ) 1/2
Vi = (14 Do = qurels g/l = 1220

< ligs = gll2 @)/ llo — gll2q) = eff(B).
A compactness argument in [15] proves for piecewise constant right-hand sides that

llo —gll < C(D)llgmrem — gllz2(w)-

The constant C(7") depends on the triangulation but not on the data nor on the exact
or discrete solution. Hence,

k= llo —gmremliz2)/llo — gll2) = 1/C(T).

In other words, there is no reason to believe that the efficiency index is close to
1. Comparing numerical experiments in [12] and below in this paper reveal for the
equilibration error estimates of Table 1, that eff (np) lies in the range of 1.3—1.7. This
fundamental lower bound +/1 + «Z is therefore called the hyper-circle threshold and
limits the efficiency.
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It is the purpose of this paper to improve the efficiency dramatically below that
hyper-circle threshold of +/1 + «2 and even allow asymptotic exactness of guaranteed
upper bounds. To overcome this threshold for even higher accuracy, extra calculations
are required such as higher accuracy of ¢ from higher polynomial degrees or refined
meshes. The alternative key observation is that all known equilibration a posteriori
error estimators use the simple but coarse estimate

Idivig — )l = sup / @~ Vo dx < llg — gl
peH; (Q)
llell=1

based on the Cauchy inequality. Instead, a Helmholtz decomposition leads to the
identity

lldivig — @ll« = min |lg —g — Curlv||12(q).
vE R

HY(Q)/

Here, v is some test function in H' () and, more importantly, any choice of v leads
to some guaranteed upper bound,

lldiv(g — &)ll« < llg — & — Curlv|l;2(q).

The optimal v in the improved previous estimate allows a posteriori error control
beyond the hyper-circle threshold.

Theorem 2.1 Under the assumptions of this section for the Poisson model problem
with piecewise constant right-hand side f = fr € Py(7T), it holds, for all ¢ €
O(fr) = {q € H(div. Q)| fT +divg = 0},

Res||y = |lo — 2 =/ := min — g — Curlv||;2/0.
IResl = llo = gl = i= _min g =g 2@
Proof This follows with || f + divg|l, = 0 in Theorem 3.1; cf. Remark 3.3. O

The global minimisation for the computation of p leads to an elliptic PDE and
appears as costly as the computation of w. In order to approximate u, any choice of
v € H'(Q) yields an upper bound and so an improved guaranteed a posteriori error
control.

The following Theorem 2.2 underlines the significance of the MFEM equilibration:
Without mesh-refinement there is no improvement beyond

nvreM = llgmrem — &l 22(q)-
Theorem 2.2 Under the assumptions of this section for the Poisson model problem
with piecewise constant right-hand side f € Py(T) and Vg = P1(T) N C(RQ), it
holds

min B — - Curl VH 2 = MFEM — 2 .
vgeVy/R llg 8 Il (€2) llq gl (Q)
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Proof This follows from the fact that gpreym minimises the distance to g amongst any
qrr € Q(f. T) == {q € RTo(T) | fr + divg = 0} [6]. Since g € Q(f,T) and
Curl vy € Py(T; R?), the difference gg — Curl vy belongs to Q(f, T). O

Numerical experiments in Sect. 7 below confirm that the improvement of the effi-
ciency of ng compared to nypgMm 1S not significant. This is an indication for the amazing
accuracy of the Braess postprocessing which defines gg.

Theorem 2.3 below implies that more significant improvements follow from fur-
ther mesh-refinements. In case of a red-refined triangulation 7, := red(7"), the post-
processed a posteriori error estimator for Vj, = P (7;,) N C(R2) reads

‘= min — g — Curlvy||;2/07-
1IBr vhth/RMB 8 nliz (Q)

The data oscillations on edge patches wg := |J{T € T | E € £(T)} for an edge
E € & read

ose(f, wg) = diam(@p) | f = forll 120y 2.2)
OSCX(T, f)i= D osc’(frwp)+ D EPIfIT2,, 23
EcE(RQ) EeE(09Q)

Small data oscillations lead to a significant improvement of the postprocessed a pos-
teriori error estimator and so may overcome the hyper-circle threshold.

Theorem 2.3 Under the assumptions of this section for the Poisson model problem
with piecewise constant right-hand side f € Py(T), there exist constants 0 < o < 1
and 0 < A < 0o which depend on the interior angles of T and neither on the
mesh-sizes nor on the number of triangles with

e = Il = 812200 < @ (mhirent — Il = 8l132q, ) + AOSCA(T., 1),

Proof This follows from Theorem 4.1 below for r7 = g, x = 1, feq = f and
feq = YB- O

So far, this section discussed the Braess equilibration technique. The remaining a
posteriori error estimators of Table 1 also suffer from the hyper-circle threshold. The
Luce—Wohlmuth a posteriori error estimator, for instance, leads to an estimate which
is bigger than the mixed error estimator nyggp+ With respect to the dual mesh 7*.
(Recall that f is piecewise constant in Sect. 2 so that the right-hand side of the MFEM
and f* in the Luce—Wohlmuth error estimation of Sect. 5.3 coincide.) The significant
improvements of Theorem 2.3 immediately apply to 7* and red(7*) as well.

