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NONCONFORMING FEMs FOR AN OPTIMAL DESIGN PROBLEM*
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Abstract. Some optimal design problems in topology optimization eventually lead to a degen-
erate convex minimization problem E(v) := [, W(Vv)dz — [, fvdz for v € H}(Q) with possibly
multiple minimizers u, but with a unique stress o := DW (Vu). This paper proposes the discrete
Raviart—Thomas mixed finite element method (dRT-MFEM) and establishes its equivalence with the
Crouzeix—Raviart nonconforming finite element method. The convergence analysis combines the a
priori convergence rate of the conforming FEM with the efficient a posterior error control of MFEM.
Numerical experiments provide empirical evidence that the proposed dRT-MFEM overcomes the
reliability-efficiency gap for the first time.
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1. Introduction. The optimal design of two materials with prescribed amounts
but unknown position to fill a given domain for a maximal torsion stiffness is one
model problem in topology optimization [17]. The mathematical modeling leads to
the degenerate convex minimization problem with energy

(1.1) E(v) := / Y(|Vu|)dz — F(v) for v e V= H} ().
Q
Here and throughout this paper, F'(v) := [, fvdz is defined for a given datum f

L?(Q2) and the energy function ¢ : [0,4+00) — R is defined, for given parameters
0 <ty <tyand 0 < py < pe with t1ue = tops, by 1(0) := 0 and its derivative

ot for 0 <t <ty,
(12) ¢I(t) = tlug = tgul for tl S t S tg,
it for t > to.

The energy density W : R? — R reads W (A) := 9(]A|) with the derivative DW (A) =
' (|A])A/]A| for all A € R?\ {0} and has the dual function W*(A) := 1*(]A|) with

e [ 12/ (2u2) for t <tipo,
(1.3) Pr(t) = { t2/(2u?) — pata(ty —t1)/2 for t > tiuz.

Numerous works [19, 18, 17, 15, 4, 8] have been devoted to the mathematical
analysis and numerical computation of the minimization of (1.1). The conforming
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finite element method (CFEM) in the primal form is analyzed in [4, 18, 16] with
a priori and a posteriori error estimates [14]. Even for some larger class of convex
energy functionals, the stress field o := DW(Vu) is unique and locally smooth o €
H} (S R?) [15] and satisfies 0 € H'/279(;R?) with any 0 < § < 1/2 for a general
Lipschitz domain Q [21]. However, the guaranteed smoothness of the stress o does
not guarantee any convergence rates for the CFEM. The smoothness of ¢ motivated
the mixed FEM (MFEM) in the dual formulation with a priori and a posteriori error
estimates in [13]. That version of [13] is costly because of the exact integral quadrature
of the affine functions applied to the continuous but nonsmooth energy density W*
with an extra regularization.

This paper proposes some simplified MFEM with one-point numerical quadra-
ture and explores some surprising advantages of the novel discrete Raviart-Thomas
mixed finite element method (dRT-MFEM). First, the dRT-MFEM is equivalent to
the Crouzeix—Raviart nonconforming first-order finite element method (CR-NCFEM).
The nondifferentiability of W* enforced a regularization [13], while the new equiva-
lence to CR-NCFEM for the primal problem with the smooth energy density W leads
to a novel advantageous numerical scheme. This generalizes the Marini representation
[2, 23] and Arbogast and Chen [1] from linear and general variable coefficients elliptic
PDEs to nonlinear convex minimization problems. Second, the convergence analy-
sis of dRT-MFEM (CR-NCFEM) combines the best aspects of the primal and dual
formulation, namely, the a priori convergence rate of CFEM with the efficient a poste-
riori error control of MFEM. For the first time, this leads to some optimal convergence
rates with effective a posteriori error control which overcomes the reliability-efficiency
gap. The reliability-efficiency gap arises in degenerate minimization problems and
systematically leads to efficient error estimates, which are not known to be reliable,
and to reliable error estimates, which are guaranteed but not efficient [14].

The remaining parts of this paper are organized as follows. Section 2 introduces
the precise notation and states the four finite element methods for the optimal design
problem. Section 3 establishes the equivalence result of dRT-MFEM and CR-NCFEM.
A priori and a posteriori error estimates of CR-NCFEM, RT-MFEM, and dRT-MFEM
follow in sections 4, 5, and 6, respectively. Some numerical experiments conclude the
paper in section 7 with empirical evidence of the superiority of the new CR-NCFEM
also for adaptive mesh-refinement.

Standard notation applies throughout this paper to Lebesgue and Sobolev spaces
L*(Q), H*(Q), and H(div,), as well as to the associated norms || - || := || - || L2(0),
M-l o= IV - [z, and ||| - [[lye = Vye - ll£2(@) with the piecewise gradient
Ve - |lr :=V(r) for all T in a regular triangulation 7 of the polygonal Lipschitz
domain €. The notation A < B abbreviates A < C' B with some generic constant
0 < C < oo, which depends on the interior angles of the triangles but not their sizes.
The notation is for two dimensions for brevity but the arguments immediately carry
over to higher space dimensions.

2. Four FEMs for optimal design problem.

2.1. Triangulations. Let 7 be a regular triangulation of the simply connected
bounded Lipschitz domain © C R? with polygonal boundary 052 into closed triangles.
That is, the intersection of two distinct and nondisjoint triangles is either a common
node or a common edge. Let £ denote the set of all edges and let £(2) (resp., £(9N))
denote the set of all interior (resp., boundary) edges, N denote the set of vertices, and
N(Q) (resp., N(99)) denote the interior (resp., boundary) nodes. For any triangle
T € T, set hy := diam(T"), let £(T) denote the set of three edges of T, and write
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hg := diam(FE) for an edge E € £(T). Let
Pe(T) ={vr : 2 = R | for all T € T, vi|ris a polynomial of total degree < k}

denote the set of piecewise polynomials and let hy € Py(T) denote the T piecewise
constant mesh size function with hAr|p = hyp for all T € T and the maximum hp,,x 1=
|h7]loo- Assume that 7 is shape-regular so that hr =~ hg =~ |T|'/2 for all E € £(T)
and T € T.

