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Abstract This paper introduces a new locking–free formulation that combines the
discontinuous Galerkin methods with weakly over-penalized techniques for Reissner–
Mindlin plates. We derive optimal a priori error estimates in both the energy norm
and L2 norm for polynomials of degree k = 2, and we extend the results concerning
the energy norm to higher-order polynomial degrees. Numerical tests confirm our
theoretical predictions.
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1 Introduction

Given g ∈ L2(Ω) and f ∈ L2(Ω;R2), the weak formulation for the Reissner–
Mindlin plate model (without the shear variable) reads: seek (θ , w) ∈ H1

0 (Ω;R2) ×
H1
0 (Ω) such that

a(θ , η) + t−2μ(θ − ∇w, η)Ω = ( f , η)Ω for all η ∈ H1
0 (Ω;R2)

−t−2μ(θ − ∇w,∇v)Ω = (g, v)Ω for all v ∈ H1
0 (Ω). (1)
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396 P. R. Bösing, C. Carstensen

Here, and throughout this paper, t is the plate thickness, Ω is a convex polygonal
domain, and e(ξ) is the symmetric part of the gradient of ξ ,

Ce(ξ) = 1

3

[
2μe(ξ) + 2μλ

(2μ + λ)
div ξ I

]

where μ and λ are the Lamé coefficients and I is the identity 2 × 2 matrix, and

a(θ , η) = (e(θ), Ce(η))Ω.

Motivated by the simplicity of the weakly over–penalized symmetric interior
penalty (WOPSIP) formulation [12], and by themedius error analysis of [6,26] applied
to study problems under minimal regularity, we introduce in this paper a new locking–
free completely discontinuous formulation for (1) that combines the traditional dis-
continuous Galerkin methods with WOPSIP methods techniques.

This new formulation has the following desirable characteristics: (i) it does not
involve the shear stress variable; (ii) it does not need any reduced integration tech-
niques; (iii) it is simpler, in the sense that have less terms; (iv) its number of degrees of
freedom is small compared to other discontinuous formulations with the shear stress
variable; (v) it allows more freedom in the choosing of the penalty parameters; (vi)
it requires only reasonable and standard hypotheses on the domain; (vii) it works for
minimal regularity assumptions. Furthermore, we prove optimal a priori error esti-
mates in the energy norm and L2 norm for the symmetric version and low–order
approximation.

The first equation of the Reissner–Mindlin model adopts the formulation in [1,
2,8,15], while the second equation adopts that in [15], as WOPSIP methods [12].
We highlight that the present method is completely different from that introduced in
[15], since here we do not introduce shear as an unknown. The formulation of this
paper does not have the interface term that arises from the integration by parts of the
second equation. This interface term was treated in [8] using the first equation of the
Reissner–Mindlin model to proceed with one substitution, but it is more commonly
handled by introducing shear as an extra unknown. With this approach the interior
penalty term for the displacement will be over-penalized but, on the other hand, the
penalty parameter can be any positive constant. However, for polynomials of degree
k = 2, for which we have the required theoretical regularity available for the convex
domain (see Theorems 6 and7, and [3,4]), the over-penalization (the power of h) will
be as in [8] and [15] and similar to [31–33] for the biharmonic equation.

Other locking–free formulations where completely discontinuous spaces were used
for all unknowns can be found in [1,2,8] (see [30] for an overview of the first two
articles) and [15]. Many other formulations for the Reissner–Mindlin model combine
(with or without bubble function) nonconforming, conforming and fully discontinuous
elements [1–3,5,7,13,14,19,20,23,25,27,28,34]. See [24] for a general review of
finite element methods for the Reissner–Mindlin and related problems.

In comparison with the formulation in [8], that also does not have the shear stress
as a variable, the formulation of this paper is: (i) simpler for high order (less terms);
(ii) has more freedom in the choosing of the penalty parameter for the displacement;
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dGWOPIP for Reissner–Mindlin plates without the shear 397

(iii) has optimal error for the rotation in L2 norm for low-order approximation; (iv)
for low–order approximation, require only the regularity provided for the solution in
the case of a convex polygon domain; (v) the norms of solution and the shear stress
present on the right–hand side of the error estimates are uniformly bounded in the
case of a convex polygon domain and low–order approximation; (vi) establishes some
error estimates for the displacement in L2 norm and discrete H1 norms.

As commented in [15], by combining the discontinuousGalerkinmethods (dG)with
WOPSIP techniques, the resulting discrete formulation is not consistent. This prevents
us from obtaining the Galerkin orthogonality and the traditional error analysis of
discontinuous Galerkin methods is not applicable. Furthermore, since the consistency
term depends on t , we can obtain only suboptimal error estimates (in relation to t) if
we apply the WOPSIP analysis techniques.

For the k = 2 case we will extend the results of [23] in order to prove the optimal
a priori error estimates in the energy norm. Applying duality arguments we derive
optimal a priori error estimates in the L2 norm for the case of the symmetric version.
For k > 2, we will establish the convergence of the method in two different ways.
Firstly applyingWOPSIP error analysis techniques wewill extend the results obtained
in relation to the energy norm to the case of k = 2. This allows us to prove some
additional convergence results related to the displacement variable. The other second
approach proceedswith the analysis through the residual estimateswhich are typical of
a posteriori error analysis [16–18,29] and enriching operators [9,10]. This technique
calledmedius error analysis for [6,26] confirms the convergence in a slightly different
energy norm.

For this strategy to be successful we need to assum that the Helmholtz decompo-
sition is valid when dealing with the case of k = 2. Fortunately, this is the case if
Ω is a convex polygon domain. Under this hypothesis our a priori error estimates
will require only the regularity provided theoretically for the solution in the case of
a convex polygon domain (or smooth domain), and the norms of the solution and the
shear stress present on the right-hand side are uniformly bounded with respect to t .

The remaining parts of this paper are organized as follows: In the next section we
introduce the necessary notation and recall some definitions to deal with discontinuous
Galerkin methods. In Sect. 3 we introduce the discrete formulation which combines
discontinuous Galerkin methods with WOPSIP techniques. Section 4 is dedicated to
the analysis of the case of k = 2 while in the Section 5 we treat the case of k > 2.
In the final section we present some numerical tests consistent with the theoretical
findings.

2 Notation and preliminaries

Let T be a shape-regular family of regular triangulation of Ω ⊂ R
2 into closed

triangles T , convex, with pairwise disjoint interiors, and such that

Ω =
⋃
T∈T

T .
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398 P. R. Bösing, C. Carstensen

On the regular triangulation T ∈ T, the piecewise constant function hT is defined by

hT |T = hT := diam(T ) on T ∈ T

and we denote by h the maximum of hT for T ∈ T . Let E be the set of all edges E of
all the triangles in T and let us define the piecewise constant function hE as

hE |E = hE := diam(E) on E ∈ E .

E(T ) denotes the set of the three edges of T . The set E will be divided into two subsets,
E(Ω) and E(∂Ω), defined by

E(Ω) = {E ∈ E : E ⊂ Ω} and E(∂Ω) = {E ∈ E : E ⊂ ∂Ω}.

The shape-regularity of T, provides some constant 0 < γ (T) ≤ 1 such that ∀ T ∈
T, ∀ T ∈ T , ∀ E ∈ E(T )

γ hT ≤ hE ≤ hT .

The Sobolev space of real order s of real-valued functions defined on ω ⊂ Ω ,
will be labeled by Hs(ω). Its inner product, norm and semi-norm will be denoted by
(·, ·)s,ω, ‖ · ‖s,ω, and | · |s,ω, respectively. In particular, we will write ‖ · ‖ω and (·, ·)ω
instead of ‖ · ‖0,ω and (·, ·)0,ω, respectively. Similarly, for any E ∈ E let’s denote
by 〈·, ·〉E and ‖ · ‖E the inner product and the induced norm in the space L2(E),
respectively. Also, we will denote by Hs(ω;R2) = Hs(ω) × Hs(ω) the Sobolev
space of vector functions for which, as in the case of the scalar function, (·, ·)s,ω will
denote the inner product. We note that the same notation for the inner product also
will be used occasionally for symmetric tensors.

Let
Hs(T ) = {v ∈ L2(Ω) : v|T ∈ Hs(T̊ ) for all T ∈ T }

be the space of piecewise Sobolev Hs -functions.Wedenote its inner product, norm and
semi–norm by (·, ·)s,h , ‖ · ‖s,h and | · |s,h respectively. Hs(T ;R2) = Hs(T )× Hs(T )

denotes the space of piecewise Sobolev Hs-vector functions.
We use the differential operators Curl(v) = (∂v/∂y,−∂v/∂x) for a scalar function

v, and rot (η) = ∂η2/∂x − ∂η1/∂y for a vector function η = (η1, η2). We observe
that any differential operator defined over a piecewise Sobolev space will be indicated
by a subscript h.