Furthermore, the reduction properties can be iterated. For instance, the minimisation
inv, € Py (redk(T)) NC(R)leads fork =1,2,...to

2 2 2 2 k—1 2
n —llo —zll <oln —llo —zll + AOSC(red*™ (7))
Br...r L2(Q) Br...r L2(Q)

k k—1

< Qk (UI%/[FEM - ”G - g”iZ(Q))
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+ E 0! AOSC(red* /=1 (T))>.
j=0
This section concludes with a discussion of the associated efficiency indices
eff(nBr) :== nBe/llo — gl 2@ resp. eff(nvrem) = nmrem/llo — gll12(q)-
Their distances to 1 are reduced by

eff ()’ — 1 _ 0 (v — 10— 8l172q)) + AOSCH(T, f)

N
eff (nvren)? — 1 Meem — 10— 8172,

Under the assumption of small oscillations in the sense of

0 (Maren — o = 8320q) ) + AOSCAT, £) <9 (nipe — o = 811320

for some 0 < ¥ < 1, this implies

2 2 _
eff('?Br)2 1 < eff (nBr) : 1 <9 <1,
eff(np)= —1 = eff (nmpem)~ — 1

In other words, the efficiency indices are significantly reduced.

The striking numerical evidence of Sects. 7-9 in this paper suggests that only a few
iterations of some iterative solver improve the efficiency substantially. Tables 2 and 4
in Sect. 7 display typical values for ¥ that are clearly far below 1.

3 Refined error control
This section is devoted to a rigorous analysis and the asymptotic exactness of the
suggested error estimator (1.5) based on the data f € LY(Q), g € L%(Q; R?), and

q € H(div,2). Forall p € V := HOl () and v € H' (), an integration by parts
leads to

Res(p) =/(f+divq)g0 dx+/(q — g — Curlv) - Vo dx.
Q Q

Consider some ¢ € H (div, Q) with the assumption that || f 4 div g||, is small in the
sense that the dual norm of the residual ||Res||, is much larger,

§ :=|If +divgll./lIRes|l, < 1. (3.1

The affirmative examples nw, ng and nvrem from Table 1 allow for
If +divglle < lhr(f +divg)ll /7 Sose(f, T) = lhr (f — fD)ll2@)
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(from a piecewise Poincaré inequality with Payne-Weinberger constant [23]). Here,
h1 € Py(7T) denotes the local mesh size and f7 € Py(7) denotes the piecewise
integralmeanof f (i.e. hy |7 = hr and f7|7 = fT f dx/|T|foreveryT € T).Then
Il f + div g ||« is of quadratic order in terms of the mesh-size &7 for piecewise smooth
right-hand sides f. Compared to linear convergence in the mesh size 7 for first-order
approximations and residuals, § is small and tends to zero as ||A7 | L~ ) — 0.

Given the Helmholtz decomposition [16] (for simply connected domains €2)

q — g =Va+Curld

with some unique a € H(} () and remainder b € H'(£2)/R, the optimal postprocess-
ing of

n=lIf +divgll + llg — gll 2 = Ilf +divall. + (lall* + I161%"2
with v = b results in
we=|If +divgll. + llall < n.

Assumption (3.1) and the following theorem imply asymptotic exactness in the
sense that

w/(1 +26) < lIResll, < p.

Hence, the new error estimator u overcomes the hyper-circle threshold.

Theorem 3.1 Under the aforementioned notation it holds

: 2 2\ /2 :
1 < ((UResll + 17 +divgll)? + UBIF) 4+ 11/ + divlla,

IResl« < 7 <
< u < IResflw + 201 f + divglls.

IRes|l.

For ||a|| > 0 and « := ||b||/llall, it holds
0<n—p=llall (VI+12=1) < Uf +divgl + IResll) (VI+2 —1).
Proof The Helmholtz decomposition shows, for all ¢ € HOl (),

Res(p) = /(f +divg)e dx + /(q —g—Curld) - Vo dx < (I f +divglls + llalDliell.
Q Q

Hence,

IReslls < i = Ilf +divgll. + llall.
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Moreover,
w<n=Ilf+divglls + (lal®> + 161»">2.

The improvement factor of the second term is

lall/v/llall? + 1612 = 1/V/1 + «2.

Moreover,

llall? =/Va -Va dx = /(q —g)-Va dx = Res(a) — /(f +divg)a dx
Q Q Q
< (IResls + I/ + divgllollall-

This concludes the proof. O

Remark 3.2 For the optimal ¢ = o — Curl § for ¢ from (1.2) and some remainder
with B € H L) /R from the Helmholtz decomposition

o0 — g =Va+ Curl g,

it follows that ||b]| = 0 = || f + div ¢||+, and hence [|Res||, = n = w. In other words,
an optimal ¢ cannot be improved by the proposed postprocessing. Theorem 2.2 is an
example for this observation.

Remark 3.3 Theorem 3.1 implies Theorem 2.1. Indeed ¢ = gmpem and div(ec —
gmreM) = 0 shows —o + gvrem = Curl b. Hence (2.1) is the Helmholtz decompo-
sition of this section with a = u — uy,.

Remark 3.4 The modification of the residual has been discussed on a rather abstract
level in [24] and for general H (div, 2) functions in [25]. Algorithmic details as the
improvements via successive refinements are not reported therein.

