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AXIOMS OF ADAPTIVITY WITH SEPARATE
MARKING FOR DATA RESOLUTION*

C. CARSTENSENT AND H. RABUST

Abstract. Mixed finite element methods with flux errors in H(div)-norms and div-least-squares
finite element methods require a separate marking strategy in obligatory adaptive mesh-refining. The
refinement indicator o%(T, K) = 7%(T, K) + p?(K) of a finite element domain K in an admissible
triangulation 7 consists of some residual-based error estimator n(7, K) with some reduction prop-
erty under local mesh-refining and some data approximation error u(K). Separate marking means
either Dérfler marking if pu?(7) < wkn?(T) or otherwise an optimal data approximation algorithm
with controlled accuracy. The axioms are sufficient conditions on the estimators n(7, K) and data
approximation errors p(K) for optimal asymptotic convergence rates. The enfolded set of axioms of
this paper simplifies [C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Comput. Math. Appl.,
67 (2014), pp. 1195-1253] for collective marking, treats separate marking established for the first
time in an abstract framework, generalizes [C. Carstensen and E.-J. Park, SIAM J. Numer. Anal.,
53 (2015), pp. 43—-62] for least-squares schemes, and extends [C. Carstensen and H. Rabus, Math.
Comp., 80 (2011), pp. 649-667] to the mixed finite element method with flux error control in H(div).
The paper gives an outline of the mathematical analysis for optimal convergence rates but also serves
as a reference so that future contributions merely verify a few axioms in a new application in order
to ensure optimal mesh-refinement of the adaptive algorithm.
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1. Introduction. The understanding of adaptive mesh-refinement for finite ele-
ment methods (FEMs) has been one of the most important fields in the computational
sciences with PDEs over the last two decades following early theoretical contributions
due to Ivo Babuska et al. in the 1980s and starting in 2D with Willy Dorfler in 1997
before the first proofs of optimal rates appeared in [Ste07, CKNS08]; more detailed
historic remarks and references can be found in [CFPP14] with a first abstract ap-
proach and four axioms for the collective marking strategy CAFEM. Those four axioms
describe elementary properties of the total error estimator that are sufficient for op-
timal convergence rates and do not include local efficiency as this is not available for
boundary element methods. Standard adaptive schemes are based on a total error
estimator and collective marking on each level outlined in pseudocode as follows:

CAFEM(0, To)

for / =0,1,... do

COMPUTE o¢(K) for all K € T

Tet1 := Dérfler marking(f,o,(K) : K € Ty)
end for
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In earlier contributions [Ste07, CKNS08], the preceding step COMPUTE oy is re-
alized by the call of SOLVE and ESTIMATE with respect to a triangulation 7, and for
a given application at hand. This paper generalizes CAFEM and includes certain data
approximation terms, which do not allow for a forthcoming reduction property (A2)
in general. Mixed finite element schemes when the fluxes are measured in the H(div)
norm or least-squares FEMs [CDR16, BC17, BCS17] are examples where CAFEM is
not successful and a separate marking is obligatory.

This paper simplifies the axioms from [CFPP14], also works without the concept
of nonlinear approximation classes [BDAV04, Ste07, CKNS08], and so avoids any no-
tion of efficiency. The focus of this paper is on adaptive finite element algorithms
with separate marking (SAFEMs) for the separate data approximation. The proposed
algorithm is a modification of the standard AFEM: Dorfler marking is applied if the
estimated error dominates the data approximation error, while an optimal data ap-
proximation is performed otherwise; this is outlined in pseudocode as follows:

SAFEM(04, K, pp, To)
for /=0,1,... do
COMPUTE 1¢(K), u(K) for all K € Ty

if 2 .= p2(Te) < kn? = k02 (Te, Te) then // CASE (A)
Tex1 := Dérfler marking(0a,me(K) : K € Tp)
else // CASE (B)
Tevr = Te ® appx(ppug, n(K) : K € To)
end if
end for

AFEMs based on separate marking have been designed and established by several
authors. The algorithm in [Ste07], for example, follows a similar idea with a routine
RHS applied on each level ¢ for a prescribed tolerance /2 in the controlled data
approximation. The algorithm in [BMO08] runs Dérfler marking also for the data ap-
proximation reduction, while [CDN12] suggests separate marking for data in H ().