Let [o]p := |7, —o|7_ denote the jump across the common edge E = 0T, N0T_
with Ty, T_ € T and unit normal vg pointing into 7. Let Il : L2(Q) — Po(T)
denote the L? projection onto 7~ piecewise constant, i.e., (Ilyf)|r =frfdxforall T €
T (the same notation Iy is also used for vectors and is understood componentwise),
and let osc(f, T) := ||hr(f — o f)].

2.2. P; conforming FEM. The P; conforming finite element approximation
uc to (1.1) minimizes the energy E in the Courant finite element space Vo (T) :=
P1(T)NV, written

(2.1) uc € argmin E(Vo(T)).

It is proved in [16] that the dual variable o¢ := DW(Vuc) is unique, while the
discrete minimizers uc from (2.1) exist and are (possibly) nonunique. A priori error
and a posteriori error estimates have been analyzed in [4, 16],

1 .
—|loc—oc|l £ min u—vclll-
sl ol < min_fljuvoll

Define ng := h}3/2|[ac]E -vg| for the jump [o¢]g - vE of the discrete stress o¢ in the
normal direction vg across an interior edge F; then

1
(2.2) 2—|\U—Uc||2+|E(U)—E(UC)| S Z ne? +osc(f, T).
H2 EeE(Q)

2.3. Crouzeix—Raviart nonconforming FEM. The Crouzeix—Raviart finite
element space is defined as

CRY(T) :={vn € Pi(T) | v is continuous at midpoints of interior

edges and vanishes at midpoints of boundary edges}.

The NCFEM is based on CR}(T) and the nonconforming energy E,, with FJ,(e) :=
Folly(e) = [,(IIof) @ dx and
23)  Byelven) = [ W(Vyeton)o = Fulvey)  for vy € CRY(T).

The Crouzeix—Raviart finite element approximation u , to (1.1) minimizes the energy
E.. in CR}(T), written

(2.4) U, € argmin B (CR(T)).

The discrete stress o, := DW(V u.,) is unique, which will be proved in
section 3, while an a priori and a posteriori error analysis follows in section 4.
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2.4. Raviart—Thomas mixed FEM. The dual energy E* is defined as
E*(1):= —/ W*(r)dz for 7 € L*(Q;R?).
Q

Here and throughout this paper, W*(A) := supgcp2(A- B — W (B)) denotes the dual
of W [25] and reads W* = ¢*(| e |) with ¢* from (1.3). The dual problem of (1.1)
maximizes the energy E* in

Q(f) :=={r € H(div,Q) | f+div(r) =0 a.e.in Q},
written

o =argmax E*(Q(f)).

The maximizer o is unique [13] and equals 0 = DW (Vu) for any minimizer u of E in
V.

The mixed finite element scheme is based on the Raviart-Thomas finite element
space

RTH(T) :=={p € H(div,Q) | for all T € T,Ja € R>,b € R, for all z € T,p = a + bz}
and the dual energy E* in
QUf,T):={ruy € RIL(T) | of +div(1,,) =0 a.e. in Q}.

The Raviart-Thomas mixed finite element approximation o, to the dual variable o
maximizes the energy E* in Q(f,7T), written

(2.5) Opp =argmax E*(Q(f,T)).

The maximizer o, is unique in Q(f,7) [13]. An a priori and a posteriori error
analysis follows in section 5.

2.5. Discrete Raviart—Thomas mixed FEM. The discrete Raviart—Thomas
mixed finite element scheme is based on the one-point numerical quadrature with

respect to the center of each triangle and the resulting discrete dual energy £ :=
E* o1ly,

Ej(rar) = — / W (Horpy)de  for 7op € QUL T).

The discrete Raviart—Thomas mixed finite element approximation o to the dual

solution ¢ maximizes the energy E3 in Q(f,T), written

dRT

(2.6) 0, e = argmax EJ(Q(f,T)).
The strong convexity of W* (see Lemma 3.4 below) shows that the maximizer

0, 18 unique in Q(f,7). An a priori and a posteriori error analysis follows in
section 6.
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3. CR-NCFEM is equal to dRT-MFEM. This section is devoted to the
equivalence of CR-NCFEM from subsection 2.3 with dRT-MFEM from subsection 2.5
as a generalization of the Marini representation from the linear equations [1, 2, 23]
to nonlinear convex minimization problems. The equivalence is expressed by the
equivalence of o with some postprocessing o, of o, namely,

. Iy f

UCR ':CTCR_ 9

dRT

(o —mid(T)) € P1(T;R?).

Here and throughout this paper, the piecewise affine function e — mid(7) € P1(T)
equals z — mid(T") at z € T € T with barycenter mid(T').

THEOREM 3.1 (CR-NCFEM = dRT-MFEM with no discrete duality gap). It
holds that o . = 0, and max E}(Q(f,T)) = min B, . (CR§(T)).

The remaining parts of this section are devoted to the proof of Theorem 3.1 which
is based on the following lemmas and the Crouzeix—Raviart interpolation operator
Iy :V — CRY(T),

(Iyov)(mid(E)) ::/ puds forall E € &.