Remark 3.5 (on multiply connected domains). The Helmholtz decomposition for
some multiply connected domain involves singular functions 6, ...,0; € HY(Q)
with Af; = 0, 9j|1"_, =land0j|r, =0forj =1,...,Jandk =0,...,J for
02 =ToU.---UTy. Forany g — g € L?(2; R?) there exist a € HO1 (R2) and
be Hl(Q)/Ras well as «q, ..., ay € R such that

J
q—g= Va—i—ZajVQ/ + Curl b.
j=1

Since this decomposition is L2(2)-orthogonal, the suggested postprocessing may
involve 601, ..., 6 as well and reads

wi=If +divglls + llall.
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The practical realisation via discrete harmonic approximations of 61, . . ., 87, however,
involves further discretisation errors to be evaluated in order to compute a valid upper
error bound.

The remaining part of this section is devoted to inhomogeneous Dirichlet data u p
as they arise in the numerical examples of Sects. 7-9. Suppose for the remainder of
this section that along the boundary edges £(9<2) := {E € £ | E C 02} the discrete
solution uy, satisfies uy = Zup := Y _prup(2)¢;.

Theorem 3.6 Assume that up € H'(Q) N C(Q) satisfies up € H*(E) forall E €
E(0R2) and let 3§MD/8S2 denote the edgewise second partial derivative of up along
9. Then there exists wp € H'(Q) with

wplae = uplae —Zuplaq.
supp(wp) C ( T € T |T N0Q # @),
lwpllize@) = lup — Zupllr=@pe),

3/2
lwpll < Cy 1KY ?92up /352 1250

Furthermore it holds
llell® < IResl; + lwpll>.
Proof For the proof of the existence see [3,14]. For the proof of the last equation,

assume the optimal w € H'(Q) with wp|yq = uplse — Zuplsq and div Vwp = 0.
Then, it holds the orthogonality from [3],

2 2 2 2 2 2 2
llell® = fle = wil* + flwll” < lIRes|ly + llwll* < IRes|ly + llwp|I”

O

Remark 3.7 More involved calculations show in [14] that C,, < 0.7043 for triangula-
tions with right isosceles triangles. However, for the numerical examples in this paper,
weuse Cp, = 1.

4 Improvement via red-refinements

This section analyses the reduction property of the postprocessed a posteriori error
estimator under successive red-refinements and thereby contributes to the convergence
analysis of adaptive mixed finite element methods.

Recall definition (2.2) of the edge-related oscillations of some feoq € Po(7)

OSCX(T, fo) i= D 05 (feqo @)+ D 1EP I feqllFu,)-

Ec&(Q) EcEQ)
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Theorem 4.1 (Main result). Given a triangulation T = Ty, its red-refinement T, :=
red(7) and the data x € Py(T), feq € Po(T), qeq € RTo(T) with div geq + foq =0
and r1 = kVuc € Py(T;R?), leta € H}(Q) and b € H'(Q)/R be defined in the
Helmholtz decomposition geq — r7 = xVa + Curl b. Then there exist some constants
0<o<land0 < A < oo, such that

. 12, 2 129,02
min x r Curl v, x '“Va
vheV(red(T)) ” ( T qeq h) ”LZ(Q) ” ||L2(Q)

. 124 2 29 2
<0 (UHren‘l/rET) ”X (VT %q Curl UH)”LZ(Q) ”J’( Va”LZ(Q))

+AOSC(T, feq)?.

Remark 4.2 Note that the proof of Theorem 3.1 shows that 2'2Val| 12(e) equals
lIRes|l+ up to [l feq + div gegll« = 0.

Two interpolation operators J and / will be required for the proof at the end of this
section. Let 7 be a regular triangulation of the polygonal Lipschitz domain €2 into
triangles with its set of edges £ and its red-refinement red(7). Given any v € H ()
let Jv € P;(T) N C(R) be some quasi-interpolant [6] with

_ —1/2
lhz! (0 = Jo)ll 2 + kg P - I0)ll2qye + Il S vl 4.1

Moreover, for any w € H 1 (€2), set

Iw =" (7/ w ds) 20k 4.2)
E

Ee€

with the integral mean f ;w ds := [ w ds/|E| of w along the edge E and ¢ the
nodal basis function of the Courant FEM with respect to the red-refined triangulation
red(7") and the midpoint mid(E) of anedge E € &, pp(mid(E)) = 1 and pp(y) =0
for all other nodes y of red(7).

Lemma 4.3 Given any v € H'(Q) with Jv from (4.1) and w := v — Jv let [w be
defined in (4.2). Then, it holds

— -1/2
I Twl 2 + g P Twll 2y g) + 1wl S il

Proof From (4.2), |¢e|l 21y = |T|'/% /«/§, and a Cauchy inequality along the edges
E(T) of T € T, it follows that
/ wds
E

< D0 TIE Y w2 /Y2

Ee&(T)

Hwlr2ey < D 2leel o
Ee&(T)

Hence,

I Tl gy S D IEIT v = Jvl13s 4
EcE
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Therefore, (4.1) implies
Ih7' Twll 2y < VIl
An inverse inequality for the piecewise affine /w shows
1wl S 1h7 Twl 2 < vll-
A trace inequality [9] concludes the proof,
—1/2 < =l <
lhe “Twlizzqye S lhy Twlzzg) + Hwil S vl

O

Lemma 4.4 Given geq € RTo(T) with divgeq + foq = 0, x € Py(T), r7 €
Po(T: R?), and v € HY (), set vy, :== I (v — Jv). Then, it holds

/x—l(qeq —r7) - Curl(v — Jv — vp) dx| S OSC(T, feq) 2Vl 2.
Q

Proof It is important to notice that 2f g®E ds =1andso

/(w—lw) ds =0 forall E € &. (4.3)
E

Since w := v — Jv — v, satisfies [ pwds=0forall E € £, apiecewise integration
by parts leads to

/}f_l(qeq —r7)-Curlw dx = Z / w}f_1|T(qeq —r7)-tr ds

Q TeTyr

= Z/w[xilqeq]E -Tg ds.

