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Abstract This paper introduces the first adaptive least-squares finite element method
(LS-FEM) for the Stokes equations with optimal convergence rates based on the newest
vertex bisection with lowest-order Raviart-Thomas and conforming P; discrete spaces
for the divergence least-squares formulation in 2D. Although the least-squares func-
tional is a reliable and efficient error estimator, the novel refinement indicator stems
from an alternative explicit residual-based a posteriori error control with exact solve.
Particular interest is on the treatment of the data approximation error which requires a
separate marking strategy. The paper proves linear convergence in terms of the levels
and optimal convergence rates in terms of the number of unknowns relative to the
notion of a non-linear approximation class. It extends and generalizes the approach of
Carstensen and Park (STAM J. Numer. Anal. 53:43-62 2015) from the Poisson model
problem to the Stokes equations.

Mathematics Subject Classification 65N12 - 65N15 - 65N30 - 65N50 - 65Y20 -
76D07

1 Introduction

The universality of the least-squares finite element method (LS-FEM) and its built-in
a posteriori error control has enjoyed some ongoing attention over the years; cf. [8]
for a general monograph and [1,5] for details on adaptive LS-FEMs. A competitive
formulation for the Stokes equations (prototypical in computational fluid dynamics)
is the divergence LS-FEM in comparison to the pseudostress mixed finite element
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method (PS-FEM) and the non-conforming Crouzeix-Raviart finite element method.
The LS-FEM has moderately more degrees of freedom but allows for some immediate
a posteriori error estimator even for discrete approximations which do not solve the
discrete equations exactly through the computable least-squares functional. Unlike the
aforementioned competitors [4,18,21,25], the convergence of an adaptive LS-FEM is
an open and not too immediate problem.

From the practical point of view, it appears natural to drive an adaptive mesh-
refining with the local contribution from the least-squares functional. From the point
of view of the general theory on optimal convergence rates [17], the reduction property
is seemingly unavailable simply because the error estimator contributions from the
least-squares functional do not involve any mesh-size as a factor that reduces under
refinement. It is therefore necessary to base the adaptive mesh-design on some novel
a posteriori error terms as it is suggested in [20] for the Poisson model problem
with homogeneous Dirichlet boundary conditions. This paper contributes the proof
of optimal convergence rates of an adaptive LS-FEM for the Stokes equations in an
abstract framework (geared to the four axioms of adaptivity [17] but self-contained)
with a detailed analysis of non-homogeneous Dirichlet boundary conditions.

Given some right-hand side f € L?(2;R?) and Dirichlet boundary data g €
H'(I'; R?) with fr g -vds = 0 in a bounded simply-connected Lipschitz domain
Q C R? with polygonal boundary I' := 8, the Stokes equations seek a velocity field
ueA:={veH(R? : v=gonl)}and a pressure distribution p € L(z)(Q)
(ie. p € L*(Q) and [, pdx = 0) with

—Au+Vp=f and divu =0 1in Q.
The LS-FEM considers the equivalent first-order system
f+divo =0 and deve —Du=0 inQ (1)

with the deviatoric part devo := o —tr(0)/2 I>x> and seeks a discrete minimizer of
the least-squares functional

LS(fiT,v) = ”f ‘|’diVT”iZ(Q) + ” devt — Du”iQ(Q)

foro € ¥ := {t € H(div, Q; R2%%) : rr e L(Z)(Q)} and u € A. The equivalence of
the homogeneous functional LS (0; 7, v) to the natural norm of the underlying function
space X X HO1 (2; R?) [12, Theorem 4.2] leads to efficiency and reliability of the
a posteriori error estimator LS(f; oLs, urs) for some discrete minimizer (o1s, 41s)-
Since the contributions to the estimator do not contain any powers of the mesh-size, the
known arguments for the proof of the estimator reduction do not apply to the situation
at hand; cf. [17] for a state-of-the-art survey on the convergence of adaptive finite
element methods. A major contribution of this paper is the statement of an equivalent
a posteriori error estimator 7 in Sect. 3.1 with the volume contributions

|T| ” divdevoyg HL2 + |T| || curldevors|| ||L2

(1) (T)
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for any triangle T with area |T'| and the edge contributions

7| |[dev ors — Dursleve | L2(L2(E)) T 7] [deviors — Durs)lete| L2(E)

for an interior edge E plus terms on the boundary which include Dirichlet data oscil-
lations.

It satisfies the axioms of adaptivity, namely stability, reduction, and discrete relia-
bility, as proven in Sect. 4. The discrete reliability, however, includes some additional
term || f — I1f || ;2 (), Which requires the reduction of the data approximation error
with the piecewise constant L2 best-approximation ITf of f by some separate mark-
ing strategy in the adaptive algorithm [22]. The main loop on the level £ with some
regular triangulation 7y in the adaptive LS-FEM with separate marking computes the
discrete solution (o ¢, uy) and the estimator i, and reads (for parameters «, p, 0) as
follows.

(ALS-FEM) In Case A || f — Jell2) < kmne with f; := I, f, compute 7y with
Dorfler marking for n,(T) and newest-vertex bisection (NVB).

In Case B (i.e. [| f — fell;2() > &mne), compute optimal approximation fr4; of f
by refinement 7 of 7; with

1f = fe ”LZ(Q) <ol f-fe ||L2(Q)'

The main result of this paper, the quasi-optimality of the new adaptive algorithm reads
(with the number |7;| of triangles in the triangulation 7;)

1/2

su§(|7z| —||) (LS(f5 00, u0) + 056 (g', Ee(MN) "~ |, )] o )
le

with the non-linear approximation class
Ay = [(u, £ eAx LARY : |, f)Y = sup N Eu, f,N) < oo]
! NeN

and the best possible error

E(u, f,N) := min min (LS(f; TLs, vLs) + osc?(g', ).
TEeT(N) (t1s,v5)€X(T) xS (T;R?)

The proofs require an adopted Helmholtz decomposition [21] for piecewise con-
stant matrix-valued functions and, thus, the analysis is restricted to the lowest-order
case. Moreover, this paper establishes a medius analysis of the LS-FEM as well as a
novel reliable and efficient a posteriori error control thereof. The pseudostress method
[12,14,19] serves as a related mixed discretization and allows the discrete reliability
analysis.

The paper is organized as follows: Sect. 2 introduces the notation employed for
triangulations, finite element function spaces, and the approximation of the Dirich-
let boundary data. It recalls the involved PS-FEM and LS-FEM and concludes with
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a medius analysis of the LS-FEM, a discrete Helmholtz decomposition, and the tr-
dev-div lemma. Section 3 defines a reliable and efficient alternative a posteriori error
estimator and presents the associated adaptive algorithm with separate marking. Sec-
tion 4 covers the proof of the four axioms of adaptivity and concludes with the proof
of the main result.

This paper employs the standard notation of Sobolev and Lebesgue spaces
H*(Q), H(div, Q), and L?(R2) and the corresponding spaces of vector- or matrix-
valued functions H*(Q;R?), L2(Q: R?), HX(S; R¥*?), H(div, Q; R?*2), and
L2($2; R2%2). Let (e, )1 denote the duality pairing of HY/2(I") andits dual H~'/2(Q),
which extends the L2-scalar product on I'. The energy norm is abbreviated by
o]l := Iol 1) = ID oll 2

To keep the notation and technical overhead minimal and this first paper on ALS-
FEM for the Stokes equations short, this paper is restricted to the 2D case although most
of the arguments carry over to 3D as well. However, the remaining modifications for
3D concern the discrete Helmholtz decomposition in 2D, which can be circumvented
with the observation, that the divergence-free Raviart-Thomas function is the curl of a
Nédélec edge-element function on some fine level which is approximated on a coarse
level plus a discrete regular split as in [30]. The modification of the Dirichlet data
approximation may follow the paper [2] for 3D.

