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Abstract This paper introduces the first adaptive least-squares finite element method
(LS-FEM) for the Stokes equationswith optimal convergence rates based on the newest
vertex bisection with lowest-order Raviart-Thomas and conforming P1 discrete spaces
for the divergence least-squares formulation in 2D. Although the least-squares func-
tional is a reliable and efficient error estimator, the novel refinement indicator stems
from an alternative explicit residual-based a posteriori error control with exact solve.
Particular interest is on the treatment of the data approximation error which requires a
separate marking strategy. The paper proves linear convergence in terms of the levels
and optimal convergence rates in terms of the number of unknowns relative to the
notion of a non-linear approximation class. It extends and generalizes the approach of
Carstensen and Park (SIAM J. Numer. Anal. 53:43–62 2015) from the Poisson model
problem to the Stokes equations.

Mathematics Subject Classification 65N12 · 65N15 · 65N30 · 65N50 · 65Y20 ·
76D07

1 Introduction

The universality of the least-squares finite element method (LS-FEM) and its built-in
a posteriori error control has enjoyed some ongoing attention over the years; cf. [8]
for a general monograph and [1,5] for details on adaptive LS-FEMs. A competitive
formulation for the Stokes equations (prototypical in computational fluid dynamics)
is the divergence LS-FEM in comparison to the pseudostress mixed finite element
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method (PS-FEM) and the non-conforming Crouzeix-Raviart finite element method.
The LS-FEM has moderately more degrees of freedom but allows for some immediate
a posteriori error estimator even for discrete approximations which do not solve the
discrete equations exactly through the computable least-squares functional. Unlike the
aforementioned competitors [4,18,21,25], the convergence of an adaptive LS-FEM is
an open and not too immediate problem.

From the practical point of view, it appears natural to drive an adaptive mesh-
refining with the local contribution from the least-squares functional. From the point
of view of the general theory on optimal convergence rates [17], the reduction property
is seemingly unavailable simply because the error estimator contributions from the
least-squares functional do not involve any mesh-size as a factor that reduces under
refinement. It is therefore necessary to base the adaptive mesh-design on some novel
a posteriori error terms as it is suggested in [20] for the Poisson model problem
with homogeneous Dirichlet boundary conditions. This paper contributes the proof
of optimal convergence rates of an adaptive LS-FEM for the Stokes equations in an
abstract framework (geared to the four axioms of adaptivity [17] but self-contained)
with a detailed analysis of non-homogeneous Dirichlet boundary conditions.

Given some right-hand side f ∈ L2(�;R2) and Dirichlet boundary data g ∈
H1(�;R2) with

∫
�
g · ν ds = 0 in a bounded simply-connected Lipschitz domain

� ⊆ R
2 with polygonal boundary � := ∂�, the Stokes equations seek a velocity field

u ∈ A := {v ∈ H1(�;R2) : v = g on �} and a pressure distribution p ∈ L2
0(�)

(i.e. p ∈ L2(�) and
∫
�
pdx = 0) with

−� u + ∇ p = f and div u = 0 in �.

The LS-FEM considers the equivalent first-order system

f + div σ = 0 and dev σ − D u = 0 in � (1)

with the deviatoric part dev σ := σ − tr(σ )/2 I2×2 and seeks a discrete minimizer of
the least-squares functional

LS( f ; τ , v) := ∥
∥ f + div τ

∥
∥2
L2(�)

+ ∥
∥ dev τ − D u

∥
∥2
L2(�)

for σ ∈ � := {τ ∈ H(div,�;R2×2) : tr τ ∈ L2
0(�)} and u ∈ A. The equivalence of

the homogeneous functional LS(0; τ , v) to the natural normof the underlying function
space � × H1

0 (�;R2) [12, Theorem 4.2] leads to efficiency and reliability of the
a posteriori error estimator LS( f ; σLS, uLS) for some discrete minimizer (σLS, uLS).
Since the contributions to the estimator do not contain any powers of themesh-size, the
known arguments for the proof of the estimator reduction do not apply to the situation
at hand; cf. [17] for a state-of-the-art survey on the convergence of adaptive finite
element methods. A major contribution of this paper is the statement of an equivalent
a posteriori error estimator η in Sect. 3.1 with the volume contributions

∣
∣T

∣
∣
∥
∥ div dev σLS

∥
∥
L2(T )

+ ∣
∣T

∣
∣
∥
∥ curl dev σLS‖

∥
∥
L2(T )
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for any triangle T with area |T | and the edge contributions

∣
∣T

∣
∣1/2

∥
∥[dev σLS − D uLS]EνE

∥
∥
L2(L2(E))

+ ∣
∣T

∣
∣1/2

∥
∥[dev(σLS − D uLS)]EτE

∥
∥
L2(E)

for an interior edge E plus terms on the boundary which include Dirichlet data oscil-
lations.

It satisfies the axioms of adaptivity, namely stability, reduction, and discrete relia-
bility, as proven in Sect. 4. The discrete reliability, however, includes some additional
term ‖ f − 	 f ‖L2(�), which requires the reduction of the data approximation error
with the piecewise constant L2 best-approximation 	 f of f by some separate mark-
ing strategy in the adaptive algorithm [22]. The main loop on the level 
 with some
regular triangulation T
 in the adaptive LS-FEM with separate marking computes the
discrete solution (σ 
, u
) and the estimator η
 and reads (for parameters κ, ρ, θ ) as
follows.
(ALS-FEM) In Case A ‖ f − f
‖L2(�) ≤ κη
 with f
 := 	
 f , compute T
+1 with
Dörfler marking for η
(T ) and newest-vertex bisection (NVB).
In Case B (i.e. ‖ f − f
‖L2(�) > κη
), compute optimal approximation f
+1 of f
by refinement T
+1 of T
 with

∥
∥ f − f
+1

∥
∥
L2(�)

≤ ρ
∥
∥ f − f


∥
∥
L2(�)

.

The main result of this paper, the quasi-optimality of the new adaptive algorithm reads
(with the number |T
| of triangles in the triangulation T
)

sup

∈N

(∣∣T


∣
∣ − ∣

∣T0
∣
∣)s(LS( f ; σ 
, u
) + osc2(g′, E
(�))

)1/2 ≈ ∣
∣(u, f )

∣
∣
As

(2)

with the non-linear approximation class

As :=
{

(u, f ) ∈ A × L2(�;R2) : ∣
∣(u, f )

∣
∣2
As

:= sup
N∈N

N 2s E(u, f, N ) < ∞
}

and the best possible error

E(u, f, N ) := min
T ∈T(N )

min
(τLS,vLS)∈�(T )×S1(T ;R2)

(
LS( f ; τLS, vLS) + osc2(g′, E(�))

)
.

The proofs require an adopted Helmholtz decomposition [21] for piecewise con-
stant matrix-valued functions and, thus, the analysis is restricted to the lowest-order
case. Moreover, this paper establishes a medius analysis of the LS-FEM as well as a
novel reliable and efficient a posteriori error control thereof. The pseudostress method
[12,14,19] serves as a related mixed discretization and allows the discrete reliability
analysis.

The paper is organized as follows: Sect. 2 introduces the notation employed for
triangulations, finite element function spaces, and the approximation of the Dirich-
let boundary data. It recalls the involved PS-FEM and LS-FEM and concludes with
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a medius analysis of the LS-FEM, a discrete Helmholtz decomposition, and the tr-
dev-div lemma. Section 3 defines a reliable and efficient alternative a posteriori error
estimator and presents the associated adaptive algorithm with separate marking. Sec-
tion 4 covers the proof of the four axioms of adaptivity and concludes with the proof
of the main result.

This paper employs the standard notation of Sobolev and Lebesgue spaces
Hk(�), H(div,�), and L2(�) and the corresponding spaces of vector- or matrix-
valued functions Hk(�;R2), L2(�;R2), Hk(�;R2×2), H(div,�;R2×2), and
L2(�;R2×2). Let 〈•, •〉� denote the duality pairing of H1/2(�) and its dual H−1/2(�),
which extends the L2-scalar product on �. The energy norm is abbreviated by∣
∣
∣
∣
∣
∣•∣

∣
∣
∣
∣
∣ := |•|H1(�) = ‖D •‖L2(�).
To keep the notation and technical overhead minimal and this first paper on ALS-

FEMfor theStokes equations short, this paper is restricted to the 2Dcase althoughmost
of the arguments carry over to 3D as well. However, the remaining modifications for
3D concern the discrete Helmholtz decomposition in 2D, which can be circumvented
with the observation, that the divergence-free Raviart-Thomas function is the curl of a
Nédélec edge-element function on some fine level which is approximated on a coarse
level plus a discrete regular split as in [30]. The modification of the Dirichlet data
approximation may follow the paper [2] for 3D.

2 Notation and preliminaries

2.1 Standard notation

Let tr and dev denote the trace operator and the deviatoric part of a matrix M ∈ R
2×2,

i.e.,

tr M := M11 + M22 and devM := M − tr(M)/2 I2×2.

Define R2×2
dev as the space of trace-free 2 × 2 matrices. For M, N ∈ R

2×2, M : N :=
tr(M�N ) abbreviates the Euclidian scalar product in R2×2.

The 2D rotation operators read, for v ∈ H1(�;R2),

Curl v :=
(−∂v1/∂x2 ∂v1/∂x1

−∂v2/∂x2 ∂v2/∂x1

)

and curl v := tr Curl v.

2.2 Triangulations and finite element function spaces

Given an initial shape-regular triangulation T0 into triangles of the polygonal Lipschitz
domain � with some initial condition on the refinement edges, the set of admissible
triangulations is defined as
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(a) (b) (c)

(d) (e)
Fig. 1 One-level refinements of a triangle K in the NVB with refinement edge . (a) Triangle K ,
(b) green, (c) blue-left, (d) blue-right, (e) bisec3

T := {T
 regular triangulation of � into triangles :
∃
 ∈ N0 ∃T0, T1, . . . , T
 successive one-level refinements in the sense

that T j+1 is a one-level refinement of T j for j = 0, 1, . . . , 
 − 1}.

For any natural number N ∈ N, set

T(N ) := {T ∈ T : ∣
∣T

∣
∣ − ∣

∣T0
∣
∣ ≤ N }.

All triangulations in this paper are admissible,when generatedwithNVBas depicted in
Fig. 1. This implies shape-regularity of all T ∈ T in the sense that only a finite number
of angles appear in

⋃
T. The reader is referred to [6,27] for details on mesh-refining.

Throughout the paper, A � B abbreviates the relation A ≤ CB with a generic
constant 0 < C which solely depends on the interior angles �T of the underlying
triangulation and so solely on T0; A ≈ B abbreviates A � B � A.