EESE

Here, 7 denotes the tangent along £ € £. Any 2D Raviart-Thomas finite element
function allows for some representation [20]

Geq)|7 = 1/2 (x — mid(T))div geq|T + 2 VNcucr forx e T € T
with the piecewise gradient V¢ of some Crouzeix—Raviart function ucr € CR(7).

Hence [x‘lqeq] E - T¢ equals 1/2[div geq] g (x — mid(T')) - T¢ plus some constant for
x € E € & from ducr/ds. The integral of the latter multiplied by w vanishes

/w[%_lqeq]E g ds =1/2 /([%_lddieq]E ~Tp)wx)((x —mid(E)) - Tg) dsy.
E E

@ Springer



438 C. Carstensen, C. Merdon

The modulus of the previous term is bounded from above by

1/2 | div Geg i - e | 1Go = mid(E)) - 2 |20 0] 2y
= [EF2 /(4v/3) |1 div gegli - e | 0l 2y
- osc(¢ ' div geq, wp) Il |EI™ 2 w2 T E € E(Q),
~IEN I div gegll 2y | ETT 2 wll 2z if E € E0R).

This plus a Cauchy inequality in RI€I followed by Lemma 4.3 to bound the sum of all

I E|I~1/? w||i2(E) leads to

/x_l(qeq —r7) - Curlw dx| S OSC(T, fegllv — Jvll.
Q

In the sequence all constants hidden in the notation < may depend on x. The proof
concludes by (4.1) and [lv — Jvl| < 22Vl 2. O

Proof of Theorem 4.1 The application to the postprocessing concerns the term
© = l1x™"*(geq — r — Curlvi) [ 12

on the triangulation 7 with an optimal vy € (P1(7)NC Q) /R. On the red-refined
triangulation 7, = red(7), the optimal postprocessing leads to

@ = 1%~ (geq — r7 — Curl (v — vl 12
for some minimiser v, € (P1(7;) N C())/R. The Helmholtz decomposition
Geq — 7 — Curlvy = %Va + Curl b
for unique a € HO1 () and b € H'()/R allows for the representations

@ = 1x'Valja g, + I~ /*Curl bl75 g,

@ = I1x'*Valja g, + 1%/ Curl (b — w1175 -

The optimality of vy implies, for all wgy € (P;(Tg) N C(R))/R, that
/x_ICurlb -Curlwy dx = fx_l(qeq —r7 — Curlvy) - Curlwy dx =0
Q
Q

(4.4)
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and that of v, implies, for all w;, € (P;(7,) N C(R))/R, that

/x_lCurl(b —vp) - Curlwy, dx = 0. 4.5)
Q

Since Jb € Vg, (4.4) leads to

||x_1/2Curlb||iz(Q) = /%_ICurlb -Curlb dx = /x_ICurlb -Curl (b — Jb) dx.

Q Q

With by, := I (b — Jb) this term equals

/%_I(Qeq — rg — Curlvy) - Curl b, dx
Q

+/;f‘ (geq — r7 — Curlvy) - Curl (b — Jb — by) dx.
Q

Lemma 4.4 shows

||x*‘/2cur1b||iz(m < /x*‘(qeq — ry — Curlvy) - Curl by, dx
Q
+ crllx 2 Curl bl 12 OSC(T, feq)-

Equation (4.5) for wy, = by, implies
/Jf] (geq — r7 — Curlvgy) - Curl b, dx
Q
=/z‘1Curlb-Curlbh dx
Q
= /}f_ICurl vy, - Curl by, dx
Q
< Nl 2 Curl g |l 2 3¢~/ Curl bl 12 -

Lemma 4.3 shows
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2= /2Curl by || 12y < e2lle™ /2 Curl bl 12y
Alltogether, it follows
2~ 2Curl b 12y < c1OSC(T, feq) + c2ll ™ *vall 12(g)- (4.6)

The orthogonality »~'/2Curl(b — vj,) L »x~'/2Curl(P;(7;) N C(R))/R from (4.5)
leads to

I3~ 2Curl b7, o, = ll2¢~"/>Curl (b — vh)||§2(m + |~ *Curl Uh||iz(m.

()

The last term is bounded by (4.6) and hence

e~ Y2Curl (b — vh)uiz(m +1/Qc3) I~ 2Curl b2,

< [l !2Curl b17,

@~ ¢1/c3 OSC(T, feq)?