2 Notation and preliminaries
2.1 Standard notation

Let tr and dev denote the trace operator and the deviatoric part of a matrix M € R>*2,
i.e.,

tr M := M1+ My and devM =M —tr(M)/2 Irx>.

Define Rﬁ:vz as the space of trace-free 2 x 2 matrices. For M, N € R2*2Z M : N :=
tr(M " N) abbreviates the Euclidian scalar product in R?*2,
The 2D rotation operators read, for v € H 1 (2; Rz),

. —dvy/dxy  dv1/dxg .
Curlv := (—8v2/8x2 Bvy/0x, and curlv := tr Curlv.
2.2 Triangulations and finite element function spaces

Given an initial shape-regular triangulation 7y into triangles of the polygonal Lipschitz

domain 2 with some initial condition on the refinement edges, the set of admissible
triangulations is defined as
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(a) M&\ (b) (c)
(d) (e)

Fig. 1 One-level refinements of a triangle K in the NVB with refinement edge ceczzzz.. (a) Triangle K,
(b) green, (c) blue-left, (d) blue-right, (e) bisec3

T := {7, regular triangulation of 2 into triangles :
3¢ € Ng37y, 71, . . ., 7y successive one-level refinements in the sense

that 741 is a one-level refinement of 7; for j =0, 1,..., ¢ — 1}.
For any natural number N € N, set
T(N):={T €T : |T| - |To| < N}.

All triangulations in this paper are admissible, when generated with NVB as depicted in
Fig. 1. This implies shape-regularity of all 7 € T in the sense that only a finite number
of angles appear in | J T. The reader is referred to [6,27] for details on mesh-refining.

Throughout the paper, A < B abbreviates the relation A < CB with a generic
constant 0 < C which solely depends on the interior angles <7 of the underlying
triangulation and so solely on 7p; A &~ B abbreviates A < B < A.

For any triangulation 7 € T, N denotes the set of nodes and & the set of edges and
the corresponding sets A/ (I') and £(I") on the boundary I', A'(R2) and £(R) in the
interior 2. For a triangle T € 7, let N'(T) denote the set of its three nodes and £(T)
the set of its three edges. For the node z € N and the edge E € &, define w, € 2 and
wp € Q by

w, = int U T and wg :=int U T
TeT,zeN(T) TeT ECT

Let Pr(7) and P (T ; R?) (resp. Py (T ; R?*?)) denote the space of piecewise poly-
nomials of degree at most k € Ny for vector-valued (resp. matrix-valued) functions.
Let the piecewise averages f7 := I[1f € Py(7) be the orthogonal projection of an
L2-function f onto Py(7) and analogously for every component of vector-valued or
matrix-valued functions. The oscillations

osc(f. T) := |hr(f — f1) ||L2(Q)
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of f on the triangulation 7 are weighted with the piecewise constant mesh-size func-
tion hy € Py(7) defined by hr|7r := hy := diam(T) for T € 7T.
The Courant finite element function spaces read

SUT; R?) := PI(T; RD) N C(Q; R?) € HY(Q; RY),
SHT;R?) := SUT; RH NHL(T; R?) C V := HL(Q; R?).
The discrete approximation of row-wise H(div, Q2)-functions in ¥ := {r €

H(div, Q;R**2) : trt € L%(Q)} employs the space of row-wise Raviart-Thomas
functions [9-11]

RTy(T) := {qrr € H(div, Q) : VT € T3a.b,c € R, grr|, = (a,b) +cx '},
Z(T) = {TRT = (‘[jk)j,kzl’z eX . Vj = l, 2, (Tj], ‘I.'jz) € RT()(T)}.

2.3 Approximation of Dirichlet boundary data

Given some initial triangulation 7, let H'(£(I"); R?) consist of all boundary func-
tions g € L*(I'; R?) with square-integrable arc-length derivative g’ = dg/ds €
L%(T'; R?) along the boundary edges £(I"). Let Pr(E(T")) denote the space of piece-
wise polynomials of degree at most k € Ny on the boundary. For any function
g€ HY(EM):RHNCT; R?), let Ig € S1(EM); R?) := PI(EN); RHNC(T; R?)
denote the nodal interpolation defined by linear interpolation of the nodal values,
for z € N(I'), (Ig)(z) := g(z). Let IIg’ denote the LZ(F)-orthogonal projec-

tion of g’ onto Py(E(T); R?) and he € Py(€) the piecewise constant function with
he ] = diam(wg) for every E € & to define the Dirichlet data oscillation

1/2
osc(g’, EM)) = |hd*(1 — g’ 2y
(Cf. [2,3,24] for details on the approximation of Dirichlet boundary data.)

Lemma 2.1 Given any boundary data g € H'(I'; R?), there exists some extension
w € H' (S R?) with

wl,=0—=Dg and ||w]|| < osc(g’, EM)).

Ifg e S! (5 (); R?) for any admissible refinement T of T, this even holds for some
discrete extension w € S' (T ; IR2) in that

Wl =0-Dg and ||w]| < osc(@, EMT)).
Proof Step 1: Sety := (1 — I)g and let w € H'(Q; R?) solve the Dirichlet problem

—Aw+w=0 inQ2 and w=y onT. 3)
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The weak solution w solves the minimization problem

312y = YeH @R, Flrey 1Y 10y = 2l i1 0
Since y vanishes in A/(I') and the triangulation 7 is shape-regular, [16, Theorem 1]
implies

”y”Hl/Z(r) S ”hls/zy/ ||L2(F)'

Notice that various definitions of the H'/2-norm in H'/2(I") are equivalent and the
universal equivalent constants solely depend on 2. The combination of the last two
displayed formulas and the definition of y = (1 — I)g prove

llwll < Jwl ey < [1%0(0 = Dg) fos] 2y = 0se(g’. £@OD. @)

Step 2:1fg e S! (5 (I'); R?) for some admissible refinement T of T, Step 1 leads to
w € H'(Q; R?) with (4). The Scott-Zhang quasi-interpolation [26], which is carefully
defined in [2] with respect to the edges on the boundary, leads to w := Jwin ! (’?; R?)
with w = (1 — I)g on I'. It is known [26, Theorem 3.1] that this quasi-interpolation
operator is H !-stable in the sense that ||@|| < [|w/||. The combination with (4) leads
to H|1'D||| < osc(g’, £(I)) and concludes the proof. O

Along the polygonal one-dimensional boundary I', the nodal interpolation /g of
g allows the following well-known orthogonality of the arc-length derivative d e /ds
which is stated and proved here for convenient reading.

Lemma 2.2 Any admissible refinement T of T with corresponding approximations
1g and 1 g of the boundary data satisfies, for every E € E£(T), that

/(ﬁ —M)g' - (1—T)g'ds =0. 5)
E

In particular, this implies
osc2(Tlg’, £(I) + osc?(g’, E(I) < osc* (g, E(I)). (©6)

Proof The assertion (5) is the orthogonality of the operator I and the conformity of
the finite element spaces. The fundamental theorem of calculus on E = conv{A, B} €
£(T") and nodal interpolation of A, B € A/(I") shows that

/Ea((l —Dg)/dsds = (1 — Dg)(B) — (1 — g)(A) = 0.

This proves I1g" = 9(/g)/ds. This, the estimate hz < hg a.e., and the Pythagoras
theorem imply (6). O
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Corollary 2.3 Any sequence of successive refinements Ty, ..., Toymy1 € T with
corresponding approximations gy, . .., 8o+m+1 Satisfies

C+m

> 0sc? (841 £(1) < 05¢*(g) 4 i1 E(D)).
j=t

Proof This follows from Lemma 2.2. Since g’/.Jrl - g} is orthogonal to g; | — g in
L*(I'; R?) forall £ < j < k, the Pythagoras theorem leads to

{+m L+m 5
z 0502(8;41’ gjM) = ”hé/z Z(g}H - g ||L2(F)
j=t j=t

1/2 2 2
= ”he/ (gf/d+m+1 - g//é)”LZ(F) = 0sC (g2+m+1’ E()).

