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RATE OPTIMALITY OF ADAPTIVE ALGORITHMS  

The overwhelming practical success 
of adaptive mesh-refinement in 
computational sciences and 
engineering has recently obtained a 
mathematical foundation with 
a theory on optimal convergence 
rates. This article first explains an 
abstract adaptive algorithm and its 
marking strategy. Secondly, it 
elucidates the concept of optimality 
in nonlinear approximation theory 
for a general audience.  It thirdly 
outlines an abstract framework with 
fairly general hypotheses (A1)—(A4), 
which imply such an optimality 
result. Various comments conclude 
this state of the art overview.  
 
All details and precise references are 
found in the open access article 
[C. Carstensen, M. Feischl, P. Page, 
D. Praetorius, Comput. Math. Appl. 
67 (2014)] at  
http://dx.doi.org/10.1016/
j.camwa.2013.12.003. 

THE ALGORITHM 
The geometry of the domain Ω in 
some boundary value problem (BVP) 
is often specified in numerical 
simulations in terms of a 
triangulation   (also called mesh or 
partition) which is a set of a large 
but finite number of cells (also called 
element-domains) Τ1, … , ΤΝ. Based 
on this mesh  , some discrete model 
(e.g., finite element method (FEM)) 
leads to some discrete solution  U( )   
which approximates an unknown 
exact solution u to the BVP. Usually, 
a posteriori error estimates motivate 
some computable error estimator  
 
 
The local contributions ηΤj ( ) serve 
as refinement-indicators in the 

adaptive mesh-refining algorithm, 
where the marking is the essential 
decision for refinement and written 
as a list of ℳ cells (i.e. ℳ ⊆  ) with 
some larger refinement-indicator. 
The refinement procedure then 
computes the smallest admissible 
refinement  ’ of the mesh   (see 
Section 3) such that at least the 
marked cells are refined. 
 
The successive loops of those steps 
lead to the following adaptive 
algorithm, where the coarsest mesh  
 0  is an input data. 
 
Adaptive Algorithm  
Input: initial mesh  0 
Loop: for   0, 1 ,2, … do steps 1-4: 
1. Solve: Compute discrete 
approximation U (  ).   
2. Estimate: Compute refinement 
indicators ηΤ(  )   for all  T ∊   . 
3. Mark: Choose set of cells to 
refine  ℳ  ⊆    (see Section 4 for 
details). 

4. Refine: Generate new mesh   +1 
by refinement of at least all cells in  
ℳ   (see Section 3 for details). 
Output: Meshes    , approximations 
U (  ), and estimators η(  ) . 

THE OPTIMALITY 
Figure 1 displays a typical mesh for 
some adaptive 3D mesh-refinement 
of some L-shaped cylinder into 
tetrahedra with some global 
refinement as well as some local 
mesh-refinement towards the 
vertical edge along the re-entrant 
corner. The question whether this is 
a good mesh or not is an important 
issue in the mesh-design with many 
partially heuristic answers and 
approaches. We merely mention the 
coarsening techniques as in [Binev et 
al., 2004] when applied to the 
adaptive hp-FEM with the crucial 
decision about h- or p-refinement.  
 
For the optimality analysis of the 
adaptive algorithm of Section 1, the 

Figure 1: Strongly adaptively refined surface triangulation 
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natural comparison for optimality is 
with respect to the estimator η. The 
underlying class   of simplicial meshes 
is based, e.g., on newest vertex 
bisection (NVB) of an initial mesh  0; 
see, e.g., [Stevenson, 2008]. Since the 
typical work load is proportional to 
(and expected at least to be monotone 
increasing with) the number of 
tetrahedra | | in the admissible mesh 
  , given any non-negative integer  N  
define 
 
 
Then, the accuracy is measured in 
terms of the estimator η, and the 
optimal value for meshes with ≤N 
extra tetrahedra, namely 
 
 
is studied as a function of N = 0,1,2,... 
and may be compared with η(  ) of 
the computed solution and the 
number N  = |  |-| 0| of extra 
tetrahedra in the computed 
triangulation of level   = 0,1,2,... 
 