For any T ∈ T let νT = (ν1, ν2) be the outer unit normal to the boundary ∂T
and let τ T = (−ν2, ν1) be the tangential vector. Let T− and T+ be two distinct
elements of T sharing the comon edge E = T− ⋂

T+ ∈ E(Ω). We define the jump
of v ∈ H1(T ) on E by

[v] = v−ν− + v+ν+,

where v± := v|T± and ν± denotes the outer unit normal νT± on T±. For a vector
function η ∈ H1(T ;R2), define
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dGWOPIP for Reissner–Mindlin plates without the shear 399

[η] = η− · ν− + η+ · ν+ and [[η]] = η− 	 ν− + η+ 	 ν+,

where η 	 ν = (ηνT + νηT )/2. Similarly, for a tensor ε ∈ H1(Ω;R2×2) the jump
on E is defined by

[[ε]] = ε−ν− + ε+ν+.

Note that the jump of a scalar function is a vector. For a vector function η the jump
[η] is a scalar, while the jump [[η]] is a symmetric matrix, and for a tensor the jump
is a vector. The average of a tensor, scalar function or vector function χ is defined by
{χ} = 1

2 (χ
− + χ+).

On a boundary edge, we define the average {χ} as the trace of χ , while we consider
[v] to be vν, [η] to be η · ν, [[η]] to be η 	 ν and [[ε]] to be εν.

Occasionally, we shall use the jump on E in relation to the tangent vector τ , in this
case denoted by [v]τ , that is, [v]τ = v−τ− + v+τ+ (idem for a vector function).

For a positive integer k, Pk(T ) will denote the linear space of polynomials on T
with a total degree of less than or equal to k, and Pk(T ;R2) := Pk(T ) ×Pk(T ). The
discrete space for the displacement will be

Pk(T ) =
{
v ∈ L2(Ω) : ∀ T ∈ T , v|T ∈ Pk(T )

}
,

and for rotation will be

Pk−1(T ;R2) =
{
η ∈ L2(Ω;R2) : ∀ T ∈ T , η|T ∈ Pk−1(T ;R2)

}
.

Let πW denote the natural projection onto Pk(T ) (see [1] for definition of πW ).
For w ∈ Hk+1(Ω) let w I = πWw be the interpolant of w. It then follows that
w I ∈ Pk(T ) ∩ H1(Ω) and that for 0 ≤ q ≤ k + 1, there exists a constant c such that

‖w − w I ‖q,h ≤ chk+1−q ‖w‖k+1,Ω for all w ∈ Hk+1(Ω). (2)

The rotated Brezzi–Douglas–Marini space of degree k − 1, i.e. the space of all
piecewise polynomial vector fields of degree k − 1 subject to interelement continuity
of the tangential components, will be denoted by BDMR

k−1. Let π� be the natural
projectionoperator of H1(Ω;R2) intoBDMR

k−1 ⊂ Pk−1(T ;R2). For θ ∈ Hk(Ω;R2)

we define the interpolant θ I of θ by θ I := π�θ . With this choice, for 0 ≤ s ≤ � and
1 ≤ � ≤ k, we have

‖θ − θ I‖s,h ≤ ch�−s‖θ‖�,Ω for all θ ∈ H �(Ω;R2). (3)

Set γ I = t−2(θ I − ∇w I ) and γ = t−2(θ − ∇w). The commutative property
π�∇w = ∇πWw states

π�γ = t−2π�(θ − ∇w) = t−2(π�θ − ∇πWw) = t−2(θ I − ∇w I ) = γ I . (4)
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400 P. R. Bösing, C. Carstensen

Thus γ I interpolates γ and for 0 ≤ s ≤ � and 1 ≤ � ≤ k we have

‖γ − γ I‖s,h ≤ ch�−s‖γ ‖�,Ω for all γ ∈ H �(Ω;R2). (5)

To develop our dG with WOPSIP for the Reissner–Mindlin plate model, we need
to define the following auxiliary norms

‖v‖2h =
∑
T∈T

‖∇hv‖2T +
∑
E∈E

σ2

hρ
E

‖Πk−1[v]‖2E for all v ∈ H1(T );

‖η‖2h =
∑
T∈T

(
‖eh(η)‖2T + ‖η‖2T

)
+

∑
E∈E

σ1

hE
‖[[η]]‖2E for all η ∈ H1(T ;R2);

‖η, v‖2h = ‖η‖2h + ‖v‖2h for all (η, v) ∈ H1(T ;R2) × H1(T ).

Here and throughout this paper, ρ, σ1 and σ2 are positive constants that will be
defined below. The operator Πk−1 is the orthogonal projections from L2(E;R2) onto
Pk−1(E;R2) where Pk−1(E) is the space of polynomials of degree less than or equal
to k − 1 on E .

3 Combined formulation of dG and WOPSIP

The new formulation for the Reissner–Mindlin model that combines WOPSIP and dG
uses the following bilinear form on

(
H1+κ(T ;R2) × H1(T )

)2
with κ > 1/2,

Ah(ξ , u; η, v) = Bh(ξ , η) + t−2μ
∑
T∈T

(ξ − ∇hu, η − ∇hv)T + J (u, v). (6)

Here and throughout this paper, for any ξ , η ∈ H1+κ(T ;R2) and u, v ∈ H1(T ), set

Bh(ξ , η) := ah(ξ , η) −
∑
E∈E

〈{Ceh(ξ)}, [[η]]〉E − δ
∑
E∈E

〈{Ceh(η)}, [[ξ ]]〉E + J(ξ , η),

ah(ξ , η) :=
∑
T∈T

(Ceh(ξ), eh(η))T ,

J(ξ , η) :=
∑
E∈E

σ1

hE
〈[[ξ ]], [[η]]〉E ,

J (u, v) :=
∑
E∈E

σ2

hρ
E

〈Πk−1[u],Πk−1[v]〉E .

Moreover, σ1 and σ2 are the penalty parameters, and ρ > 1 (which depends on k)
will be specified below. The parameter −1 ≤ δ ≤ 1 is the symmetric/nonsymmetric
bilinear form parameter.
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dGWOPIP for Reissner–Mindlin plates without the shear 401

This gives the following energy norm associated with the bilinear formAh(·, ·; ·, ·)

|||η, v|||2 = ‖eh(η)‖20,h + t−2‖η − ∇hv‖20,h + J(η, η) + J (v, v)

+
∑
E∈E

hE

σ1
‖{Ceh(η)}‖2E

for all (η, v) ∈ H1+κ(T ;R2) × H1(T ), and the energy norm

|||η|||2 = ‖η‖21,h +
∑
E∈E

hE‖{Ceh(η)}‖2E + J(η, η), (7)

associated with the bilinear form Bh(·, ·).
The weakly over–penalized interior penalty combined with the discontinuous

Galerkinmethod (dGWOPIP) for theReissner–Mindlinmodel reads: Seek (θh, wh) ∈
Pk−1(T ;R2) × Pk(T ) such that

Ah(θh, wh; η, v) = (g, v)Ω +( f , η)Ω for all (η, v) ∈ Pk−1(T ;R2)×Pk(T ). (8)

We note that the dGWOPIP formulation differs from the discontinuous Galerkin
formulation introduced in [8] (without the shear stress variable): (a) the penalization
term of displacement here involves the projection of the jump while in [8] it involves
simply the jump; (b) if k > 2, the dGWOPIP formulation does not include the interface
terms 〈[w], {div Ceh(η)}〉E and 〈[v], {div Ceh(θ)}〉E present in [8]; (c) if k > 2 the
over–penalization (the power of h) for the displacement of the dGWOPIP formulation
will be greater than that of [8].

Clearly, we have the continuity of Bh(·, ·) over H1+κ(T ,R2)×H1+κ(T ,R2)with
respect the norm (7). The coercivity of Bh(·, ·) over Pk−1(T ,R2) is established in [2,
Proposition 4.7].

Lemma 1 [2, Proposition 4.7] There exist positive constants σ̃a and ς independent
of h and t such that: if σ1 > σ̃a, then

ς |||η|||2 ≤ Bh(η, η) for all η ∈ Pk−1(T ;R2).

In the following we will establish the continuity and coercivity of the bilinear form
Ah(·, ·; ·, ·).

Lemma 2 Let T ∈ T , then there exists a positive constant c independent of h and t,
such that for all ((ξ , u), (η, v)) ∈ (H1+κ(T ;R2) × H1(T ))2 satisfies

|Ah(ξ , u; η, v)| ≤ c|||ξ , u||| |||η, v|||.

Proof This follows from Cauchy–Schwarz inequality. ��
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402 P. R. Bösing, C. Carstensen

Lemma 3 Let T ∈ T and assume that the Lamé coefficients are uniformly bounded.
Then there exists positive constants σ̃b and ς > 0, such that, σ1 > σ̃b, imply

ς |||η, v|||2 ≤ Ah(η, v; η, v)

for all (η, v) ∈ Pk−1(T ;R2) × Pk(T ) and for any choice of σ2 > σ̃2 > 0 where σ̃2
is arbitrary but fixed.

