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Abstract. This survey compares different strategies for guaranteed error control for the
lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes equa-
tions. The upper error bound involves the minimal distance of the computed piecewise
gradient DNC uCR to the gradients of Sobolev functions with exact boundary conditions.
Several improved suggestions for the cheap computation of such test functions compete in
five benchmark examples. This paper provides numerical evidence that guaranteed error
control of the nonconforming FEM is indeed possible for the Stokes equations with overall
effectivity indices between 1 to 4.

1. Introduction

The a posteriori error analysis of conforming FEM is well established and contained even
in textbooks [BS08, Bra07, AO00, Ver96]. Although a unified framework is established
[Car05, CH07], much less is known about a posteriori error analysis for nonconforming lowest-
order Crouzeix-Raviart finite element methods [DDP95, AD05, Ain04, AR08, Joh98, BCJ02].
This paper concerns the 2D Stokes equations: Given a right-hand side f P L2pΩ;R2q and
Dirichlet data uD P H1pΩ;R2q with

ş

BΩ uD ¨ ν ds “ 0, seek a pressure p P L2
0pΩq with

ş

Ω p dx “ 0 and a velocity field u P H1pΩ;R2q with

´∆u`∇ p “ f and div u “ 0 in Ω while u “ uD on BΩ.(1.1)

The primal variable u will be discretised with the nonconforming Crouzeix-Raviart FEM
on some shape-regular triangulation T with discrete solution uCR. This paper discusses and
compares different a posteriori error estimators for the error e “ u ´ uCR in the (noncon-
forming) energy norm

~e~2
NC :“

∥∥DNC e
∥∥2

L2pΩq
:“

ÿ

TPT

∥∥D e
∥∥2

L2pT q
.

The decomposition from [AD05] allows for a split of this error into

~e~2
NC ď η2 `

´∥∥DNCpuCR ´ vq
∥∥
L2pΩq

` 1{c0

∥∥div v
∥∥
L2pΩq

¯2
.

The first term on the right-hand side (with j1,1 ě 3.8317)

η :“
∥∥fT {2b p‚ ´midpT qq

∥∥
L2pΩq

` 1{j1,1 oscpf, T q
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involves contributions of the data f and is directly computable (up to quadrature errors).
The second term employs any v P H1pΩ;R2q with v “ uD along BΩ, e.g., componentwise
interpolation by [Ain04] or novel interpolations on the red-refined triangulation redpT q from
[CM13]. The constant c0 depends only on the domain Ω and equals the smallest eigenvalue
of some general eigenvalue problem [Sto99], cf. Section 3 below. This paper compares several
possible designs of v and applies them in the five benchmark examples of Table 1.1.

Subsect. Short name Problem data & features c0

5.1 Smooth Solution f ‰ 0, uD ‰ 0 0.3826
5.2 2nd Smooth Solution f ‰ 0, uD ‰ 0 0.3826
5.3 Colliding Flow f ” 0, uD ‰ 0 0.3826
5.4 L-shaped Domain f ” 0, uD ‰ 0, corner singularity 0.3
5.5 Backward facing step f ” 0, uD ‰ 0, corner singularity 0.3

Table 1.1. Benchmark examples and subsection references.

The remaining parts of this paper are outlined as follows. Section 2 introduces the neces-
sary notation, preliminaries and our adaptive mesh refinement algorithm. Section 3 presents
the a posteriori error analysis and derivates a sharp upper bound for the energy error with
explicit constants. Section 4 explains the realisations of the guaranteed upper bounds. Sec-
tion 5 gives details on the error estimator competition for the five benchmark problems from
Table 1.1. Section 6 draws some conclusions from the theoretical and numerical results of
this paper.

Throughout this paper we use standard notation for Lebesgue and Sobolev spaces and
their norms: V :“ H1

0 pΩ;R2q is endowed with the energy norm ~¨~ :“
∥∥∇ ¨∥∥

L2pΩq
“ |¨|H1pΩq.

Finally a À b abbreviates a ď Cb for some generic constant C that depends only on the
shape regularity of the triangulation while a « b stands for a À b À a.

2. Notation and Preliminaries

2.1. Nonconforming finite element spaces. Given a regular triangulation T of the
bounded Lipschitz domain Ω Ď R2 into closed triangles in the sense of Ciarlet with edges E ,
nodes N and free nodes M, the midpoints of all edges are midpEq :“ tmidpEq

ˇ

ˇE P Eu and
EpBΩq denotes the edges along the boundary BΩ. The set EpT q contains the three edges of a
triangle T P T . With the elementwise first-order polynomials P1pT ;R2q, the nonconforming
Crouzeix-Raviart finite element spaces are defined by

CR1pT ;R2q :“ tv P P1pT ;R2q
ˇ

ˇ v is continuous at midpEqu,
CR1

0pT ;R2q :“ tv P CR1pT ;R2q
ˇ

ˇ@E P EpBΩq, vpmidpEqq “ 0u.