For any triangulation T ∈ T,N denotes the set of nodes and E the set of edges and
the corresponding sets N (�) and E(�) on the boundary �, N (�) and E(�) in the
interior �. For a triangle T ∈ T , let N (T ) denote the set of its three nodes and E(T )

the set of its three edges. For the node z ∈ N and the edge E ∈ E , define ωz ⊆ � and
ωE ⊆ � by

ωz := int

⎛

⎝
⋃

T∈T ,z∈N (T )

T

⎞

⎠ and ωE := int

⎛

⎝
⋃

T∈T ,E⊆T

T

⎞

⎠ .

Let Pk(T ) and Pk(T ;R2) (resp. Pk(T ;R2×2)) denote the space of piecewise poly-
nomials of degree at most k ∈ N0 for vector-valued (resp. matrix-valued) functions.
Let the piecewise averages fT := 	 f ∈ P0(T ) be the orthogonal projection of an
L2-function f onto P0(T ) and analogously for every component of vector-valued or
matrix-valued functions. The oscillations

osc( f, T ) := ∥
∥hT ( f − fT )

∥
∥
L2(�)
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of f on the triangulation T are weighted with the piecewise constant mesh-size func-
tion hT ∈ P0(T ) defined by hT |T := hT := diam(T ) for T ∈ T .

The Courant finite element function spaces read

S1(T ;R2) := P1(T ;R2) ∩ C(��;R2) ⊆ H1(�;R2),

S10(T ;R2) := S1(T ;R2) ∩ H1
0 (T ;R2) ⊆ V := H1

0 (�;R2).

The discrete approximation of row-wise H(div,�)-functions in � := {τ ∈
H(div,�;R2×2) : tr τ ∈ L2

0(�)} employs the space of row-wise Raviart-Thomas
functions [9–11]

RT0(T ) := {
qRT ∈ H(div,�) : ∀T ∈ T ∃a, b, c ∈ R, qRT

∣
∣
T = (a, b) + cx�}

,

�(T ) := {
τRT = (τ jk) j,k=1,2 ∈ � : ∀ j = 1, 2, (τ j1, τ j2) ∈ RT0(T )

}
.

2.3 Approximation of Dirichlet boundary data

Given some initial triangulation T , let H1(E(�);R2) consist of all boundary func-
tions g ∈ L2(�;R2) with square-integrable arc-length derivative g′ = ∂g/∂s ∈
L2(�;R2) along the boundary edges E(�). Let Pk(E(�)) denote the space of piece-
wise polynomials of degree at most k ∈ N0 on the boundary. For any function
g ∈ H1(E(�);R2) ∩C(�;R2), let Ig ∈ S1(E(�);R2) := P1(E(�);R2) ∩C(�;R2)

denote the nodal interpolation defined by linear interpolation of the nodal values,
for z ∈ N (�), (Ig)(z) := g(z). Let 	g′ denote the L2(�)-orthogonal projec-
tion of g′ onto P0(E(�);R2) and hE ∈ P0(E) the piecewise constant function with
hE

∣
∣
E ≡ diam(ωE ) for every E ∈ E to define the Dirichlet data oscillation

osc(g′, E(�)) := ∥
∥h1/2E (1 − 	)g′∥∥

L2(�)
.

(Cf. [2,3,24] for details on the approximation of Dirichlet boundary data.)

Lemma 2.1 Given any boundary data g ∈ H1(�;R2), there exists some extension
w ∈ H1(�;R2) with

w
∣
∣
�

= (1 − I )g and
∣
∣
∣
∣
∣
∣w

∣
∣
∣
∣
∣
∣ � osc(g′, E(�)).

If ĝ ∈ S1(Ê(�);R2) for any admissible refinement T̂ of T , this even holds for some
discrete extension ŵ ∈ S1(T̂ ;R2) in that

ŵ
∣
∣
�

= (1 − I )ĝ and
∣
∣
∣
∣
∣
∣ŵ

∣
∣
∣
∣
∣
∣ � osc(ĝ′, E(�)).

Proof Step 1: Set y := (1 − I )g and let w ∈ H1(�;R2) solve the Dirichlet problem

− �w + w = 0 in � and w = y on �. (3)
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The weak solution w solves the minimization problem

∥
∥y

∥
∥
H1/2(�)

:= min
Y∈H1(�;R2),Y |�=y

∥
∥Y

∥
∥
H1(�)

= ∥
∥w

∥
∥
H1(�)

.

Since y vanishes in N (�) and the triangulation T is shape-regular, [16, Theorem 1]
implies

∥
∥y

∥
∥
H1/2(�)

�
∥
∥h1/2E y′∥∥

L2(�)
.

Notice that various definitions of the H1/2-norm in H1/2(�) are equivalent and the
universal equivalent constants solely depend on �. The combination of the last two
displayed formulas and the definition of y ≡ (1 − I )g prove

∣
∣
∣
∣
∣
∣w

∣
∣
∣
∣
∣
∣ ≤ ∥

∥w
∥
∥
H1(�)

�
∥
∥h1/2E ∂

(
(1 − I )g

)/
∂s

∥
∥
L2(�)

= osc(g′, E(�)). (4)

Step 2: If ĝ ∈ S1(Ê(�);R2) for some admissible refinement T̂ of T , Step 1 leads to
w ∈ H1(�;R2)with (4). The Scott-Zhang quasi-interpolation [26], which is carefully
defined in [2]with respect to the edges on the boundary, leads to ŵ := Ĵw in S1(T̂ ;R2)

with ŵ = (1 − I )ĝ on �. It is known [26, Theorem 3.1] that this quasi-interpolation
operator is H1-stable in the sense that

∣
∣
∣
∣
∣
∣ŵ

∣
∣
∣
∣
∣
∣ �

∣
∣
∣
∣
∣
∣w

∣
∣
∣
∣
∣
∣. The combination with (4) leads

to
∣
∣
∣
∣
∣
∣ŵ

∣
∣
∣
∣
∣
∣ � osc(ĝ′, E(�)) and concludes the proof. ��

Along the polygonal one-dimensional boundary �, the nodal interpolation Ig of
g allows the following well-known orthogonality of the arc-length derivative ∂ • /∂s
which is stated and proved here for convenient reading.

Lemma 2.2 Any admissible refinement T̂ of T with corresponding approximations
Î g and Ig of the boundary data satisfies, for every E ∈ E(�), that

∫

E
(	̂ − 	)g′ · (1 − 	̂)g′ ds = 0. (5)

In particular, this implies

osc2(	̂g′, E(�)) + osc2(g′, Ê(�)) ≤ osc2(g′, E(�)). (6)

Proof The assertion (5) is the orthogonality of the operator 	̂ and the conformity of
the finite element spaces. The fundamental theorem of calculus on E = conv{A, B} ∈
E(�) and nodal interpolation of A, B ∈ N (�) shows that

∫

E
∂
(
(1 − I )g

)/
∂s ds = (

(1 − I )g
)
(B) − (

(1 − I )g
)
(A) = 0.

This proves 	g′ = ∂(Ig)/∂s. This, the estimate hÊ ≤ hE a.e., and the Pythagoras
theorem imply (6). ��
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Corollary 2.3 Any sequence of successive refinements T
, . . . , T
+m+1 ∈ T with
corresponding approximations g
, . . . , g
+m+1 satisfies


+m∑

j=


osc2(g′
j+1, E j (�)) ≤ osc2(g′


+m+1, E
(�)).

Proof This follows from Lemma 2.2. Since g′
j+1 − g′

j is orthogonal to g′
k+1 − g′

k in

L2(�;R2) for all 
 ≤ j < k, the Pythagoras theorem leads to


+m∑

j=


osc2(g′
j+1, E j (�)) ≤ ∥

∥h1/2



+m∑

j=


(g′
j+1 − g′

j )
∥
∥2
L2(�)

= ∥
∥h1/2
 (g′


+m+1 − g′

)

∥
∥2
L2(�)

= osc2(g′

+m+1, E
(�)).

��

2.4 Pseudostress approximation

Given some right-hand side f ∈ L2(�;R2) and Dirichlet boundary data g ∈
H1(�;R2) with

∫
�
g · ν ds = 0, the weak formulation of (1) seeks (σ , u) ∈

� × L2(�;R2) such that, for all (τ , v) ∈ � × L2(�;R2),

∫

�

σ : dev τdx +
∫

�

u · div τdx = 〈g, τν〉�, (7)
∫

�

v · div σdx = −
∫

�

f · vdx .

The PS-FEM seeks (σ PS, uPS) ∈ �(T ) × P0(T ;R2) such that, for all (τPS, vPS) ∈
�(T ) × P0(T ;R2),

∫

�

σ PS : dev τPSdx +
∫

�

uPS · div τPSdx = 〈g, τPSν〉�, (8)
∫

�

vPS · div σ PSdx = −
∫

�

f · vPSdx .

The papers [12,14,18,19] outline a detailed analysis of this first-order method.

2.5 Least-squares FEM

The LS-FEM approximates the system (1) by minimizing the residual functional
LS( f ; •) defined, for any (τ , v) ∈ � × H1(�;R2), by

LS( f ; τ , v) := ∥
∥ f + div τ

∥
∥2
L2(�)

+ ∥
∥ dev τ − D v

∥
∥2
L2(�)

.
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The associated bilinear form B : (� × H1(�;R2)) × (� × H1(�;R2)) → R of the
least-squares functional LS and the linear functional F : � → R read, for σ , τ ∈ �

and u, v ∈ H1(�;R2),

B(σ , u; τ , v) :=
∫

�

div σ : div τdx +
∫

�

(dev σ − D u) : (dev τ − D v)dx,

F(τ ) := −
∫

�

f · div τdx .

The Euler-Lagrange equations for the minimization of LS( f ; •) lead to the weak
problem: Seek (σ , u) ∈ � × A such that, for all (τ , v) ∈ � × V ,

B(σ , u; τ , v) = F(τ ). (9)

The well-established equivalence [12, Theorem 4.2] of the natural norm in � × V
with the homogeneous least-squares functional reads

B(τ , v; τ , v) = LS(0; τ , v) ≈ ∥
∥τ

∥
∥2
H(div,�)

+ ∣
∣
∣
∣
∣
∣v

∣
∣
∣
∣
∣
∣2 for all (τ , v) ∈ � × V . (10)

This leads to the uniqueness of solutions (σ , u) ∈ �×A to (9) with arbitrary Dirichlet
boundary data. The existence of a solution follows from the standard existence proof
for the Stokes equations and the Ladyzhenskaya lemma.