Proof Let Λ0, Λ1 be positive constants such that

Λ0‖eh(η)‖20,h ≤ |ah(η, η)| ≤ Λ1‖eh(η)‖20,h .
Then we have

Ah(η, v; η, v) − ς |||η, v|||2 ≥ (Λ0 − ς)‖eh(η)‖20,h
+(μ − ς)t−2‖η − ∇hv‖20,h + (1 − ς) (J(η, η) + J (v, v))

−(1 + δ)
∑
E∈E

〈{Ceh(η)}, [[η]]〉E − ς
∑
E∈E

hE

σ1
‖{Ceh(η)}‖2E .

For any positive constant � the Cauchy–Schwarz inequality and arithmetic-geometric
inequality show that

−〈{Ceh(η)}, [[η]]〉E ≥ −�

2

hE

σ1
‖{Ceh(η)}‖2E − 1

2�

σ1

hE
‖[[η]]‖2E .

With this, and an inverse inequality, we obtain

Ah(η, v; η, v) − ς |||η, v|||2 ≥ (μ − ς) t−2‖η − ∇hv‖20,h + (1 − ς)J (v, v)

+
(

Λ0 − ς

(
1 + c

σ1

)
− (1 + δ)

�c

2σ1

)
‖eh(η)‖20,h

+
(
1 − ς − (1 + δ)

2�

)
J(η, η).

If δ �= −1, we first choose � such that 1 − (1+δ)
2� > 0. In the following we choose

σ̃b such that Λ0 − (1 + δ)
�c
2σ̃b

> 0. The assumption follows with ς > 0 such that

ς < min

{
1, μ, 1 − (1 + δ)

2�
,

Λ0 − (1 + δ)
�c
2σ̃b

1 + c
σ̃b

}
.

On the other hand, if δ = −1, the assumption follows for any choice of σ1 > σ̃b > 0,
with σ̃b arbitrary but fixed, if ς > 0 be such that

ς < min

{
1, μ,

Λ0

1 + c
σ̃b

}
.

��
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To ensure the coercivity given by Lemmas 1 and 3 simultaneously, we will consider
throughout this paper that σ1 > σ̃1 := max{σ̃a, σ̃b}.

4 A priori error analysis for low order

In this section, we will carry out the a priori error analysis for the dGWOPIP formu-
lation when k = 2. In order to achieve optimal error estimates we will assume that γ
has a Helmholtz decomposition in the form

γ = ∇α + Curl(β) with α ∈ H2(Ω) ∩ H1
0 (Ω) and β ∈ H2(Ω)/R. (9)

In addition, we will assume that

‖α‖2,Ω + ‖β‖2,Ω � ‖γ ‖1,Ω, and ‖α‖2,Ω + ‖β‖1,Ω � ‖γ ‖H(div), (10)

where H(div) is the space of vectors in L2(Ω;R2) that have the divergence in L2(Ω)

and here, and throughout this paper, an inequality a � b replaces a ≤ Cb with
a multiplicative (t, hT , hE )-independent constant C . We note that this result holds
if Ω is a convex polygon and if we have H2 regularity for the Poisson problem
�α = div(γ ).

Recall that the operator Πk−1 is the orthogonal projection from L2(E;R2) onto
Pk−1(E;R2), that is, for any ξ ∈ L2(E;R2)

∫
E
(Πk−1ξ − ξ) · η ds = 0 ∀ η ∈ Pk−1(E;R2).

Let πk−1 : L2(E) → Pk−1(E) be the L2 orthogonal projection onto Pk−1(E), that
is, for any u ∈ L2(E)

∫
E
(πk−1u − u)v ds = 0 ∀ v ∈ Pk−1(E).

For simplicity, if k = 2 we will write Π and π instead of Π1 and π1, respectively.
Wewill now recall the following lemmaproved in [21],whichwill play an important

role in the error analysis below.

Lemma 4 For any integer m with 0 ≤ m ≤ k − 1 and for any E ∈ E(T ), there exists
a constant c > 0 such that

∣∣∣∣
∫
E

φ(u − πk−1u) ds

∣∣∣∣ ≤ chm+1
T |φ|1,T |u|m+1,T

for all φ ∈ H1(T ) and all u ∈ Hm+1(T ).

For convenience we rewrite the dGWOPIP formulation (8) as: Seek (θh, wh) ∈
P1(T ;R2) × P2(T ) such that
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404 P. R. Bösing, C. Carstensen

Bh(θh, η) + μ
∑
T∈T

(γ h, η)T = ( f , η)Ω ∀ η ∈ P1(T ;R2) (11a)

− μ
∑
T∈T

(γ h,∇hv)T + J (wh, v) = (g, v)Ω ∀ v ∈ P2(T ). (11b)

Here, and throughout this paper, γ h = t−2(θh − ∇hwh), that is, γ h is the discrete
shear stress.

It can easily be observed that the solution (θ , w) of the Reissner–Mindlin equation
satisfies

Bh(θ , η) + μ
∑
T∈T

(γ , η)T = ( f , η)Ω ∀ η ∈ H2(T ;R2) (12a)

− μ
∑
T∈T

(γ ,∇hv)T + J (w, v) + μ
∑
T∈T

∫
∂T

γ · ν v ds = (g, v)Ω ∀ v ∈ H1(T ).

(12b)

Subtracting (11a) from (12a) and (11b) from (12b) we have

Bh(θ − θh, η) + μ
∑
T∈T

(γ − γ h, η)T = 0 ∀ η ∈ P1(T ;R2) (13)

−μ
∑
T∈T

(γ − γ h,∇hv)T + J (w − wh, v) + μ
∑
T∈T

∫
∂T γ · ν v ds = 0

∀ v ∈ P2(T ). (14)

Denoting
θ̃ = θh − θ I , w̃ = wh − w I and γ̃ = γ h − γ I (15)

we have t2γ̃ = θ̃ − ∇hw̃ and for η = θ̃ and v = w̃ adding (13) and (14) we find that

Bh(θ − θh, θ̃) + t2μ
∑
T∈T

(γ − γ h, γ̃ )T + μ
∑
T∈T

∫
∂T γ · ν w̃ ds

+J (w − wh, w̃) = 0. (16)

From Lemma 1 we have |||θ̃ |||2 � Bh(θ̃ , θ̃) = Bh(θ − θ I , θ̃) −Bh(θ − θh, θ̃). With
this and (16) we obtain

|||θ̃ |||2 + t2‖γ̃ ‖20,h + J (w̃, w̃) � Bh(θ − θ I , θ̃) + t2
∑
T∈T

(γ − γ h, γ̃ )T

+
∑
T∈T

∫
∂T

γ · ν w̃ ds + J (w − wh, w̃) + t2‖γ̃ ‖20,h + J (w̃, w̃)

= Bh(θ − θ I , θ̃) + t2
∑
T∈T

(γ − γ I , γ̃ )T +
∑
T∈T

∫
∂T

γ · ν w̃ ds + J (w − w I , w̃).
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Applying the Cauchy–Schwarz inequality and continuity of the bilinear form Bh(·, ·),
we find that

|||θ̃ |||2 + t2‖γ̃ ‖20,h + J (w̃, w̃) � |||θ − θ I ||| |||θ̃ ||| + t2‖γ − γ I‖0,h‖γ̃ ‖0,h

+
(
J (w − w I , w − w I )

)1/2
(J (w̃, w̃))1/2 +

∣∣∣∣∣
∑
T∈T

∫
∂T

γ · ν w̃ ds

∣∣∣∣∣ . (17)

The inequality (17) is fundamental to prove an a priori error estimate. We will
first proceed with the analysis of the last term in the next lemma. We observe that the
combination of the next lemma with the inequality (17) can be seen as an extension of
[23, Lemma 5.2] to the case of discontinuous Galerkin with weak over-penalization.

Lemma 5 Assuming that the Helmholtz decomposition (9) is valid we have that

∣∣∣∣∣
∑
T∈T

∫
∂T

γ · ν w̃ ds

∣∣∣∣∣ � ht2‖γ ‖1,Ω‖γ̃ ‖0,h + h‖γ ‖H(div)|||θ̃ |||

+h
ρ−1
2 ‖γ ‖H(div) (J (w̃, w̃))1/2 ,

where w̃, θ̃ and γ̃ are defined by (15).

Proof Using the Helmholtz decomposition (9) we have

ϒ :=
∑
T∈T

∫
∂T

γ · ν w̃ ds

=
∑
T∈T

∫
∂T

∇α · ν w̃ ds +
∑
T∈T

∫
∂T

Curl(β) · ν w̃ ds =: ϒ1 + ϒ2.

We developed the analysis of each part independently. Using the orthogonal projection
we decompose the first term in the following way

ϒ1 =
∑
T∈T

∫
∂T

(∇α · ν − π(∇α · ν)) w̃ ds +
∑
T∈T

∫
∂T

π(∇α · ν)w̃ ds =: ϒ1a + ϒ1b.