2.4 Pseudostress approximation

Given some right-hand side f € L?(Q:;R?) and Dirichlet boundary data g €
HY(I; R?) with frg -vds = 0, the weak formulation of (1) seeks (o, u) €
¥ x L2(€2; R?) such that, for all (7, v) € ¥ x L2(Q:; R?),

/ o :devrdx +/ u - divedx = (g, Tv)r, @)
Q Q

/v-divadx: — f - vdx.

Q Q

The PS-FEM seeks (o ps, ups) € X(7) x Py(7; R?) such that, for all (zps, vps) €
(T) x Py(T; R?),

/ ops : dev Tpsdx +/ ups - div Tpsdx = (g, Tpsv)r, ®)
Q Q

/ vps - divopsdx = —/ f - vpsdx.
Q Q

The papers [12,14,18,19] outline a detailed analysis of this first-order method.

2.5 Least-squares FEM

The LS-FEM approximates the system (1) by minimizing the residual functional
LS(f; e) defined, for any (7, v) € X x H'(Q:; R?), by

LS(fiT.v)=|f +divr||iz(9) + | deve —Dv||iz(m.
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The associated bilinear form B : (X x H'(€2; R?)) x (T x H'(Q; R?)) — R of the
least-squares functional LS and the linear functional F : ¥ — Rread, foro,7 €
andu,v e H(Q; Rz),

B(o,u; t,v) :=/ divo : divTdx +/ (devo — Du) : (devt — Dv)dx,
Q Q
F(r) = —/ f - divzdx.
Q

The Euler-Lagrange equations for the minimization of LS(f; e) lead to the weak
problem: Seek (o, u) € X x A such that, for all (z,v) € X x V,

B(o,u; t,v) = F(1). )

The well-established equivalence [12, Theorem 4.2] of the natural norm in £ x V
with the homogeneous least-squares functional reads

B(t,v;t,v) = LSO: 7,v) ~ ||r||2(div’9) + |||v|||2 forall (t,v) € T x V. (10)

This leads to the uniqueness of solutions (o, #) € X x A to (9) with arbitrary Dirichlet
boundary data. The existence of a solution follows from the standard existence proof
for the Stokes equations and the Ladyzhenskaya lemma.

Lemma 2.4 For (t,v) € £ x HY(Q; R?), any extension z € v+ V C H(Q; R?)
of the boundary data v|r satisfies

L8O 7.0+ lell” ~ el + 0P + 1l

Proof This follows from elementary calculations with the Cauchy-Schwarz and the
Young inequality. O

Recall the set A := {v € H!(Q;R?) : v = g on I'} of admissible displacements
and the nodal interpolation / g from Sect. 2.3 and define the space of discrete admissible
velocity functions

AT) ={ve SYT;R*) : v=1IgonT}

on a regular triangulation 7 of €. A conforming discretization seeks (oLs, urs) €
X(T) x A(T) such that, for all (trs, vis) € Z(7) x S}(T; R?),

B(ovs, uLs; TLs, vLs) = F(TLs) = —/ ST - divTrsdx. (1D
Q

The equivalence (10) proves that || e ||z := B(e, ¢)!/2 is an equivalent norm on
¥ x V. However, the expression
2
+ H devt —Dv”Lz

B(r,v;t,v) = | divr”i2

(€) (Q)
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is non-negativeAfor all 7 € ¥ and v € HY(Q; R?). This enables the subsequent
definition of § (7, 7).

Definition 2.5 Given any admissible refinement 7 € T of an admissible triangulation
T € T,letg := I g be the nodal interpolation of the boundary data g and let (OLs, ULS)
and (oLs, urs) solve the discrete equation (11) with respect to 7 and 7, respectively.
Define

82T, T) = |@rs — ovs. dis — urs) | + 0sc2 (@, ().

2.6 Medius analysis of LS-FEM

Let (o,u) € ¥ x L*(Q;R?) be the exact solution to the continuous pseudostress
equation (7) with right-hand side f and Dirichlet boundary data g. Let (oLs, u1Ls) €
¥ (7) x A(T) denote the discrete solution to (11) and let Gu € A(7) be the Galerkin
projection G of u onto A(7") with

= Gull = min_ e~ wcl.

Let gt denote the L2 projection of o onto X(7), i.e., [Irro € X(7) with

lo = Tgro| 2 = ,RTIEizn(T) lo = 7rr] 2

Theorem 2.6 It holds that

LS(f; ovLs, uLs) + osc*(g/, E(T))
|u — Gum2 + o0sc? (g, E(I)) + |f - fT“iZ(Q)'

~ [o — Mrro ”22(9) +|

Proof The proof of the estimate “<” starts with the L?(2; R?)-orthogonality f —
frLPy(T; R?) and the Pythagoras theorem

LS(fiors.uLs) = || f — fTHiz(Q) + LS(fr;oLs, uLs).
Since (015, urs) is a discrete minimizer of LS( f7; o),
LS(fious uis) < | f = /1|20 + LSUT: aps, Gu).
The second discrete equation in (8) shows fr = I1f = —diveps. Hence,
LS(f:oLs,urs) < | f — fT”iz(g) + | devops — DG””@(Q)'
The solution (o, u) to (7) solves (1) with u € A and dev o = D u. Therefore,

| devops — DG””LZ(Q) <o —ops ||L2(Q) + [u = Gu]).
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A medius analysis shows that the L? best-approximation of the pseudostress [15,
Theorem 5.3] holds in the sense that

|o —ops HLz(sz) < |lo — Ngro ||L2(Q) +ose(f, 7).
This and the estimate osc(f, 7) < I|f — frllL2(q) conclude the proof of “<7.

The proof of the converse estimate “>” employs f +dive = 0,diversL f — fr,
and the Cauchy-Schwarz estimate to show

| f = fr ||L2(Q) < | div(e - GLS)”U(Q)'
The definition of ITrro and that of Gu imply
|o — Mgrro “LZ(Q) + |Ju = Gu| < o —oLs ||L2(Q) + [ = urs])-
The sum of the two previously displayed estimates leads to

|o — Mrro ”LZ(Q) + lu = Gul| + ] f - fr ”LZ(Q) (12)

< [lo —ous] ygve + e = sl
Lemma 2.1 proves the existence of some z € H'(2; R?) with
u—us—z€V and ||z]| £ osc(g’. ET)).
This, Lemma 2.4 with T = 0 — o5, v = u — urs, z as above, and (1) imply

o = ous Py + llu = sl S L8O 0 —ors.u—ws) + [l2[I* (13)

S LS(f; oLs, urs) 4 osc’(g', E(I)).

The combination of (12)—(13) concludes the proof of “>”. O

2.7 Helmholtz decomposition

Recall that ]R(ZI:VZ denotes the space of trace-free 2 x 2-matrices and define

Z(T) : = {vcr € CRY(T; R?) : divncucr = O ae. in Q) and

X(T)::[vceSl(T;Rz):/vcdx=0 and /curlvcdsz].
Q Q

For the simply connected domain €2, the discrete Helmholtz decomposition of [21]
leads to the L2(€2; R?*2)-orthogonal split

Po(T; R 4ey) = DneZ(T) @ devCurl X (7). (14)
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2.8 tr-dev-div Lemma

There exists some constant C > 0 (which depends solely on €2) such thatevery T € X
satisfies

7l 20y = € (I deve] oy + [ dive] 2q) - as)
The proof of (15) follows as in [9, Proposition 9.1.1].
3 Alternative a posteriori error control

3.1 A posteriori error estimator

For the solution (oLs, u1s) to the discrete equation (11), define an a posteriori error
estimator n*(7) := > ;o7 n*(Z7, T) by

n2(T, T) := |T|(|| divdevoyg ||22(T) + || curldevoys HiZ(T))

~|—]T]l/2 Z |ldevors — Dursle VE”iz(E)

EeE(TINE(R)

+1|'? > |ldev(ors — Durs)le e ||i2(E)
Ee&(T)

T2 S A=W, (o
EeE(T)NET)

for any T € 7 and with jumps along the edge E € £ defined, for any discrete tensor
TNC € Pi(T: R?*2), by

(TN, — (TNno)l7. for E € £(Q),

[enele = [(rNC)|T+ for E € £(I).