Lemma 2.4 For (τ , v) ∈ � × H1(�;R2), any extension z ∈ v + V ⊆ H1(�;R2)

of the boundary data v|� satisfies

LS(0; τ , v) + ∣
∣
∣
∣
∣
∣z

∣
∣
∣
∣
∣
∣2 ≈ ∥

∥τ
∥
∥2
H(div,�)

+ ∣
∣
∣
∣
∣
∣v

∣
∣
∣
∣
∣
∣2 + ∣

∣
∣
∣
∣
∣z

∣
∣
∣
∣
∣
∣2.

Proof This follows from elementary calculations with the Cauchy-Schwarz and the
Young inequality. ��

Recall the set A := {v ∈ H1(�;R2) : v = g on �} of admissible displacements
and the nodal interpolation Ig fromSect. 2.3 and define the space of discrete admissible
velocity functions

A(T ) := {v ∈ S1(T ;R2) : v = Ig on �}

on a regular triangulation T of �. A conforming discretization seeks (σLS, uLS) ∈
�(T ) × A(T ) such that, for all (τLS, vLS) ∈ �(T ) × S10(T ;R2),

B(σLS, uLS; τLS, vLS) = F(τLS) = −
∫

�

fT · div τLSdx . (11)

The equivalence (10) proves that ‖ • ‖B := B(•, •)1/2 is an equivalent norm on
� × V . However, the expression

B(τ , v; τ , v) = ∥
∥ div τ

∥
∥2
L2(�)

+ ∥
∥ dev τ − D v

∥
∥2
L2(�)
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is non-negative for all τ ∈ � and v ∈ H1(�;R2). This enables the subsequent
definition of δ(T̂ , T ).

Definition 2.5 Given any admissible refinement T̂ ∈ T of an admissible triangulation
T ∈ T, let ĝ := Î g be the nodal interpolation of the boundary data g and let (σ̂LS, ûLS)
and (σLS, uLS) solve the discrete equation (11) with respect to T̂ and T , respectively.
Define

δ2(T̂ , T ) := ∥
∥(σ̂LS − σLS, ûLS − uLS)

∥
∥2
B + osc2(ĝ′, E(�)).

2.6 Medius analysis of LS-FEM

Let (σ , u) ∈ � × L2(�;R2) be the exact solution to the continuous pseudostress
equation (7) with right-hand side f and Dirichlet boundary data g. Let (σLS, uLS) ∈
�(T )×A(T ) denote the discrete solution to (11) and let Gu ∈ A(T ) be the Galerkin
projection G of u onto A(T ) with

∣
∣
∣
∣
∣
∣u − Gu

∣
∣
∣
∣
∣
∣ = min

vC∈A(T )

∣
∣
∣
∣
∣
∣u − vC

∣
∣
∣
∣
∣
∣.

Let 	RT denote the L2 projection of σ onto �(T ), i.e., 	RTσ ∈ �(T ) with

∥
∥σ − 	RTσ

∥
∥
L2(�)

= min
τRT∈�(T )

∥
∥σ − τRT

∥
∥
L2(�)

.

Theorem 2.6 It holds that

LS( f ; σLS, uLS) + osc2(g′, E(�))

≈ ∥
∥σ − 	RTσ

∥
∥2
L2(�)

+ ∣
∣
∣
∣
∣
∣u − Gu

∣
∣
∣
∣
∣
∣2 + osc2(g′, E(�)) + ∥

∥ f − fT
∥
∥2
L2(�)

.

Proof The proof of the estimate “�” starts with the L2(�;R2)-orthogonality f −
fT ⊥P0(T ;R2) and the Pythagoras theorem

LS( f ; σLS, uLS) = ∥
∥ f − fT

∥
∥2
L2(�)

+ LS( fT ; σLS, uLS).

Since (σLS, uLS) is a discrete minimizer of LS( fT ; •),

LS( f ; σLS, uLS) ≤ ∥
∥ f − fT

∥
∥2
L2(�)

+ LS( fT ; σ PS,Gu).

The second discrete equation in (8) shows fT = 	 f = − div σ PS. Hence,

LS( f ; σLS, uLS) ≤ ∥
∥ f − fT

∥
∥2
L2(�)

+ ∥
∥ dev σ PS − DGu

∥
∥2
L2(�)

.

The solution (σ , u) to (7) solves (1) with u ∈ A and dev σ = D u. Therefore,

∥
∥ dev σ PS − DGu

∥
∥
L2(�)

�
∥
∥σ − σ PS

∥
∥
L2(�)

+ ∣
∣
∣
∣
∣
∣u − Gu

∣
∣
∣
∣
∣
∣.

123



An adaptive least-squares FEM for the Stokes. . .

A medius analysis shows that the L2 best-approximation of the pseudostress [15,
Theorem 5.3] holds in the sense that

∥
∥σ − σ PS

∥
∥
L2(�)

�
∥
∥σ − 	RTσ

∥
∥
L2(�)

+ osc( f, T ).

This and the estimate osc( f, T ) � ‖ f − fT ‖L2(�) conclude the proof of “�”.
The proof of the converse estimate “�” employs f + div σ = 0, div σLS⊥ f − fT ,

and the Cauchy-Schwarz estimate to show

∥
∥ f − fT

∥
∥
L2(�)

≤ ∥
∥ div(σ − σLS)

∥
∥
L2(�)

.

The definition of 	RTσ and that of Gu imply

∥
∥σ − 	RTσ

∥
∥
L2(�)

+ ∣
∣
∣
∣
∣
∣u − Gu

∣
∣
∣
∣
∣
∣ ≤ ∥

∥σ − σLS
∥
∥
L2(�)

+ ∣
∣
∣
∣
∣
∣u − uLS

∣
∣
∣
∣
∣
∣.

The sum of the two previously displayed estimates leads to

∥
∥σ − 	RTσ

∥
∥
L2(�)

+ ∣
∣
∣
∣
∣
∣u − Gu

∣
∣
∣
∣
∣
∣ + ∥

∥ f − fT
∥
∥
L2(�)

(12)

≤ ∥
∥σ − σLS

∥
∥
H(div,�)

+ ∣
∣
∣
∣
∣
∣u − uLS

∣
∣
∣
∣
∣
∣.

Lemma 2.1 proves the existence of some z ∈ H1(�;R2) with

u − uLS − z ∈ V and
∣
∣
∣
∣
∣
∣z

∣
∣
∣
∣
∣
∣ � osc(g′, E(�)).

This, Lemma 2.4 with τ ≡ σ − σLS, v ≡ u − uLS, z as above, and (1) imply

∥
∥σ − σLS

∥
∥2
H(div,�)

+ ∣
∣
∣
∣
∣
∣u − uLS

∣
∣
∣
∣
∣
∣2 � LS(0; σ − σLS, u − uLS) + ∣

∣
∣
∣
∣
∣z

∣
∣
∣
∣
∣
∣2 (13)

� LS( f ; σLS, uLS) + osc2(g′, E(�)).

The combination of (12)–(13) concludes the proof of “�”. ��

2.7 Helmholtz decomposition

Recall that R2×2
dev denotes the space of trace-free 2 × 2-matrices and define

Z(T ) : = {vCR ∈ CR1
0(T ;R2) : divNCvCR = 0 a.e. in �} and

X (T ) : =
{

vC ∈ S1(T ;R2) :
∫

�

vCdx = 0 and
∫

�

curlvCdx = 0

}

.

For the simply connected domain �, the discrete Helmholtz decomposition of [21]
leads to the L2(�;R2×2)-orthogonal split

P0(T ;R2×2
dev) = DNCZ(T ) ⊕ devCurlX (T ). (14)
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2.8 tr-dev-div Lemma

There exists some constantC > 0 (which depends solely on�) such that every τ ∈ �

satisfies ∥
∥τ

∥
∥
L2(�)

≤ C
(∥
∥ dev τ

∥
∥
L2(�)

+ ∥
∥ div τ

∥
∥
L2(�)

)
. (15)

The proof of (15) follows as in [9, Proposition 9.1.1].

3 Alternative a posteriori error control

3.1 A posteriori error estimator

For the solution (σLS, uLS) to the discrete equation (11), define an a posteriori error
estimator η2(T ) := ∑

T∈T η2(T , T ) by

η2(T , T ) := ∣
∣T

∣
∣
(∥
∥ div dev σLS

∥
∥2
L2(T )

+ ∥
∥ curl dev σLS

∥
∥2
L2(T )

)

+ ∣
∣T

∣
∣1/2

∑

E∈E(T )∩E(�)

∥
∥[dev σLS − D uLS]E νE

∥
∥2
L2(E)

+ ∣
∣T

∣
∣1/2

∑

E∈E(T )

∥
∥[dev(σLS − D uLS)]E τE

∥
∥2
L2(E)

+ ∣
∣T

∣
∣1/2

∑

E∈E(T )∩E(�)

∥
∥(1 − 	)g′∥∥2

L2(E)
(16)

for any T ∈ T and with jumps along the edge E ∈ E defined, for any discrete tensor
τNC ∈ P1(T ;R2×2), by

[τNC]E :=
{

(τNC)|T+ − (τNC)|T− for E ∈ E(�),

(τNC)|T+ for E ∈ E(�).

For any interior edge E ∈ E(�), let T+, T− ∈ T denote the two neighbouring triangles
according to Fig. 2. For E ∈ E(�), let T+ ∈ T denote the only adjacent triangle to E .
The error estimator η(T ) is reliable and efficient in that

LS( f ; σLS, uLS) � η2(T ) + ∥
∥ f − fT

∥
∥2
L2(�)

� LS( f ; σLS, uLS) + osc2(g′, E(�))

from Theorem 3.5 in Sect. 3.4 and Corollary 4.4 in Sect. 4.2 with data oscillation
terms osc2(g′, E(�)) from Sect. 2.3.

Fig. 2 Edge patch ωE
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3.2 Adaptive algorithm (ALS-FEM)

Input: Initial regular triangulation T0 with refinement edges of the polygonal domain
� into triangles and parameters 0 < θ ≤ 1, 0 < ρ < 1, 0 < κ < ∞.
for any level 
 = 0, 1, 2, . . . do

Solve LS-FEM with respect to regular triangulation T
 with
solution (σ 
, u
) and f
 := 	
 f .
Compute (η
(T ), T ∈ T
) with η
(•) := η(T
, •) from (16).
if CASE A ‖ f − f
‖2L2(�)

≤ κη2
 then

Mark a subset M
 of T
 of (almost) minimal cardinality
∣
∣M


∣
∣ with

θη2
 ≤ η2
(M
) :=
∑

T∈M


η2
(T ).