The algorithm SAFEM of this paper combines ideas from [Ste07, BM08, CR11,
Rab15] and distinguishes two cases, Cases (A) and (B), where the refinement is with
respect to the dominant refinement indication 774% or ,u%. The refinement in Case (B)
depends on the data approximation error and is independent of the discrete solution.
This allows for any optimal algorithm for data approximation: The output 7T, =
appx(Tol, u(K) : K € Tp) is expected to satisfy

W(T) S Tol and {Trul — [T < As ToI™.

Optimal convergence rates for the estimators follow from axioms (A1)—(A4) general-
ized from [CFPP14] and (B1)-(B2) for optimal data approximation with quasimono-
tonicity (QM). The results of this paper not only provide a guideline for nonexperts
in asymptotic convergence theory but also allow them a direct reference to the axioms
and reduce the work required to prove properties (A1)—(A4), (B1)—-(B2), and (QM) in
an example at hand. If the global efficiency of the estimator is known, rate-optimality
of the corresponding error follows immediately.

The analysis for AFEMs based on collective marking as in [CFPP14] is included,
when 02(T,e) = n?(T,e)+ u?(T,e) replaces n?(T,e) in Case (A) and the refinement
indicator in Case (B) is set to zero. Thus, only Case (A) of SAFEM applies for collective
marking, the axioms (A1l)—-(A4) are equivalent to those in [CFPP14], and (B1) and
(B2) are automatically satisfied in this setting.
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The subroutine appx in SAFEM can be realized by some Dorfler marking (similar
to the algorithm in [BMO8]) or by the algorithm ApPPROX from [BDdV04, BdV04]
(applied in [CR11, Rabl5]). However, the flexibility in the data reduction allows
applications of SAFEM to problems with data approximation terms that do not satisfy
an estimator reduction property but do satisfy quasimonotonicity. In those cases,
Dorfler marking is not guaranteed to yield optimality. Two applications motivate
the present paper, where the data approximation in the L? term cannot be avoided:
mixed FEM with flux error estimation in H(div) (rather than solely in L?(2) from
[CHX09, CR11]) and least-squares FEM. There already exist contributions based on
the axioms of this paper [CP15, BC17, BCS17] (it is straightforward to re-interpret
the first two; the third is already based on the precise axioms of this paper) for
least-squares FEM. But it is also important for the application of mixed FEM to
well-posed general linear second-order problems [CDNP16], for the low-order terms
enforce the consideration of the divergence of the flux in L2. The recent comprehensive
a posteriori error analysis in [CPS16] provides an efficient and reliable control in
natural norms: the error in the flux in H(div,2) and the error in the displacements
in L2(9).

The separate marking algorithms [Ste07, CDN12] may also be analyzed within
the abstract framework of this paper.

The remaining parts of this paper are organized as follows. Section 2 presents
more details on SAFEM and guides the reader through the conditions in (A1)-(A4)
and (B1)—(B2) for the refinement indicators 7 and p and asserts the optimal conver-
gence rate of SAFEM in Theorem 2.1 with respect to 0. Together with efficiency, this
automatically leads to rate-optimality of the error. A collection of remarks follows in
section 3 before section 4 presents the proofs. Section 5 contains an application to
mixed FEMs in H(div), where separate marking is obligatory, with a discrete version
(A3) of [CPS16].

The notation A < B abbreviates A < C'B for some positive generic constant C,
which depends only on the initial triangulation 7y and on the universal constants in
the axioms; while A =~ B abbreviates A < B < A. Throughout this paper standard
notation of Lebesgue and Sobolev spaces and their norms applies. The modulus
sign | @ | denotes the Euclidean length, the area or volume of a domain, as well as
the counting measure; e.g., |[M]| is the cardinality of M and equals the number of
elements in a subset M of a triangulation.

2. Axioms and results. The axioms concern general conditions of the estima-
tors 7 and p, which play different roles in the adaptive algorithm and are based on
the set T of admissible triangulations.

2.1. Partitions and admissible triangulations. Let 7 be a regular triangu-
lation of the domain 2 into (tagged) n-simplices in R™. Any refinement P from 7y by
the newest vertex bisection (NVB) is called a partition and is written P € P (7y) =: P.
A partition P € P, which is a regular triangulation in the sense of Ciarlet (sometimes
called conforming triangulation), is called admissible and is written P € T (7y) =: T.