For any interioredge E € £(2),let Ty, T_ € 7 denote the two neighbouring triangles
according to Fig. 2. For E € £(I'), let T} € 7 denote the only adjacent triangle to E.
The error estimator 1 (7)) is reliable and efficient in that

LS(f;ous,uis) S 2 (D) + [ f = f7 72y S LS o1s, us) + 0sc?(g, E(T))

from Theorem 3.5 in Sect. 3.4 and Corollary 4.4 in Sect. 4.2 with data oscillation
terms osc?(g’, £(I")) from Sect. 2.3.

Fig. 2 Edge patch wg
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3.2 Adaptive algorithm (ALS-FEM)

Input: Initial regular triangulation 7 with refinement edges of the polygonal domain
Q into triangles and parameters 0 <6 < 1,0 < p < 1,0 < k < o0.
for any level ¢ =0, 1,2, ... do
Solve LS-FEM with respect to regular triangulation 7, with
solution (o¢, ug) and f; := Iy f.
Compute (n,(T), T € T;) with ng(e) := n(7;, e) from (16).
if CASEA |f — ff”iz(m < «n; then
Mark a subset M, of 7; of (almost) minimal cardinality |Mg| with

Ong < mMe) = D (D).
TeM,;

Refine. Compute the smallest regular refinement 7,11 of 7
with M € 7y\7¢41 by NVB;
else (CASE B k7 < ||/ — fill72 )
Compute an admissible refinement 7| of 7, with (almost) minimal
cardinality |7;1| and

Output: Sequence of discrete solutions (o ¢, i¢)en, and meshes (7¢)en, -

Remark 3.1 (NVB) The NVB requires an initial condition on the refinement edges
in 7. With reference to [28] for the suppressed details, this is assumed throughout
this paper in the definition of T for refinement control and existence of overlays as
summarized in [17, Section 2.4] with further references.

Remark 3.2 (Case B) The thresholding second algorithm (TSA) of [7, Section 5]
is one possible realisation of an optimal refinement in Case B of ALS-FEM. Any
other (quasi-)optimal algorithm for the data error reduction may be employed in the
algorithm and in the analysis.

3.3 Optimal convergence rates
The main result of this paper involves, for any given 0 < s < oo, the notion of
approximation classes A, which consists of all pairs (u, f) € A x L*(; R?) such

that

|, )]y, = sup N¥E(u, f,N) < o0
’ NeN
with the best possible error
E(, f, N) ;= min min (LS(f; TLS, ULS) + oscz(g/, 5([‘)))_

TEeT(N) (zrs,vLs)€X(T)x S (T:R?)
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Theorem 3.3 There exists a maximal bulk parameter 0 < 6y < 1 and maximal
separation parameter 0 < ko < oo which depend exclusively on Ty such that for all
0 <6 <6, forall ) < k < kg, forall0 < p < 1, and for all 0 < s < oo, the output
(0¢,ug)¢ of ALS-FEM with (u, f) € Ay satisfies

su§(|7z| — | To|)" (LS(f: 00 ue) + 0sc* (g, €)' < Cqopt| . )] 4.
le

The constant Cyope < 00 depends only on the initial mesh Iy the constant s and the
parameters p, 0, and k.

The proof of Theorem 3.3 will be given in Sect. 4.5. The converse inequality “2”
stated in (2) is elementary.

Remark 3.4 The equivalence from Theorem 2.6 proves the equivalence of A; to the
approximation class A defined as all pairs (u, f) € A x L*(; R?) with

’(M,f)ﬁz := sup N¥E(u, f, N) < 0o
’ NeN

for the best-approximation error

- ' ) )
E(u, f.N) := TV (lo — Mgro ||L2(S2) +[lu — Gul|

+osc?(g', ED)) + ||f - fr ”iZ(Q))'

Hence, Theorem 3.3 implies (with a different constant Cqopt) that

sup (17| - |70|)S( o — HRT(Z)UHiz(Q) + |lu = Geul|®
€

1/2
+osc (g, £ + || f = fi H;(m) < Caopt| (u, )] 7.-

3.4 Efficiency

The discrete test function technology due to Verfiirth [29] leads to efficiency of the
estimator 1 from Sect. 3.1 in the following sense.

Theorem 3.5 (efficiency) The error estimator n*(T) := Drer n*(T, T) from (16)
satisfies

(D) + | f = ]2 S LS oLs, uLs) + osc (g, E()).
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Proof Since D uLs|T is constant on 7' € 7, an inverse estimate proves

|| divdevoyg ||L2 + || curldevors ||L2

(1) (T)

= | divdevors — Durs)| ) + | curl(devors — Durs)| 51,

S }T|71/2 ” devors —Durs HLZ(T)'

Let E = 9T NAT- € £(R2) and wg := int(T4 U T_) as depicted in Fig. 2. A
triangle and a trace inequality plus an inverse estimate in the end prove

1/2|

|ldevors —Dursle| 2 S |E| 7| devors — Dus]

(wg)*
The deviatoric part satisfies
|| dev(ors — D uLs)” L2(Ty) = H devors —Durg HLz(Ti)'
The aforegoing inequalities prove local efficiency of all volume terms on 7" and all jump

terms on interior edges E € £(T) N E(). For any boundary edge E € E(T) N E(D),
the trace inequality and an inverse estimate prove

” [deV(ULS - DuLS)]E TE HLZ(E) 5 |T|_1/4” dev oLs — DMLS ||L2(T)'

The estimate || f — frll2(q) < LS(f; oLs, urs)'/? concludes the proof. O

4 Convergence analysis of ALS-FEM

This section is devoted to the proof of Theorem 3.3.

4.1 Stability and reduction

Let 7 be any admissible refinement of a regular triangulation 7~ with the respective
LS-FEM solutions (o5, urs) and (6s, #1s). Recall the a posteriori error estimator
nz(T, o) from Sect. 3.1 and §2 (”f, T) from Definition 2.5. Abbreviate the contributions
of any subset M C 7 of the triangulation 7 as

(T M) = > n*(T.T).
TeM

The estimator 1 and the distances ¢ satisfy the first two axioms of adaptivity from [17]
with generic constants Cgp & 1 & Creg and 0 < preq < 1.

Theorem 4.1 (stability) There exists Cgap ~ 1 such that

T, TNT)—n(T,TNT)| < Caurd(T, T).
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Proof The proof of the stability of the volume and edge contributions

|T| (H divdevoyg || 22(T) + || curldevors ||12(T)) 17

+ }T‘m Z H [devors —Dursle ve Hiz(E)

Ec&(T)NE(RQ)

Z [[dev(ors — DuLs)le T& ”iz(E)
E€&(T)

+ iT|1/2

follows the lines of that in [23, Corollary 3.4] and in [27, Proposition 4.6]. Details are
therefore omitted h;c\re.

Since T € 7 N 7T, the remaining contributions of boundary data oscillations coin-
cide, ||(1 — H)g/HLZ(aan) =1 - n)g/||L2(6TﬁF)' This concludes the proof. O

Theorem 4.2 (reduction) There exist 0 < preq < 1 and Creq = 1 such that
7)2(?, ?\T) = Pred 772(79 T\?) + Cred 82(?7 7).