Refine. Compute the smallest regular refinement T
+1 of T


withM ⊆ T
\T
+1 by NVB;
else (CASE B κη2
 < ‖ f − f
‖2L2(�)

)
Compute an admissible refinement T
+1 of T
 with (almost) minimal
cardinality |T
+1| and

∥
∥ f − f
+1

∥
∥
L2(�)

≤ ρ
∥
∥ f − f


∥
∥
L2(�)

. fi od

Output: Sequence of discrete solutions (σ 
, u
)
∈N0 and meshes (T
)
∈N0 .

Remark 3.1 (NVB) The NVB requires an initial condition on the refinement edges
in T0. With reference to [28] for the suppressed details, this is assumed throughout
this paper in the definition of T for refinement control and existence of overlays as
summarized in [17, Section 2.4] with further references.

Remark 3.2 (Case B) The thresholding second algorithm (TSA) of [7, Section 5]
is one possible realisation of an optimal refinement in Case B of ALS-FEM. Any
other (quasi-)optimal algorithm for the data error reduction may be employed in the
algorithm and in the analysis.

3.3 Optimal convergence rates

The main result of this paper involves, for any given 0 < s < ∞, the notion of
approximation classes As which consists of all pairs (u, f ) ∈ A × L2(�;R2) such
that

∣
∣(u, f )

∣
∣2
As

:= sup
N∈N

N 2s E(u, f, N ) < ∞

with the best possible error

E(u, f, N ) := min
T ∈T(N )

min
(τLS,vLS)∈�(T )×S1(T ;R2)

(
LS( f ; τLS, vLS) + osc2(g′, E(�))

)
.
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Theorem 3.3 There exists a maximal bulk parameter 0 < θ0 < 1 and maximal
separation parameter 0 < κ0 < ∞ which depend exclusively on T0 such that for all
0 < θ ≤ θ0, for all 0 < κ ≤ κ0, for all 0 < ρ < 1, and for all 0 < s < ∞, the output
(σ 
, u
)
 of ALS-FEM with (u, f ) ∈ As satisfies

sup

∈N

(∣∣T


∣
∣ − ∣

∣T0
∣
∣)s(LS( f ; σ 
, u
) + osc2(g′, E
(�))

)1/2 ≤ Cqopt
∣
∣(u, f )

∣
∣
As

.

The constant Cqopt < ∞ depends only on the initial mesh T0 the constant s and the
parameters ρ, θ, and κ .

The proof of Theorem 3.3 will be given in Sect. 4.5. The converse inequality “�”
stated in (2) is elementary.

Remark 3.4 The equivalence from Theorem 2.6 proves the equivalence of As to the
approximation class Ãs defined as all pairs (u, f ) ∈ A × L2(�;R2) with

∣
∣(u, f )

∣
∣2
Ãs

:= sup
N∈N

N 2s Ẽ(u, f, N ) < ∞

for the best-approximation error

Ẽ(u, f, N ) := min
T ∈T(N )

(∥∥σ − 	RTσ
∥
∥2
L2(�)

+ ∣
∣
∣
∣
∣
∣u − Gu

∣
∣
∣
∣
∣
∣2

+ osc2(g′, E(�)) + ∥
∥ f − fT

∥
∥2
L2(�)

)
.

Hence, Theorem 3.3 implies (with a different constant Cqopt) that

sup

∈N

(∣∣T


∣
∣ − ∣

∣T0
∣
∣)s

(∥
∥σ − 	RT(
)σ

∥
∥2
L2(�)

+ ∣
∣
∣
∣
∣
∣u − G
u

∣
∣
∣
∣
∣
∣2

+ osc2(g′, E
(�)) + ∥
∥ f − f


∥
∥2
L2(�)

)1/2 ≤ Cqopt
∣
∣(u, f )

∣
∣
Ãs

.

3.4 Efficiency

The discrete test function technology due to Verfürth [29] leads to efficiency of the
estimator η from Sect. 3.1 in the following sense.

Theorem 3.5 (efficiency) The error estimator η2(T ) := ∑
T∈T η2(T , T ) from (16)

satisfies

η2(T ) + ∥
∥ f − fT

∥
∥2
L2(�)

� LS( f ; σLS, uLS) + osc2(g′, E(�)).
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Proof Since D uLS
∣
∣
T is constant on T ∈ T , an inverse estimate proves

∥
∥ div dev σLS

∥
∥
L2(T )

+ ∥
∥ curl dev σLS

∥
∥
L2(T )

= ∥
∥ div(dev σLS − D uLS)

∥
∥
L2(T )

+ ∥
∥ curl(dev σLS − D uLS)

∥
∥
L2(T )

�
∣
∣T

∣
∣−1/2∥∥ dev σLS − D uLS

∥
∥
L2(T )

.

Let E = ∂T+ ∩ ∂T− ∈ E(�) and ωE := int(T+ ∪ T−) as depicted in Fig. 2. A
triangle and a trace inequality plus an inverse estimate in the end prove

∥
∥[dev σLS − D uLS]E

∥
∥
L2(E)

�
∣
∣E

∣
∣−1/2∥∥ dev σLS − D uLS

∥
∥
L2(ωE )

.

The deviatoric part satisfies

∥
∥ dev(σLS − D uLS)

∥
∥
L2(T±)

≤ ∥
∥ dev σLS − D uLS

∥
∥
L2(T±)

.

The aforegoing inequalities prove local efficiencyof all volume termsonT and all jump
terms on interior edges E ∈ E(T ) ∩ E(�). For any boundary edge E ∈ E(T ) ∩ E(�),
the trace inequality and an inverse estimate prove

∥
∥[dev(σLS − D uLS)]E τE

∥
∥
L2(E)

�
∣
∣T

∣
∣−1/4∥∥ dev σLS − D uLS

∥
∥
L2(T )

.

The estimate ‖ f − fT ‖L2(�) ≤ LS( f ; σLS, uLS)1/2 concludes the proof. ��

4 Convergence analysis of ALS-FEM

This section is devoted to the proof of Theorem 3.3.

4.1 Stability and reduction

Let T̂ be any admissible refinement of a regular triangulation T with the respective
LS-FEM solutions (σLS, uLS) and (σ̂LS, ûLS). Recall the a posteriori error estimator
η2(T , •) fromSect. 3.1 and δ2(T̂ , T ) fromDefinition 2.5.Abbreviate the contributions
of any subset M ⊆ T of the triangulation T as

η2(T ,M) :=
∑

T∈M
η2(T , T ).

The estimator η and the distances δ satisfy the first two axioms of adaptivity from [17]
with generic constants Cstab ≈ 1 ≈ Cred and 0 < ρred < 1.

Theorem 4.1 (stability) There exists Cstab ≈ 1 such that

∣
∣η(T̂ , T̂ ∩ T ) − η(T , T̂ ∩ T )

∣
∣ ≤ Cstabδ(T̂ , T ).
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Proof The proof of the stability of the volume and edge contributions

∣
∣T

∣
∣
(∥
∥ div dev σLS

∥
∥2
L2(T )

+ ∥
∥ curl dev σLS

∥
∥2
L2(T )

)
(17)

+ ∣
∣T

∣
∣1/2

∑

E∈E(T )∩E(�)

∥
∥[dev σLS − D uLS]E νE

∥
∥2
L2(E)

+ ∣
∣T

∣
∣1/2

∑

E∈E(T )

∥
∥[dev(σLS − D uLS)]E τE

∥
∥2
L2(E)

follows the lines of that in [23, Corollary 3.4] and in [27, Proposition 4.6]. Details are
therefore omitted here.

Since T ∈ T ∩ T̂ , the remaining contributions of boundary data oscillations coin-
cide,

∥
∥(1 − 	̂)g′∥∥

L2(∂T∩�)
= ∥

∥(1 − 	)g′∥∥
L2(∂T∩�)

. This concludes the proof. ��

Theorem 4.2 (reduction) There exist 0 < ρred < 1 and Cred ≈ 1 such that

η2(T̂ , T̂ \T ) ≤ ρred η2(T , T \T̂ ) + Cred δ2(T̂ , T ).

Proof The proof of the reduction of the volume and edge contributions (17) relies on
the fact that each term is weighted with a corresponding power of the mesh-size

∣
∣T

∣
∣

(which is reduced at least by a factor 2), cf. the proof of [23, Corollary 3.4] for details.
This leads to the reduction constants

ρ̃red := (1 + λ) 2−1/2 and C̃red := (1 + 1/λ)
(
2Cinv + 48Ctr(1 + Cinv)

)

with generic constants Cinv < ∞ from an inverse estimate, Ctr < ∞ from the trace
inequality, and for any parameter 0 < λ. Choose 0 < λ sufficiently small to guarantee
ρ̃red < 1.

The reduction of the remaining boundary data oscillations follows directly from
Lemma 2.2, for K ∈ T \T̂ and T ∈ T̂ (K ),

∣
∣T

∣
∣1/2

∥
∥(1 − 	̂)g′∥∥2

L2(�∩∂T )

≤ (∣∣K
∣
∣/2

)1/2(∥
∥(1 − 	̂)g′∥∥2

L2(�∩∂T )
+ ∥

∥(	̂ − 	)g′∥∥2
L2(�∩∂T )

)

= (∣∣K
∣
∣/2

)1/2∥∥(1 − 	)g′∥∥2
L2(�∩∂T )

.

The sum over all K ∈ T \T̂ and T ∈ T̂ (K ) leads to

osc2(g′, T̂ \T ) ≤ 2−1/2 osc2(g′, T \T̂ ).

This concludes the proof with the constants 0 < ρred := ρ̃red < 1 and Cred := C̃red <

∞. ��
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4.2 Discrete reliability

The reliability of the error estimator (16) is the key to the analysis and requires a
modification by the extra term ‖(1 − 	) div σ̂LS‖L2(�).

Theorem 4.3 (discrete reliability) There exists some constant Cdrel ≈ 1 such that any
admissible refinement T̂ of T in T with discrete solutions (σ̂LS, ûLS) and (σLS, uLS)
to (11) with respect to and the error estimator η(T , • ) from (16) satisfy

δ2(T̂ , T ) ≤ Cdrel
(
η2(T , T \T̂ ) + ∥

∥(1 − 	) div σ̂LS
∥
∥2
L2(�)

)
.

The last term gives rise to reliability in the following sense.

Corollary 4.4 (reliability) Given an admissible triangulation T ∈ T with discrete
solutions (σLS, uLS) ∈ �(T ) ×A(T ) to (11), the error estimator η(T , • ) is reliable
in the sense that

LS( f ; σLS, uLS) � η2(T ) + ∥
∥ f − fT

∥
∥2
L2(�)

. (18)

Proof (Proof of Corollary 4.4) Define the sequence (T j ) j∈N of successive uniform
one-level refinements T j := bisec3( j)(T )with discrete solutions (σ j , u j ) ∈ �(T j )×
A(T j ) to (11). This design ensures uniform convergence of the mesh-sizes h j as
j → ∞,

lim
j→∞

∥
∥h j

∥
∥
L∞(�)

= 0.