The Crouzeix-Raviart finite elements form a subspace of the broken Sobolev functions

H1pT q :“ tv P L2pΩq
ˇ

ˇ@T P T , v|T P H1pT qu.

The diameter diampT q of T P T is denoted by hT and hT denotes their piecewise constant
values with hT |T :“ hT :“ diampT q for all T P T . The integral mean of a function f P L2pωq
(or any vector f P L2pω;R2q) over some open set ω is denoted by

fω :“

 
ω
f dx :“

ż

ω
f dx{ |ω| .
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The oscillations of f P L2pΩq (as well as of vectors f P L2pΩ;R2q) read

oscpf, T q :“

˜

ÿ

TPT

∥∥hT pf ´ fT q∥∥2

L2pT q

¸1{2

“
∥∥hT pf ´ fT q∥∥L2pΩq

.

2.2. Crouzeix-Raviart FEM for the Stokes equations. The discrete bilinear form reads

aNCpuCR, vCRq :“
ÿ

TPT

ż

T
DuCR : D vCR dx

for all uCR, vCR P Xh :“ CR1pT ;R2q Ď H1pT ;R2q with A : B :“
ř

j,k“1,2AjkBjk for all 2ˆ2

matrices A,B P R2ˆ2. The particular choice of

Yh :“ P0pT q X L2
0pΩq and bNCpv, qq :“

ż

Ω
q divNC v dx,

with the piecewise divergence operator divNC, leads to the discrete counterpart

ZNC :“ tvCR P CR1
0pT ;R2q

ˇ

ˇ divNC vCR “ 0u

of the space of divergence-free functions

Z :“ tv P H1
0 pΩ;R2q

ˇ

ˇ div v “ 0u.

The nonconforming representation of the Stokes problem reads: Given f P L2pΩ;R2q, seek
uCR P CR1pT ;R2q with divNC uCR “ 0,

uCRpmidpEqq “

 
E
uD ds for all E P EpBΩq,

and

aNCpuCR, vCRq “ F pvCRq :“

ż

Ω
f ¨ vCR dx for all vCR P ZNC.

In other words, up to boundary conditions, uCR is computed from the Riesz representation
of a linear functional (given as right-hand side plus boundary modifications) in the Hilbert
space pZNC, aNCq. The actual implementation uses unconstrained Crouzeix-Raviart elements
vCR P CR1pT ;R2q and another Lagrange multiplier to enforce the global constraint

divNC uCR “ 0 a.e. in Ω.

2.3. Adaptive mesh refinement algorithm.

Algorithm 2.1 (ACRFEM). INPUT coarse regular triangulation T0 and 0 ă Θ ď 1.
For level ` “ 0, 1, 2, . . . until termination do

COMPUTE discrete solution uCR on T` with N` degrees of freedom. For any vxyz for xyz P
tA, PMA, MAred, PMred, MP1, MP2, MP2CG5, MP1red, MP1redCG3u, compute the
refinement indicators

ηpT, vxyzq
2 :“

∥∥fT {2b p‚ ´midpT qq
∥∥2

L2pT q
` 1{j2

1,1

∥∥hT pf ´ fT q∥∥2

L2pT q

`
∥∥DNCpuCR ´ vxyzq

∥∥2

L2pT q
` 1{c2

0

∥∥div vxyz

∥∥2

L2pT q
`
∥∥h3{2

E B2
EuD{Bs

2
∥∥2

L2pBΩXBT q
.

With the tangential jump rDNC uCR¨τEsE for interior edges and rDNC uCR¨τEsE :“
∥∥BuD{Bs´

DNC uCR ¨ τE
∥∥
L2pEq

for boundary edges E P EpBΩq, the residual-based refinement indicators

read

ηRpT q
2 :“ |T |

∥∥f∥∥2

L2pT q
` |T |1{2

ÿ

EPEpT q

∥∥rDNC uCR ¨ τEsE
∥∥2

L2pEq
.
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Estimate

ηpvxyzq
2 :“

´∥∥fT {2b p‚ ´midpT qq
∥∥
L2pΩq

` 1{j1,1 oscpf, T q
¯2

`

´∥∥DNCpuCR ´ vxyzq
∥∥
L2pΩq

`
∥∥h3{2

E B2
EuD{Bs

2
∥∥
L2pBΩq

` 1{c0

∥∥div vxyz

∥∥
L2pΩq

¯2
.