Proof The proof of the reduction of the volume and edge contributions (17) relies on
the fact that each term is weighted with a corresponding power of the mesh-size |T|
(which is reduced at least by a factor 2), cf. the proof of [23, Corollary 3.4] for details.
This leads to the reduction constants

Bred := (14+2)27Y% and Creq := (1 + 1/1)(2Ciny +48Cy (1 + Ciny))

with generic constants Cj,y < oo from an inverse estimate, Cy < oo from the trace
inequality, and for any parameter 0 < A. Choose 0 < X sufficiently small to guarantee

Pred < L.
The reduction of the remaining boundary data oscillations follows directly from
Lemma 2.2, for K € 7\7 and T € 7 (K),

|T|l/2”(1 - ﬁ)g/”i%man

= (}K|/2)1/2(H(1 - ﬁ)ngi%maT) + ”(ﬁ - H)g/ HiZ(FOBT))

1/2 2
= (iK|/2) ”(1 — Mg’ ”LZ(maT)'
The sum over all K € ’T\’j> and T € ’T—(K ) leads to
osc?(g', T\T) <2~ 0sc?(g’, T\T).

This concludes the proof with the constants 0 < preq := pPred < 1 and Creq := éred <
Q. O
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4.2 Discrete reliability

The reliability of the error estimator (16) is the key to the analysis and requires a
modification by the extra term ||(1 — TT) divos|| L2(Q)-

Theorem 4.3 (discretg\reliability) There exists some constant Cqre] ~ 1 such that any
admissible refinement T of T in T with discrete solutions (61s, uLs) and (oLs, ULS)
to (11) with respect to and the error estimator n(7 , e ) from (16) satisfy

2T, T) < Carat (T, TND) + | (1 = M divGis| )

The last term gives rise to reliability in the following sense.

Corollary 4.4 (reliability) Given an admissible triangulation 7 € T with discrete
solutions (015, urs) € X(7) x A(T) to (11), the error estimator n(7T, e) is reliable
in the sense that

LS(f;ous,uis) S (D + | f = 11|72y (18)

Proof (Proof of Corollary 4.4) Define the sequence (7;) jen of successive uniform
one-level refinements 7; := bisec3/)(7) with discrete solutions (o jouj) € X(Tj) x
A(T;) to (11). This design ensures uniform convergence of the mesh-sizes & ; as
j — 00,
Jlgrolo |h ”LOO(SZ) =0.

The convergence of the LS-FEM yields

lim 8%(7;,7)

j—o00

= tim (|divio; — 0192 g, + | devio, —ars) — Dy — ) s )

J

= LS(f;oLs,uLs) (19)
and 5 s
Jli)n;o |1 = dive, ”L2(Q) =|r- fT”LZ(Q)' 20)

Theorem 4.3 implies, for every j € N, that

8%(T;, T) < Caraa n*(T) + (1 =M dive; HiZ(Q)'

This and (19)—(20) conclude the proof for j — oo. O

The remainder of this subsection is devoted to the proof of Theorem 4.3. Recall
that IT denotes the L?(£2)-orthogonal projection onto the piecewise constant functions
Po(7). The following proofs involve three PS-FEM solutions ?ps,?l’ﬁs, and Tps,
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which allow the split of the term dev(o s — o) into a divergence-free part and a
remaining part Tps — Tpg in Lemma 4.5. This lemma mainly consists of algebraic
rearrangements in such a way that the resulting terms can be treated by integration by
parts in combination with a Scott-Zhang quasi-interpolation in the Lemmas 4.6-4.7.

Let Tps, Tpg, and Tps solve the PS-FEM of Sect. 2.4 with homogeneous boundary
conditions g = 0, the right-hand sides

—div(os —oLs), —Ildiv(ers —ors), and —IIdiv(cLs —oLs)
with respect to the triangulations T , T , and 7'; in particular,

divTps = div(os — ors) and 21
diV?i;S =TIIdiv(ors — ors) = div Tps.

Recall the function spaces X (7) and X (TA' ) from Sect. 2.7. The proof of the dis-
crete reliability in Theorem 4.3 uses the following three lemmas. Their extensive and
technical proofs are postponed to the appendix to improve readability of this section.

Lemma 4.5 There exist someZ € S! (”Z\'; Rz) and E IS X(’?) with

Ar =T -Dg. ||Z]| £ osc(Tig’, (), and
| div(@Ls — oLs) ||iz(9) + | dev(@Ls — oLs) — D(iLs — urs) ||iz(9)
= (1 =M div@Ls — o15) |72

+ / (dev(oLs — o1Ls) — D(urs — urs)) : (dev(Tps — Tpg) — DZ)dx
Q

+ / (devors —Durg) : (D(ﬁLs —urs —2) —dev Curl@dx.
Q
Lemma 4.6 It holds that

/(deV oLs —Durs) : D(Ls — urs — 2)dx
Q

Slims —ws =2l X (Il |avdevousla,
Te’T\’]A'

1/2 : "
+ Z 7| ! |ldevors — Dursle ve ||L2(E))) .
Ec&(T)NE(R)
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Lemma 4.7 It holds that

/ (devors — Durg) : dev Curl de
Q

~ 2
< |oLs —os HH(div,Q)( Z (|T| | curldevors ||L2(T)
TeT\T

1/2 2 12
+ > Y ||[dev(aLs—DuLsnErEHLz(E))) :
Ee&(T)

Proof (Proof of Theorem 4.3) For Z from Lemma 4.5, the design of m g and I1g and
the orthogonality from Lemma 2.2 yield

I21° S ose?(Migh ean = > a0 =g |12
EcEMN\ET)
< > nPa-mg|ia,, S AT T\D. (22)
EcEMN\ET)

Recall (53) from the proof of Lemma 4.7 and deduce
H dev(Tps _?F’S)”LZ(Q) = ”?PS — Tpg ||L2(S2) S ”(1 — M div(oLs — "LS)”LZ(Q)'

The Cauchy-Schwarz inequality, the triangle inequality, Lemma 2.4 with T =615 —
oLs, vV =1uLs — urs, and w =7 plus the previous estimate imply

/Q (dev(@Ls — o1s) — D(@Ls — urs)) : (dev(Eps — The) — DZ)dx

< | dev(@Ls — oLs) — D(uLs — MLS)”Lz(Q)
x (| (1 = M div@rs — “LS)”LZ(Q) + 1)
S ([61s = ous| sy + s —uws || + [IZ])
x (| =M div@Ls — o1s) | 12, + [IZ]])- (23)

The converse estimate from Lemma 2.4 reads

|oLs —ovs ”?-I(div,sz) + s — ”LS|||2 < [ div@rs — “LS)”iZ(Q)

+ | dev(@Ls — oLs) — D(iLs — MLS)”iz(Q) + ”m”2
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The combination of this with Lemma 4.5-4.7 and (23) shows

[51s = o1s ] + s = sl
<[ =M div@Ls — o1s) |72
+ ([61s —ovsl .o + s —uwsf + [IZ]])
(|0 =M div@Ls —ors)| 2, + [IZ]])
+ (T N (s — s + 20 + 181s = o1s] 4. )) + IEI

This, (22), and some standard rearrangements conclude the proof. O

4.3 Quasi-orthogonality

Recall 82(’?, T) from the Definition 2.5.

Theorem 4.8 (quasi-orthogonality) Any regular triangulation T with admissible
refinement T, the corresponding solbﬂions (oLs, urs) and (o1s, ULs) to the discrete
equation (11) with respect to T and T, and any 0 < u satisfy

8%(T.T) < LS(f:o1s. us) — (1 — w)LS(f1GLs. TiLs)
+ (1 + Cose/1) (0sc*(g', E(I) — osc?(g', E(I))).
Remark 4.9 The assertion in Theorem 4.8 refers to axiom (B3a) from [17] with

uw(7T) = osc(g’, £(T)) and this implies axiom (B3b) therein. The reliability from
Corollary 4.4 and [17, Lemma 3.7] prove, for any sequence of successive admissible

refinements 7o, 71, ... and all 4o > 0, quasi-orthogonality in the generalized sense
that

L+m )

D (B Ter1, T — oL S(fr 0k u0) S0*(T0 + || f = fel 2

k=t

Proof (Proof of Theorem 4.8) Abbreviate the exact solution X := (o, u) to the con-
tlnuous least-squares problem (9) and the discrete solutions XLS = (O'Ls, urs) and
XLS (oLs, uLs) to (11). Lemma 2.1 with g replaced by (I - I)g e S! (S(F) R2)
yields the existence of some generic constant Cose ~ 1 and some w € s! (T : R?) with
ULs —uLs — W € Sé (T; Rz) and

~1112
“| w ||| < Cosc OSCZ (?, EM)). (24)
Because of the non-homogeneous Dirichlet boundary data, the Galerkin orthogonality

holds in general exclusively for velocity test functions that vanish on the boundary.
Hence,

B(X — XLs: )?LS — X1s — (0, w)) =0.
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This plus elementary algebra with the symmetric bilinear form B prove

B(Xrs — Xis: X1s — XLs) (25)
= B(X — Xis; X — X1s) — B(X — XLs; X — X1s) — 2B(X — Xis; 0, ).