()
Witho (=1 — 1/(20%) and A := c%/c% this reads
e ™12 Curl (b — v 172, < @l 2Curl b7, g + AOSC(T, feq)?.

m}

Remark 4.5 With ¢ = gg,x = l,r7 = g and foq = f € Po(7) it holds
IVallp2q) = llo — gll2(q) and therefore

Nge = ligs — g — Curl vy 170, = llo = glI32 g, + ICurl (b — vi) 2
and
vrem = llo — gl125 o, + ICurl (b — vi) |13
"MFEM = 82 112

Theorem 4.1 then implies Theorem 2.3, i.e.,
M — o — 81220y < 0 (nirmnt — 10 — 8132, ) + AOSC(T, fig)*

5 A posteriori error estimators

This section recalls some details of known a posteriori error estimators for the design
of admissable averagings ¢ and so presents the setting behind Table 1.
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5.1 Braess equilibration error estimator

For some piecewise or broken Raviart-Thomas element ¢ € RT_1(7) = {q €
L*(;R*) |VT € T, qlr € RTo(T)} with

/f(pzdxz/g-Vgozdx forall z € M,
w; w;

Braess [6] designs patchwise broken Raviart-Thomas functions r, € RT_{(7 (z))
with

divr,|7 = —/f(pz dx/|T| forT €7 (z),
T

[r;-vele = —[g-vele/2 onE € £(z) NEOR),
r,-v =0 along dw,\E(ILQ).

The solution r, of these problems is unique up to multiplicatives of Curl ¢, and may be
chosen such that [|r; | ;2(,, ) is minimal. Eventually, the quantity gg := g+ DN Tz €
RT((7) satisfies

divgp = —f1

and so allows the dual norm estimate || f + divgg|lx < osc(f, 7)/m. The error esti-
mator reads

8 = llgB — gll 2y +osc(f, T)/m.
Assume g = Vuy, equals the gradient of the solution uy, of the Pj finite element method
for the Poisson problem. Then, the best Raviart-Thomas function ¢ € RTy(7) with

divg + f7 = 0 equals the gradient of the mixed finite element solution gmpem. This
motivates the error estimator

= - +osc(f,7)/m ;== min - +osc(f,7T)/m.
IMFEM ‘= llgMFEM — &ll12(@) (L, 1)/ qeRTO(T)llq 8l (. 1)/

divg=—f1

5.2 Least square error estimators

An integration by parts yields, for any g € H (div, 2) and elementwise integral mean
fr € Po(T) of f, that

/(U—g)~Vv dx:/(f—fg-)v dx—}-/(fff—i—divq)v dx+/(g—q)-Vv dx.
Q Q Q Q
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After [12,25,26], this results in the error estimator

:= min (C + div + g — +osc(f,T)/m
nLS qeRTo(T)( Fllfr qlliz + g — 8ll2 ) (7))

with Friedrichs’ constant Cr := sup,cy\ (o) IVl 2()/llvll < width(€2)/7. The Repin
variant (without the oscillation split) reads

in:= min_ (C + div +llg — .
NRepin qeRTO(T)( Fllf qllr2 + g — 8ll2 )

In practise nrepin and nLs are approximated by a series of least-square problems [27].
For the numerical experiments documented in this paper, Algorithm 5.1 approximates
nLs with three iterations.

Algorithm 5.1 INPUT g € Py(T;R?),Cr > Oand f € L?>(2). Set A = 1.
For j =1,2,3do

gus = argmin ((1+DCH 1 +divgl 2 g + (1 + /Mg — gliag ) -
q€RTy(T)

A= llgLs — gllp2()/(Crll fr +divgLs|l2(q))- od

OUTPUT 715 := Crll f7 +divgll 2 + s — gll2(q) + 0se(f. T)/m

5.3 Luce—Wohlmuth equilibration error estimator

The design of grw from [19] assumes some piecewise or broken Raviart—-Thomas
element g € RT_{(7) with

/fgoz dx:/g-Vgozdx forall z e M
wz

Wz
and employs the dual triangulation 7* which connects each mid(7') with adjacent
nodes and edge midpoints and so divides every T € 7 into six triangles of area |T'| /6
(Fig. 1).

Consider some node z € N (7) and its nodal basis function @r with the fine
patch o} := {¢} > 0} of the dual triangulation 7* and its neighbouring triangles
T*(z) = {T* ¢ T* | z € N*(T*)}). Since g € Py(T;R?) is continuous along
dw!NT forany T € T,q-v =g-v € Py(E*(dw})) is well-defined on the boundary
edges £*(dw}) of w}. The further design employs an interpolation f* € Py(7*) of f
defined by

[l = 3/fg0Z dx/|T| forthe two Tf € T* with N*(T}) NN(T) = {z}
T
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Fig. 1 Exemplary triangulation
T (thick lines) and dual mesh
T™* (thin lines) and one node
patch w} for the L-shaped
domain

With the set
O(T*(2)) == {ty € RTo(T*(2))| f* +divr, =0inw} and 7j - v = g - v along 3w} \ 9L},
one computes the minimiser

qiwler == argmin g — Tl 12(pr-
7,€Q(T*(2)) )

The choice of f* differs from the original one of [19] for an improved bound for
Il f + div grw ll« with explicitly known constants, namely

If +divgrwlle < a7 (f +divgiw)ll2@)/7-

In our preferred modification, the Luce—Wohlmuth error estimator reads

mw = llguw — gl 2@y + A7 (f +divgiw) 2 /7.

6 Numerical realisation

This section concerns the calculation of some postprocessing y and the adaptive mesh
design in the numerical experiments.