LEMMA 3.2 ([12], property of the Crouzeix—Raviart interpolant). Anyv € H(Q)
with its interpolation I, v and the constant k := vjl‘j + 1/18 for the first positive
root j11 of the Bessel function of the first kind satisfy V yo (Iyov) = o Vo and

[o = Iycoll < slhr(1 = To) Vol < kl|AT Vol
Proof. This lemma is established with different constants x in [12, 24]; the version
here is in [10]. O
LEMMA 3.3 (conforming P5 companion). Given any v,, € CR(T), there exists
some vs € Ps(T)NV with v, = I,,vs, Hov,,, = yvs, and

Hh;’l(UCR - U3)|| =+ |||UCR - U3H|NC S {,I.fl:-l‘r/l |||U - UCRH|NC'

Proof. Given v,, € CR}(T), define some conforming approximation by the
averaging of the possible values (also known as the precise representation)

R NOES Y BRG]

of the (possibly) discontinuous v, at any interior node z € N(Q) with ball B(z, )
of radius ¢ and area |B(z,d)| around z. Linear interpolation of those values defines

vy € P1(T)NCp(£2). The second step adds edge-bubble functions to v; and so defines
vg € Po(T) N Cy(£2), which equals v; at all nodes A and satisfies

/’UCRdSZ/’UQdS for all E € £(Q).
E E

The third step adds the cubic bubble functions to vs such that the resulting function
vz € P3(T) N Co(2) equals ve along the edges and satisfies

/vCRdx:/vgdx forall T € T.
T T
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Therefore, an integration by parts shows
/ Vo, de = / Vousdr forall T €T.
T T

The approximation and stability properties of v; have been studied in the context
of preconditioners for NCFEM [5] (called enrichments therein). This and standard
arguments also prove approximation properties and stability in the sense that

Hh;’l(’UCR - U3)|| + H|UCR - U3|||NC S {}%1‘1/1 |||U - UCR|||NC' u

The subdifferential OW™* of W* [25] is uniformly convex.
LEMMA 3.4. Anya,b € R?, a = DW (a), B = DW (b) satisfy

(31) o~ B W)~ W(a) —a- (b a).
242

Any o, 3 € R? and any b € OW*(B) satisfy

(32) ol — 67 < W (0) = W5 (8) ~ b (0~ ).
H2

Proof. The paper [4, Proposition 4.2] proves (3.1), which is also known as convex-
ity control of W. The duality in convex analysis shows that the relation « = DW (a)
is equivalent to W*(a) + W(a) = a - « [25, Thm 23.5]. This implies

W)+ W(a) =a-a and W*(B)+W(b)=0b-p.

The combination with (3.1) concludes the proof of (3.2). o
LEMMA 3.5 (uniqueness of o). The discrete stress o, is unique and satisfies
the discrete Euler—Lagrange equation in the sense that

/QUCR “ViyoUopde = /Q(Hof) Vo pda for v, € CR(l)(’T).

Proof. For any 0 < ¢ < 1 and any v,,, € CR}(T), let

55(55) — W(VNCU’CR(‘/'E) + EVNC”U;R(‘/'E)) — W(VNC'U’CR(‘/'E)) for all € Q.

Since u,, is a minimizer,

ENC(U’CR +EUCR) - ENC(U’CR) _ 2Vdr — v
(3.3) 0< . —/Qéa( Jdz — F(vgp)-

Since W is smooth, it follows for almost every = € €2 that

1/1 DW(VNCUCR(x) + 6SVNC’UCR (33)) ds
€Jo

O -

1
S /0 |DW(VNCUCR (x) + 6SVNC’UCR (I‘)) ! vNC’WUC’R (x)|d8

The formula DW (A) = ¢'(|A|)A/]A| leads to
IDW (A)| < [ (JA])| < po] Al for all A € R?.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/17/15 to 141.20.210.43. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

880 C. CARSTENSEN AND D. J. LIU

This and the Young inequality imply that

1
|(55(SE)| < N2A |VNCUCR(x) +ESVNC’UCR($)| |VNC’UCR($)|dS
S VioVer @) + |V yotoq (@)

Lemmas 3.3 and 3.2 imply that [,(|V oo, ()2 + |V g ote, (2)]?) da exists. Hence
the Lebesgue dominate convergence theorem guarantees

lim 55(3:)613::/DW(VNCUCR)-VNCUCRCZJ:.
e—=0 Jo O

This and (3.3) imply
0< /Q‘DW(VNCUCR) ’ VNCUCRdx - F(UC’R)'

Since v, is arbitrary in CR}(T), this proves the asserted discrete Euler-Lagrange
equation.

The remaining part of the proof analyzes the uniqueness of the stress o, =
DW(V yotgr)- Let ugy,, @iy, be two minimizers of E, . in CRY(T) and set 5, :=
DW(V yotgy)- The choice b :=V Ugp, @ := V  lgy, and o := G, in Lemma 3.4
leads to

1

ﬂ”aon _&CRHZ

/W NC CR /W Ncler dm_/QUCR.vNC(uCR_aCR)dx
NC(U’CR) _ENC( CR

Since ugp, gy, € argmin By (CRY(T)), Eye(tuon) = Eye (). Hence o, = 6,5
This concludes the proof. O

LEMMA 3.6. It holds that o}, € Q(f,T) C H(div,Q).

Proof. The proof does not really involve the nonlinearity and focuses rather on
the discrete Euler-Lagrange equations and so is very close to the linear case [23].
Hence the proof is briefly outlined here only for completeness.