Applying Lemma 4 with m = 0 and noting that ∇hw̃ = θ̃ − t2γ̃ we obtain the
following inequality

ϒ1a � h‖α‖2,Ω‖∇hw̃‖0,h � h‖α‖2,Ω
(
‖θ̃‖0,h + t2‖γ̃ ‖0,h

)
. (18)

As π is an orthogonal projection, we obtain from the self-adjoint property that

ϒ1b =
∑
T∈T

∫
∂T

∇α · ν π(w̃) ds.
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Since ∇α ∈ H1(Ω;R2), we obtain from the definitions of jumps and orthogonal
projections that,

ϒ1b =
∑
E∈E

∫
E
{∇α} · [π(w̃)] ds =

∑
E∈E

∫
E
{∇α} · Π[w̃] ds.

Applying Cauchy–Schwarz inequality and trace inequality

ϒ1b =
∑
E∈E

hρ/2
E ‖∇α‖E 1

hρ/2
E

‖Π[w̃]‖E

�
(∑
T∈T

hρ
E

(
h−1
E ‖∇α‖2T + hE |∇α|21,T

))1/2 (∑
E∈E

1

hρ
E

‖Π[w̃]‖2E
)1/2

from which it directly follows that

ϒ1b � h
ρ−1
2

(‖α‖1,Ω + ‖α‖2,Ω
)
(J (w̃, w̃))1/2 . (19)

Combining (18) with (19) we find that

ϒ1 � h‖α‖2,Ω
(
‖θ̃‖0,h + ‖t2γ̃ ‖0,h

)
+ h

ρ−1
2 ‖α‖2,Ω (J (w̃, w̃))1/2 . (20)

Let β I ∈ P1(T ) be the regularized Clement-type interpolation of β, that is, β I ∈
H1(Ω), ‖β − β I ‖0,h � h‖β‖1,Ω , ‖β − β I ‖1,h � h‖β‖2,Ω and ‖β I ‖1,h � ‖β‖1,Ω .
After integration by parts we obtain

ϒ2 =
∑
T∈T

∫
T
Curl(β) · ∇hw̃ dx

=
∑
T∈T

∫
T
Curl(β − β I ) · ∇hw̃ dx +

∑
T∈T

∫
T
Curl(β I ) · ∇hw̃ dx =: ϒ2a + ϒ2b.

Using integration by parts, Cauchy–Schwarz inequality and the fact that Curl(β I ) ∈
H(div) we get

ϒ2b =
∑
T∈T

∫
∂T

Curl(β I ) · ν w̃ ds =
∑
E∈E

∫
E

{
Curl(β I )

}
· [w̃] ds

=
∑
E∈E

∫
E

{
Curl(β I )

}
· Π[w̃] ds �

∑
E∈E

hρ/2
E ‖Curl(β I )‖E 1

hρ/2
E

‖Π[w̃]‖E .

Finally, from inverse inequality, Cauchy–Schwarz inequality and the properties of β I

ϒ2b � h
ρ−1
2 ‖β I ‖1,h (J (w̃, w̃))1/2 � h

ρ−1
2 ‖β‖1,Ω (J (w̃, w̃))1/2 . (21)
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Considering that ∇hw̃ = θ̃ − t2γ̃ and using integration by parts

ϒ2a =
∑
T∈T

∫
T
Curl(β − β I ) · θ̃ dx − t2

∑
T∈T

∫
T
Curl(β − β I ) · γ̃ dx

=
∑
T∈T

∫
T
(β − β I )rot (θ̃) dx − t2

∑
T∈T

∫
T
Curl(β − β I ) · γ̃ dx

−
∑
T∈T

∫
∂T

(β − β I )θ̃ · τ ds.

Applying Cauchy–Schwarz inequality and observing that (β − β I ) ∈ H1(Ω) we
obtain

|ϒ2a | �
∑
T∈T

‖β − β I ‖T ‖rot (θ̃)‖T + t2
∑
T∈T

‖Curl(β − β I )‖T ‖γ̃ ‖T

+
∣∣∣∣∣
∑
E∈E

∫
E
{β − β I }[θ̃]τ ds

∣∣∣∣∣ � h‖β‖1,Ω‖rot (θ̃)‖0,h

+ht2‖β‖2,Ω‖γ̃ ‖0,h +
∑
E∈E

h1/2E ‖{β − β I }‖E σ1

h1/2E

‖[θ̃]τ‖E .

For the last term applying Cauchy–Schwarz inequality, trace inequality and noting
that ‖[θ̃ ]τ‖E � ‖[[θ̃]]‖E we have that

∑
E∈E

h1/2E ‖{β − β I }‖E 1

h1/2E

‖[θ̃ ]τ‖E

�
(∑
E∈E

hE‖{β − β I }‖2E
)1/2 (∑

E∈E

1

hE
‖[[θ̃]]‖2E

)1/2

�
(∑
T∈T

hE

(
h−1
E ‖β − β I ‖2T + hE |β − β I |2T

))1/2

|||θ̃ ||| � h‖β‖1,Ω |||θ̃ |||.

Where we consider that |β − β I |21,h � ‖β‖21,h + ‖β I ‖21,h � ‖β‖21,Ω . With this,

|ϒ2a | � h‖β‖1,Ω |||θ̃ ||| + ht2‖β‖2,Ω‖γ̃ ‖0,h + h‖β‖1,Ω |||θ̃ |||. (22)

Combining (21) and (22) we obtain

ϒ2 � h
ρ−1
2 ‖β‖1,Ω (J (w̃, w̃))1/2 + h‖β‖1,Ω |||θ̃ ||| + ht2‖β‖2,Ω‖γ̃ ‖0,h . (23)

Finally, from (20) and (23) and the definition of ||| · ||| we have that
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ϒ � ht2
(‖α‖2,Ω + ‖β‖2,Ω

) ‖γ̃ ‖0,h + h
(‖α‖2,Ω + ‖β‖1,Ω

) |||θ̃ |||
+h

ρ−1
2

(‖α‖2,Ω + ‖β‖1,Ω
)
(J (w̃, w̃))1/2 . (24)

The result follows from the estimates (10). ��
In the next theorem we combine the result of Lemma 5, inequality (17) and the

definitions of θ̃ , w̃ and γ̃ given by (15), to establish the energy norm error estimate.
We observe that a similar proof can be found in [1, Theorem 6].

Theorem 6 Let (θ , w) be the solution of (1), and let (θh, wh) be the solution of the
dGWOPIP formulation (11a)–(11b) (or (8) with k = 2). Assume that f ∈ L2(Ω;R2)

and g ∈ L2(Ω). Moreover, assume that the Helmholtz decomposition (9) is valid, then
if ρ = 3 we have the following error estimate

|||θ − θh ||| + t‖γ − γ h‖0,h + (J (w − wh, w − wh))
1/2

� h
(‖θ‖2,Ω + t‖γ ‖1,Ω + ‖γ ‖H(div)

)
.

Proof Applying Lemma 5 in (17) we obtain from Cauchy–Schwarz inequality that

|||θ̃ |||2 + t2‖γ̃ ‖20,h + J (w̃, w̃) �
(
|||θ̃ |||2 + t2‖γ̃ ‖20,h + J (w̃, w̃)

)1/2

×
(
|||θ − θ I |||2 + t2‖γ − γ I ‖20,h + J (w − w I , w − w I ) + h2t2‖γ ‖21,Ω

+ h2‖γ ‖2H(div) + hρ−1‖γ ‖2H(div)

)1/2
.

It follows directly from this inequality that

|||θ̃ |||2 + t2‖γ̃ ‖20,h + J (w̃, w̃) � |||θ − θ I |||2 + t2‖γ − γ I‖20,h
+J (w − w I , w − w I ) + h2t2‖γ ‖21,Ω + h2‖γ ‖2H(div) + hρ−1‖γ ‖2H(div). (25)

Using the definitions of θ̃ , w̃ and γ̃ given by (15), triangle inequality and (25) we
obtain

|||θ − θh |||2 + t2‖γ − γ h‖20,h + J (w − wh, w − wh) � h2t2‖γ ‖21,Ω + h2‖γ ‖2H(div)

+hρ−1‖γ ‖2H(div) + |||θ − θ I |||2 + t2‖γ − γ I‖20,h + J (w − w I , w − w I ).

Finally, choosing ρ = 3 and noting that w I ∈ H1(Ω) ∩ P2(T ), we get from (3) and
(5) that

|||θ − θh |||2 + t2‖γ − γ h‖20,h + J (w − wh, w − wh)

� h2
(
‖θ‖22,Ω + t2‖γ ‖21,Ω + ‖γ ‖2H(div)

)
.

��
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For the symmetric version of (8) with k = 2 using the traditional duality argument
we derive in the next theoreman optimal error estimate in the L2 norm. For this purpose
we need to assume that the dual shear stress also admits a Helmholtz decomposition
in the form of (9). Once again, Lemma 5 and inequality (17) will be fundamental in
this proof.

Theorem 7 Let (θ, w) be the solution of (1), and let (θh, wh) be the solution of
the dGWOPIP formulation (11a)–(11b) (or (8) with k = 2) with δ = 1 (symmetric
version). Assume that f ∈ L2(Ω;R2) and g ∈ L2(Ω). Moreover, assume that the
Helmholtz decomposition (9) is valid for primal and dual shear stress. Then, if ρ = 3,
we have the following error estimate

‖θ − θh‖Ω + ‖w − wh‖Ω � h2
(‖θ‖2,Ω + t‖γ ‖1,Ω + ‖γ ‖H(div)

)
.