6.1 Realisation of the postprocessing

The postprocessing is based on a minimisation within continuous and piecewise affine
functions v € P1(7) N C(R2), namely

Vu — g — Curlv|l ;2 () := min Vu — g — Curlv|p2(q)-
veP (T)NC(Q)
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Given an equilibrated quantity g € RTo(7) on some triangulation T of Q (e.g.
T e {T,7T* red(7), red(7*)}), the minimisation of the right-hand side over v €
Py (’?) N C(K2) results in some linear system of equations Ax = b. Given some basis
{@z, ..., oz} of Py (?) N C(K2), the stiffness matrix and right-hand side vector read

Ajg = /Curltpzj -Curlg,, dx and b; := /(g —q) - Curlg;; dx.
Q Q

The Matlab routine pcg with Jacobi (or diagonal) preconditioner D = diag(Ay1, ...,
Apny) and initial value x = 0 solves this system iteratively in k iterations. The first
iterate reads

T n-1/2
x| = b'D % D~ 12p.
bTD-12AD—-1/2p
Since, Curl(P1(7) N C(R)) C RTy(7) and ||g — quEMHLz(Q) is already the
best-approximation in RT((7"), there is no improvement by the postprocessing with
T = T in case of the MFEM error estimator, unless one refines the mesh or increases
the polynomial degrees. But the postprocessing with T =T may reduce the gap
bAetween nmreM and the Braess equilibration error estimator ng. We suggest to use
T = T* for the Luce—Wohlmuth error estimator and a red-refinement 7 = red(7)
for all other error estimators, see also Table 1. Postprocessed error estimators based on
Nxyz With T = red(7) and k iterations are labelled as 7xy;r(x). The Luce—Wohlmuth
error estimator with postprocessing 7 = T* and k iterations is labelled as NLW (k) -
The Braess error estimator with postprocessing on T = T and k iterations is labelled
as NB(k)-

Remark 6.1 Inthe 3D case, the minimisation problem in Sect. 6.1 involves the Curl :=
V x 1 of functions ¥ in H'(€2; R3). This causes modifications in the realisation of
the postprocessing, either by the choice of a proper basis of P! (Q; R?) N C(Q) or by
H (curl, 2)-conforming finite elements.

6.2 AFEM algorithm

Automatic mesh refinement generates a sequence of meshes 7y, 71, 7> . . . by succes-
sive mesh refining according to a bulk criterion with parameter 0 < ® < 1.

Algorithm 6.2 INPUT coarse mesh 7 For any level £ =0, 1,2, ... do
COMPUTE discrete solution u; on 7; with ndof := |[N;(2)| degrees of freedom,
global upper bounds nLw, 78, "MFEM, 11Ls and the postprocessed quantities nxyzr(x)
from Sect. 6 for k € {1, 3, 5, 00}, and refinement indicators

(T =T f 2y +I1T1Y? D IVl - vEllsp, forall T e 7.
Ee&(T)
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T

—fe—Lsr(1) |

Fig. 2 History of efficiency indices nxy/|le|| of various a posteriori error estimators 7xy; labelled xyz as
functions of ndof on uniform meshes in Example 7.1

MARK minimal set (for adaptive mesh-refinement) M, C 7, of elements such that

12 37 neM?*< > ne(1)>2.

TeT; TeM;

(For uniform mesh-refinement set M, = 7;.)

REFINE 7; by red-refinement of elements in M, and red-green-blue-refinement of
further elements to avoid hanging nodes and compute 7y 1. od

OUTPUT efficiency indices eff := nxy,/lle|| for error e = u — u; of exact solution u
and

pryrrtr = (W = W) 7 (ny, = lell?) 6.1)

The quantity pxy, r measures the improvement of the relative error of nxy, by nxyzrx)
after k iterations.

7 Numerical examples for Poisson problems

The first two numerical example concern the Poisson problem and the residual for the
solution uy, of the Pj finite element method

Res(v) :=/fv dx —/Vuh - Vv dx.
Q

Q

@ Springer



446 C. Carstensen, C. Merdon

—3{z— MFEMr(1) ]
—— MFEMr(5) |4
—O— MFEMTr( <) |]
—0—1s
—fc— LSr(1)
—P—LSr(5) H
—— LSr( )
——Lw
—=— LW(1)
—— LW(5)
—O— LW(eo) i

1 P | P | P | Ll P | P | Lol

10° 10" 10° 10° 10* 10° 10° 107

Fig. 3 History of efficiency indices nxyz/|le|| of various a posteriori error estimators 7xy; labelled xyz as
functions of ndof on adaptive meshes in Example 7.1

7.1 L-shaped domain example

The first benchmark problem employs f = » = 1 and homogeneous Dirichlet data
up = 0. The exact energy error can be calculated by

lel® = Nlull® — llug* and [jull* = 0.214075802680976

(computed with higher-order FEMs). The problem involves a typical corner singularity
and shows an experimental convergence rate of 1/3 for uniform mesh refinement.

Figures 2 and 3 display the efficiency indices of the a posteriori error estimators
nB, nLw and nvrem from Sect. 5 and their postprocessed quantities from Sect. 6.