The input of the underlying refinement procedure 7out := REFINE(Ti,, M) is
an admissible triangulation 7;, € T and some subset M C 7T;, thereof; the output
Tout € T (Tin) is the smallest admissible refinement of 7;, in which all T € M C Ty,
are at least bisected, i.e., M C Tiy \ Tout- The procedure REFINE specifies the NVB
with completion (to avoid hanging nodes, etc.), and more details may be found in
[Ste08]. Given 7,7’ € T its overlay T & 7' € T(T)NT(T') is the smallest common
refinement of 7 and 7.
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2.2. Estimators and distance. The axioms are defined in terms of refinement
indicators n and p plus a global distance §. For any admissible triangulation 7 € T
and any element domain K € T let n(7, K) and p(K) be a nonnegative real number
with squares n*(7, K) and p?(K) and their sums

21) (T, M)= > *(T.K), p2(M):= > p*K) forany M CT.

KeM KeM

The distance 8(7,7) of T € T and its refinement 7 € T(7) is a nonnegative real
and for simplicity can be regarded as the squared energy norm of the difference of the
discrete solutions on 7 and 7. The estimators are utilized in the adaptive algorithm
and are linked with the distance function in the axioms below. The output of the
adaptive algorithm is a sequence Ty, T1, T2, . . . of successive refinements that start with
To and give rise to the abbreviations (with a subindex ¢ to refer to the triangulation
as part of the output of SAFEM)

1/2
ne(K) :=n(Te, K) for K €Ty and g :=n(Te, Te) := ( Z n?(K)) .

KeT;

The sum o2 := 1%+ p? and their local variants are frequently utilized throughout this
paper with of = n7 + i for pj := p*(Te) == 3 ey, 12 (K).
2.3. Adaptive algorithm. In more detail, SAFEM calls SELECT and REFINE to

realize the Dorfler marking in Case (A) from the introduction; more details on appx
in Case (B) follow in subsection 3.3.

SAFEM(04, K, pg, To)
Input: Initial coarse triangulation 7y, 0 < 04 <1,0<pp <1,0< kK
for /=0,1,... do
COMPUTE refinement indicators 77 (K) and p?(K) for all K € T;
if u? < rkn? then // CASE (A)
SELECT a subset My C 7T of element domains of (almost) minimal
cardinality with

(2.2) Oam; < i (Me) ==Y nj(K)
KeM,

COMPUTE Ty41 := REFINE(T;, M)
else // Cask (B)
RUN T = appx(Tol, u(K) : K € Ty) with Tol = ppu?
COMPUTE Tgy1 =T & T
end if
end for

Output: Ty, nk, fik, 0k == \/Ni + pi for k=0,1,...

The selection of M, with almost minimal cardinality means that |[M,| < |[Mj}],
where M denotes some set of minimal cardinality with (2.2). The point is that this
can be realized in linear CPU time [Ste07].

_ 2.4. Axioms. The universal positive constants Ayer, A1, A2, A3, A4, Ag, and
A3z >0 as well as 0 < pa < 1 in the axioms (A1)—(A4), (B2), and (QM) below solely
depend on T (whence merely on 7p); the parameters s > 0 and Aj in (B1) also depend
on the algorithm appx and the optimal data approximation rate.
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The axioms (A1)-(A3) and (B2) concern an arbitrary triangulation 7 € T and
any refinement 7 € T (7)) of it, while (A4) solely concerns the outcome of SAFEM.
Recall the sum conventions for n(7, M) and pu(7) in subsection 2.2.

(A1) Stability. VT € T, VT € T(T)
(A1) nWT, TOT) =T, TNT)| < AT, T).
(A2) Reduction. VT € T, VT € T (T)

(A2) N(TTNT) < pan(T, TAT) + A28(T, 7).
(A3) Discrete reliability. VT € T, VT € T(T) 3R(T,T) C T with T\T C R(T, T),

[R(T.T)| < At

T\ 7" and
(A3) A A L
0UT.T) < As (BT R(T ) + 12(T)) + Ran*(T).