The convergence of the LS-FEM yields

lim
j→∞ δ2(T j , T )

= lim
j→∞

(∥
∥ div(σ j − σLS)

∥
∥2
L2(�)

+ ∥
∥ dev(σ j − σLS) − D(u j − uLS)

∥
∥2
L2(�)

)

= LS( f ; σLS, uLS) (19)

and
lim
j→∞

∥
∥(1 − 	) div σ j

∥
∥2
L2(�)

= ∥
∥ f − fT

∥
∥2
L2(�)

. (20)

Theorem 4.3 implies, for every j ∈ N, that

δ2(T j , T ) ≤ Cdrel η
2(T ) + ∥

∥(1 − 	) div σ j
∥
∥2
L2(�)

.

This and (19)–(20) conclude the proof for j → ∞. ��
The remainder of this subsection is devoted to the proof of Theorem 4.3. Recall

that	 denotes the L2(�)-orthogonal projection onto the piecewise constant functions
P0(T ). The following proofs involve three PS-FEM solutions τ̂PS, τ̂

∗
PS, and τPS,
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which allow the split of the term dev(σ̂LS − σLS) into a divergence-free part and a
remaining part τ̂PS − τ̂ ∗

PS in Lemma 4.5. This lemma mainly consists of algebraic
rearrangements in such a way that the resulting terms can be treated by integration by
parts in combination with a Scott-Zhang quasi-interpolation in the Lemmas 4.6–4.7.

Let τ̂PS, τ̂
∗
PS, and τPS solve the PS-FEM of Sect. 2.4 with homogeneous boundary

conditions g ≡ 0, the right-hand sides

− div(σ̂LS − σLS), −	 div(σ̂LS − σLS), and − 	 div(σ̂LS − σLS)

with respect to the triangulations T̂ , T̂ , and T ; in particular,

div τ̂PS = div(σ̂LS − σLS) and (21)

div τ̂ ∗
PS = 	 div(σ̂LS − σLS) = div τPS.

Recall the function spaces X (T ) and X (T̂ ) from Sect. 2.7. The proof of the dis-
crete reliability in Theorem 4.3 uses the following three lemmas. Their extensive and
technical proofs are postponed to the appendix to improve readability of this section.

Lemma 4.5 There exist some ẑ ∈ S1(T̂ ;R2) and β̂ ∈ X (T̂ ) with

ẑ|� = ( Î − I )g,
∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣ � osc(	̂g′, E(�)), and

∥
∥ div(σ̂LS − σLS)

∥
∥2
L2(�)

+ ∥
∥ dev(σ̂LS − σLS) − D(̂uLS − uLS)

∥
∥2
L2(�)

= ∥
∥(1 − 	) div(σ̂LS − σLS)

∥
∥2
L2(�)

+
∫

�

(dev(σ̂LS − σLS) − D(̂uLS − uLS)) : (dev(̂τPS − τ̂ ∗
PS) − D ẑ)dx

+
∫

�

(dev σLS − D uLS) : (
D(̂uLS − uLS − ẑ) − dev Curl β̂

)
dx .

Lemma 4.6 It holds that

∫

�

(dev σLS − D uLS) : D(̂uLS − uLS − ẑ)dx

�
∣
∣
∣
∣
∣
∣̂uLS − uLS − ẑ

∣
∣
∣
∣
∣
∣
( ∑

T∈T \T̂

(∣
∣T

∣
∣
∥
∥ div dev σLS

∥
∥2
L2(T )

+
∑

E∈E(T )∩E(�)

∣
∣T

∣
∣1/2

∥
∥[dev σLS − D uLS]E νE

∥
∥2
L2(E)

))1/2

.
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Lemma 4.7 It holds that

∫

�

(dev σLS − D uLS) : dev Curl β̂dx

�
∥
∥σ̂LS − σLS

∥
∥
H(div,�)

( ∑

T∈T \T̂

(∣
∣T

∣
∣
∥
∥ curl dev σLS

∥
∥2
L2(T )

+
∑

E∈E(T )

∣
∣T

∣
∣1/2

∥
∥[dev(σLS − D uLS)]E τE

∥
∥2
L2(E)

))1/2

.

Proof (Proof of Theorem 4.3) For ẑ from Lemma 4.5, the design of 	̂g and 	g and
the orthogonality from Lemma 2.2 yield

∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣2 � osc2(	̂g′, E(�)) =

∑

E∈E(�)\Ê(�)

∥
∥h1/2E (	̂ − 	)g′∥∥2

L2(E)

≤
∑

E∈E(�)\Ê(�)

∥
∥h1/2E (1 − 	)g′∥∥2

L2(E)
� η2(T , T \T̂ ). (22)

Recall (53) from the proof of Lemma 4.7 and deduce

∥
∥ dev(̂τPS − τ̂ ∗

PS)
∥
∥
L2(�)

≤ ∥
∥τ̂PS − τ̂ ∗

PS

∥
∥
L2(�)

�
∥
∥(1 − 	) div(σ̂LS − σLS)

∥
∥
L2(�)

.

The Cauchy-Schwarz inequality, the triangle inequality, Lemma 2.4 with τ ≡ σ̂LS −
σLS, v ≡ ûLS − uLS, and w ≡ ẑ plus the previous estimate imply

∫

�

(dev(σ̂LS − σLS) − D(̂uLS − uLS)) : (
dev(̂τPS − τ̂ ∗

PS) − D ẑ
)
dx

�
∥
∥ dev(σ̂LS − σLS) − D(̂uLS − uLS)

∥
∥
L2(�)

× (∥∥(1 − 	) div(σ̂LS − σLS)
∥
∥
L2(�)

+ ∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣)

�
(∥∥σ̂LS − σLS

∥
∥
H(div,�)

+ ∣
∣
∣
∣
∣
∣̂uLS − uLS

∣
∣
∣
∣
∣
∣ + ∣

∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣)

× (∥∥(1 − 	) div(σ̂LS − σLS)
∥
∥
L2(�)

+ ∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣). (23)

The converse estimate from Lemma 2.4 reads

∥
∥σ̂LS − σLS

∥
∥2
H(div,�)

+ ∣
∣
∣
∣
∣
∣̂uLS − uLS

∣
∣
∣
∣
∣
∣2 �

∥
∥ div(σ̂LS − σLS)

∥
∥2
L2(�)

+ ∥
∥ dev(σ̂LS − σLS) − D(̂uLS − uLS)

∥
∥2
L2(�)

+ ∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣2.
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The combination of this with Lemma 4.5–4.7 and (23) shows

∥
∥σ̂LS − σLS

∥
∥2
H(div,�)

+ ∣
∣
∣
∣
∣
∣̂uLS − uLS

∣
∣
∣
∣
∣
∣2

�
∥
∥(1 − 	) div(σ̂LS − σLS)

∥
∥2
L2(�)

+ (∥∥σ̂LS − σLS
∥
∥
H(div,�)

+ ∣
∣
∣
∣
∣
∣̂uLS − uLS

∣
∣
∣
∣
∣
∣ + ∣

∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣)

× (∥∥(1 − 	) div(σ̂LS − σLS)
∥
∥
L2(�)

+ ∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣)

+ η(T , T \T̂ )
(∣∣
∣
∣
∣
∣̂uLS − uLS

∣
∣
∣
∣
∣
∣ + ∣

∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣ + ∥

∥σ̂LS − σLS
∥
∥
H(div,�)

) + ∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣2.

This, (22), and some standard rearrangements conclude the proof. ��

4.3 Quasi-orthogonality

Recall δ2(T̂ , T ) from the Definition 2.5.

Theorem 4.8 (quasi-orthogonality) Any regular triangulation T with admissible
refinement T̂ , the corresponding solutions (σLS, uLS) and (σ̂LS, ûLS) to the discrete
equation (11) with respect to T and T̂ , and any 0 < μ satisfy

δ2(T̂ , T ) ≤ LS( f ; σLS, uLS) − (1 − μ)LS( f ; σ̂LS, ûLS)

+ (1 + Cosc/μ)
(
osc2(g′, E(�)) − osc2(g′, Ê(�))

)
.

Remark 4.9 The assertion in Theorem 4.8 refers to axiom (B3a) from [17] with
μ(T ) := osc(g′, E(�)) and this implies axiom (B3b) therein. The reliability from
Corollary 4.4 and [17, Lemma 3.7] prove, for any sequence of successive admissible
refinements T0, T1, . . . and all εqo > 0, quasi-orthogonality in the generalized sense
that


+m∑

k=


(
δ2(Tk+1, Tk) − εqoLS( f ; σ k, uk)

)
� η2(T
) + ∥

∥ f − f

∥
∥2
L2(�)

.

Proof (Proof of Theorem 4.8) Abbreviate the exact solution X := (σ , u) to the con-
tinuous least-squares problem (9) and the discrete solutions XLS := (σLS, uLS) and
X̂LS := (σ̂LS, ûLS) to (11). Lemma 2.1 with g replaced by ( Î − I )g ∈ S1(Ê(�);R2)

yields the existence of some generic constantCosc ≈ 1 and some ŵ ∈ S1(T̂ ;R2)with
ûLS − uLS − ŵ ∈ S10(T̂ ;R2) and

∣
∣
∣
∣
∣
∣ŵ

∣
∣
∣
∣
∣
∣2 ≤ Cosc osc

2(ĝ′, E(�)). (24)

Because of the non-homogeneous Dirichlet boundary data, the Galerkin orthogonality
holds in general exclusively for velocity test functions that vanish on the boundary.
Hence,

B(X − X̂LS; X̂LS − XLS − (0, ŵ)) = 0.
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This plus elementary algebra with the symmetric bilinear form B prove

B(X̂LS − XLS; X̂LS − XLS) (25)

= B(X − XLS; X − XLS) − B(X − X̂LS; X − X̂LS) − 2B(X − X̂LS; 0, ŵ).

The rewriting in terms of the least-squares functional yields

δ2(T̂ , T ) = LS( f ; σLS, uLS) − LS( f ; σ̂LS, ûLS)

+ osc2(ĝ′, E(�)) − 2B(X − X̂LS; 0, ŵ).

Lemma 2.2 implies

osc2(ĝ′, E(�)) ≤ osc2(g′, E(�)) − osc2(g′, Ê(�)).

The combination of the two previously displayed formulas, the Cauchy-Schwarz
inequality, theYoung inequality, and (24) imply the assertion for any parameterμ > 0.