One main observation is that, even after a single iteration k = 1, the postprocessing
significantly improves efficiency indices. The efficiency indices of all error estimators
are reduced by 10 to 15 %. The gap between gy and nmrem(0) allows a significant
improvement by the postprocessing 7p(o) based on 7. The potential of efficiency
improvement appears even larger in case of uniform mesh refinement. The postprocess-
ing of the Luce—Wohlmuth equilibration error estimator and the MFEM or LS error
estimator leads to very good efficiency indices around 1.15. Table 2 lists the improve-
ment numbers from (6.1) typically by 0.5 or below. In agreement with the results
of Sect. 4, the further red-refinement in the postprocessing results in a significant
improvement of the accuracy. Table 2 also displays the quotient 9B r(1)/0B,r(cc)- It
increases on coarse meshes, but stabilises with an increasing number of degrees of
freedom. Hence, we assume a pre-asymptotic phenomenon and the postprocessing by
one iteration should maintain its effectivity also for more complex problems. Table 3
for adaptive mesh-refinement hardens this assumption.
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1.6

Fig. 4 History of efficiency indices nxyz/|le|| of various a posteriori error estimators 7xy; labelled xyz as
functions of ndof on uniform meshes in Example 7.2

—3jz— MFEMr(1)
—7— MFEMr(5)
—O— MFEMr( ) ||
—O—1LS
—sfe— LSr(1) 4
—P>— LSr(5)
—— LSr( o) M
——Lw

—E=— LW(1)
—— LW(5) 1
—(O— LW(<)

10

7

Fig. 5 History of efficiency indices 7xyz/|le]l of various a posteriori error estimators 7xy labelled xyz in
the figure as functions of ndof n adaptive meshes in Example 7.2

7.2 Square domain with big oscillations

Our second benchmark problem employs homogeneous boundary data up = 0, x =
1, and an oscillating source term f that matches the exact solution

ux,y) =x(x — Dy(y — 1) exp(—100(x — 1/2)> — 100(y — 117/1,000)?)
on the square domain © = (0, 1)%.
Figures 4 and 5 show efficiency indices for uniform and adaptive mesh refinement.

The results are similar to the results from the first example. Since the oscillations
dominate the global upper bound on coarse meshes, the efficiency improvement by the
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postprocessing is not that significant in the beginning. On finer meshes, the improve-
ment is as significant as in the first example, also for k = 1. In this example there is
almost no visible gap between nvreM, 7LS, 7B and the postprocessing of np based on
T . The postprocessing based on red(7") is almost as good as the postprocessing of npw
based on 7*. The efficiency indices are reduced by about 20 %. The postprocessing
nBrr(3) of n based on two red-refinements red?(7) and k = 3 iterations leads to higher
efficiency. The improvements numbers from Tables 4 and 5 support this observation.

8 Numerical examples for discontinuous coefficients

This section concerns the Poisson model interface problem.

8.1 Setting

Given a right-hand side f € L?(), Dirichlet data up € H'(Q) and piecewise
constant diffusion coefficients

0<x<x(x)<x <oo forae.x € 2

in the domain €2, seek u € H' () such that
—div(xVu)=f inQ and wu=up ondQ.

With g := »Vuy this leads to the usual residual (1.1) with weighted energy norm
l[vll == [15¢"/2Vv]| 2, and dual norm

IRes[l. := sup Res(@)/llell.
peH] (Q)

The weight x in the energy norm results in the weight 1/x in the a posteriori error
estimators [ x~1/2(gxy, — g — Curlv)|| 12(q).

8.2 Square domain

The first benchmark involves f = 0 and u p which match the exact quadratic function
u(x,y) = (x2 - yz)/}f on the square domain 2 = (—1, 1)2. The diffusion parameter
x assumes the values 1, 100, 10,000 on subdomains as depicted in Fig. 8.
Qualitatively there are no new results compared to the standard Poisson model
problem examples. Figures 6 and 7 show a strong improvement by the postprocessings.
While the difference of the efficiency indices of npw and its postprocessed quantities
is about 0.25 for uniform and adaptive mesh refinement, there is a surprisingly huge
reduction for ng, nmreM and nps from 1.5 to 1.15 in case of adaptive mesh refinement!
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Equilibration estimator postprocessing 453

Fig. 6 History of efficiency indices nxyz/|le|| of various a posteriori error estimators 7xy; labelled xyz as
functions of ndof on uniform meshes in Sect. 8.2

——B(0) ]

Fig. 7 History of efficiency indices nxyz/|le|| of various a posteriori error estimators 7xy; labelled xyz as
functions of ndof on adaptive meshes in Sect. 8.2

8.3 Octagon domain

The second benchmark problem from [18] employs f = 0 and u p matching the exact
solution u(x, y) = ((ax? — y*)(ay? — x%))/» with a = tan((377)/8)? on the octagon
domain

Q = conv{(cos((2j + 1)x/8),sin((2j + 1)x/8)), j=0,1,...,7}

The diffusion coefficients » take alternately the values 1 and 1,000 as depicted in
Fig.8.
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Fig. 8 Distribution of » =1
(white) and » = 1,000
(lightgray) in octagon domain of
Sect. 8.3 (left) and distribution
of x = 1 (white), » = 100
(lightgray) and »x = 10,000
(darkgray) in square domain of
Sect. 8.2
. 3
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Fig. 9 History of efficiency indices nxyz/|le|| of various a posteriori error estimators 7xy; labelled xyz a;
functions of ndof on uniform meshes in Sect. 8.3