Given 0, € Po(T;R?) and E € £(Q2) with surface measure |E|, let [07 g - ve
denote the jump of the discrete normal stress o7, -vg over E and let ¢ be the edge-
oriented basis functions of CRG(T) which satisfy ¢p|miar) = 1 and ¢glmiar) = 0
for any F' € £\ {E}. wg denotes the union of the elements that share the edge E. A
piecewise integration by parts shows

NC T CR? NC Y CR?

o2le vl = [ vlo, g -veds

= Ve -0, da:—l—/ Y divy o), dr

wWE wWE
= ViycVE - 0cpdr — / HOf wde =0.
wWE wWE

Since E is arbitrary in £(€2), the normal component of v jump of o7, across any
interior edge vanishes. This concludes the proof. d
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Proof of Theorem 3.1. For any minimizer u,, of (2.4), the duality relation o, =
DW(V yoUey) implies that V,  u., € OW*(0o,). The choice of a := IIyo,
0y (Mid(T)), B :=1Tlgo,, = 0y, and b:= VU, in Lemma 3.4 leads to

- YCR>» NC

dRT|T =

CR

2
cnl

1 *
2—m||HOUdRT — oo
< E*(HOUzR) - E*(HOUdRT) - /Q VNCUCR ' (UdRT - UZR)dx

An integration by parts and Lemma 3.6 with o,,, € Q(f,T) show that the last term
vanishes. This and £} := E* o1l prove
1 * 2 * * *
2—m||H0(0dRT - UCR)” < Ed(UCR) - Ed(odRT)'

Since 0,,, € argmax E}(Q(f, 7)) and o}, € Q(f,T), the upper bound is non-
positive. Hence, g0, = 0., and Ej}(0},.) = Ej(0,,7)-

The duality relation o, = DW(V us,) with the minimizer u,, of (2.4) is
equivalent to

W*(Ucn) + W(VNCU’CR) =0¢p " Vnclon:

An integration of this reads

/QW(VNCU’CR)dl. _/QUCR -VNCU’CRd‘T = _/QW*(UCR)dw'

The definition of E, . and Lemma 3.5 show that the left-hand side (LHS) equals

E,.(usp). Moreover,

- / W* (00 )i = — / W (o000 )it = E5 (00 ).

Hence, E*(o.,) = E;(o = FE,.(u.,). This concludes the proof. O

dRT)

4. Error analysis of CR-NCFEM. This section analyzes the error estimates
of the CR-NCFEM.

4.1. A priori error analysis. The combination of the regularity [21] with the
subsequent a priori error estimate of Theorem 4.1 guarantees that the convergence
rate is as halex © for the energy difference |E(u) — E, .. (ug,)| and as hila © for stress
difference ||[o — o,,| in terms of the maximal mesh-size hmax = |h7||ec for any
0<e<1/4.

THEOREM 4.1 (a priori error estimate). The discrete stress o, satisfies

HU - O.CRHZ + |E(u) - ENC(UCR”
S max{mTfn lw = Iyoull, (ose(f,T) + o = Thoor|) |||u—uCR||NC}.

Proof. The choice a := V , u.y, b:= Vu, and o := 0, in Lemma 3.4 leads to

1
2_#2HU - UCR||2 +Eyo (uCR) — B(u) < F(u— U‘CR) - A on* Ve (u— ucn)dx'
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Since o, € Po(T;R?) and

/QUCR -Vudr = /QUCR Viyelyoudr = F(I, u).
Hence,

1
(4'1) 2—‘LL2HU_UCRH2+ENC(UCR)_E(u) SF(u_Iz\rcu)'

The choice a := Vu, b:=V  u,,, and a := ¢ in Lemma 3.4 leads to

1
Z—,uQHU - UCRH2 + E(u) - ENC’(U’CR) < F(U’CR - u) - AU : VNC’(U’CR - u)dx

= F(ucn) - /Q g vNcuczzdw'

The conforming Ps companion uz € P3(7) NV with u,, = I,.us shows

—/U-VNCUCRdazz—/J-VU3da:+/J-VNC(Ug—INCU3)da:
Q Q Q

= —F(U3) + /Q(l — H0)0'~ (1 — HQ)VUng.

The combination of the preceding estimates results in

1
257 el + B(u) = Eye (uey)

< F(INCU3 — U3) + / (1 — Ho)O' . (1 — HQ)VUgd.CC.
Q

(4.2)

The sum of (4.1)—(4.2) reads

(4.3) i”a o |2 < (L= I,.)(u - ug)) + /9(1 ) (1 — Thy) Vusda.

Moreover, (4.1)—(4.2) imply that
1 2
(44) EHU - O.CRH + |E(u) - ENC (U’CR)|
< max {F(u —Iyou), F(Iyous —us)+ / (1-Ty)o- (1 - HQ)VU3dx} .
Q
The Cauchy—Schwarz inequality and Lemma 3.2 prove

F(INCu3 - U3) <K OSC(f, T) H|U3 - INCU3H|NC’
Fu—1Iyou) < k|hrfll llu—Iyoulllye-

This and Lemma 3.3 prove the assertion. O
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4.2. A posteriori error analysis. This subsection is devoted to an a posteriori
error analysis of the CR-NCFEM.

THEOREM 4.2 (a posteriori error estimate). The discrete stress o, and the
constant Cy :=2:CF | f||/p1 satisfy

1 2
—loc—0 + |E(u) — F U
(45) 4u2” crll® +1E) = By (ucg)l
< max {F(ug, — us) + pollluc, —usl||%,, Cillhr fII}

The proof of Theorem 4.2 is based on the boundness of minimizers. Recall that
any v € V satisfies the Friedrichs inequality

ol < Crllv]l]

with Cp < width(Q)/7. Any v,, € CR}(T) satisfies the discrete Friedrichs inequality
[6, p. 301] with some constant Cyp = 1:

HUCR” < CdF'HUC'R'HNC"

Proof of Theorem 4.2. The energy density W satisfies some two-sided growth
condition in the sense that

(4.6) %|A|2 <W(A) < %|A|Q for all A € R2.
The Friedrichs inequality shows that

M1

Sl = Crll £l flull < B(w).