Figure 2 presents a schematic scenario 
in a log-log scale which is written 
explicitly near the axes. The entries (N, 
η( (N ))  are shown in red as a 
decreasing sequence for N =0,1,2,… of 
points as well as the corresponding 
entries (N , η(  ))  for   = 0,1,2,...  in 
blue. By definition, 
 
 
for all   = 0,1,2,... The converse 
estimate is unclear and expected to 
fail in general.  However, rate 
optimality of the adaptive algorithm 
leads to an asymptotic comparison: 
Suppose there exists a convergence 
rate  0 < σ < ∞ in the sence that 

Then, optimality means that the 
adaptively computed solutions U (  )  
with corresponding estimators allow 
for the same rate in the sense that 

 
 

The visualization in Figure 2 shows two 

parallel straight lines of slope  - σ in 
the log-log scaling. In fact, the log-
transform of the above rate 
condition shows that  

 

 
for all N =0,1,2,…. In other words, 
this straight line is an upper bound 
of the entries of the optimal meshes 
with an   additive constant log(M) 
and multiplicative factor - σ. The 
constant Cqop < ∞ leads to a shift of 
the upper bound for the 
computed entries. The parallel 
straight line with an additive constant 
log(M)  +  log(Cqop)    (and the same 
slope - σ) is in fact an upper bound. 
Stated explicitly, rate optimality of the 
adaptive algorithm means that the 
computed values  (N , η(  )) will 
asymptotically below a curve parallel 
to the optimal curve (N, η( (N )) . 
 
The optimality results from [Binev et 
al., 2004] and [Stevenson, 2007] show 
that (under some conditions)  the 
same rate holds for the computed 
value in the sense that the generic 
constant Cqop < ∞  depends only on  0 
and on the optimal rate σ as well as on 
the marking  parameter  θ from 
Section 4. The constants in the axioms 
of Section 5 below determine the 
quasi-optimality constant Cqop. 
 
From the view of computational 
efficiency, not only the convergence 
rate σ is important, but also the 
number of adaptive steps. An adaptive 
algorithm could refine only a few 
elements in each step and, despite 
converging with optimal rate, may turn 
out to be extremely inefficient (with 
respect to CPU time). 
 
The above considerations are 
formalized in the following two main 
results, which hold under the axioms 
(A1)—(A4) of Section 5. 
 
Main Result 1: The adaptive algorithm 
guarantees linear convergence in the 
sense of 
 

 

for all  = 0,1,2,...  with some constant 
0 < q < 1. 

 
Main Result 2: For some sufficiently 
small adaptivity parameter θ  from 
Section 4, the adaptive algorithm is 
quasi-optimal in the sense that it 
reveals the optimal rate of 
convergence.  

THE REFINEMENT 
The most fundamental property of 
NVB are the γ-shape regularity, which 
ensures that the cells of the meshes do 
not degenerate (i.e., the interior 
angles are bounded below), and the K 
-mesh property, which ensures that 
neighbouring cells in the mesh are of 
comparable size. This is why 
refinement of a cell may enforce 
refinements of additional cells and 
hence generates more refined cells 
 \ ’ than marked cells ℳ.  However, 
both properties are only implicitly 
necessary for the validation of the 
axioms of Section 5.  
 
Since the number of refined cells is the 
only factor which distinguishes 
adaptive refinement from uniform 
refinement, it is important to control 
this overhead. To that end, the 
analysis builds on the closure estimate 
from [Binev et al., 2004] 
 

Fig Figure 2: Schematic visualization of rate optimality 
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where the constant CBDV ≥ 1  
depends only on  0 and  j+1 , for all  
j = 1, …,  -1, is the coarsest 
admissible refinement of   j , where 
all cells Τ ∊ ℳj  are bisected.  