��

4.4 Contraction property

Recall the output (T
)
∈N and (σ 
, u
)
∈N of ALS-FEM from Sect. 3.2.

Theorem 4.10 (contraction) For all 0 < θ < 1, 0 < κ < ∞, and 0 < ρ < 1 from
the input of the adaptive algorithm in Sect. 3.2, there exist constants �con,�osc ≈ 1,
and 0 < ρcon < 1 such that

ξ2
 := LS( f ; σ 
, u
) + ∥
∥ f − f


∥
∥2
L2(�)

+ �osc osc
2(g′, E
(�)) + �conη

2

 (26)

satisfies
ξ2
+1 ≤ ρconξ

2

 for all 
 ∈ N0. (27)

Proof Step 1: The Theorems 4.1–4.2 motivate the additive split

η2
+1 = η2
+1(T
 ∩ T
+1) + η2
+1(T
+1\T
). (28)

For any 0 < λ with �′
red := ((1+ 1/λ)C2

stab + Cred), the Theorem 4.1 for T
 ∩ T
+1,
and Theorem 4.2 for T
\T
+1 with T̂ ≡ T
+1, T ≡ T
 as well as (28) imply

η2
+1 ≤ (1 + λ)η2
(T
 ∩ T
+1) + ρredη
2

(T
\T
+1) + �′

redδ
2(T
+1, T
) (29)

= (1 + λ)η2
 − (1 + λ − ρred)η
2

(T
\T
+1) + �′

redδ
2(T
+1, T
).

For Case A, the Dörfler marking guarantees

θη2
 ≤ η2
(M
) ≤ η2
(T
\T
+1).
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For sufficiently small 0 < λ with 0 < ρred(
) := (1 + λ)(1 − (1 − ρred)θ) < 1 and
�′

red ≈ 1 + 1/λ, the two previously displayed formulas lead to

η2
+1 ≤ ρred(
)η
2

 + �′

redδ
2(T
+1, T
). (30)

In CaseA, the data approximation is possibly not strictly reduced. Theminimization in
the definition of f
 and the inclusion P0(T
;R2) ⊆ P0(T
+1;R2) imply, forρ(
) := 1,
that ∥

∥ f − f
+1
∥
∥2
L2(�)

≤ ρ(
)
∥
∥ f − f


∥
∥2
L2(�)

. (31)

For Case B, however, (29) directly implies (30) with ρred(
) := 1 + λ for any 0 < λ

and (31) holds for 0 < ρ(
) := ρ < 1.
Step 2: Theorem 4.8 with T ≡ T
, T̂ ≡ T
+1, and 0 < μ < 1 proves

δ2(T
+1, T
) ≤ LS( f ; σ 
, u
) − (1 − μ)LS( f ; σ 
+1, u
+1)

+ (1 + Cosc/μ)
(
osc2(g′, E
(�)) − osc2(g′, E
+1(�))

)
.

The previous estimate and the estimator reduction (30) imply

η2
+1 ≤ ρred(
)η
2

 + �′

red

(
LS( f ; σ 
, u
) − (1 − μ)LS( f ; σ 
+1, u
+1)

+ (1 + Cosc/μ)
(
osc2(g′, E
(�)) − osc2(g′, E
+1(�))

))
.

Hence, �con := 1/((1 − μ)�′
red) and �osc := (1 + Cosc/μ)/(1 − μ) satisfy

LS( f ; σ 
+1, u
+1) + �osc osc
2(g′, E
+1(�)) + �conη

2

+1 (32)

≤ 1/(1 − μ) LS( f ; σ 
, u
) + �osc osc
2(g′, E
(�)) + ρred(
)�conη

2

 .

For 0 < μ < min{ε, ε/�osc, ε/�con}, set

ρcon(ε) := max{(1 − ε)/(1 − μ), 1 − ε/�osc, 1 − ε/�con} < 1,

B(ε) := ε/(1 − μ) LS( f ; σ 
, u
) + ∥
∥ f − f
+1

∥
∥2
L2(�)

− (1 − ε)
∥
∥ f − f


∥
∥2
L2(�)

+ ε osc2(g′, E
(�)) + (
ε + �con(ρred(
) − 1)

)
η2
 .

The combination with (32) leads to

ξ2
+1 ≤ ρcon(ε)ξ
2

 + B(ε). (33)

To estimate B(ε) ≤ 0 in Case A and B, notice that osc2(g′, E
(�)) ≤ η2
 and the
reliability of the estimator η
 from Corollary 4.4 with generic constant Crel ≈ 1 imply

LS( f ; σ 
, u
) + osc2(g′, E
(�)) ≤ (1 + Crel)η
2

 + Crel

∥
∥ f − f


∥
∥2
L2(�)

. (34)

123



An adaptive least-squares FEM for the Stokes. . .

Step 3 (CaseA):Since ‖ f − f
+1‖2L2(�)
≤ ‖ f − f
‖2L2(�)

≤ κη2
 , 0 < ρred(
) < 1
and (34) yield

B(ε) ≤ ε(1 + Crel/(1 − μ))η2
 + ε(1 + Crel/(1 − μ))
∥
∥ f − f


∥
∥2
L2(�)

+ (
ε + �con(ρred(
) − 1)

)
η2


≤ (
ε(1 + Crel/(1 − μ))(1 + κ) + ε + �con(ρred(
) − 1)

)
η2
 .

Since ρred(
) − 1 < 0, it is possible to choose 0 < ε sufficiently small such that
B(ε) ≤ 0. This and (33) conclude the proof of (27) in Case A.

Step 4 (Case B): Recall, for any 0 < λ, that ρred(
) := 1 + λ,

∥
∥ f − f
+1

∥
∥2
L2(�)

≤ ρ
∥
∥ f − f


∥
∥2
L2(�)

, and η2
 ≤ 1/κ
∥
∥ f − f


∥
∥2
L2(�)

.

This plus (34) prove

B(ε) ≤ ε(1 + Crel/(1 − μ))η2
 + (
ε(1 + Crel/(1 − μ)) + ρ − 1

)∥∥ f − f

∥
∥2
L2(�)

+ (ε + λ�con)η
2



≤ (
ε(1 + Crel/(1 − μ))(1 + 1/κ) + (ε + λ�con)/κ + ρ − 1

)∥∥ f − f

∥
∥2
L2(�)

.

Since ρ < 1, for sufficiently small 0 < ε and 0 < λ, it follows that

(
ε(1 + Crel/(1 − μ))(1 + 1/κ) + ε/κ + λ�con/κ + ρ − 1

)
< 0.

Hence, B(ε) ≤ 0. This and (33) conclude the proof of (27) in Case B. ��

4.5 Optimal convergence rates

The proof of the main result Theorem 3.3 follows the arguments of [20], but involves
additional estimates for the non-homogeneous boundary data.

Proof (Proof of Theorem 3.3) Step 1: Let 
 ∈ N. Recall the definition of ξ
 from (26).
For ε(
) := τξ
 with a parameter 0 < τ <

∣
∣(u, f )

∣
∣
As

/ξ0, an argument in [20, page 58]
leads to N (
) ∈ N with

2 ≤ N (
) ≤ 2
∣
∣(u, f )

∣
∣1/s
As

ε(
)−1/s . (35)

Step 2: The definition of E(u, f, N (
)) implies the existence of an optimal admis-
sible triangulation T̃
 ∈ T(N (
)) with solution (σ̃ 
, ũ
) to the discrete equation (11)
on T̃
, Dirichlet boundary data approximation g̃
, and

E(u, f, N (
)) = LS( f ; σ̃ 
, ũ
) + osc2(g′, Ẽ
(�)).
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This, the supremum in the definition of
∣
∣(u, f )

∣
∣
As

, and the choice of N (
) imply

LS( f ; σ̃ 
, ũ
) + osc2(g′, Ẽ
(�)) = E(u, f, N (
)) (36)

≤ N (
)−2s
∣
∣(u, f )

∣
∣2
As

≤ ε(
)2 = τ 2ξ2
 .

The smallest common refinement T̂
 := T
 ⊗ T̃
 ∈ T, called overlay of T
 and T̃
, is
an admissible refinement of T̃
 and satisfies [23, Lemma 3.7]

∣
∣T
\T̂


∣
∣ ≤ ∣

∣T̂


∣
∣ − ∣

∣T


∣
∣ ≤ ∣

∣T̃


∣
∣ − ∣

∣T0
∣
∣ ≤ N (
).

The combination with (35) reads

∣
∣T
\T̂


∣
∣ ≤ 2

∣
∣(u, f )

∣
∣1/s
As

ε(
)−1/s . (37)

Let (σ̂ 
, û
) ∈ �(T̂
) ×A(T̂
) solve the discrete equation (11) with respect to T̂
 and
let ĝ
 denote the corresponding Dirichlet boundary data approximation. Lemmas 2.1
and 2.2 lead to the existence of some ŵ
 ∈ S1(T̂
;R2) and Cosc ≈ 1 with

ŵ


∣
∣
�

= ĝ
 − g̃
 and
∣
∣
∣
∣
∣
∣ŵ


∣
∣
∣
∣
∣
∣2 ≤ Cosc osc

2(ĝ′

; Ẽ
(�)) ≤ Cosc osc

2(g′, Ẽ
(�)).

The combination of this with σ̃ 
 ∈ �(T̂
), ũ
 + ŵ
 ∈ A(T̃
), and the Young inequality
implies

LS( f ; σ̂ 
, û
) ≤ ∥
∥ f + div σ̃ 


∥
∥2
L2(�)

+ ∥
∥ dev σ̃ 
 − D(̃u
 + ŵ
)

∥
∥2
L2(�)

≤ ∥
∥ f + div σ̃ 


∥
∥2
L2(�)

+ 2
∥
∥ dev σ̃ 
 − D ũ


∥
∥2
L2(�)

+ 2
∣
∣
∣
∣
∣
∣ŵ


∣
∣
∣
∣
∣
∣2

≤ 2LS( f ; σ̃ 
, ũ
) + 2Cosc osc
2(g′, Ẽ
(�)).

The boundary data oscillations are smaller on finer meshes, whence

osc2(g′, Ê
(�)) ≤ osc2(g′, Ẽ
(�)).

The two previously displayed formulas and (36) imply, for C0 := max{2, 1+ 2Cosc},
that

LS( f ; σ̂ 
, û
) + osc2(g′, Ê
(�)) (38)

≤ 2LS( f ; σ̃ 
, ũ
) + (1 + 2Cosc) osc
2(g′, Ẽ
(�)) ≤ C0τ

2ξ2
 .