Since E(u) < E(0) = 0, this implies

2C
(4.7) ulll < =Z1 111
M1

In the same way (with the discrete Friedrichs inequality rather than the original one),

2CyF

(4.8) llucerlllye < 1f1]-
M1
Lemma 3.2 and (4.1) lead to
1
(4.9) s—llo = cnll? + Bye(uey) < B(u) + sllarf]| |1 o) V.

22

The estimate (4.4) and the Cauchy—Schwarz inequality imply

1
3= llo = ocnll® + [B(u) = Bye (ucy)|
M2

< max{F(ucy —u3) + [lo = ool| [lucr = uslllve, sllATFI I} -

The Young inequality shows
1
”U - HOUH |||uCR - u3|||NC < 4_/L2||U - HOU”2 + /’L2|||U’CR - u3|||12vc

The combination with (4.7) concludes the proof. O
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5. Error analysis of RT-MFEM.

5.1. A priori error analysis. The subsequent result generalizes Theorem 5.2 in
[13] for € — 0. Notice that the Fortin interpolation operator Ir maps Q(f)NH?*(; R?)
onto Q(f,T) for any s > 0. Hence E*(0,,,) — E*(Ipo) > 0 holds on the LHS of the
subsequent error estimate.

THEOREM 5.1 (a priori error estimate). Given any ¢ € L?*(Q;R?) with &(x) €
OW*(Ipo) for a.e. x € Q, the discrete stress o, and the constant Coy := 2CF|| fl|/ (11

J1,1) satisfy

1
272”0 — 0rr|* + E*(04,) = E*(I0) < |l€]l o = Iroll + Caosc(f, T)

with the first positive root j1,1 = 3.8317059702 of the Bessel function of the first kind
[22].
Proof. Recall that o € HY/27¢(Q;R?) for any 0 < ¢ < 1/2 [21] and let
Ip : HY*7¢(Q;R?) — RTo(T)

be the Fortin interpolation operator [7] with respect to T with
/(O'—IFO')'I/EdSZO for all £ € &€.
E

The choice a := 0., f:= 0, and b := Vu in Lemma 3.4 leads to

1

(5.1) 57 = T < () = ' (00) - /Q Vi (0r — 0)de.

An integration by parts shows
—/ Vu- (0,4, —o)de = / udiv(o,, —o)dx
Q Q
Z/(U—HOU) (f — o f)dx.
Q

A piecewise Poincaré inequality applies in the last step with the constant hr/ji 1
from [22]. Hence the last term is bounded by |||ul||/j1,1 osc(f, T). This and o, =
argmax E*(Q(f,T)) imply

1
5 llo—orr|? + E*(0,r) — E*(Ir0)
242

< E*(0) = E*(Ipo) + [l[ull/711 osc(f, T).

The choice a := 0, f:= Iro, and b := {(x) € OW*(Ipo) in Lemma 3.4 leads to
%LLQ|O'—IFO'|2+5-(O'—IFO')SW*(U)—W*(IFO') a.e. in .
Hence,
2—;2 lo — ol + B* () — B*(Ipo) < /Qg (Ipo — o)da.

The Cauchy—Schwarz inequality and (4.7) conclude the proof. d
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5.2. A posteriori error analysis. The stress error control in the subsequent
error estimate may formally follow from Theorem 5.3 in [13] as € — 0, while the
energy error control is new.

THEOREM 5.2 (a posteriori error estimate). For any & € L?(;R?) with () €
OW*(orr) for a.e. x € Q, the discrete stress o, satisfies

1 " *
4—/‘2HU - O.RTHZ + |E (U) -FK (URT)|

< max { min (j12| Vo — €12 + [loll] osc(£. 7). ). llull] ose(f, T)/jl,l}.

Proof. The choice a := 0, f:= 0., and b := £ in Lemma 3.4 leads to

RT

(5.2) QLMHU 0P+ B (0) — E(00) < —/Qf- (0 = oy )da.

For all v € V, the upper bound equals
/(VU &) (0 =0y )dx — / V- (o —0,,)dz
Q Q
< min (Vo = €]l o = 0 | + 0] 05¢(f, T)/ 11 )-

veV

The choice o := 0, 5 := 0, and b := Vu in Lemma 3.4 leads to

1 ,
(5:3) Q—WHU = Opr|? + B (0r) = E*(0) < [l[ull| ose(f, T)/jr1-

The combination of (5.2)—(5.3) leads to

1 " *
||U_URT||2+|E (U)_E (URT)|
212

(5.4 < o { i (190 = €l 7 = 0|+ el el T/ ).

Il osc, T)/jl,l}.

The Young inequality shows that
2 1 2
||VU—§H ||U_URT|| SMQHV'U_fH + ||U_URT|| :
dpo

The combination of above estimates concludes the proof. a

6. Error analysis of dRT-MFEM. This section analyzes the error of the
dRT-MFEM.

6.1. A priori error analysis. Theorems 3.1 and 4.1 allow an immediate a priori
error estimate.

THEOREM 6.1 (a priori error estimate). The discrete stress o satisfies

dRT

HU - o.dRTHZ + |E*(U) - E;(o.dRT”
S lIhr (Mo f)II?

+maX{|hTf| Il = Iyoull, (ose(£, T) + ||a—noa|)|||u—um|||m}.
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Proof. The triangle inequality and Theorem 3.1 lead to

< HU - HOUdRTH2 + ”HOU

- 0dRT||2

I?
dRT dRT

<llo = oerll? + (Mo f)]1*.
The equalities £*(¢0) = E(u) and E} (o =F

o
2 g g

(uey,) (from Theorem 3.1) imply

dRT) NC

1 . "
4—,u2HU - UdRTH2 + |E (0) - Ed(o

dRT)|
(6.1) X 1
< 5,00 Torl® +1E W) = Bye(ue)| + Q—WHhT(HOf)H?