The rewriting in terms of the least-squares functional yields

82(T,T) = LS(f; ovs, urs) — LS(f; GLs, fiLs)
+ 0sc2(@, E() — 2B(X — Xis; 0, ).

Lemma 2.2 implies
0sc? (@, E(I) < osc’ (', E(I)) — osc (', E(I).
The combination of the two previously displayed formulas, the Cauchy-Schwarz

inequality, the Young inequality, and (24) imply the assertion for any parameter © > 0.
O

4.4 Contraction property

Recall the output (7¢) ey and (o7 ¢, ug) ey of ALS-FEM from Sect. 3.2.

Theorem 4.10 (contraction) Forall0 <6 < 1,0 <k <00,and0 < p < 1 from
the input of the adaptive algorithm in Sect. 3.2, there exist constants Acon, Mosc ~ 1,
and 0 < pcon < 1 such that

&= LS(f100.u) + | f = fel}2i0) + Aose 05¢3(8" Ee(T) + Aconi}  (26)

satisfies
Elv1 < Peonki forall £ € No. 27)

Proof Step 1: The Theorems 4.1-4.2 motivate the additive split
N7 1 = g1 (Te 0 o) + 0y T\ To). (28)

For any 0 < A with A;ed = ((1+ 1/)\)C2 + Creq), the Theorem 4.1 for 7, N 7y 1,

stab

and Theorem 4.2 for 7y\ 7y with T = Toy1, 7 = Ty as well as (28) imply

My < L+ 008 (T 0 Tox) + preanip(Te\Tes1) + Aleg8*(Tes1, Te)  (29)
=1 +017 — (1 + A = prea)nt (T\Te41) + Aleq8* (Tes1, To).

For Case A, the Dorfler marking guarantees

002 < n2(My) < n2(T\Ti11).
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For sufficiently small 0 < X with 0 < preq(£) := (1 +A)(1 — (1 — preq)8) < 1 and
A ~ 1+ 1/A, the two previously displayed formulas lead to

red

Mot < Prea(ON] + Alegd* Ty, To). (30)
In Case A, the data approximation is possibly not strictly reduced. The minimization in
the definition of f; and the inclusion Py (Zy; R?) € Po(Tyy1; R?) imply, for p(£) := 1,

that 5 )
| f = fesill 2@ = O] F = fel 20 (31)

For Case B, however, (29) directly implies (30) with preg(£) := 1+ A forany 0 < A
and (31) holds for0 < p(¥) :=p < l.A
Step 2: Theorem 4.8 with 7 = 7y, T = Ty41,and 0 < u < 1 proves

82(Tos1, Te) < LS(f; 00, ue) — (1 — WLS(f; 0011, es1)
+ (1 4 Cose/m) (08¢ (g, E(I) — 0sc* (g, Eg1(I)).

The previous estimate and the estimator reduction (30) imply
M1 = Prea(@nf + Aleg (LS(f3 00, u0) = (L= OLS(f5 01, )
(1 + Cose/ 1) (0562 (', Ex(I) = 056X (g, Ex11(1)).
Hence, Acon :=1/((1 — /,L)A;Cd) and Agge := (1 4 Cosc/1t)/(1 — ) satisfy

LS(f; 0011, tes1) + Aose 05¢% (g, Er1(D)) + Acontliy (32)
<1/(1 = w) LS(f; 00, te) + Aose 05¢2 (g, E¢(T)) + prea () Aconn?-

For 0 < u < min{e, &/Aosc, €/ Acon}, Set

peon(®) :=max{(1 —&)/(1 — ), 1 —&/Aose, 1 —&/Acon} < 1,
B(e) i=e/(1 — W) LS(fi00.ue) + | £ = fert ] gy — 0 = O f = fel}2()
+ SOSCZ(g/, &(F)) + (8 + Acon(prea (€) — 1))77(%-

The combination with (32) leads to
El41 < peon(8)E] + B(e). (33)

To estimate B(e) < 0 in Case A and B, notice that oscz(g’, ) < nf and the
reliability of the estimator 1, from Corollary 4.4 with generic constant Cre] ~ 1 imply

LS(f3 00, u0) + 05X (g, £(T) < (1 + Ceif + Cral| £ = felfaiqy B4
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Step3(caseA)'. Since ”f - fe‘l’l”iZ(Q) S ”f - fe||i2(g) S K’I%7O < pred(g) < 1
and (34) yield

2
B(e) < e(1+ Cret/(1 = w)nf +e(1 + Cret/ (1 = )| f = fe| 2y
+ (& + Acon(prea(®) — D)2
< (61 + Crat/(1 = ) + 1) + & + Acon(rea(®) — 1))
Since preg(£) — 1 < 0, it is possible to choose 0 < ¢ sufficiently small such that

B(e) < 0. This and (33) conclude the proof of (27) in Case A.
Step 4 (Case B): Recall, for any 0 < A, that preg(£) := 1 4 A,

Hf - fe+1 ”iZ(Q) =< IOHf - fe ”iZ(Q)a and 7)% < I/K Hf - fe ||iZ(Q)
This plus (34) prove
B(e) < &1+ Cra/(1 — )0} + (e(1 + Cra/ (1 = 1)+ p = 1) | £ = fe| 72

+ (e + )\Acon)n%
< (601 + Cra /(1 = @)+ 1/6) + (e + 2hean) /& +p = V)| £ = fe| 200

Since p < 1, for sufficiently small 0 < ¢ and O < 2, it follows that
(8(1 + Cret/(1 — )+ 1/k) + &/Kc + AAcon /K + p — 1) <0.

Hence, B(e) < 0. This and (33) conclude the proof of (27) in Case B. O

4.5 Optimal convergence rates

The proof of the main result Theorem 3.3 follows the arguments of [20], but involves
additional estimates for the non-homogeneous boundary data.

Proof (Proof of Theorem 3.3) Step 1: Let £ € N. Recall the definition of &, from (26).

Fore(?) := t&; withaparameter0 < 7 < |(u, f)|Ar/$0,an argument in [20, page 58]
leads to N (£) € N with ’

2 < N < 2|, )]} e (35)

Step 2: The definition of E(u, f, N (£)) implies the existence of an optimal admis-
sible triangulation 7, € T(N (¢£)) with solution (a¢, u¢) to the discrete equation (11)
on 7y, Dirichlet boundary data approximation g, and

E(u, f.N(£)) = LS(f: ¢, 1) + osc*(g', E(I)).
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This, the supremum in the definition of |(u, f)| , , and the choice of N (£) imply

LS(f; ¢, iig) +o0sc*(g/, E(I)) = E(u, f, N(©)) (36)
< NO|@. Hy <e@? =%,

The smallest common refinement YAQ =T ® 7~2 € T, called overlay of 7; and 7~2, is
an admissible refinement of 7, and satisfies [23, Lemma 3.7]

T\ | < |Te| - | Te| < |Te| - | o] < N©).
The combination with (35) reads
1T\T| < 2|, £l @)1 (37)

Let (a¢, u¢) € ):(’72) X A(’TZ) solve the discrete equation (11) with respect to ’72 and
let g¢ denote the corresponding Dirichlet boundary data approximation. Lemmas 2.1
and 2.2 lead to the existence of some wy € S l(’12; Rz) and Cogc ~ 1 with

Dol =8 — 8 and [|@e]|” < Cosc 0567 (@} E (1)) < Cosc 0567 (g, & ().