(A4) Quasiorthogonality of discrete solutions. V¢ € Ny

(Ad) Z (T Tes1) < Aaof.

k=2

(B1) Rate s data approximation. ¥ Tol > 0, T1o := appx(Tol,u(K) : K € Tp) € T
satisfies
(B1) Tt — [To| < A5 Tolm /9 and (1) < Tol.

(B2) Quasimonotonicity of . YT € T, ¥T € T(T), u(T) < Aep(T).

Theorem 3.2 below asserts that the aforementioned axioms imply quasimono-
tonicity of o for small values of Ag.

(QM) Quasimonotonicity of o. VT € T, VT € T(T), o(T) < Aza(T).

2.5. Optimal convergence rates. The axioms (Al)-(A4), (B1)-(B2), and
(QM) ensure quasioptimality of SAFEM for sufficiently small parameters 4 and k
as stated in Theorem 2.1 below. Recall that o2 := n? + ;2 and set

o*(T)=o(T)? = 0*(T,T) = Y _ o*(T,K) for T € T and o7 := o(Ty).
KeT
For any N € Ny, the comparison with the optimal rates concerns the optimal value
mino(T (N)) := min{o(7T): T € T(N)}
of all admissible triangulations
T(N) :={T € T:|T| < |To| + N}
of cardinality |T| < |To| + N with at most N extra cells.

THEOREM 2.1 (quasioptimality). Suppose (A1)—(A4), (B1)—(B2) and (QM). This
leads to the ezistence of some kg > 0, which is +00 if Ag¢ = 1, such that any choice
of k, 04, and pp with

0 < Kk < K1 :=min {Iﬁ)o,Al_QAgl} , 0< 04 < by := (1 — HA%A?,)/(I + A?Ag),
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and 0 < pp < 1 implies the following. The outputs (T¢)een, and (0¢)ien, 0f SAFEM
satisfy the equivalence

(2.3) AL+ sup (1+|Te| — |[To])® 00 =~ A2 + sup (1 + N)*mino(T (N)).
£eNg NeNy

The theorem guarantees optimal rates in that the left-hand side of the equivalence
(2.3) is smaller than infinity if the right-hand side is, and vice versa. The quotient
is bounded below and from above by the equivalence constants, which continuously
depend on Arefa Al, AQ, Ag, A37 A4, Aﬁ, PB, P2, QA, K, and s > 0 but not on A5.

The (possibly unknown) parameter s is not utilized in SAFEM. The axioms (B1)-
(B2) specify sufficient conditions for optimal convergence, where the parameter s > 0
is arbitrary and may refer to a related nonlinear approximation class.

3. Remarks.

3.1. Weak form of (A4). The axiom (A4) can be weakened with some param-
eter € > 0, which vanishes in (A4)=(A4y).

(A4.) Quasiorthogonality with ¢ > 0. 3e > 0 30 < Ay() < oo V£, m € Ny,

l+m {4+m
(A4.) Z 51%,k+1 < A4(5)Ug +e Z O‘]%.
k=t k=0

The axiom (A4, ) implies (A4./) for all 0 < ¢ < &’ with the same constant Ay =
Ay(ery, and (A4) is (Ady), ie., (Ad) for e = 0. Conversely, as ¢ ~, 0 it may be
expected that Ay;) — co. In the presence of (A1)-(A2), this is not the case. In fact,
(A1)-(A2) and (A4.) imply (A4) for sufficiently small € > 0.

THEOREM 3.1 ((A4.)=(A4)). Let 04 be the parameter of SAFEM, let 0 < p13 < 1
be the reduction factor for the total error estimator with constant 0 < Aj3 < 00 in
Theorem 4.1 below, and let 0 < & < (1 — p12)/A12. Then (A1)—(A2) and (A4.) imply
(A4) with Ay := A4(5) + 5(1 + A12A4(5))/(1 — P12 — 5A12).

This was first observed in [CFPP14] for CAFEM and is proved in subsection 4.2
for completeness and applied below in Theorem 5.1.

2. Quasimonotonicity. The axiom (B2) explicitly ensures the quasimono-
tonicity of pu. The strict inequality M := (A? + A2)A3 < 1 implies (QM) with
A7 = /A2 + A2, M = (A3 + A3)A3, and

14+ M1 —M)+M+2\/M1-M)+M

8 = —

(1 - M)

THEOREM 3.2 (quasimonotonicity). Suppose (A1)-(A3) and M < 1. Then, any
T eT and T € T(T) satisfy n(T) < Asa(T).