Moreover, a cell of    -1 is refined 
into at most C + 1  son cells in   . 
Counterexamples in the literature 
(even 1D bisection) show that  

cannot hold with some  - 
independent constant C > 0 for 
refinement strategies which satisfy 
the K -mesh property mentioned 
above.  
 
The optimality analysis relies on the 
comparison of different meshes. To 
that end, it is important that each 
two meshes  ,  ’ which are 
refinements of  0 have a coarsest 
common refinement   ⨁  ’ in the 
sense that   ⨁  ’  is a refinement of 
both   and  ’ and has less or equal 
cells than |  |+|  ’|- | 0|. 
 
Finally, a necessary requirement is 
that NVB has no blind ends. This 
means that for each refinement   of 
 0 and all  ε > 0, there exists a 
refinement  ’ of   such that  
 
 
Instead of NVB, any othere mesh-
refinement could be used which 
guarantees the aforementioned 
properties. 
 

THE MARKING 
In each adaptive step, the error 
estimator ηΤ(  ) gives a heuristic 
measure of the error on each cell  
T ∊   . If the adaptive algorithm is 
supposed to reduce the error 
sufficiently fast (i.e. by a factor 0 < q 
< 1 each step), it is sufficient and 
even necessary (see [Carstensen et 
al. 2014] for a proof) to apply the 
following Dörfler marking criterion 
[Dörfler, 1996] to identify the cells  
ℳ  to be refined: Given some fixed 
adaptivity parameter 0 < θ ≤ 1, find a 

set ℳ  ⊆    of (almost) minimal 
cardinality with 
 
 
The naive approach to find the set  
ℳ  sorts the list of cells such that 
 
 
and defines ℳ  := { 1, … ,  j}   with 
the smallest index 1 ≤ j ≤ |  | = N 
such that the Dörfler marking is 
satisfied. However, sorting requires 
at least N log(N) operations and 
therefore renders a (theoretical) 
bottleneck. An approximate bin sort 
algorithm [Stevenson, 2007] 
determines ℳ   with almost minimal 
cardinality (up to the multiplicative 
factor two) in O (N)  operations. 
 

 
THE AXIOMS 
If one aims at optimal asymptotic 
error reduction, the error estimator 
should satisfy the following four 
axioms. For simplicity, we abbreviate   
 
 
for the error estimator on any subset   
ℛ ⊆   of cells. The generic constants    
0 < qred < 1 and Cstab, Cred ,  Corth, Crel  ≥ 
1   depend only on  0 . 
 
(A1) Stability: For a refinement  ’ of    
 ,   ∩  ’ denotes the non-refined 
cells. The difference of the 
corresponding error indicators should 
be bounded by the difference of the 
solutions U( )andU( ’)in the sense 

 
 
 
 
 
(A2) Reduction: For a refinement  ’ 
of   ,  \ ’ contains the refined cells 
of  , whereas  ’\  contains the 
newly generated cell of  ’. Each 
refinement of a cell reduces the 
mesh-width and hence should reduce 
the estimator in the sense  
 
 
 

(A3) Orthogonality: Each iteration of 
the adaptive Algorithm improves the 
solution by adding U(  +1)- U(  ) 
to the existing approximation U(  ) 

The estimator  η(  )should control 

all subsequent steps of the adaptive 
Algorithm in the sense that 
 
 
 
 
(A4) Discrete reliability: The 
adaptive algorithm controls only the 
error estimator η( ). Since the 

governing quantity for approximation 
quality is the error || u - U( )||, the 

error estimator should bound the 
error from above in the sense that 
any refinement  ’  of     satisfies  
 
 
for some set  \ ’ ⊆ ℛ ⊆    with  
 
 
In many FEM applications, it suffices 
to consider ℛ =  \ ’.   However, 
some more involved applications may 
require ℛ to contain a certain 
number of cell layers around the 
refined cells  \ ’. This discrete 
reliability implies  
 