The combination of this witho, € X (’ZAQ), W+ € A(Ty), and the Young inequality
implies

LS(f;0¢, 1) < ||f +divo, “22(9) + ” devay —D(u; + l/ﬁg)”iz(g)
< |f+divae ”iz(sz) +2| deve, — Dty ”22(9) + 2| e |||2
< 2LS(f; G, 1) + 2Cosc 05c* (g, E(I)).

The boundary data oscillations are smaller on finer meshes, whence
osc? (g, E(IN) < osc?(g', & (I)).

The two previously displayed formulas and (36) imply, for Cp := max{2, 1 4+ 2Cqs},
that

LS(f; G0, 1) + osc2(g, E(I) (38)
<2LS(f; G0, 1) + (1 +2Cos) 05¢2(g', E(I)) < Cor2E}.

Step 3 (Case A): Lemmas 2.1 and 2.2 lead to the existence of some Wy € S (7\2; R?)
and Cysc ~ 1 with

De| =8 — g and [|De]|” < Cosc 056 (@), E (). (39)
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The arguments for the proof of (25) apply literally to the situation at hand. For the
exact solution (o, u) to (9), this leads to

LS(f;00,u) =LS0;0¢—0¢,u¢—ug)+ LS(f;0¢, 1)
+28(0 - 3@, u —it\g; 0, @g)

The Cauchy-Schwarz inequality, the Young inequality, and (39) result in C; =
max{1, Cos.} and

LS(fi00,up) < LSO;G¢ — 0, g —ug) +2LS(f; ¢, 1¢) + Cosc 05¢*(Ze, E(I))
< C18%(Tp. Ty) + 2LS(f: 6. hp).

The discrete reliability Theorem 4.3, the triangle inequality, and the Young inequality
yield

8210, T/ Caret < M (TNTD) + | (1 = TI) dive | 72

< BTNT) + 2| f = folfai0) + 2] (1 =TI +divE ) | 2q)-

The orthogonality of the projection I, and the definition of the least-squares functional
imply

[ =T +dive0) 32 < | £ +divEe| 2, < LS50 0.

Since hg‘amr ~ |T|!/2, there exists a constant C» = 1 such that

os®(g". &N = > |n/* &' = &0 2r0m
TeT\T;

+ Z Hhéﬂ(g/_gé)‘};(amr)
Te’]}ﬂ'ﬂ

< Con2(T\Ty) + osc? (g, E(I)).

For C3 := max{Cs 4+ CCgrel, 2(1 4+ C1Cgre1)}, a combination of the four previously
displayed formulas in Step 3 plus some rearrangements result in

(LS(f1 00, ue) + 0562 (8', £(TN) /Cs < FTNTD) + | f = fi 72
+ LS(f; 8¢, ) + 0sc” (g, Eu()),
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For C4 := C3(max{l, Agsc} + Ceff max{1, Acon}), this and the efficiency from The-
orem 3.5 prove

‘522 =LS(f;00,u0) + ”f — fe ”iz(g) + Aosc Oscz(g/: &) + Aconn%
< (max{1, Aosc} + Cetr max{1, Acon}) (LS(f: 0¢, ue) + 0sc?(g', ()
< C4(LS(f: G0, 1ie) +0sc*(g', & () + n2(T\To) + || f — fil

12(9))-
Case A and the definition of &, imply
| = fel o) < Konf < Ko/ Acon &2.
The combination of the two previously displayed estimates with (38) results in
§7/Cs < (T\TD) + (Cot” + K0/ Acon)§7 -
Every choice of 12 < 1/(4CyCy) and kg < Acon/(4Cy) leads to
Acontl} < & < 2Can}(T\TY).

For 0 < 6y := Acon/(2C4), the Dorfler marking in Case A of the adaptive algorithm
from Sect. 3.2 computes a subset My C 7; of (almost) minimal cardinality with

on? < (M) and |M¢| < |T\To).
The estimate (37) implies
|Mz}2s S }775\@|2S < |, f)\ilSe(Z)_z. (40)

Step 4 (Case B): Let T € T be the output of the TSA from [7, Section 5] with
tolerance Tol := p!/2|| f — Jellz2(q) such that

| f = f7] o < Tol and |T|—|To| < [(u, f)ujTol_l/S. (41)

Let 7¢41 := T ® 7y denote the overlay of 7 and the triangulation 7, on level £.
The embed oscillation control algorithm from [22, Section 3] ensures the existence

of a finite sequence of disjoint sets M(O), M(l), e MEK(Z)) of marked triangles
realizing a successive one-level refinement with ’Z;Z(O) =Ty,

7Y = REFNE(T,, M) for k=0,....K(©),
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and T((K(()H) = Ty+1. The disjoint union of those sets M, := Mg)) U---uU MEK(D)
satisfies [22, Theorem 3.3]

K ()
Me| = D" |MP] < |T] = |To).

The combination with (41) shows
2s < 2 2
[Me|™ S [, )] Tol ™. (42)

Recall that oscz(g E(M) < ’74 <|\f- f(” /k in Case B. This and the relia-

bility from Corollary 4.4 imply

LX)

562 =LS(f;00,up) + Hf — fe “iZ(Q) + Aosc OSCz(g/, &) + Aconn%
< ’7@ + Hf Je ”LZ(Q) ~ ”f Je ||L2(sz) Tol>.

The combination with (42) reads

Ml < [ D87

This concludes the proof of an estimate like (40) in Case B.
Step 5 (Finish of the proof): As in [20], the overhead control of [6, Theorem 2.4]
or [27], the contraction property from Theorem 4.10, and (40) lead to

‘72‘ - ‘%‘ S ‘(M, f)’l/v%_é 1/s Zpégnk)/(b) < ‘(u7 f)‘i(:%'[lh

This and (LS(f; o, up) + osc2(g', & (1")))1/2 < &, conclude the proof of

(17| = |To)* (LS(f: 00, ue) + 0sc* (g, £(T) < |(u. f)],, forany £ € No.

Acknowledgments This work was supported by Deutsche Forschungsgemeinschaft (DFG) SPP 1748.

Appendix: Proofs of Lemma 4.5-4.7

Proof (Proof of Lemma 4.5) For g replaced by Ig € Sl(E(F) R?), Lemma 2.1
guarantees the existence of someZ € S 1 (’T Rz) with

Zlr =0 —1)g and Izl < osc(Tlg’, E(I)).
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The discrete equatlon (11) with respect to 7 with test functions TIs =0Ls — OLS €
Z(T) and v s =ULs —uULs — 2 € SO (’T R?) imply that

— /Q(dev oLs — Diurs) : (dev(ors — ors) — D(urs — urs —2))dx
= [ U +diveis) - divGis — ors)ds
= /Q(f? — fr) - div(@Ls — orLs)dx
+ /Q(f’]' +divors) - div(@Ls — ors)dx + | div(aLs — GLS)Hiz(Q).