Step 3 (Case A):Lemmas 2.1 and 2.2 lead to the existence of some ŵ
 ∈ S1(T̂
;R2)

and Cosc ≈ 1 with

ŵ


∣
∣
�

= ĝ
 − g
 and
∣
∣
∣
∣
∣
∣ŵ


∣
∣
∣
∣
∣
∣2 ≤ Cosc osc

2(ĝ′

, E
(�)). (39)
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The arguments for the proof of (25) apply literally to the situation at hand. For the
exact solution (σ , u) to (9), this leads to

LS( f ; σ 
, u
) = LS(0; σ̂ 
 − σ 
, û
 − u
) + LS( f ; σ̂ 
, û
)

+2B(σ − σ̂ 
, u − û
; 0, ŵ
).

The Cauchy-Schwarz inequality, the Young inequality, and (39) result in C1 :=
max{1,Cosc} and

LS( f ; σ 
, u
) ≤ LS(0; σ̂ 
 − σ 
, û
 − u
) + 2LS( f ; σ̂ 
, û
) + Cosc osc
2(ĝ
, E
(�))

≤ C1δ
2(T̂
, T
) + 2LS( f ; σ̂ 
, û
).

The discrete reliability Theorem 4.3, the triangle inequality, and the Young inequality
yield

δ2(T̂
, T
)/Cdrel ≤ η2
(T
\T̂
) + ∥
∥(1 − 	
) div σ̂ 


∥
∥2
L2(�)

≤ η2
(T
\T̂
) + 2
∥
∥ f − f


∥
∥2
L2(�)

+ 2
∥
∥(1 − 	
)( f + div σ̂ 
)

∥
∥2
L2(�)

.

Theorthogonality of the projection	
 and the definition of the least-squares functional
imply

∥
∥(1 − 	
)( f + div σ̂ 
)

∥
∥2
L2(�)

≤ ∥
∥ f + div σ̂ 


∥
∥2
L2(�)

≤ LS( f ; σ̂ 
, û
).

Since hE
∣
∣
∂T∩�

≈ |T |1/2, there exists a constant C2 ≈ 1 such that

osc2(g′, E
(�)) =
∑

T∈T
\T̂


∥
∥h1/2
 (g′ − g′


)
∥
∥2
L2(∂T∩�)

+
∑

T∈T
∩T̂


∥
∥h1/2
 (g′ − g′


)
∥
∥2
L2(∂T∩�)

≤ C2η
2

(T
\T̂
) + osc2(g′, Ê
(�)).

For C3 := max{C2 + C1Cdrel, 2(1 + C1Cdrel)}, a combination of the four previously
displayed formulas in Step 3 plus some rearrangements result in

(
LS( f ; σ 
, u
) + osc2(g′, E
(�))

)/
C3 ≤ η2
(T
\T̂
) + ∥

∥ f − f

∥
∥2
L2(�)

+ LS( f ; σ̂ 
, û
) + osc2(g′, Ê
(�)).
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For C4 := C3(max{1,�osc} + Ceff max{1,�con}), this and the efficiency from The-
orem 3.5 prove

ξ2
 = LS( f ; σ 
, u
) + ∥
∥ f − f


∥
∥2
L2(�)

+ �osc osc
2(g′, E
(�)) + �conη

2



≤ (max{1,�osc} + Ceff max{1,�con})
(
LS( f ; σ 
, u
) + osc2(g′, E
(�))

)

≤ C4
(
LS( f ; σ̂ 
, û
) + osc2(g′, Ê
(�)) + η2
(T
\T̂
) + ∥

∥ f − f

∥
∥2
L2(�)

)
.

Case A and the definition of ξ
 imply

∥
∥ f − f


∥
∥2
L2(�)

≤ κ0η
2

 ≤ κ0/�con ξ2
 .

The combination of the two previously displayed estimates with (38) results in

ξ2
 /C4 ≤ η2
(T
\T̂
) + (C0τ
2 + κ0/�con)ξ

2

 .

Every choice of τ 2 ≤ 1/(4C0C4) and κ0 ≤ �con/(4C4) leads to

�conη
2

 ≤ ξ2
 ≤ 2C4η

2

(T
\T̂
).

For θ ≤ θ0 := �con/(2C4), the Dörfler marking in Case A of the adaptive algorithm
from Sect. 3.2 computes a subset M
 ⊆ T
 of (almost) minimal cardinality with

θη2
 ≤ η2
(M
) and
∣
∣M


∣
∣ �

∣
∣T
\T̂


∣
∣.

The estimate (37) implies

∣
∣M


∣
∣2s �

∣
∣T
\T̂


∣
∣2s �

∣
∣(u, f )

∣
∣2
As

ε(
)−2. (40)

Step 4 (Case B): Let T ∈ T be the output of the TSA from [7, Section 5] with
tolerance Tol := ρ1/2‖ f − f
‖L2(�) such that

∥
∥ f − fT

∥
∥
L2(�)

≤ Tol and
∣
∣T

∣
∣ − ∣

∣T0
∣
∣ �

∣
∣(u, f )

∣
∣1/s
As

Tol−1/s . (41)

Let T
+1 := T ⊗ T
 denote the overlay of T and the triangulation T
 on level 
.
The embed oscillation control algorithm from [22, Section 3] ensures the existence
of a finite sequence of disjoint sets M(0)


 ,M(1)

 , . . . ,M(K (
))


 of marked triangles

realizing a successive one-level refinement with T (0)

 := T
,

T (k+1)

 = Refine(T (k)


 ,M(k)

 ) for k = 0, . . . , K (
),
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and T (K (
)+1)

 = T
+1. The disjoint union of those setsM
 := M(0)


 ∪ · · · ∪M(K (
))



satisfies [22, Theorem 3.3]

∣
∣M


∣
∣ =

K (
)∑

k=0

∣
∣M(k)




∣
∣ ≤ ∣

∣T
∣
∣ − ∣

∣T0
∣
∣.

The combination with (41) shows

∣
∣M


∣
∣2s �

∣
∣(u, f )

∣
∣2
As

Tol−2. (42)

Recall that osc2(g′, E
(�)) ≤ η2
 < ‖ f − f
‖2L2(�)
/κ in Case B. This and the relia-

bility from Corollary 4.4 imply

ξ2
 = LS( f ; σ 
, u
) + ∥
∥ f − f


∥
∥2
L2(�)

+ �osc osc
2(g′, E
(�)) + �conη

2



� η2
 + ∥
∥ f − f


∥
∥2
L2(�)

�
∥
∥ f − f


∥
∥2
L2(�)

� Tol2.

The combination with (42) reads

∣
∣M


∣
∣2s �

∣
∣(u, f )

∣
∣2
As

ξ−2

 .

This concludes the proof of an estimate like (40) in Case B.
Step 5 (Finish of the proof): As in [20], the overhead control of [6, Theorem 2.4]

or [27], the contraction property from Theorem 4.10, and (40) lead to

∣
∣T


∣
∣ − ∣

∣T0
∣
∣ �

∣
∣(u, f )

∣
∣1/s
As

ξ
−1/s




−1∑

k=0

ρ(
−k)/(2s)
con �

∣
∣(u, f )

∣
∣1/s
As

ξ
−1/s

 .

This and
(
LS( f ; σ 
, u
) + osc2(g′, E
(�))

)1/2 ≤ ξ
 conclude the proof of

(∣∣T


∣
∣ − ∣

∣T0
∣
∣)2s(LS( f ; σ 
, u
) + osc2(g′, E
(�))

)
�

∣
∣(u, f )

∣
∣2
As

for any 
 ∈ N0.

��
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Appendix: Proofs of Lemma 4.5–4.7

Proof (Proof of Lemma 4.5) For g replaced by Î g ∈ S1(Ê(�);R2), Lemma 2.1
guarantees the existence of some ẑ ∈ S1(T̂ ;R2) with

ẑ|� = ( Î − I )g and
∣
∣
∣
∣
∣
∣̂z

∣
∣
∣
∣
∣
∣ � osc(	̂g′, E(�)).
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The discrete equation (11) with respect to T̂ with test functions τLS = σ̂LS − σLS ∈
�(T̂ ) and vLS = ûLS − uLS − ẑ ∈ S10(T̂ ;R2) imply that

−
∫

�

(dev σ̂LS − D ûLS) : (dev(σ̂LS − σLS) − D(̂uLS − uLS − ẑ))dx

=
∫

�

( fT̂ + div σ̂LS) · div(σ̂LS − σLS)dx

=
∫

�

( fT̂ − fT ) · div(σ̂LS − σLS)dx

+
∫

�

( fT + div σLS) · div(σ̂LS − σLS)dx + ∥
∥ div(σ̂LS − σLS)

∥
∥2
L2(�)

.

The discrete equation (11) with respect to τLS = τPS and the triangulation T and (21)
result in

−
∫

�

(dev σLS − D uLS) : dev τPSdx

=
∫

�

( fT + div σLS) · div τPSdx =
∫

�

( fT + div σLS) · div(σ̂LS − σLS)dx .

The combination of the preceding two displayed formulas proves

∥
∥ div(σ̂LS − σLS)

∥
∥2
L2(�)

= −
∫

�

( fT̂ − fT ) · div(σ̂LS − σLS)dx +
∫

�

(dev σLS − D uLS) : dev τPSdx

−
∫

�

(dev σ̂LS − D ûLS) : (
dev(σ̂LS − σLS) − D(̂uLS − uLS − ẑ)

)
dx .

This plus some elementary algebra leads to

∥
∥ div(σ̂LS − σLS)

∥
∥2
L2(�)

+ ∥
∥ dev(σ̂LS − σLS) − D(̂uLS − uLS)

∥
∥2
L2(�)

= −
∫

�

( fT̂ − fT ) · div(σ̂LS − σLS)dx

−
∫

�

(dev σLS − D uLS) : (
dev(σ̂LS − σLS − τPS) − D(̂uLS − uLS − ẑ)

)
dx

−
∫

�

(dev(σ̂LS − σLS) − D(̂uLS − uLS)) : D ẑdx . (43)

The remaining analysis in this proof concerns the split

dev(σ̂LS − σLS − τPS) = dev(σ̂LS − σLS − τ̂PS + τ̂ ∗
PS − τPS) + dev(̂τPS − τ̂ ∗

PS).

The Eq. (21) imply that the Raviart-Thomas function

ρ̂ := σ̂LS − σLS − τ̂PS + τ̂ ∗
PS − τPS (44)
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is divergence-free and so piecewise constant. The Helmholtz decomposition (14),

dev ρ̂ = DNC α̂ + dev Curl β̂ ∈ P0(T̂ ;R2×2
dev ),

leads to some α̂ ∈ Z(T̂ ) and β̂ ∈ X (T̂ ). The orthogonality and a piecewise integration
by parts show

∣
∣
∣
∣
∣
∣̂α

∣
∣
∣
∣
∣
∣2
NC =

∫

�

dev ρ̂ : DNC α̂dx =
∫

�

ρ̂ : DNC α̂dx =
∑

E∈Ê(�)

∫

E
[̂ρνE · α̂]E ds.