Proof Let (ϕ, z) ∈ H1
0 (Ω;R2) × H1

0 (Ω) be the solution of

a(ϕ, η) + μ(ζ , η)Ω = (eθ , η)Ω ∀ η ∈ H1
0 (Ω;R2)

−μ(ζ ,∇v)Ω = (ew, v)Ω ∀ v ∈ H1
0 (Ω), (26)

where here and throughout this paper, eθ = θ−θh , ew = w−wh and ζ = t−2(ϕ−∇z)
(the dual shear stress). The regularity result for this dual problem shows that

t‖ζ‖1,Ω + ‖ζ‖H(div) + ‖ϕ‖2,Ω � ‖eθ‖Ω + ‖ew‖Ω. (27)

Adding (12a) and (12b) and then applying the result to the dual problem with
f = eθ and g = ew we obtain

Bh(ϕ, η) + μ
∑
T∈T

(ζ , η − ∇hv)T + J (z, v) + μ
∑
T∈T

∫
∂T

ζ · ν v ds

= (eθ , η)Ω + (ew, v)Ω ∀ (η, v) ∈ H2(T ;R2) × H1(T ).

Setting η = eθ , v = ew and observing that with this choice η − ∇hv = t2(γ − γ h)

we obtain

‖eθ‖2Ω + ‖ew‖2Ω = Bh(ϕ, eθ ) + t2μ
∑
T∈T

(ζ , γ − γ h)T + J (z, ew)

+μ
∑
T∈T

∫
∂T

ζ · ν ew ds. (28)

Defining ζ I = t−2(ϕ I − ∇z I ), adding (13) and (14) and setting η = ϕ I and v = z I

we have

Bh(eθ ,ϕ
I )+ t2μ

∑
T∈T

(γ −γ h, ζ
I )T +J (ew, z I )+μ

∑
T∈T

∫
∂T

γ ·ν z I ds = 0. (29)
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Using the symmetry of Bh(·, ·) and subtracting (29) from (28) we obtain

‖eθ‖2Ω + ‖ew‖2Ω = Bh(ϕ − ϕ I , eθ ) + t2μ
∑
T∈T

(ζ − ζ I , γ − γ h)T

+J (z − z I , ew) + μ
∑
T∈T

∫
∂T

ζ · ν ew ds − μ
∑
T∈T

∫
∂T

γ · ν z I ds. (30)

Due to the fact that z I , w I ∈ P2(T ) ∩ H1(Ω) we get that
∑
T∈T

∫
∂T

γ · ν z I ds =
∑
E∈E

∫
E
{γ } · [z I ] ds = 0,

and∑
T∈T

∫
∂T

ζ · ν ew ds =
∑
T∈T

∫
∂T

ζ · ν (w − w I ) ds −
∑
T∈T

∫
∂T

ζ · ν (wh − w I ) ds

=
∑
E∈E

∫
E
{ζ } · [w − w I ] ds −

∑
T∈T

∫
∂T

ζ · ν (wh − w I ) ds

= −
∑
T∈T

∫
∂T

ζ · ν w̃ ds.

Based on the hypothesis that the Helmholtz decomposition (9) is also valid for ζ , then
we have from Lemma 5 that∣∣∣∣∣

∑
T∈T

∫
∂T

ζ · ν ew ds

∣∣∣∣∣ � ht2‖ζ‖1,Ω‖γ̃ ‖0,h + h‖ζ‖H(div)|||θ̃ |||

+h‖ζ‖H(div) (J (w̃, w̃))1/2 ,

where w̃, θ̃ and γ̃ are defined by (15). Substituting this in (30), applying Cauchy–
Schwarz inequality and using the continuity of Bh(·, ·) we obtain

‖eθ‖2Ω + ‖ew‖2Ω � |||ϕ − ϕ I ||| |||eθ ||| + t2‖ζ − ζ I‖0,h‖γ − γ h‖0,h
+

(
J (z − z I , z − z I )

)1/2
(J (ew, ew))1/2 + ht2‖ζ‖1,Ω‖γ̃ ‖0,h + h‖ζ‖H(div)|||θ̃ |||

+h‖ζ‖H(div) (J (w̃, w̃))1/2 .

Applying Cauchy–Schwarz inequality again gives

‖eθ‖2Ω + ‖ew‖2Ω �
(
|||ϕ − ϕ I |||2 + t2‖ζ − ζ I‖20,h + J (z − z I , z − z I )

)1/2

×
(
|||eθ |||2 + t2‖γ − γ h‖20,h + J (ew, ew)

)1/2

+h
(
t2‖ζ‖21,Ω + ‖ζ‖2H(div)

)1/2 ×
(
t2‖γ̃ ‖20,h + |||θ̃ |||2 + J (w̃, w̃)

)1/2
. (31)
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Using the regularity result (27) we have

h
(
t2‖ζ‖21,Ω + ‖ζ‖2H(div)

)1/2
� h (‖eθ‖Ω + ‖ew‖Ω) .

Owing to the definition of ζ I we have ζ I = π�ζ . Then, applying (3) and (5) to ϕ

and ζ , respectively, observing that z I ∈ P2(T ) ∩ H1(Ω) and applying the regularity
result (27) we obtain

(
|||ϕ − ϕ I |||2 + t2‖ζ − ζ I ‖20,h + J (z − z I , z − z I )

)1/2
� h

(‖ϕ‖2,Ω + t‖ζ‖1
)

� h (‖eθ‖Ω + ‖ew‖Ω) .

Applying (3) and (5) to the right-hand side of (25) and due to the fact that w I ∈
P2(T ) ∩ H1(Ω) and ρ = 3 we have

(
t2‖γ̃ ‖20,h + |||θ̃ |||2 + J (w̃, w̃)

)1/2
� h

(‖θ‖2,Ω + t‖γ ‖1,Ω + ‖γ ‖H(div)

)
.

Substituting the last three inequalities on the right-hand side of (31) and using Theo-
rem 6 we find that

‖eθ‖2Ω + ‖ew‖2Ω � h2
(‖θ‖2,Ω + t‖γ ‖1,Ω + ‖γ ‖H(div)

)
(‖eθ‖Ω + ‖ew‖Ω) ,

from which the result follows. ��

As a consequence of Theorem 6 and Theorem 7 we can prove the following error
estimates for the displacement.

Corollary 8 Under the assumption of Theorems 6 and 7 we have the following error
estimate

‖∇h(w − wh)‖0,h � (h2 + ht)
(‖θ‖2,Ω + t‖γ ‖1,Ω + ‖γ ‖H(div)

)
. (32)

Moreover, under the assumption of Theorem 6 we have

‖∇h(w − wh)‖0,h � h
(‖θ‖2,Ω + t‖γ ‖1,Ω + ‖γ ‖H(div)

) ; (33)

‖w − wh‖h � h
(‖w‖2,Ω + ‖θ‖2,Ω + t‖γ ‖1,Ω + ‖γ ‖H(div)

)
. (34)

Proof Since∇h(w−wh) = θ −θh − t2(γ −γ h) the error estimate (32) follows from
triangle inequality and Theorems 6 and 7. For the same reason the error estimate (33)
follows directly from the definition of ||| · ||| and Theorem 6.
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For the last error estimate, since ∇hw̃ = θ̃ − t2γ̃ and based on triangle inequality
and the definitions of w̃, γ̃ and θ̃ given by (15), we have

‖w − wh‖h � ‖∇h(w − w I )‖20,h + ‖∇hw̃‖20,h + J (ew, ew)

� ‖∇h(w − w I )‖20,h + ‖θ̃‖20,h + t2‖γ̃ ‖20,h + J (ew, ew)

� ‖∇h(w − w I )‖20,h + ‖θ − θ I‖20,h + t2‖γ − γ I‖20,h + ‖eθ‖20,h
+t2‖γ − γ h‖20,h + J (ew, ew).

Applying the interpolation estimates (2), (3) and (5) together with Theorem 6 we
conclude the proof of (34). ��

We note that the regularity required in Theorems 6 and 7 for the solution of (1)
is that θ ∈ H2(Ω;R2) and w ∈ H2(Ω) and this regularity always holds if Ω is a
convex polygon or a smooth bounded domain for f ∈ L2(Ω;R2) and g ∈ L2(Ω).
Furthermore, in this case (k = 2), the right-hand side t‖γ ‖1,Ω + ‖γ ‖H(div) + ‖θ‖2,Ω
remains bounded as t tends to zero.

As this result was proved under the assumption that the Helmholtz decomposition
holds for γ (and ζ for Theorem 7) we highlight that the Helmholtz decomposition
always holds if Ω is a convex domain.

5 A priori error analysis for high-order

In this section we will proceed with the analysis for high-order polynomials without
the Helmholtz decomposition hypothesis and, as usual, we need to assume additional
regularity for the solution (θ, w) of (1). That is, regularity which is not theoretically
established for this problem.