@

—W¥— B(0) 4

1 ol ol PR | PR | ol ol ol

10° 10" 10°

Fig. 10 History of efficiency indices nxyz /e[| of various a posteriori error estimators 7xy; labelled xyz
as functions of ndof on adaptive meshes in Sect. 8.3
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In contrast to the last experiment, the efficiency of the Luce—Wohlmuth equilibration
error estimate does not improve much by the postprocessing in case of uniform refine-
ment as seen in Fig. 9. The reason is that npw () yields already very good efficiency of
about 1.2, the postprocessing npw 1) arrives at 1.15 together with the postprocessed
quantities of the other error estimators based on red(7). In case of adaptive mesh
refinement, Fig. 10 shows a larger scattering similar to former examples. There is
even some little gap between np and nmrEM-

9 Numerical example for obstacle problems

This section is devoted to conforming obstacle problems with an affine obstacle.

9.1 Setting and global upper bound

The unique exact weak solution # € K of the obstacle problem inside the closed and
convex set of admissable functions,

K = {veHl(Q)‘szonFD and x <vae. inQ} #9

satisfies the variational inequality

/Vu~V(u—v)dx</f(u—v)dx forallv € K.
Q Q

After [5] and for the particular choice of Ay, [13], the discrete solution of the obstacle
problem u, in

K(T) :={vy € P(T)NC(Q) | vy =00nTpand I < v; inQ}

solves the discrete version of the Poisson problem for w € V with

/Vw-Vv dx:/(f—Ah)v dx forallveV. ©.1)
Q Q
The energy norm difference ||w — uy|| = ||Res||, between uy and the exact solution

w of the Poisson problem (9.1) can be estimated by any a posteriori error estimator. In
the conforming case x < Z x, [13] leads, for any a posteriori estimator 7 for ||w —up ||,
to the reliable global upper bound (GUB) in the strict sense of

llell < GUB() := (n + |1 An — J Anlln)/2

+ / (= un)d A dx + 7+ 1An — J ARl
Q
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—¥— MFEMr(5)
—O— MFEMr( =) ||
—O—1LS
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Fig. 11 History of efficiency indices GUB(nxyz)/lle]| of various a posteriori error estimators GUB (1xyz)
labelled xyz as functions of ndof on uniform meshes in Sect. 9.2

The patchwise oscillations

1/2

osc(Ap, N) = [ D diam(w,)* min [|Ay — f2l72,.,
zeN feR :

are a computable bound for

IAL— JApll = sup / (A — T A dx/lIvll < osc(Ap, N).
veV\(o) )

The competition in [13] compares five classes of error estimators.

9.2 Numerical example on L-shaped domain with oscillations and constant obstacle

The benchmark example from [2] mimics a typical corner singularity on the L-shaped
domain Q = (-2, 2)2\([0, 2] x [—2, 0]) with constant obstacle x = Zx = 0 and
homogeneous Dirichlet data up = 0 along 9€2. With the right-hand side

£ 9) = —r*Psin(2¢/3) (% + g”(r)) —H(r—5/4),

(r) := max {o, min {1, —65% + 155* — 10s° + 1}} fors := 2(r — 1/4)

and the Heaviside function H, the exact solution reads u(r, ) := r*/3g(r) sin(2¢/3).
Figures 11 and 12 compare the efficiency indices for the original equilibration error
estimators and for their postprocessed modifications. Also in this nonlinear application,
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Fig. 12 History of efficiency indices GUB(nxyz)/lle]| of various a posteriori error estimators GUB (7xyz)
labelled xyz as functions of ndof on adaptive meshes in Sect. 9.2

there is a significant improvement from efficiency indices about 1.5 to efficiency
indices about 1.3 due to the postprocessing.

10 Conclusions
10.1 Braess versus Luce~Wohlmuth

One interpretation of the numerical examples below and our overall experience is
that the Braess error control is already very accurate and it is the quality of that
simple Braess equilibration which causes the minimal improvements in the numerical
experiments for T = 7. The choice 7 = red(7") leads to remarkable improvements
throughout all benchmarks. The slight superiority of the Luce—Wohlmuth technique
appears the consequence of the dual mesh 7 = 7™* which is refined and hence leads
to more space for improvements.

10.2 Computational costs

The striking empirical observation is that already a few iterations dramatically improve
the efficiency indices. The more detailed examples in Sect. 7 convey that even a single
iteration leads to substantial improvement also for very large numbers of degrees of
freedom. The improvement numbers oy, ) from (6.1) are mostly below 0.5, so the
relative error is halved.

If the number of red-refinements is increased, we also suggest to increase the number
of cg iterations. In our experiments, 1g(3) employs two red-refinements and three cg
iterations. This combination results in efficiency indices very close to 1 in the examples
for the linear problems.
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10.3 Postprocessing in presence of overhead terms

In the presence of overhead terms in form of oscillations on coarse meshes in Sect. 7.2
or in form of the quantities related to the Lagrange multiplier in the obstacle prob-
lem of Sect. 9, the improvement by the postprocessing is less significant. While the
oscillations possibly may be reduced by some more elaborate choice of ¢, the afore-
mentioned other overhead terms are somehow intrinsic and cannot be improved by
the postprocessing. In the latter case the effectivity of the postprocessing is limited by
the contribution of those overhead terms relative to the global upper bound.
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