The discrete equation (11) with respect to T = Tps and the triangulation 7 and (21)
result in

— / (devors — Duyg) : dev Tpsdx
Q
= / (fr +diveyrs) - divTpgdx = / (fr +diveyrs) - div(oLs — oLs)dx.
Q Q
The combination of the preceding two displayed formulas proves

| div@Ls — o1s) ”22(9)
- /Q(ff— — fr) -div(oLs — ors)dx + /Q(dev ors —Durs) : dev Tpsdx
- /Q(dev oLs — Durs) : (dev(ors — ors) — D(iLs — urs —2))dx.
This plus some elementary algebra leads to
| div@yLs — O'LS)”iz(Q) + || dev(@Ls — o1s) — D(uLs — MLS)Hiz(Q)
~ [ (f7 = fr) - divGrs = ous)ax
- /Q(dev ors — Durs) : (dev(Grs — ors — Tps) — D(iiLs — urs —2))dx
- /Q(dev((/fLs —oLs) — D(uLs — urs)) : Dzdx. (43)
The remaining analysis in this proof concerns the split
dev(dLs — oLs — Tps) = dev(GLs — OLs — Tps + Tps — Tps) + dev(Tps — Tps)-
The Eq. (21) imply that the Raviart-Thomas function
P :=0Ls —OLs — Tps + Tpg — TpS (44)
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is divergence-free and so piecewise constant. The Helmholtz decomposition (14),

devp = Dnc @ + dev Curl B € Py(T; R2X?),

dev

leadstosome @ € Z (’ZA') and 3 eX (’7\'). The orthogonality and a piecewise integration
by parts show

;||a;||§c=/ dev : Dc@dx =/3:DNCadx= D /[ﬁvE~&]Eds.
@ @ E€E(S) E

Recall that the Raviart-Thomas function p is continuous in its normal components and
that pvg is constant along £ € £(2). Since the jump [@]g of E has integral mean
zero along E,

/[/ﬁUE &\]E ds = 0.
E
Hence, @ = 0 and the Helmholtz decomposition reduces to

devp = dev Curl B (45)
for the divergence-free test function Curl E € RTo(’/T\ : R2%2). One term in (43) reads

— / (devors —Durg) : dev(Tps — Tpg)dx
Q
= / (dev(oLs — orLs) — D(urs — urs)) : dev(Tps — ?;S)dx
Q

- / (dev@Ls — DiiLs) : dev(Zps — Thg)dx. (46)
Q

The discrete equation (11) with respect to the triangulation 7\', TLs = Tps — Tpg, and
vLs = 0, and the combination with (21) plus elementary algebra with the L?-projection
I onto Py(7; R¥*2) show

— /Q (devors —Durs) : dev(Tps — Tpg)dx
= /Q(ff +divors) - div(Tps — Tpg)dx
= /Q(ff— +divors) - (1 — ) div(aLs — os))dx
= /Q(f? — fr) - div@Ls — ors)dx + | (1 — ) div(oLs — GLs)||iz(Q)- 47
The combination of (43)—(47) concludes the proof. O
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Fig. 3 Enlarged triangle patch
Qr

Proof (Proof of Lemma 4.6) Let v € Sé (7;R?) be the Scott-Zhang quasi-
interpolation of U := iy g —ups —7 € Sé (T R?). For every z € N in the construction
of the quasi-interpolation [26, Section 2], choose E € &£ (a)Z) such that £ € EnN éA’
whenever possible. This ensures that the error function w := v — v € SO (T R?) of
the quasi-interpolation vanishes on any 7 € 7 N 7T . The first-order approximation
property [26, equation (4.3)] and the stability property [26, Theorem3.1] read

12 ~

717 [@] 2y + DD 27y S 1DP] 2y 4%

for the enlarged triangle patch Q7 := |J, N () @ on the triangulation 7" of Fig. 3.
Since v € Sé (7: R?) is an admissible test function, (11) implies

/(dev ors — Durs) : Dvdx = 0.
Q

This, the definition of w, and a piecewise integration by parts result in
/ (devors — Durs) : Dudx = / (devors — Durs) : Dwdx
Q Q

= — Z (/@-divdevaLsdx
T

TeT\T

+ > / (Ideveors — Durslg ve) ds ) (49)

Ec&(T)NE(RQ)
Givenany T € T\’/T\ , a Cauchy-Schwarz inequality plus (48) prove

V1] 2 7]

SR

V2| divdevoris]

/@.divdevaLsdx <|r|” .
T

|T’1/2|| divdevorg HL2

(Qr) (1)
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Givenany T € T \"Z': with E € £(T), a combination of a Cauchy-Schwarz inequality,
a trace inequality, and (48) result in

/ w - ([dev ors — Duisle UE) ds
E

<T@ gy ITI" [ 1devors — Dursle ve] 2
S (}T|71/2 ||w||L2(T) + “ Dw||L2(T))|T|1/4H [devors —Dursle ve ”LZ(E)
. Di)\||L2(QT)|T|1/4H [devors —Dursle ve ||L2(E)'

The combination of (49) with the last two preceding estimates and a finite overlap of
the patches Q7 from Fig. 3 conclude the proof. O

Proof (Proof of Lemma 4.7) Let B € S'(7;R?) be the Scott-Zhang quasi-
interpolation of E € Sl(’ZA'; R?). For every z € N in the design of the quasi-
interpolation [26, Section 2], choose E € &(w,) such that E € £ N a whenever
possible, so that the error function 3 := ,B\— Bes! (QA’; IR?) of the quasi-interpolation
vanishesonany 7 € 7 N7 . The first-order approximation property [26, equation (4.3)]
and the stability property [26, Theorem 3.1] read, with the enlarged triangle patch Q7
of Fig. 3, as

1/2

7151712y + 107 2y S I B 2y (50)

For x = (x1, x2) € Q, define a modified quasi-interpolation E e SUT;R?) by
,E(x) = Bx)—c/2 (—xz,xl)T with ¢ := / tr Curl ﬁdx/|§2|.
Q

This guarantees that Curl,g = Curl — ¢/2 Ixy € X(7) is an admissible and
divergence-free test function. Therefore, the discrete equation (11) proves

/ (devors — Duyg) : dev Curl Bdx
Q

= / (devors — Duyg) : dev Curl de =0.
Q

This plus elementary algebra on the deviatoric part and a piecewise integration by
parts imply

/(dev o1s —Duyg) : dev Curl de (29
Q

= / (devors — Dugs) : devCurl ydx = / dev(ors — Durs) : Curl ydx
Q Q
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+ > /E?-([dev(aLs—DuLs)]ErE)ds).

Ee&(T)
Givenany T € 7 \? , a Cauchy-Schwarz inequality plus (50) prove

12 || curldevors || 12

/T? curldevopsdr < | DB\||L2(QT)|T| 1)

Givenany T € T \’ZA' with E € £(T), a combination of a Cauchy-Schwarz inequality,
a trace inequality, and (50) imply

/ Y - ([dev(ors — Durs)le te) ds
E
<™

S “DE||L2(QT)|T|

170 120 IT|"* [1dev(@rs — Durs)le w2,

E |ldev(ors — Durs)le T& ”Lz(E)-

The combination of (51) with the last two preceding estimates and a finite overlap of
the patches Q7 from Fig. 3 prove

/ (devaLs_DuLs>:devcurlﬁdxgH|3H|( > (7] eundevors|Zg,
@ Te'T\’f'

1/2
+ Z |T|1/2||[dev(aLs—DuLS)]ErE”iz(E))) ) (52)
E€&(T)

The subsequent stability property can be found in [13, Lemma 3.4] in different notation
| zes HLZ(Q) < Hf”LZ(sz) + Hg”Hl/Z(r)'
The stability of PS-FEM applied to Tps — Tjg and 7ps yields

”?PS - ?i‘;‘s ||L2(Q) ,-S H (1 - n) diV(a'\LS - ULS) ||L2(Q) and (53)

|es]| L2(R) < |Mdiv@Ls —ovs)| L2(Q)"
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Since E eX (TA’ ), Curl E € Z("f ). Hence, the tr-dev-div lemma (15), Eq. (45), defini-
tion (44), a triangle inequality, and (53) imply

WEW = H Curl E“U(Q) S H dev Curl B\HLZ(Q) = ” deV’ﬁHLZ(Q) = Hﬁﬂu@)

|oLs —ovs ”LZ(SZ) + [ Tes — Ths | e T | zes ”Lz(sz)

IA

5 |’ELS —OLS ||L2(Q) + ||(1 - H) diV(ELS - JLS) ”LZ(Q)

+ |Mdiv(@Ls — oLs) ”LZ(Q)

S ”aLS —OLs ”H(div,Q)'
This and (52) conclude the proof. O
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