MARK a minimal subset M` of T` such that

Θ
ÿ

TPT`

ηxyzpT q
2 ď

ÿ

TPM`

ηxyzpT q
2.

REFINE T` by red -refinement of triangles in M` and red-green-blue-refinement of further
triangles to avoid hanging nodes and compute T``1. od

OUTPUT Sequence of meshes T0, T1, . . . with respective discrete solution uCR and residual-
based error estimator

ηRpT`q :“
∥∥hT`f∥∥L2pΩq

`

˜

ÿ

EPE`

|E|
∥∥rDNC uCR ¨ τEsE

∥∥2

L2pEq

¸1{2

.

3. A Posteriori Error Estimation for Stokes Equations

This section is devoted to guaranteed upper bounds for the error in the nonconforming
energy norm for the Stokes problem based on a decomposition from [AD05] with a slightly
sharper upper bound. The general reliability result involves the computable term

η :“
∥∥fT {2b p‚ ´midpT qq

∥∥
L2pΩq

` 1{j1,1 oscpf, T q.

Here, j1,1 is the first positive root of the first Bessel function J1. For every triangle T P T
with the set of its edges EpT q and spT q2 :“

ř

EPEpT q |E|2, an elementary calculation shows∥∥fT {2b p‚ ´midpT qq
∥∥2

L2pT q
:“ |fT {2|2

∥∥ ‚ ´midpT q
∥∥2

L2pT q
“ |fT |2 |T | spT q2{144.

The constant c0 in the inf-sup condition

0 ă c0 :“ inf
qPL2

0pΩq
sup

vPH1pΩ;R2q{R2

ş

Ω q divpvq dx∥∥D v
∥∥
L2pΩq

∥∥q∥∥
L2pΩq

depends only on the domain Ω and equals the smallest eigenvalue of some general eigenvalue
problem [Sto99]. Their values are given in Table 1.1.

The following a posteriori error estimate resembles the upper bound from [AD05, Theo-
rem 1]

~e~NC ď
∥∥fT {2b p‚ ´midpT qq

∥∥
L2pΩq

` C oscpf, T q

`
∥∥DNCpuCR ´ vq

∥∥
L2pΩq

` 1{c0

∥∥div v
∥∥
L2pΩq

and gives a refined version with an explicit value for C À 1.

Theorem 3.1. Any v P H1pΩ;R2q with v “ uD on BΩ satisfies

~e~2
NC ď η2 `

´∥∥DNCpuCR ´ vq
∥∥
L2pΩq

` 1{c0

∥∥div v
∥∥
L2pΩq

¯2
.

Proof. The analysis follows [AD05] and is repeated here for convenient reading to stress the
little differences to [AD05, Theorem 1]. The point of departure is the orthogonal split

DNC e “ D z ` y
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into z P Z with
ż

Ω
D z : D v dx “

ż

Ω
DNC e : D v dx for all v P Z,

and the remainder

y P Y :“

"

y P L2pΩ;R2ˆ2q
ˇ

ˇ

ż

Ω
y : D v dx “ 0 for all v P Z

*

.

Orthogonality holds in the sense of

~e~2
NC “ ~z~

2
NC `

∥∥y∥∥2

L2pΩq
“

ż

Ω
DNC e : D z dx`

ż

Ω
DNC e : y dx.

To estimate
ş

Ω DNC e : D z dx, employ the nonconforming interpolation zNC P CR1pT ;R2q

of z defined by

zNCpmidpEqq :“

 
E
z ds for all E P E .

An integration by parts yields zNC P ZNC and
ż

T
Dpz ´ zNCq dx “ 0 for all T P T .(3.1)

This allows for the following computation
ż

Ω
DNC e : D z dx “ F pzq ´ aNCpuCR, zq

“ F pz ´ zNCq ´ aNCpuCR, zq ` F pzNCq

“

ż

Ω
f ¨ pz ´ zNCq dx´ aNCpuCR, z ´ zNCq.

Equation (3.1) and ∇uCR P P0pT q yield aNCpuCR, z ´ zNCq “ 0. Hence,
ż

Ω
DNC e : D z dx “

ż

Ω
f ¨ pz ´ zNCq dx

“

ż

Ω
fT ¨ pz ´ zNCq dx`

ż

Ω
pf ´ fT q ¨ pz ´ zNCq dx.(3.2)

For every T P T , consider the function qT |T P Hpdiv, T ;R2ˆ2q defined by

qT pxq|T :“ ´fT {2b px´midpT qq for x P T.