Proof. Given A := (\/M—i—]\//.T—MJ\/J\— M\)/(M + ]\/Z) < 1/JT4\— 1, recall the
following implication of the axioms (A1)—(A3): namely,

(T, TNT) <A+ 12T, TOT)+ 1+ NA263(T, T),
T, TN\NT) <A+ 1N (T, T\T) + (1 + NA(T,T),
ST, T) < Asa®(T) + Asn(T).
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Those inequalities plus the split n?(7) = n*(T, T NT) +n*(T, T\ T) verify

A(T) < (4 AT + L+ N+ A3) (Aso(T) + Ren®(D) . O

3.3. Optimal data approximation with APPROX. Case (B) of SAFEM runs
a data approximation algorithm appx(Tol, u(K) : K € Ty) with output in T. The
data approximation algorithm ApPPROX [BDdV04, BAV(4] is based on the refinement
of partitions and has been incorporated into separate marking algorithms of the type
SAFEM of this paper for data approximation reduction in [CR11, Rab15]. APPROX is
one possible realization of appx in SAFEM.

Let P be some NVB refinement of P € P. Let K € P and P € P (P); then the
refinement of K in P is the set P(K) := {T'e€ P|T C K} in the following.

(SA) Subadditivity. IAg < co, VP € P, VP € P(P), YM C P

(34) EPM) = S Y AT < Aart(M).

KeMTep(K)

Note that the notation of the data approximation term p is a straightforward extension
of its definition in (2.1) for admissible triangulations to partitions.

The algorithm APPROX is introduced and analyzed in [BDdV04, BdV04] with
input tolerance Tol’ := Tol /Ag = pppe/As and the values u(K) on the coarse trian-
gulation 7.

THEOREM 3.3 (see [BAV04, BDAV04]). (SA) in APPROX implies (B1)—(B2) with
rate-s-optimality in the sense that

(3.1) M(s,p) := J\Sflele (14 N)’minpu(T(N)) = A

holds for all s > 0 (and M(s,u) < oo if and only if A5 < o0) with equivalence
constants which may depend on s.

Proof. This follows from near optimality proven in [BdV04, Theorem 6.1] and
[BDAV04, Lemma 4.4]. O

Note that APPROX given in [BdV04, BDAV04] is even instance optimal.

3.4. Collective Dérfler marking is optimal for ||k f||2(qy- The optimality

of CAFEM also suggests an algorithm for the reduction of the L?-norm of a mesh-size
weight h times a given data like h f.

Given f € L*(Q) in the polyhedral domain  C R™ partitioned into the regular
triangulation 7o, set n(T¢, K) := \K|2/" |flo2(xy for all K € Ty Let ne = n(Te, Te).
Then, (A1)-(A4) are satisfied with appropriate weight functions A1 of mesh-sizes in
T (resp., the mesh-sizes hg =: hy with respect to the finer triangulation 7A') and

ST T) = ||(hr = hr) |

L)’

Hence CAFEM with collective Dorfler marking implies optimal data approximation for
this particular data error term with a mesh-size weight hy. This is in agreement with
the well-established fact that first-order conforming and nonconforming FEMs do not
need a data reduction with SAFEM.
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4. Proofs. This section is devoted to the proof of Theorem 2.1. The abbreviation
0¢,041 := 0(Te, Te+1) applies in this section.

4.1. Estimator reduction. The constant Ag > 1 in the following theorem leads

to kg set to +oo for Ag = 1; this holds in all the examples of this paper.