Recall that the Raviart-Thomas function ρ̂ is continuous in its normal components and
that ρ̂νE is constant along E ∈ Ê(�). Since the jump [̂α]E of E has integral mean
zero along E ,

∫

E
[̂ρνE · α̂]E ds = 0.

Hence, α̂ ≡ 0 and the Helmholtz decomposition reduces to

dev ρ̂ = dev Curl β̂ (45)

for the divergence-free test function Curl β̂ ∈ RT0(T̂ ;R2×2). One term in (43) reads

−
∫

�

(dev σLS − D uLS) : dev(̂τPS − τ̂ ∗
PS)dx

=
∫

�

(dev(σ̂LS − σLS) − D(̂uLS − uLS)) : dev(̂τPS − τ̂ ∗
PS)dx

−
∫

�

(dev σ̂LS − D ûLS) : dev(̂τPS − τ̂ ∗
PS)dx . (46)

The discrete equation (11) with respect to the triangulation T̂ , τLS = τ̂PS − τ̂ ∗
PS, and

vLS ≡ 0, and the combinationwith (21) plus elementary algebrawith the L2-projection
	 onto P0(T ;R2×2) show

−
∫

�

(dev σ̂LS − D ûLS) : dev(̂τPS − τ̂ ∗
PS)dx

=
∫

�

( fT̂ + div σ̂LS) · div(̂τPS − τ̂ ∗
PS)dx

=
∫

�

( fT̂ + div σ̂LS) · (
(1 − 	) div(σ̂LS − σLS)

)
dx

=
∫

�

( fT̂ − fT ) · div(σ̂LS − σLS)dx + ∥
∥(1 − 	) div(σ̂LS − σLS)

∥
∥2
L2(�)

. (47)

The combination of (43)–(47) concludes the proof. ��
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Fig. 3 Enlarged triangle patch
�T

T

Proof (Proof of Lemma 4.6) Let v ∈ S10(T ;R2) be the Scott-Zhang quasi-
interpolation of v̂ := ûLS−uLS− ẑ ∈ S10(T̂ ;R2). For every z ∈ N in the construction
of the quasi-interpolation [26, Section 2], choose E ∈ E(ωz) such that E ∈ E ∩ Ê ,
whenever possible. This ensures that the error function ŵ := v̂ − v ∈ S10(T̂ ;R2) of
the quasi-interpolation vanishes on any T ∈ T ∩ T̂ . The first-order approximation
property [26, equation (4.3)] and the stability property [26, Theorem3.1] read

∣
∣T

∣
∣−1/2∥∥ŵ

∥
∥
L2(T )

+ ∥
∥D ŵ

∥
∥
L2(T )

�
∥
∥D v̂

∥
∥
L2(�T )

(48)

for the enlarged triangle patch �T := ⋃
z∈N (T ) ωz on the triangulation T of Fig. 3.

Since v ∈ S10(T ;R2) is an admissible test function, (11) implies

∫

�

(dev σLS − D uLS) : D vdx = 0.

This, the definition of ŵ, and a piecewise integration by parts result in

∫

�

(dev σLS − D uLS) : D v̂dx =
∫

�

(dev σLS − D uLS) : D ŵdx

= −
∑

T∈T \T̂

(∫

T
ŵ · div dev σLSdx

+
∑

E∈E(T )∩E(�)

∫

E
ŵ · ([dev σLS − D uLS]E νE

)
ds

)

. (49)

Given any T ∈ T \T̂ , a Cauchy-Schwarz inequality plus (48) prove

∫

T
ŵ · div dev σLSdx ≤ ∣

∣T
∣
∣−1/2∥∥ŵ

∥
∥
L2(T )

∣
∣T

∣
∣1/2

∥
∥ div dev σLS

∥
∥
L2(T )

�
∥
∥D v̂

∥
∥
L2(�T )

∣
∣T

∣
∣1/2

∥
∥ div dev σLS

∥
∥
L2(T )

.
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Given any T ∈ T \T̂ with E ∈ E(T ), a combination of a Cauchy-Schwarz inequality,
a trace inequality, and (48) result in

∫

E
ŵ · ([dev σLS − D uLS]E νE

)
ds

≤ ∣
∣T

∣
∣−1/4∥∥ŵ

∥
∥
L2(E)

∣
∣T

∣
∣1/4

∥
∥[dev σLS − D uLS]E νE

∥
∥
L2(E)

�
(∣∣T

∣
∣−1/2∥∥ŵ

∥
∥
L2(T )

+ ∥
∥D ŵ

∥
∥
L2(T )

)∣∣T
∣
∣1/4

∥
∥[dev σLS − D uLS]E νE

∥
∥
L2(E)

�
∥
∥D v̂

∥
∥
L2(�T )

∣
∣T

∣
∣1/4

∥
∥[dev σLS − D uLS]E νE

∥
∥
L2(E)

.

The combination of (49) with the last two preceding estimates and a finite overlap of
the patches �T from Fig. 3 conclude the proof. ��

Proof (Proof of Lemma 4.7) Let β ∈ S1(T ;R2) be the Scott-Zhang quasi-
interpolation of β̂ ∈ S1(T̂ ;R2). For every z ∈ N in the design of the quasi-
interpolation [26, Section 2], choose E ∈ E(ωz) such that E ∈ E ∩ Ê , whenever
possible, so that the error function γ̂ := β̂ −β ∈ S1(T̂ ;R2) of the quasi-interpolation
vanishes on any T ∈ T ∩T̂ . Thefirst-order approximation property [26, equation (4.3)]
and the stability property [26, Theorem 3.1] read, with the enlarged triangle patch �T

of Fig. 3, as ∣
∣T

∣
∣−1/2∥∥γ̂

∥
∥
L2(T )

+ ∥
∥D γ̂

∥
∥
L2(T )

�
∥
∥D β̂

∥
∥
L2(�T )

. (50)

For x = (x1, x2) ∈ ��, define a modified quasi-interpolation β̃ ∈ S1(T ;R2) by

β̃(x) := β(x) − c/2 (−x2, x1)
� with c :=

∫

�

tr Curl βdx
/∣

∣�
∣
∣.

This guarantees that Curl β̃ = Curl β − c/2 I2×2 ∈ �(T ) is an admissible and
divergence-free test function. Therefore, the discrete equation (11) proves

∫

�

(dev σLS − D uLS) : dev Curl βdx

=
∫

�

(dev σLS − D uLS) : dev Curl β̃dx = 0.

This plus elementary algebra on the deviatoric part and a piecewise integration by
parts imply

∫

�

(dev σLS − D uLS) : dev Curl β̂dx (51)

=
∫

�

(dev σLS − D uLS) : dev Curl γ̂ dx =
∫

�

dev(σLS − D uLS) : Curl γ̂ dx
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= −
∑

T∈T \T̂

(∫

T
γ̂ · curl dev(σLS − D uLS)dx

+
∑

E∈E(T )

∫

E
γ̂ · ([dev(σLS − D uLS)]E τE

)
ds

)

.

Given any T ∈ T \T̂ , a Cauchy-Schwarz inequality plus (50) prove

∫

T
γ̂ · curl dev σLSdx �

∥
∥D β̂

∥
∥
L2(�T )

∣
∣T

∣
∣1/2

∥
∥ curl dev σLS

∥
∥
L2(T )

.

Given any T ∈ T \T̂ with E ∈ E(T ), a combination of a Cauchy-Schwarz inequality,
a trace inequality, and (50) imply

∫

E
γ̂ · ([dev(σLS − D uLS)]E τE ) ds

≤ ∣
∣T

∣
∣−1/4∥∥γ̂

∥
∥
L2(E)

∣
∣T

∣
∣1/4

∥
∥[dev(σLS − D uLS)]E τE

∥
∥
L2(E)

�
∥
∥D β̂

∥
∥
L2(�T )

∣
∣T

∣
∣1/4

∥
∥[dev(σLS − D uLS)]E τE

∥
∥
L2(E)

.

The combination of (51) with the last two preceding estimates and a finite overlap of
the patches �T from Fig. 3 prove

∫

�

(dev σLS − D uLS) : dev Curl β̂dx �
∣
∣
∣
∣
∣
∣β̂

∣
∣
∣
∣
∣
∣
( ∑

T∈T \T̂

(∣
∣T

∣
∣
∥
∥ curl dev σLS

∥
∥2
L2(T )

+
∑

E∈E(T )

∣
∣T

∣
∣1/2

∥
∥[dev(σLS − D uLS)]E τE

∥
∥2
L2(E)

))1/2

. (52)

The subsequent stability property can be found in [13, Lemma3.4] in different notation

∥
∥τPS

∥
∥
L2(�)

�
∥
∥ f

∥
∥
L2(�)

+ ∥
∥g

∥
∥
H1/2(�)

.

The stability of PS-FEM applied to τ̂PS − τ̂ ∗
PS and τPS yields

∥
∥τ̂PS − τ̂ ∗

PS

∥
∥
L2(�)

�
∥
∥(1 − 	) div(σ̂LS − σLS)

∥
∥
L2(�)

and (53)
∥
∥τPS

∥
∥
L2(�)

�
∥
∥	 div(σ̂LS − σLS)

∥
∥
L2(�)

.
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Since β̂ ∈ X (T̂ ), Curl β̂ ∈ �(T̂ ). Hence, the tr-dev-div lemma (15), Eq. (45), defini-
tion (44), a triangle inequality, and (53) imply

∣
∣
∣
∣
∣
∣β̂

∣
∣
∣
∣
∣
∣ = ∥

∥Curl β̂
∥
∥
L2(�)

�
∥
∥ dev Curl β̂

∥
∥
L2(�)

= ∥
∥ dev ρ̂

∥
∥
L2(�)

≤ ∥
∥ρ̂

∥
∥
L2(�)

≤ ∥
∥σ̂LS − σLS

∥
∥
L2(�)

+ ∥
∥τ̂PS − τ̂ ∗

PS

∥
∥
L2(�)

+ ∥
∥τPS

∥
∥
L2(�)

�
∥
∥σ̂LS − σLS

∥
∥
L2(�)

+ ∥
∥(1 − 	) div(σ̂LS − σLS)

∥
∥
L2(�)

+ ∥
∥	 div(σ̂LS − σLS)

∥
∥
L2(�)

�
∥
∥σ̂LS − σLS

∥
∥
H(div,�)

.

This and (52) conclude the proof. ��
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