An integration by parts and some basic calculations show, for any v P H1
0 pΩ;R2q, that

ż

T
qT : ∇v dx “

ż

BT
qT ν ¨ v ds´

ż

T
div qT ¨ v dx

“ ´
ÿ

EPEpBT q
fT |T | {p3 |E|q

ż

E
v ds`

ż

T
fT ¨ v dx

“

ż

T
fT ¨ pv ´ vNCq dx.
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Moreover, the P0pT q orthogonality of f ´ fT and a Poincaré inequality with constant
diampT q{j1,1 from [LS10] yield

ż

Ω
pf ´ fT q ¨ pz ´ zNCq dx “

ż

Ω
pf ´ fT q ¨ pz ´ zNC ´ pz ´ zNCqT q dx

ď
ÿ

TPT

∥∥f ´ fT ∥∥L2pT q

∥∥z ´ zNC ´ pz ´ zNCqT
∥∥
L2pT q

ď 1{j1,1 oscpf, T q
∥∥Dpz ´ zNCq

∥∥
L2pΩq

.

Hence, (3.2) reads
ż

Ω
DNC e : D z dx “

ż

Ω
qT : ∇z dx`

ż

Ω
pf ´ fT q ¨ pz ´ zNCq dx

ď
∥∥qT ∥∥L2pΩq

~z~NC ` 1{j1,1 oscpf, T q~z ´ zNC~NC.

Notice that (3.1) yields∥∥Dpz ´ zNCq
∥∥2

L2pT q
“

ż

T
|D z|2 dx´ 2

ż

T
D z : D zNC dx`

ż

T
|D zNC|2 dx

“

ż

T
|D z|2 dx´

ż

Ω
|D zNC|2 dx ď

∥∥D z
∥∥2

L2pT q
.

It remains to estimate
ş

Ω DNC e : y dx. Recall from [AD05] that, for each y P Y , there

exists some w P L2
0pΩq :“ tq P L2pΩq

ˇ

ˇ

ş

Ω q dx “ 0u with
ż

Ω
y : D v dx “

ż

Ω
w div v dx for all v P H1pΩ;R2q(3.3)

and ∥∥w∥∥
L2pΩq

ď 1{c0

∥∥y∥∥
L2pΩq

.

Hence, given any v P H1pΩ;R2q with u´ v “ 0 on BΩ, it holds

ż

Ω
DNC e : y dx “

ż

Ω
DNCpuCR ´ vq : y dx`

ż

Ω
Dpv ´ uq : y dx

ď
∥∥DNCpuCR ´ vq

∥∥
L2pΩq

∥∥y∥∥
L2pΩq

`

ż

Ω
divpv ´ uqw dx

ď

´∥∥DNCpuCR ´ vq
∥∥
L2pΩq

` 1{c0

∥∥div v
∥∥
L2pΩq

¯∥∥y∥∥
L2pΩq

.

The combination of all mentioned results concludes the proof. �

4. Realisations of Guaranteed Upper Bounds

The subsequent Subsections 4.1-4.3 discuss nine designs for v and the estimation of ~e~
via Theorem 3.1 with

µpvq :“
∥∥DNCpuCR ´ vq

∥∥
L2pΩq

` 1{c0

∥∥div v
∥∥
L2pΩq

.(4.1)

The significant difference to [CM13] on the Poisson problem lies in the additional divergence
term which leads to a sum of L2 norms and Algorithms 4.1 and 4.2.
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4.1. Interpolation after Ainsworth. This subsection introduces the interpolation after
Ainsworth [Ain04] that designs some piecewise linear vA P H1pΩ;R2q with respect to the
original triangulation T ,

vApzq :“

#

uDpzq if z P N zM,
´

ř

TPT pzq uCR|T pzq
¯

{ |T pzq| if z PM.

The related error estimator reads

η2
A :“ η2 ` µpvAq

2.

4.2. Modified interpolation operator. This subsection introduces an improved interpol-
ation that designs some piecewise linear vred P H

1
0 pΩ;R2q with respect to the red refined

triangulation redpT q. The nodes of redpT q consists of the nodes N and the edge midpoints
midpEq of T . At the boundary the interpolation equals the nodal interpolation of uD and
on all interior edge midpoints it equals uCR;

vredpzq :“

$

’

&

’

%

uCRpzq for z P midpEqzmidpEpBΩqq,
uDpzq for z P pN YmidpEqq X BΩ,
vz for z PM.