This and Theorem 4.1 conclude the proof. a

6.2. Subgradients of the discrete dual problem. The further a posteriori
error analysis requires that the arising subgradients are the piecewise gradients of
minimizers of E, . in CRY(T).

LEMMA 6.2 (IIo(—0FE}(04rT)) = VyelUor). The piecewise integral mean Ip¢
of any subgradient & of the function [, W*(Igogrr)dz with —& € Oxqs,7) (0arT)
equals the piecewise gradient of some minimizer u,, in (CR}(T)),

o€ = Ve, € OW (0.,).

Proof. Let xq(s,7) denote the indicator function [20] of the convex closed subset

Q(f,T) € RTH(T) with xq(s,7)(mn) := 0 for 7, € Q(f,T) and xq(s,7)(mh) = +00
otherwise.

Define the function ®(7) := [, W*(Ily7)dz for any 7 € L*(Q; R?). The minimizer
O,nr OF ® + Xxq(r,7) satisfies

0e 8(1)(UdRT) + 8XQ(f7T) (UdRT)'

The sum rule for the subgradient [20, Theorem 2.32] is already utilized in the pre-
ceding formula and shows that there exists £ € (o C L*(;R?) with —¢ €
9XQ(#,7)(04rr)- The latter inclusion reads

dRT)

—/ E Ty — O pp)de <0 forall 7, € Q(f,T).
Q

Since 0., € Q(f,T), any 7., € 0, + Q(0,T) belongs to Q(f,T). Hence
€ € Q(0,T)*t := orthogonal complement of Q(0,7) in L?*(€; R?).

Notice that Q(0,7) C Po(T,R?) and so IIp¢ € Q(0,7)* . The discrete Helmholtz
decomposition [3] shows for a simply connected domain  that there exists some
up, € CRY(T) with 1o = V. up. (The curl contribution vanishes because of IIp¢ €

Q(0, 7)™
On the other hand, for all 7 € L?(Q;R?),

[ €= )in < B(0) = Do) = [ W ar)de — [ W o)

Given any T € T and A € R? set

- Oynr + A inT,
' o in Q\ 7.

dRT
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This and 1o =V, up, imply, for any T € T and A € R?, that
VNCuh A= (fod:U) AL W*(HOUdRT + A) — W*(H()UdRT).

In other words, V, un, € OW*(llyo,,,.). This and Ilpo
plus the duality relation imply o, = DW (V. up).

It remains to prove that u; minimizes E,. in CR}(T). Let u., be some min-
imizer of E,. in CRY(T) such that 0., = DW(V,us,) = DW(Voup). The
choice a := V ,up and b := V  u,, in Lemma 3.4 shows

wnr = Ocp from Theorem 3.1

CR

0</ W(Vyetor) / W(Vyeu dx—/ 7 Ve (Uor — un)ds
Eye (UCR) — By (un)-
Since u,, € argmin E,, (CR}(T)), the upper bound is nonpositive. Hence, E . (u,,) =
Eo(up); that is, uj, minimizes E . in CR(T). O

6.3. A posteriori error analysis. This subsection is devoted to an a posteriori
error analysis of the dRT-MFEM.

THEOREM 6.3 (first a posteriori error estimate). The discrete stress o
the constant Cy := 26CFp||f||/p1 satisfy

wrr and

1 * *
a”a dRT||2+|E ( ) Ed(UdRT)|
1
(6.2) < g 717

U
+ max {M(f T) + 2sllfuis — Iyl CllhTfll}-

Proof. The choice a := o,  :=1ly0,,, = 0y, and b=V u,, in Lemma 3.4
leads to
1 2 *
2—//*2HU - HOUdRT H +E (U) dRT = vNc CR U - HOUdRT)dx'
The conforming P3 companion usz € P3(7) NV with u., = I,,us from Lemma 3.3
shows

- A(U - HOU(JRT) ’ VNCUCRdx
== / (U - UdRT) ’ vNc (INCu3 - U3)d£(: - / (U dRT) Vugdz
Q Q
= / (0 =0 0p) - (1 —1g)Vusde —|—/ ug div(ec — 0, )dx.
Q Q
The combination of the preceding results reads
1 2 * *

2—M2”U - UCR|| +E (U) - Ed(UdRT)

(6.3)
S ‘/Q(O' - O'dRT) . (]. - HO)VU3dx - ‘/Q(’U,:; - HQU3) (]. - Ho)fdx
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The sum of (6.3) and (4.1) plus Theorem 3.1 show that

1 % «
9 HO'_UCRH2+|E (U)_Ed(adRT”
M2

< max {F(u — I, ou), / (0 —0,5p) - (1 =1lp)Vusdz
Q
- / (uz — Iougz) (1 — Ho)fdl‘}-
Q
The inequality (6.1) implies

1 " *
4—/‘2HU - o.dRTHZ + |E (U) - Ed(UdRT)|

1
< 2—H2”hTfH2 + maX{F(u — I, ou), / (0 — 0 ypp) - (1 = Tlo) Vusda
Q

_ /Q(u3 ~Tloug) (1— Ho)fd:c}.

The Cauchy—Schwarz inequality shows that

A(U - UdRT) ' (1 - HO)VUBdm < ”U - UdRT|| |||INCU3 - u3H|NC"
The Young inequality shows
1
”U - UdRT|| H|INCU3 - U3H|NC’ < S—/JQHU - o.dRTHZ + 2/’L2|||INCU3 - U3|||12VC

The combination of the preceding displayed inequalities concludes the proof. 0
THEOREM 6.4 (second a posteriori error estimate). The discrete stress o
satisfies

dRT

(6.4)
1 1
4—,u2HU - UdRTH2 + 2—,LL2||U - UCRH2

2Ce || f1l/ 12 + usll
Ji1
Proof. The choice o :=0,,,,, f := 0, and b := Vu in Lemma 3.4 leads to

1 « *
— YarT = - drT) “\Carr —
5 lo =0, > < E*(0) — E*(0,,,) Vu- (o o)dx
M2 Q

< E;(UdRT) - E*(UdRT) + OSC(f, T) + :u’2|||INCu3 - U3|||2.