In Theorem 9 and Corollary 10 we extend the results of Theorem 6 and part of
Corollary 8, respectively, combining the same arguments presented in [12] with the
previous analysis. We emphasize that if we proceed in this way, when k = 2 the
resulting estimates will not be optimal in relation to t .

Theorem 9 Let (θ, w) be the solution of (1), and let (θh, wh) be the solution of
the dGWOPIP formulation (8) with k > 2. Assume that the solution (θ, w) ∈
Hk(Ω;R2) × Hk(Ω), f ∈ L2(Ω;R2) and g ∈ L2(Ω). Then if ρ = 2k − 1 we
have the following error estimate

|||θ − θh ||| + t‖γ − γ h‖0,h + J (w − wh, w − wh)

� hk−1 (‖γ ‖k−1,Ω + t‖γ ‖k−1,Ω + ‖γ ‖Ω + ‖θ‖k,Ω
)
.

Proof It is easy to check that inequality (17) is also valid for high order. Thus, we
limited the last term of (17) using Cauchy–Schwarz inequality in the following way
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∣∣∣∣∣
∑
T∈T

∫
∂T

γ · ν w̃ ds

∣∣∣∣∣ �
∣∣∣∣∣
∑
E∈E

(∫
E
{γ − γ I } · [w̃] ds +

∫
E
{γ I } · [w̃]ds

)∣∣∣∣∣

�
(∑
E∈E

hE‖{γ − γ I }‖2E
)1/2 (∑

E∈E
h−1
E ‖[w̃]‖2E

)1/2

+
∣∣∣∣∣
∑
E∈E

∫
E
{γ I } · [w̃]ds

∣∣∣∣∣ .

Since γ I |E ∈ Pk−1(E;R2) and applying Cauchy–Schwarz inequality it follows that

∣∣∣∣∣
∑
E∈E

∫
E
{γ I } · [w̃]ds

∣∣∣∣∣ =
∣∣∣∣∣
∑
E∈E

∫
E
{γ I } · Πk−1[w̃]ds

∣∣∣∣∣

�
(∑
E∈E

hρ
E

σ2
‖{γ I }‖2E

)1/2

(J (w̃, w̃))1/2 .

Using Lemma 2.2 of [12] and the fact that ∇hw̃ = θ̃ − t2γ̃ we obtain

(∑
E∈E

h−1
E ‖[w̃]‖2E

)1/2

�
(
‖∇hw̃‖20,h + J (w̃, w̃)

)1/2

�
(
‖θ̃‖20,h + t2‖γ̃ ‖20,h + J (w̃, w̃)

)1/2
.

Combining these inequalities with trace inequality, Cauchy–Schwarz inequality,
inverse inequality for ‖γ I ‖2E and triangular inequality gives

∣∣∣∣∣
∑
T∈T

∫
∂T

γ · ν w̃ ds

∣∣∣∣∣ �
(
‖θ̃‖20,h + t2‖γ̃ ‖20,h + J (w̃, w̃)

)1/2

×
(∑
T∈T

(
‖γ − γ I ‖2T + h2E |γ − γ I |21,T + hρ−1

E

(
‖γ − γ I‖2T + ‖γ ‖2T

)))1/2

.

Applying the estimate for the interpolant (5) we obtain that

∣∣∣∣∣
∑
T∈T

∫
∂T

γ · ν w̃ ds

∣∣∣∣∣ �
(∑
T∈T

(
h2k−2
T ‖γ ‖2k−1,T + hρ−1

T ‖γ ‖2T
))1/2

×
(
‖θ̃‖20,h + t2‖γ̃ ‖20,h + J (w̃, w̃)

)1/2
.

Following as in the demonstration of Theorem 6 and choosing ρ = 2k − 1 we
complete the proof. ��

Proceeding as in the demonstration of Corollary 8, but now using Theorem 9, we
can also establish the following estimates.
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Corollary 10 Under the assumption of Theorem 9 we have the following error esti-
mate

‖w − wh‖h � hk−1 (‖w‖k,Ω + ‖θ‖k,Ω + t‖γ ‖k−1,Ω + ‖γ ‖k−1,Ω + ‖γ ‖Ω

) ;
‖∇h(w − wh)‖0,h � hk−1 (‖γ ‖k−1,Ω + t‖γ ‖k−1,Ω + ‖γ ‖Ω + ‖θ‖k,Ω

)
.

It is well known that the norm ‖γ ‖k−1,Ω behaves like t−(k−3/2) as t tends to zero.
For this reason multiplying this norm by the factor t when k = 2 keeps this term
controlled, in the sense that it remains limited as t tends to zero. Unfortunately, when
we are dealing with polynomials of higher degree the norm ‖γ ‖k−1,Ω (for k > 2) will
appear on the right-hand side without the adequate factor multiplying it. This means
that the error estimate can blow up as t tends to zero. However, if we keep t fixed,
Theorem 9 and Corollary 10, as well as the Theorem 13 below, show that the method
will maintain the rate of convergence in relation to h.

The remainder of this sectionwill be dedicated to deriving another energynormerror
estimate using a different technique. Here, enriching operators and residual estimates
will be the main tools used to perform the analysis. We start by recalling Theorem 3
of [15] which gives the following residual estimates.

Theorem 11 Let gh ∈ Pk(T ), f h ∈ Pk−1(T ;R2) and φ, η ∈ Pk−1(T ;R2) be
arbitrary. Then, it holds for all T ∈ T and for all E ∈ E(Ω) that

hT ‖ f h + div hCeh(η) − φ‖T � ‖e(θ) − eh(η)‖T + hT ‖γ − φ‖T
+‖ f T − f h‖H−1(T );

hT ‖gh − divh(φ)‖T � ‖γ − φ‖T + ‖gT − gh‖H−1(T );
h1/2E ‖[[Ceh(η)]]‖E � ‖e(θ) − eh(η)‖ωE + hE‖γ − φ‖ωE + ‖ f E − f h‖H−1(ωE );

h1/2E ‖[φ]‖E � ‖γ − φ‖ωE + ‖gE − gh‖H−1(ωE ).

Here, and throughout this paper, gT = g|T , gE = g|ωE (idem for f ) and ωE is the
patch of two triangles sharing the face E.

The following enriching operators use averaging techniques (see [9] and [10] for
details):

IEh : Pk−1(T ;R2) → Pk−1(T ;R2) ∩ H1
0 (Ω,R2) such that

(∑
T∈T

h−2
E ‖IEhη − η‖2T

)1/2

+ ‖∇h(IEhη − η)‖Ω � ‖η‖h (35)

and Eh : Pk(T ) → Pk(T ) ∩ H1
0 (Ω) such that

(∑
T∈T

h−2
E ‖Ehv − v‖2T

)1/2

+ ‖∇h(Ehv − v)‖Ω � ‖v‖h . (36)
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The previous inequality (35) follows from the enriching operator properties and
from the discrete Korn’s inequality (see [11] and [2]), while (36) follows from the
enriching operator properties and from [12, Lemma 2.2] (recall that ρ > 1).

We recall now the following definitions of oscillation for a scalar function and for
a vector function

Osc(g) =
(∑
E∈E

‖gE − Pg‖2H−1(ωE )

)1/2

and
Osc( f ) =

(∑
E∈E

‖ f E − P f ‖2H−1(ωE )

)1/2

,

where P : L2(Ω) → Pk(T ) is the L2 orthogonal projection onto Pk(T ) and P :
L2(Ω;R2) → Pk−1(T ;R2) is the L2 orthogonal projection onto Pk−1(T ;R2). That
is,

∫
Ω

(Pg − g)v dx = 0 ∀ v ∈ Pk(T ) (analogous to P f ).

As proved in [6], if f ∈ L p(Ω;R2) for p > 1 we have

Osc( f ) � h1−2(1/2−1/q)‖ f − P f ‖L p(Ω), (37)

where p and q are such that 1/p + 1/q = 1. In the same way it is possible to obtain

Osc(g) � h1−2(1/2−1/q)‖g − Pg‖L p(Ω) (38)

if g ∈ L p(Ω) for p > 1.
The main steps of the proof for the next theorem are analogous to those performed

in Theorem 7 of [15]. However, as we are dealing with a different methodwewill write
almost the complete proof for clarity reasons. We observe that under conditions N2
and N3 of [26, Lemma 2.1] the term ϒa defined below is related to the interpolation
error part while the term ϒb is related with consistency/nonconforming error part.
Unfortunately, the analysis here is more complex because condition N3 for our energy
norm was not established. However, as in [26] we perform the analysis using residual
estimates and enriching operator properties.