(4.2)

z

P1 “ P6

P2

P3P4

P5

Q1

Q2

Q3
Q4

Q5

T1

T2

T3

T4

T5

pωz

(a) Interior Patch

P1

T1

T2

T4

T3

P2

T1

T2

T4

T3

P3

T1

T2

T4

T3
Q1

T1

T2

T4

T3

Q2

T1

T2

T4

T3

Q3

T1

T2

T4

T3

(b) Central Subtriangle T4 “

convtmidpEpT qqu in redpT q for T P T .

Figure 4.1. Notation for red-refinements.

In this way, the interpolation vred equals uCR on all central subtriangles like T4 in Fig-
ure 4.1(b) and it remains to determine the values vz at the free nodes z P M. They
may be chosen as in the design of vA, but we suggest to choose them locally optimal with
Algorithm 4.1 by solving local problems around each node patch pωz with respect to the
red-refined triangulation as in Figure 4.1(a) under the side condition of the fixed values at
the edge midpoints Qj of the adjacent edges. The value vz at z remains the only degree of
freedom in this local problem.

Algorithm 4.1 (Patchwise minimisation). INPUT uCR P CR1pT ;R2q and c0 ą 0. Set λ :“ 1.
For j “ 1, 2, . . . until termination compute (a) & (b).
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(a) For all z P N pΩq, v0 :“
ÿ

EPE
vredpmidpEqqϕred

midpEq and

vz :“ argmin
wPR2

`

p1` λq
∥∥DNCpuCR ´ v0 ´ wϕ

red
z q

∥∥2

L2ppωzq

` p1` 1{λq{c2
0

∥∥divpv0 ´ wϕ
red
z q

∥∥2

L2ppωzq

˘

.

(b) Update vred :“ v0 `
ÿ

zPN pΩq
vzϕ

red
z ,

λ :“
∥∥div vred

∥∥
L2pΩq

{

´

c0

∥∥DNCpuCR ´ vredq
∥∥
L2pΩq

¯

,

η2
PMred(j) :“ η2 ` µpvredq

2.

OUTPUT ηPMred(j) for j “ 1, 2, . . .

We distinguish between the optimal version ηPMred(j) from Algorithm 4.1, and ηMAred with
the suboptimal choice vz as in Subsection 4.1. This can be seen as a modification vMAred of
vA at the edge midpoints.

Some numerical examples below suggest that the fixed values at the edge midpoints from
vred lead to unexpectedly large divergence terms. Indeed, even the interpolation vA may
lead to better results than vMAred on fine meshes as displayed in Section 5.4. Of course, it is
possible to describe other values at the edge midpoints and substitute (4.2) by, e.g.,

vredpzq :“

$

’

&

’

%

vApzq for z P midpEqzmidpEpBΩqq,
uDpzq for z P pN YmidpEqq X BΩ,
vz for z PM.

(4.3)

ndof 13 57 241 993 4033 16257 65281 261633

ηA 1817.92 699.646 276.868 112.429 46.5926 19.7549 8.59524 3.83932
ηPMA(1) 719.926 290.836 131.632 61.9372 29.1130 13.6895 6.48276 3.10096
ηPMA(2) 719.926 290.773 131.611 61.9337 29.1126 13.6894 6.48274 3.10096
ηPMA(3) 719.926 290.773 131.611 61.9337 29.1126 13.6894 6.48274 3.10096
ηPMA(4) 719.926 290.773 131.611 61.9337 29.1126 13.6894 6.48274 3.10096
ηPMA(5) 719.926 290.773 131.611 61.9337 29.1126 13.6894 6.48274 3.10096
ηMAred 719.926 286.729 122.127 55.5387 25.5059 11.7695 5.48898 2.59459

ηPMred(1) 719.926 286.684 121.653 54.4621 24.4546 11.0798 5.10119 2.39005
ηPMred(2) 719.926 286.677 121.632 54.4186 24.4286 11.0678 5.09563 2.38739
ηPMred(3) 719.926 286.677 121.632 54.4183 24.4281 11.0674 5.09542 2.38728
ηPMred(4) 719.926 286.677 121.632 54.4183 24.4281 11.0674 5.09542 2.38728
ηPMred(5) 719.926 286.677 121.632 54.4183 24.4281 11.0674 5.09542 2.38728

Table 4.1. Error estimators ηA, ηMAred, ηPMA(j) and ηPMred(j) for j “
1, 2, 3, 5, 10 in Algorithm 4.1 and uniform mesh refinement in the example
of Section 5.3 (with Dirichlet data error contribution from Section 4.4).
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The optimal value vz can again be computed similar to Algorithm 4.1 with vred replaced by
vA and output ηPMA(j). Since vz “ vApzq is admissible in this optimisation, ηPMA(j) can only
lead to better results than the interpolation ηA.