THE HISTORY 
The Main Results 1—2 of Section 2 
are the accumulation of the following 
seminal results. [Dörfler, 1996] 
introduced the marking criterion 
from Section 4 and proved linear 
convergence of the error for some 
FEM for the Poisson problem up to 
some tolerance. [Morin et al., 2000] 
extended the analysis and included 
data approximation to prove 
convergence of a practical adaptive 
algorithm. [Binev et al., 2004] first 
proved convergence with optimal 
rates in the sense of Section 2 for the 
Poisson problem. However, their 
analysis required an additional mesh-
coarsening step in the adaptive 
algorithm. [Stevenson, 2007] 
removed this coarsening step and 
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proved convergence with optimal 
rates for the adaptive algorithm of 
Section 1. [Cascon et al., 2008] 
included standard newest vertex 
bisection as mesh refinement into 
the mathematical analysis.  
 
Until then, only variations of FEM for 
the Poisson model problem with 
homogeneous Dirichlet boundary 
conditions were analyzed in the 
literature. Independently, [Feischl et 
al., 2013] and [Gantumur, 2013] 
developed the analysis for integral 
equations and proved convergence 
with optimal rates for standard 
boundary element methods (BEMs). 
For his contributions to [Feischl et al., 
2013] and the field of adaptive BEM, 
Michael Karkulik won the Dr. Körper 
award 2013 of GAMM (Gesellschaft 
für Angewandte Mathematik und 
Mechanik). [Aurada et al., 2013] 
proved optimal convergence rates 
for FEM for the Poisson problem with 
general boundary conditions. Finally, 
[Feischl et al., 2014] concluded the 
theory for general second-order 
linear elliptic PDEs. 
 
The recent work [Carstensen et 
al. 2014] collects all the mentioned 
seminal works in a unifying and 
abstract framework. The work 
identifies the axioms (A1)—(A4) from 
Section 5 and proves optimal rates 
for any problem that fits in the 
abstract setting. The latter covers the 
existing literature on rate optimality 
for conforming FEM (also the known 
results for nonlinear problems) and 
BEM as well as nonconforming and 
mixed FEM. With some additional 
(resp. relaxed) axioms, the abstract 
framework of [Carstensen et al., 
2014] covers also inexact solvers and 
other error estimators (e.g., ZZ-type 
averaging error estimators). 

THE COMPLEXITY 
The asymptotic optimality notion of 
Section 2 may be seen as a first and 
important step towards a most 

effective computation. The 
computational complexity involves 
the usage of the iterative solver in 
the adaptive algorithm. The above 
results hold under the underlying 
assumption that the discrete solution 
as well as the estimators is computed 
exactly, which is unrealistic once 
optimal solvers (e.g., multigrid or BPX 
pre-conditioned CG) are employed. 
Section 7 of [Carstensen et al., 2014] 
shows a way to modify the adaptive 
algorithm: One needs to control the 
termination error in terms of the 
estimator and to engage some 
perturbation of the arguments 
behind the analysis for exact solve. 
 
The situation is more dramatic for 
nonlinear problems, which always 
require an iterative solution 
procedure. Under realistic 
assumptions on the practical 
performance of the algebraic 
eigensolver (with multigrid 
preconditioning) [Carstensen et al., 
2012] showed overall optimal 
complexity. Figure 4 displays 
numerical simulations for the first 
eigenvalue of the Laplacian in the 3D 
geometry of Figure 1. This numerical 
evidence suggests a practical optimal 
complexity and won Joscha Gedicke 
the SIAM student paper prize 2013. 

  

Despite the first success, the overall 
proof of optimal computational 
complexity has to combine an 
analysis of optimal mesh-design with 
an analysis of the iterative solution 
process, and the emerging theory is 
still in its infancy   for many 
important applications.  
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Figure 3: Convergence history plot of accuracy versus CPU time in a log-log scale proves 

optimal computational complexity 