(6.5)

= BY(0) = B (0nr) + [ (1= To)

The sum of (6.3) and (6.5) implies
1

2—M2(”U - UdRT||2 + ”U - O.CRHz)

< E(0gnr) — B (04r) + /Q (f —TIof) (u— us)d

+ / (0 —0,pr) - (1 —1Ip)Vusde.
Q
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The Cauchy—Schwarz inequality, the triangle inequality, plus (4.7) show that
u—uz 2CF||f1I/p1 + |l]us]|
1w — usll] se(f,T) < A1/ 1 + 1l

Ji1 Ji

/Q(f —Iof) (u—us)dr < osc(f, T).

The Young inequality and IIoyVus = V.1, -us show that

NC-NC
1
/Q (0= )+ (1= 1) Vs < 2 = e |+ g = sl .

The combination of the three preceding displayed estimates concludes the proof. d
THEOREM 6.5 (third a posteriori error estimate). For any ¢ € L?(Q;R?) with
&(x) € OW*(oqrr) for a.e. © € Q, the constant C := 26Cr|| f||/u1 and the discrete

stress 0, satisfy

1 * *
2—/@”0 dRT||2 + |E ( ) Ed(UdRT)|

< max { i (a7 = €12+ ol osc(£, 7/ ). ol 1

The proof of Theorem 6.5 utilizes the following Lemma 6.6.

LEMMA 6.6. It holds that i”a(mj — HOUdRT||2 + E*(UdRT) < E;(odRT).
Proof. The choice a := 0., B := 1o, ., and b : =V u., in Lemma 3.4 leads
to
1 * *
2—M2HadRT - HOUdRT”Q < Ed (UdRT) -F (UdRT) + /Q VNCUCR ’ (UdRT - UCR)dx'

Lemma 3.5 and 0,,,, € Q(f,T) show that the integral vanishes. This concludes the
proof. a

Proof of Theorem 6.5. The choice o := g, § := 7
leads to

and b := ¢ in Lemma 3.4

dRT

1 *
2—M2HU dRT||2+E ( ) dRT = /6 dRT

For all v € V', the upper bound of this estimate equals

Vv — \Y
[(F0=8 (=)= [ Vo0 =)o
< min (HW —€ll = el + el 050(F,T) /).

Lemma 6.6 implies
1 2 1 2 * *
2—2”0 O.dRTH + 2_M2||UdRT —Ilpo dRT” +E ( ) Ed(UdRT)

(6.6)
< min (HW =&l lo = ounrll + 0l osc(f, 7 )/J’m)-
veV

The sum of (6.6) and (4.1) plus Theorem 3.1 show that

3 % «
4—,LL2||U dRTH2+|E ( ) Ed(odRT)|

< maX{gg} (190 = €ll o = e | + 10 osc(f,T>/j1,1),F<u—me}.
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The Young inequality leads to
2 1 2
va—fﬂ ||U_adRT|| Sﬂ'?”vv_gH +4_M||U_0dRT|| :

The combination of the preceding four displayed inequalities concludes the
proof. |

7. Numerical experiments. This section is devoted to the numerical investi-
gation of the lowest-order schemes of CFEM, NCFEM, MFEM for the optimal design
problem on three different domains.

7.1. Numerical realization. The edge-oriented basis functions ¥ g for any in-
terior edge E € £(Q) in the triangulation 7 and their enumeration ¢4, . .. , 1, at hand
allows for the representation ucr = »_°, ;4; with the unknown coefficient vector
x = (x1,...,2m). The data structures and the discrete Euler-Lagrange equations are
realized as in [9] and then minimized with the MATLAB standard function fminunc
and default parameters and the input of £, DE,, and D*E,,, at . Throughout

this section, puy = 1, pue = 2, t1 = /2 1/ e, toa = /2 o/ pq for different values of A
and Cy = 0.3166 | f]].

7.2. A posteriori error control. The numerical experiments concern the prac-
tical application of the a posteriori error estimates (2.2), (4.5), (6.2), (6.4) and their
efficiency. Denote the left-hand side (LHS) of the four estimates by LHS(2.2),
LHS(4.5), LHS(6.2), and LHS(6.4). The guaranteed upper bounds (GUB) read

GUB(22)= | Y ng*+osce(f,T);
Ec&(Q)

GUB(4.5) = max {F(u,,, —us) + pall|lus — Iy us||% .. Cillhr |} ;

NC?

u,
I osc(frr>+2u2||u3—1Ncu3||2,01||hTf|}

GUB(6.2) :max{ I
Ji1

1
+ —||hT 2;
|

2CF || fII/pa + [[|us]]
Ji1

GUB(64) = E; (UdRT) - B (UdRT) + OSC(f, T)

+ palJus — Iy cus]||*.

The triangulations are either uniform with successive red-refinement or with an adap-
tive mesh-refinement algorithm with initial mesh 7, and then, for any triangle 7" of
a triangulation 7; at level £ =0,1,2,3..., set

n*(T) = |||us — INCU’3|||%2(T) + ||hTfH%2(T)~

Given all those contributions, mark some set My of triangles in 7, of minimal cardi-
nality with the bulk criterion

123 ni(T) < Y mi(T).