Table 4.1 compares the outcome ηPMred(j) (resp. ηPMA(j)) of Algorithm 4.1 for j “
1, 2, 3, 5, 10 with the edge values (4.2) (resp. (4.3)). There is no significant improvement
for coarse meshes and only little improvement on fine meshes. Surprisingly, the design of
ηPMA is somehow insensitive for j ě 2 in Algorithm 4.1.

4.3. Optimal choices. The global minimisers vMP1 in P1pT qXCpΩq, vMP2 in P2pT qXCpΩq
and vMP1red in P1predpT qq X CpΩq on the red-refined triangulation redpT q of the functional
µ from (4.1) are computed by Algorithm 4.2.

Algorithm 4.2 (Global minimisation). INPUT uCR P CR1pT ;R2q, W pT q P tP1pT q X CpΩq,
P1predpT qq X CpΩq, P2pT q X CpΩqu and c0 ą 0. Set λ :“ 1.
For j “ 1, 2, . . . until termination do

vW pT q :“ argmin
vPW pT q

´

p1` λq
∥∥DNCpuCR ´ vq

∥∥2

L2pΩq
` p1` 1{λq

∥∥div v
∥∥2

L2pΩq
{c2

0

¯

,(4.4)

η2
j,W pT q :“ η2 ` µpvW pT qq

2,

λ :“
∥∥div vW pT q

∥∥
L2pΩq

{

´

c0

∥∥DNCpuCR ´ vW pT qq
∥∥
L2pΩq

¯

. od

OUTPUT ηMP1(j) :“ ηj,P1pT qXCpΩq, ηMP1red(j) :“ ηj,P1predpT qqXCpΩq, ηMP2(j) :“ ηj,P2pT qXCpΩq
for j “ 1, 2, . . .

Table 4.2 displays values of ηMP2(j) for j “ 1, 2, . . . , 5 and suggests that there is a more
significant improvement by Algorithm 4.2 compared to Algorithm 4.1 for the local designs.
In the computational examples of Section 5, the termination of Algorithms 4.1 and 4.2 is
with j “ 3.

To reduce the computational costs of (4.4) one might use vMAred as an initial guess for some
iterative solver to draw near the minimiser of (4.4) for W pT q “ P1predpT qqXCpΩq. We use a
preconditioned conjugate gradients scheme and stop at the third iterate. The preconditioner
is the diagonal of the system matrix named after Jacobi. This approximation of (4.4) in
Algorithm (4.4) with j “ 3 results in the estimator ηMP1redCG3. Similarly, the nodal values
of vMAred define some piecewise quadratic function and hence an initial value for some PCG
algorithm for the approximation of the minimiser of (4.4) for W pT q “ P2pT q X CpΩq. The
truncation of the minimisation in (4.4) after five PCG iterations and j “ 3 in Algorithm 4.2
defines the error estimator ηMP2CG5.

ndof 13 57 241 993 4033 16257 65281 261633

ηMP2(1) 516.780 171.508 50.5265 18.2578 7.88212 3.72095 1.82154 0.903860
ηMP2(2) 516.747 169.398 49.1931 17.2531 7.24667 3.36511 1.63548 0.809433
ηMP2(3) 516.747 169.159 48.9606 17.1022 7.14785 3.30029 1.59558 0.787235
ηMP2(4) 516.747 169.144 48.9070 17.0820 7.13818 3.29419 1.59092 0.783648
ηMP2(5) 516.747 169.143 48.8919 17.0791 7.13742 3.29387 1.59069 0.783424

Table 4.2. Error estimator ηMP2(j) for j “ 1, . . . , 5 in Algorithm 4.2 and
uniform mesh refinement in the example of Section 5.3 (with Dirichlet data
error contribution from Section 4.4).
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4.4. Inhomogeneous Dirichlet boundary conditions. In case of inhomogeneous bound-
ary conditions, the designs of vxyz from the previous subsections do not satisfy u´ vxyz “ 0
on BΩ in general. To overcome this difficulty consider wD P H

1pΩ;R2q from [CM13, BCD04]
with

wD|BΩ “ uD|BΩ ´ vxyz|BΩ.

Then, Theorem 3.1 for v “ vxyz ´ wD yields u´ v P H1
0 pΩq and

~e~2
NC ď η2 `

´∥∥DNCpuCR ´ v ´ wDq
∥∥
L2pΩq

` 1{c0

∥∥divpv ` wDq
∥∥
L2pΩq

¯2

ď η2 `

´∥∥DNCpuCR ´ vq
∥∥
L2pΩq

` 1{c0

∥∥div v
∥∥
L2pΩq

` p1` 1{c0q~wD~
¯2
.