Theorem 12 Let (θ , w) be the solution of (1) and let (θh, wh) be the solution of the
dGWOPIP formulation (8) with k > 2. Then we have

|||θ − θh, w − wh |||2 � inf
η∈Pk−1(T ;R2)

v∈Pk (T )

{(
hρ−1 + t2 + 1

)
‖γ − φ‖20,h

+J (w − v, w − v) + ‖e(θ) − eh(η)‖20,h + J(θ − η, θ − η)

+
∑
E∈E

hE

σ1
‖{Ceh(θ − η)}‖2E

}
+ Osc2(g) + Osc2( f ) + hρ−1‖γ ‖2Ω

where φ = t−2(η − ∇hv).
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Proof Step 0: Let η̃ = θh − η and ṽ = wh − v where η and v are arbitrary in
Pk−1(T ;R2) andPk(T ), respectively, and θh andwh are the solution of the dGWOPIP
formulation (8). The coercivity of the bilinear form given by Lemma 3 and (8) implies
that

|||η̃, ṽ|||2 � Ah(η̃, ṽ; η̃, ṽ) = Ah(θh, wh; η̃, ṽ) − Ah(η, v; η̃, ṽ)

= ( f , η̃ − IEh η̃)Ω + (g, ṽ − Eh ṽ)Ω − Ah(η, v; η̃ − IEh η̃, ṽ − Eh ṽ)

+( f , IEh η̃)Ω + (g,Eh ṽ)Ω − Ah(η, v; IEh η̃,Eh ṽ). (39)

Step 1: Proof of

ϒa �
(∑
T∈T

(
‖e(θ) − eh(η)‖2T + ‖γ − φ‖2T

))1/2

‖η̃‖h

+
(∑
T∈T

‖γ − φ‖2T
)1/2

‖ṽ‖h + (J(θ − η, θ − η))1/2 ‖η̃‖h, (40)

where φ = t−2(η − ∇hv) and

ϒa := ( f ,Eh η̃)Ω + (g,Eh ṽ)Ω − Ah(η, v; IEh η̃,Eh ṽ).

For the analysis of ϒa observe that IEh η̃ ∈ H1
0 (Ω;R2) ∩ Pk−1(T ;R2) and Eh ṽ ∈

H1
0 (Ω) ∩ Pk(T ). Hence, (1) and (6) lead to

ϒa =
∑
T∈T

((Ce(θ) − Ceh(η), e(IEh η̃))T + μ(γ − φ, IEh η̃)T − μ(γ − φ,∇Eh ṽ)T )

+
∑
E∈E

δ〈[[η]], {Ce(IEh η̃)}〉E =: ϒ1 + ϒ2 + ϒ3 + ϒ4.

Applying Cauchy–Schwarz inequality for each term we obtain

ϒ1 =
∑
T∈T

(Ce(θ) − Ceh(η), e(IEh η̃))T �
∑
T∈T

‖e(θ) − eh(η)‖T ‖e(IEh η̃)‖T ;

ϒ2 + ϒ3 �
∑
T∈T

‖γ − φ‖T ‖IEh η̃‖T +
∑
T∈T

‖γ − φ‖T ‖∇Eh ṽ‖T ;

ϒ4 �
∑
E∈E

δ

∥∥∥∥
√

σ1

hE
[[η]]

∥∥∥∥
E

∥∥∥∥∥
√
hE

σ1
{Ce(IEh η̃)}

∥∥∥∥∥
E

� (J(η, η))1/2

(∑
T∈T

‖e(IEh η̃)‖2T
)1/2

123



dGWOPIP for Reissner–Mindlin plates without the shear 417

where we also used inverse inequality for the fourth term. The combination of these
bounds shows

ϒa �
∑
T∈T

(‖e(θ) − eh(η)‖T ‖e(IEh η̃)‖T + ‖γ − φ‖T ‖IEh η̃‖T )

+
∑
T∈T

‖γ − φ‖T ‖∇Eh ṽ‖T + (J(η, η))1/2

(∑
T∈T

‖e(IEh η̃)‖2T
)1/2

.

Applying the properties of the enriching operators (35) and (36) we obtain (40).
Step 2: Proof of

ϒb �
(∑
T∈T

(
‖e(θ) − eh(η)‖2T + ‖γ − φ‖T

))1/2

‖η̃‖h

+
(
J (w − v, w − v) + Osc2(g)

)1/2 ‖ṽ‖h +
(
J(θ − η, θ − η) + Osc2( f )

)1/2
‖η̃‖h

+
(∑
T∈T

(‖γ − φ‖2T + hρ−1
T (‖γ − φ‖2T + ‖γ ‖2T ))

)1/2

‖ṽ‖h . (41)

Where, as before, φ = t−2(η − ∇hv) and

ϒb := ( f , η̃ − IEh η̃)Ω + (g, ṽ − Eh ṽ)Ω − Ah(η, v; η̃ − IEh η̃, ṽ − Eh ṽ).

To facilitate the handling, we use the definition of the bilinear form Ah(·, ·; ·, ·) to
write all terms of ϒb, that is,

ϒb = ( f , η̃ − IEh η̃)Ω + (g, ṽ − Eh ṽ)Ω −
∑
T∈T

(Ceh(η), eh(η̃ − IEh η̃))T

−
∑
T∈T

(φ, η̃ − IEh η̃)T +
∑
T∈T

(φ,∇h(ṽ − Eh ṽ))T

+
∑
E∈E

〈{Ceh(η)}, [[η̃ − IEh η̃]]〉E + δ
∑
E∈E

〈{Ceh(η̃ − IEh η̃)}, [[η]]〉E

−J(η, η̃) − J (v, ṽ) =: ϒ1 + . . . + ϒ9.

Proceeding as in the proof of Theorem 7 of [15] (Step 2) we obtain the following
limitations

ϒ1 + ϒ3 + ϒ4 + ϒ6 � +
(∑
T∈T

h−2
E ‖η̃ − IEh η̃‖2T

)1/2 (∑
E∈E

hE‖[[Ceh(η)]]‖2E
)1/2

+
(∑
T∈T

h2T ‖P f + div h(Ceh(η)) − φ‖2T
)1/2 (∑

T∈T
h−2
T ‖η̃ − IEh η̃‖2T

)1/2

;
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ϒ2 + ϒ5 �
(∑
T∈T

h2E‖Pg − divh(φ)‖2T
)1/2 (∑

T∈T
h−2
E ‖ṽ − Eh ṽ‖2T

)1/2

+
(∑
T∈T

hρ−1
E

σ2

(
‖γ − φ‖2T + ‖γ ‖2T

))1/2

J (ṽ, ṽ)1/2

+
(∑
E∈E

hE‖[φ]‖2E
)1/2 (∑

T∈T
h−2
E ‖ṽ − Eh ṽ‖2T

)1/2

;

and

ϒ7 + ϒ8 + ϒ9 �

⎛
⎝

(∑
T∈T

‖eh(η̃ − IEh η̃)‖2T
)1/2

+ (J(η̃, η̃))1/2

⎞
⎠

× (J(η − θ , η − θ))1/2 + (J (w − v,w − v))1/2 (J (ṽ, ṽ))1/2 .

Combining all of these inequalities and using enriching operator properties (35) and
(36) together with the Theorem 11 we prove (41).

Step 3: We combine the previous steps to finish the proof. Firstly observe that ‖η‖h ≤
‖η, v‖h , ‖v‖h ≤ ‖η, v‖h and that there exists positive constants c̃1 and c̃2 such that
(finite dimension)

c̃1|||η, v||| ≤ ‖η, v‖h ≤ c̃2|||η, v|||. (42)

Finally from (39)–(41) and (42) we have

|||η̃, ṽ|||2 �
∑
T∈T

(
‖e(θ) − eh(η)‖2T + ‖γ − φ‖2T

)

+
∑
T∈T

(‖γ − φ‖2T + hρ−1
T (‖γ − φ‖2T + ‖γ ‖2T ))

+J (w − v,w − v) + J(θ − η, θ − η) + Osc2( f ) + Osc2(g).

From triangle inequality we complete the proof. ��
Theorem 13 Let (θ, w) be the solution of (1), and let (θh, wh) be the solution of
the dGWOPIP formulation (8) with k > 2. Assume that the solution (θ, w) ∈
Hk(Ω;R2) × Hk(Ω), f ∈ Hk−2(Ω;R2) and g ∈ Hk−2(Ω). Then, if ρ = 2k − 1
we have the following error estimate

|||θ − θh, w − wh ||| � hk−1 (‖γ ‖k−1,Ω + t‖γ ‖k−1,Ω + ‖γ ‖Ω + ‖θ‖k,Ω
)

+hk−1 (‖ f ‖k−2,Ω + ‖g‖k−2,Ω
)
.

Proof We prove this result exploring the infimum on the right-hand side of Theo-
rem 12. Choosing η = θ I and v = w I we have from (4) that φ = t−2(η−∇hv) = γ I .
This allows us to use the interpolation estimates (3) and (5).
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Using the trace inequality and interpolation estimate (3) we obtain

‖e(θ) − eh(θ
I )‖20,h + J(θ − θ I , θ − θ I ) +

∑
E∈E

hE

σ1

∥∥∥{Ceh(θ − θ I )}
∥∥∥2
E

� ‖e(θ) − eh(θ
I )‖20,h +

∑
T∈T

hT
(
h−1
T ‖eh(θ − θ I )‖2T + hT |eh(θ − θ I )|21,T

)

+
∑
E∈E

σ1

hE
‖[[θ − θ I ]]‖2E � h2k−2‖θ‖2k,Ω .