TeT, TeM;

The refinement of all triangles in My plus minimal further refinements to avoid hang-
ing nodes lead to the triangulation 7,41 within the newest-vertex bisection. The choice
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of the refinement-indicator n(7") is motivated by the convergence theory of adaptive
mesh-refining algorithms, e.g., in the review article [11] with further details on the
mesh-refinement. The convergence history plots display the LHS(2.2), LHS(4.5),
LHS(6.2), LHS(6.4) and the upper bounds GUB(2.2), GUB(4.5), GUB(6.2),
GUB(6.4) as a function of the number of degrees of freedom (ndof) in a log-log
scale.

7.3. Manufactured example. Consider the optimal design problem on the
square domain € := (—1,1)? with the exact solution u(x1,z2) = (1 —2%)(1 — 23) and
right-hand side f = —divDW (Vu) for A = 0.0084 as in [4]. The reference value for
the minimal energy F = —2.82789 stems from Aitken extrapolation. Figure 1 displays
four GUB and the corresponding error terms (LHS) of the four estimates from (2.2),
(4.5), (6.2), and (6.4) as explained in subsection 7.2 for uniform mesh-refinements.
Figure 2 presents the computed values for uniform and adaptive mesh-refinement. The

[ | —— GUB(2.2)(unif)
—&— GUB(4.5)(unif)
—— GUB(6.2)(unif)
10°L | —&— GUB(6.4)(unif)
—e— LHS(2.2)(unif)

LHS(4.5)(unif)
10°F | —€0— LHS(6.2)(unif)
—— LHS(6.4)(unif)

10° I| I2 Ia I4 5
10 10 10 10 10

10 . . . .
—w— GUB(2.2)(unif)
10" b —&— GUB(4.5)(unif)
—p— GUB(6.2)(unif)
o —6— GUB(6.4)(unif)
100 ¢ —e— LHS(2.2)(unif)
LHS(4.5)(unif)
10k —O— LHS(6.2)(unif)
—— LHS(6.4)(unif)
c% 0 GUB(2.2)(adapt)
107} @ GUB(4.5)(adapt)
W GUB(6.2)(adapt)
100k O GUB(6.4)(adapt)
LHS(2.2)(adapt)
ok LHS(4.5)(adapt)
107k @ LHS(6.2)(adapt)
.4 LHS(6.4)(adapt)
10*5 L L L L
10’ 10° 10° 10" 10°

Fic. 2. Convergence history of three methods on square domain.
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—#— GUB(2.2)(unif)
—&— GUB(4.5)(unif)
—— GUB(6.2)(unif)
—6— GUB(6.4)(unif)
—8— | HS(2.2)(unif)
LHS(4.5)(unif)
—@— LHS(6.2)(unif)
—+— LHS(6.4)(unif)
% GUB(2.2)(adapt)
+ GUB(4.5)(adapt)
'+ GUB(6.2)(adapt)
+ GUB(6.4)(adapt)
LHS(2.2)(adapt)
+ LHS(4.5)(adapt)
+ LHS(6.2)(adapt)
+ LHS(6.4)(adapt)

*

+o%e0dn

ndof

Fic. 3. Convergence history of three methods on L-shaped domain.

exact solution is smooth and hence uniform mesh-refining leads to optimal convergence
rates (on structured grids with possible super convergence phenomena) and hence the
adaptive mesh-refining is not necessarily better (on unstructured grids without higher
symmetry). Lemma 3.3 and (4.8) imply that |||us]|| is computable and (2CF||f]|/11 +
[lus|l]) /71,1 is bounded by some generic constant.

7.4. L-shaped domain. Counsider the optimal design problem on the L-shaped
domain  := [-1,1]3\(0,1] x (0,—1] with f = 1 for A = 0.0143 as in [4]. The
extrapolated energy reads E = —0.0963. Figure 3 displays the convergence history
of the three methods for uniform and adaptive mesh-refinement. Since the constant
right-hand side f = 1 leads to vanishing oscillations osc(f,7) = 0, the global upper
bound in (6.4) is fully computable.

7.5. Slit domain. Consider the optimal design problem on the slit domain with
f =1 for A = 0.0163. The extrapolated energy reads E = —0.1464. Figure 4
displays the convergence history of the three methods for uniform and adaptive mesh-
refinement. The constant right-hand side f = 1 leads to a fully computable upper
bound (6.4) as in the previous example.

7.6. Conclusions. The proposed the dRT-MFEM of the optimal design problem
is equivalent to CR-NCFEM. The convergence analysis of dRT-MFEM combines a
priori convergence of CFEM with the efficient a posteriori error control of MFEM. The
numerical examples show that the convergence results of P;-CFEM, CR-NCFEM, and
dRT-MFEM are consistent with the theoretical analysis: the empirical convergence
rates for the three methods are comparable. The a posteriori error analysis suffers from
the reliability-efficiency gap except for GUB(6.4): Theorem 6.4 behaves efficiently in
the sense that it captures the convergence rate of LHS(6.4) and thereby overcomes
the reliability-efficiency gap [14] of conforming discretizations.
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—w#— GUB(2.2)(unif)
—8— GUB(4.5)(unif)
—— GUB(6.2)(unif)
=—6— GUB(6.4)(unif)
1/2 —o— LHS(2.2)(unif)
LHS(4.5)(unif)
—&— LHS(6.2)(unif)
=—+— LHS(6.4)(unif)
% GUB(2.2)(adapt)
+ GUB(4.5)(adapt)
' GUB(6.2)(adapt)
+ GUB(6.4)(adapt)
LHS(2.2)(adapt)
+ LHS(4.5)(adapt)
'+ LHS(6.2)(adapt)
© LHS(6.4)(adapt)

%

+o%so0dn

10 10

ndof

Fic. 4. Convergence history of three methods on slit domain.
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