In case of vxyz|BΩ “ IuD|BΩ :“
ř

zPN zM uDpzqϕz|BΩ, it holds [CM13, BCD04]

~wD~ ď Cγ
∥∥h3{2

E B2
EpuD ´ vxyzq{Bs

2
∥∥
L2pBΩq

.

Remark 4.1 ([CM13]). For right isosceles triangles numerical calculations suggest the con-
stant Cγ “ 0.4980. If vxyz|BΩ is the nodal interpolation of uD|BΩ on the red-refined trian-
gulation, wD can be designed on the red-refined triangulation with halved edge lengths and
the constant reduces to Cγ “ 0.4980{23{2 “ .1761. The same holds if vxyz equals the P2

interpolation of uD on T along BΩ.

5. Numerical Experiments

This section discusses the five benchmark examples from Table 1.1.

5.1. Smooth example. The first benchmark problem employs the right-hand side fpx, yq “
p4π2 sinpπpx´ yqq, 0q and inhomogeneous Dirichlet boundary data uD with exact solution

upx, yqj “ sinpπxq cospπyq ´ cospπxq sinpπyq for j “ 1, 2

on the square domain Ω “ p´1, 1q2 with c0 “ 0.3826 from [Sto99].
Figure 5.1 shows the efficiency indices in case of uniform and adaptive mesh refinement in

the range of 1 and 3. While ηMAred is superior to ηA in case of Poisson problems from [CM13],
this example shows that this must not be the case for Stokes problems. The piecewise minimal
improvement ηPMred closes the gap between ηA and ηMAred, but barely leads to more efficient
upper bounds than ηA at least for uniform mesh refinement. Here, ηPMA performs better and
converges to efficiency indices close to 1.5 for uniform mesh refinement and efficiency indices
below 2.5 for adaptive mesh refinement. The error estimator ηMP1redCG3 and its optimal
limit ηMP1red with efficiency indices between 1.25 and 1.75 only lose to ηMP2 which allows
for efficiency indices close to 1. The residual error estimator ηR with efficiency indices above
8 is not displayed. Figure 5.2 shows that none of the error estimators leads to significantly
better refined meshes.

5.2. Second smooth example. The second benchmark problems from [AD05] employs
the right-hand side fpx, yq “ p´4y, 4xq and inhomogeneous Dirichlet boundary data uD
that matches the exact solution

upx, yq “ rxp1´ xqp1´ 2yq,´yp1´ yqp1´ 2xqs

on the square domain Ω “ p0, 1q2 with c0 “ 0.3826 from [Sto99].
The efficiency indices displayed in Figure 5.3 scatter more than in the first example.

The error estimator ηMP1 and ηA yield almost identical efficiency indices of larger than 5
for uniform mesh refinement. The redpT q-based interpolation error estimators ηMAred and
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Figure 5.1. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labelled xyz in the figure as functions of the number
of unknowns on adaptive (dashed lines) and uniform meshes (solid lines) in
Subsection 5.1.
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and adaptive (dashed lines) mesh refinements in Subsection 5.1.
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Subsection 5.3.

ηPMred yield efficiency indices of about 3, while ηMP1red and ηMP1redCG3 allow efficiency
indices around 2. Again, the most accurate error estimator are ηMP2 and ηMP2CG5.

5.3. Colliding flow example. The third benchmark problem employs fpx, yq ” 0 and the
exact solution upx, yq “ p20xy4 ´ 4x5, 20x4y´ 4y5q on the square domain Ω “ p´1, 1q2 with
c0 “ 0.3826 from [Sto99].

The efficiency indices for adaptive mesh refinement displayed in Figure 5.5 are in the range
between almost 1 in case of ηMP2 to 3.5 in case of ηA. The piecewise minimal interpolation
ηPMred yields efficiency indices around 2.5 which is significantly better than ηPMA and also
better than ηMP1. The error estimator ηMP1redCG3 is is almost as efficient as the optimal
ηMP1red with around 2.

5.4. Example on L-shaped domain. The fourth benchmark problem employs fpx, yq ” 0
and uD matching the exact solution

upr, ϕq “ rα
ˆ

pα` 1q sinpϕqψpϕq ` cospϕqψ1pϕq
´pα` 1q cospϕqψpϕq ` sinpϕqψ1pϕq

˙T

on the L-shaped domain Ω “ p´1, 1q2z pp0, 1q ˆ p´1, 0qq with

ψpϕq “ 1{pα` 1q sinppα` 1qϕq cospαωq ´ cosppα` 1qϕq

` 1{pα´ 1q sinppα´ 1qϕq cospαωq ` cosppα´ 1qϕq

for α “ 856399{1572864 « 0.54, ω “ 3π{2 from [Ver89]. For the estimator we set c0 “ 0.3
from [Sto99].
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Figure 5.6. Convergence history of the energy error for uniform (solid lines)
and adaptive (dashed lines) mesh refinements in Subsection 5.3.
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error estimators ηxyz labelled xyz in the figure as functions of the number
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Subsection 5.4.