For v = w I since w I ∈ H1(Ω) ∩ Pk(T ) and w ∈ H1(Ω), we have [w − v] = 0.
Therefore, J (w −v,w −v) = 0. Applying the interpolation estimate (5) we find that

ϒ :=
(
hρ−1 + t2 + 1

)
‖γ − γ I‖20,h � h2k−2

(
hρ−1 + t2 + 1

)
‖γ ‖2k−1,Ω

as ρ > 1 it follows that

ϒ � h2k−2
(
‖γ ‖2k−1,Ω + t2‖γ ‖2k−1,Ω

)
.

Combining this result and choosing ρ = 2k − 1 we obtain from Theorem 12 that,

|||θ − θh, w − wh ||| � hk−1 (‖γ ‖k−1,Ω + t‖γ ‖k−1,Ω + ‖γ ‖Ω + ‖θ‖k,Ω
)

+Osc( f ) + Osc(g).

The result follows from (37) and (38). ��

6 Numerical results

In this section we will show some numerical results that illustrate the performance of
the dGWOPIP formulation. Aiming at the calculation of the error and the numerical
order of convergence wewill consider the following slight modification of the solution
given in [20]. If

w1(x, y) = 1

3
x3(x − 1)3y3(y − 1)3,

w2(x, y) = y3(y − 1)3x(x − 1)(5x2 − 5x + 1)

+x3(x − 1)3y(y − 1)(5y2 − 5y + 1),

it follows that

w(x, y) = c̆w1(x, y) − t2
8(μ + λ)

3(2μ + λ)
c̆w2(x, y),

θ1(x, y) = c̆y3(y − 1)3x2(x − 1)2(2x − 1),

θ2(x, y) = c̆x3(x − 1)3y2(y − 1)2(2y − 1),
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solve the Reissner–Mindlin equation in Ω = (0, 1) × (0, 1) with f = 0 and

g= 4(μ+λ)μ

3(2μ+λ)
c̆{12y(y − 1)(5x2 − 5x+1)[2y2(y − 1)2+x(x − 1)(5y2 − 5y+1)]

+12x(x − 1)(5y2 − 5y + 1)[2x2(x − 1)2 + y(y − 1)(5x2 − 5x + 1)]}.

Here, we introduce the constant c̆ simply to stretch out the solution. In the numerical
result we set c̆ = 104.

The dGWOPIP described above was implemented in the PZ environment [22]. We
proceeded to check the convergence for both the symmetric andnonsymmetric versions
and for lower-order polynomials (that is, k = 2) and higher-order polynomials. In our
numerical simulations we set the Lamé coefficients λ = μ = 1 and after some
numerical tests we selected σ1 = 10 for all cases, along with σ2 = 2 × 103 for
lower-order and σ2 = 4 for higher-order polynomials.

Unfortunately, due to the over-penalization, parameter σ2 is a more complex choice
than parameter σ1. However, as the solution (θ, w) of the Reissner–Mindlin equation
converges to (∇Φ,Φ) as t tends to zero, where Φ is the solution of the biharmonic
problem, and considering the penalization parameters of the dG formulation for bihar-
monic equation [31–33], we see that here there is no power of k in these parameters.
On the other hand, the power of h here may be greater. This suggests that in some way
the penalization parameter σ2 needs to “compensate” this lack/excess indicating that,
for example, it should be large for k = 2 and small for k = 4.

We successively divide the domain using 22L+1 triangles. Thus, if eL denotes the
error at the level of refinement L , the rate of convergence for this level is given by

rL = log
(

eL
eL−1

)
/ log(0.5).

In Tables 1 and 2 we investigate the convergence rates for the rotations and vertical
displacements for k = 2. Table 1 shows the results for the symmetric formulation and
Table 2 for the nonsymmetric formulation.

Table 1 Numerical convergence with the symmetric formulation for k = 2 with t1 = 10−1, t2 = 10−3

and t3 = 10−6

t L L2(T ) H1(T ) L2(T ;R2) H1(T ;R2)

eω rL eω rL eθ rL eθ rL

3 1.249e−1 2.93 7.441e+0 1.86 7.439e−2 1.83 3.672e+0 0.724

t1 4 1.546e−2 3.01 1.890e+0 1.98 1.882e−2 1.98 1.936e+0 0.924

5 1.956e−3 2.98 4.724e−1 2.00 4.691e−3 2.00 9.810e−1 0.980

3 1.140e−2 2.05 1.059e−1 1.71 1.053e−1 1.70 3.439e+0 0.779

t2 4 2.442e−3 2.22 2.760e−2 1.94 2.748e−2 1.94 1.794e+0 0.939

5 5.782e−4 2.08 6.616e−3 2.06 6.571e−3 2.06 9.068e−1 0.984

3 1.144e−2 2.04 1.061e−1 1.71 1.055e−1 1.70 3.439e+0 0.779

t3 4 2.478e−3 2.21 2.782e−2 1.93 2.771e−2 1.93 1.794e+0 0.939

5 5.953e−4 2.06 6.804e−3 2.03 6.778e−3 2.03 9.064e−1 0.985

123



dGWOPIP for Reissner–Mindlin plates without the shear 421

Table 2 Numerical convergence with the nonsymmetric formulation for k = 2 with t1 = 10−1, t2 = 10−3

and t3 = 10−6

t L L2(T ) H1(T ) L2(T ;R2) H1(T ;R2)

eω rL eω rL eθ rL eθ rL

3 1.255e−1 2.92 7.441e+0 1.86 9.816e−2 1.58 3.738e+0 0.730

t1 4 1.565e−2 3.00 1.890e+0 1.98 2.771e−2 1.82 1.956e+0 0.935

5 1.987e−3 2.98 4.724e−1 2.00 7.262e−3 1.93 9.860e−1 0.988

3 1.533e−2 1.74 1.314e−1 1.49 1.305e−1 1.49 3.536e+0 0.771

t2 4 3.913e−3 1.97 3.860e−2 1.77 3.839e−2 1.77 1.825e+0 0.954

5 8.996e−4 2.12 1.020e−2 1.92 1.014e−2 1.92 9.146e−1 0.997

3 1.535e−2 1.74 1.315e−1 1.49 1.306e−1 1.49 3.536e+0 0.771

t3 4 3.944e−3 1.96 3.878e−2 1.76 3.858e−2 1.76 1.825e+0 0.954

5 9.313e−4 2.08 1.040e−2 1.90 1.035e−2 1.90 9.142e−1 0.998

Table 3 Numerical convergence with the symmetric formulation for k = 4 with t1 = 10−1, t2 = 10−3

and t3 = 10−6

t L L2(T ) H1(T ) L2(T ;R2) H1(T ;R2)

eω rL eω rL eθ rL eθ rL

2 2.872e−2 4.19 1.235e+0 3.21 2.250e−2 3.24 7.108e−1 2.23

t1 3 1.019e−3 4.82 8.953e−2 3.79 1.666e−3 3.76 1.064e−1 2.74

4 3.398e−5 4.91 5.893e−3 3.93 1.094e−4 3.93 1.387e−2 2.94

2 1.297e−2 2.99 4.797e−2 2.45 4.617e−2 2.39 8.074e−1 2.11

t2 3 3.794e−4 5.10 2.344e−3 4.36 2.308e−3 4.32 1.177e−1 2.78

4 1.261e−5 4.91 1.161e−4 4.34 1.141e−4 4.34 1.469e−2 3.00

2 1.299e−2 2.99 4.800e−2 2.45 4.621e−2 2.39 8.081e−1 2.11

t3 3 3.818e−4 5.09 2.349e−3 4.35 2.317e−3 4.32 1.182e−1 2.77

4 1.418e−5 4.75 1.252e−4 4.23 1.244e−4 4.22 1.499e−2 2.98

According to Theorem 6 it follows that the convergence rate for the rotation in
the H1(T ;R2) norm needs to be equal to one for both formulations (symmetric and
nonsymmetric). The numerical results clearly show this in the last columns of Tables 1
and 2.

For the symmetric version, we observe from Theorem 7 that the convergence rates
for the rotation and vertical displacement in the L2 norm must be quadratic. We
can see from Table 1 that the numerical convergence rate for the rotation in L2 is
quadratic for all thickness values considered and that this value is attained for the
vertical displacement for t2 and t3, while, for t1 it is one order better. We note that a
similar result was also obtained for the nonsymmetric version.

From the tables we can observe that the numerical rates of convergence in H1(T )

for the vertical displacement for both formulations are very similar to those obtained
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for the rotation in L2(T ;R2). To be precise, this rate tends to be quadratic, which is
better (one order) than the theoretical result proved in Corollary 8.

In Table 3 we report the results for the symmetric formulation with k = 4. The last
column shows that the rates of convergence for the rotation in H1(T ;R2) are equal to
k−1 for all thickness values considered. This is in agreementwith the theoretical result
present in Theorem 9. Once again the numerical rates for the displacement in H1(T )

are better (by at least one order) than the theoretical result present inCorollary 10.Once
again, similar results were obtained for the nonsymmetric version of the dGWOPIP.
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