Figure 5.8 shows the convergence history of the energy error for uniform and adaptive
mesh refinement. The singularity reduces the convergence speed for uniform mesh refinement
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Figure 5.8. Convergence history of the energy error for uniform (solid lines)
and adaptive (dashed lines) mesh refinements in Subsection 5.4.

significantly. The adaptive mesh refinement algorithm from Section 2.3 leads to the optimal
convergence speed, independently of the chosen refinement indicators. This is also true for
all other examples so far.

The efficiency indices are displayed in Figure 5.7 and appear similar to the examples before
in the range of 1 to 4.

5.5. Backward facing step example. The last example employs the backstep domain
Ω “ pp´2, 8qˆp´1, 1qqzpp´2, 0qˆp´1, 0qq, the right-hand side f ” 0 and the inhomogeneous
boundary data

uDpx, yq “

#

p´ypy ´ 1q{10, 0q at x “ ´2,

p´py2 ´ 1q{80, 0q at x “ 8.

There is no known reference solution, but the example is well-understood [BW91, CF01].
The error estimators yield guaranteed upper bounds that are displayed in Figure 5.9 for the
energy error with c0 “ 0.3 (not justified). Again, optimal minimisation leads to significantly
smaller bounds than the local interpolation designs.

6. Conclusions

The theoretical and practical results of this paper support the following observations.

6.1. Explicit error estimator sufficient for effective mesh design. The adaptive mesh
refinement may be steered by simple ηR-based marking. It does not appear to be favourable
to spend more computational time for more laborious refinement rules.
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6.2. No explicit error estimation for reliable error control. The explicit residual-
based error estimator ηR is no guaranteed upper bound for the exact error, since sharp
reliability constants are unknown or hard to calculate. The shown efficiency indices for ηR

are therefore not comparable with those of the other guaranteed error bounds. However,
from related situations on the Poisson problem, we expect that the displayed ηR from Sub-
section 2.3 with Crel “ 1 is an optimistic approximation [CF99, VV09]. Therefore, the
values of ηR are plotted in all the figures and display that those explicit residual-based error
estimates are less competitive.

6.3. Accurate and cheap error control via ηPMred. The experience for Poisson problems
in [CM13] is that the modification vred of vA is superior in all benchmark examples. This is
not true for Stokes problems, since ηA sometimes is more accurate than ηMAred. However, the
associated piecewise minimal error estimator ηPMred is better than ηPMA in all benchmark
examples with efficiency indices between 2 and 3.

6.4. Performance of Algorithm 4.1 and 4.2. Since the error estimators of Theorem 3.1,
as well as that of [AD05], involves the sum of norms and not the sum of their squares, some
alternating direction minimisation in the variable v and λ is suggested in Algorithm 4.1 and
4.2. The numerical experiments reported in Table 4.1 and ?? suggest that the value λ “ 1
is already a good approximation. Hence, an expensive outer loop over various j does not
appear to be necessary.

6.5. More accurate error control via ηMP2 or ηMP1red. Global Minimisation on the
red-refined triangulation redpT q leads to the error estimator ηMP1red with efficiency indices
between 1.5 to 2. In most benchmark examples, its approximation ηMP1redCG3 leads to only
slightly less accurate results. However, the optimisation with piecewise quadratic polynomi-
als ηMP2 allows the best error control with efficiency indices below 1.5, often close to 1. The
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error estimator ηMP2CG5 is a very good approximation towards ηMP2 and even yields better
efficiency indices than ηMP1red.

6.6. Suggested approximation of ηMP1red with ηMP1redCG3 or ηMP2 with ηMP2CG5.
The PCG approximation ηMP1redCG3 of ηMP1red is computed by three iterations of some
conjugate gradient scheme with initial value vMAred in direction of the minimiser of the sum
of squares. So λ is set to 1 and there is no outer loop of the minimisation as discussed
in Subsection 6.4. The error estimator ηMP2CG5 also uses the nodal values of vMAred as
coefficients for the P2 ansatz functions on T and performs five PCG iterations to draw near
ηMP2 with λ “ 1.
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