THEOREM 4.1 ((A12) reduction). Suppose (A1l)—(A2) and parameters 0 < 84 <
1,0< K, and 0 < pp < 1/Ag from SAFEM. Any choice of v and X with

0
(4.1) 0<’y<p2_21and0<)\<min{(1(1+’y)p§)1 Ag ,n(lpg)}
— 04

leads to the constants

(4.2)  0<Ap:=(1+1/ AT+ (1+1/9)A3 < o,

(4.3)  0<pa:=1+N1—0a)+ (1 +7v)p204 <1,

(4.4) 0<ko:=(1—pa)/(Ag—1) (with kg := +o0 if Ag = 1),
(4.5) 0 < prz:=max{ps+klsg, 1+ A+ rpp}/(1+ k) <1

Then 0 < k < Ko implies p12 < 1 and
(A12) U?Jrl < ,0120% + Algézeﬂ fO’I“ all £ € Ny

for the output o7 of SAFEM.
Proof. For v and A as in (4.1), the axioms (A1)—(A2) imply

N1 (Tex1 N'T2)
’74?+1(72+1 \ Te)

< (4207 (Tear N To) + (1 + 1/ VAT 41,

< (L 4+7)pam; (Te\ Texa) + (14 1/9)A367 41
The sum of those two inequalities leads to

(46) iy < (L NnF + (L +7)p3 — (L+X))07 (Te \ Tear) + Aa207 .
The restrictions on A and v ensure (1 +v)p3 < 1 < 1+ A. Thus, in general,
77?+1 < (1+Mn; + A1253,£+1'

In Case (A) on the level ¢, when Dérfler’s marking ensures 0417 < 12 (7; \ Te+1), this
and (4.6) lead to an improvement of the last estimate, namely

M1 < (LA N1 = 04) + (L +)p304) nf + M207 100 = pam; + M267 444

The restrictions on A and « reveal py < 1. Altogether, let

PA in Case (A) on level ¢,
4.7 Ry =
(4.7) ‘ {1 + A in Case (B) on level /.

Then, the output of SAFEM satisfies

(4.8) Niv < Remp + A1267 4,y for all £ € No.
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In Case (A) on any level £ with Ry = p4 from (4.3) and A;s from (4.2), it also holds

that p7,, < Agui and pj < knj. Since o := (Ag — pa)/(s 4 1) > 0, this and (4.8)

lead to

pa+ kMg o2
1+k

In Case (B) on the level £ with R, = 14 X, it holds that uj | < ppui and kn; < 3.
Since §:= k(1 + A —pp)/(1+ k) > 0, this and (4.8) lead to

opi1 < (pa+ar)ng + (Mg — a)ui + A1267 o g = 74+ AM12dp oy

1+ kpp + A
0?4—1 <A+ AX=Bn; + (ps + B/r)ui + A125tg,z+1 = Hiﬁo’? + A125Zg+1.
This proves the total error estimator reduction (A12) with pi2 from (4.5). d

4.2. Convergence. The plain convergence follows from the estimator reduc-
tion (A12) plus quasiorthogonality (A4). The elementary proofs are adopted from
[CFPP14] and given for completeness.

THEOREM 4.2. Suppose 0 < 04 < 1,0 <k, 0 < pp < 1, and suppose (A4) and
(A12) with constants 0 < p12 < 1 and 0 < A1 < 0o. Then A := (1+A12A4)/(1—p12),
q:=A/(1+A) <1, and the output of SAFEM satisfy the following assertions.

(a) (Plain convergence) V¢, m € Ny, f;‘“; 0% < Ao?.
(b) (R-linear convergence on each level) V¢, m € Ny, o7, < L o7

=7
—1/9 1/(2:) gl/é
(c) (Reciprocal sum) Vs > 0, V0 € N, Zk 00 < -

> (liq)l/(2s)(liql/(2s))'
Proof of Theorem 4.2(a). For all £, m € Ny, (A12) implies

£+m L+m L+m
(4.9) ng202+ Z Uk<Ue+P12ZUk+A12Z5kk+1
k=0+1
This plus (A4) verifies
l+m
(1 - p12) Z 0’]% < O'? + A12A4O'?.
k=t
This proves (a) with the asserted constant A. O

Proof of Theorem 3.1. The same argument as in the proof of Theorem 4.2(a)
shows that (A12) and (A4.) imply (A4) for small e. In fact, (4.9) and (A4.) show

l+m +m
(1—p12) Z o < 0? + Aro <A4(€)U% +e Z Uk) .

k=¢ k=2
In other words

{+m
(1 — P12 — €A12) Z J,% S (1 -+ A12A4(E)) g

k=

This plus (A4.) leads to (A4) with Ay := Aye) + (1 + A12Aye)) /(1 — p12 — eAi2),

~

l+m l+m

D St S Aaeyof +e Y of < Ao O
k=t k=¢
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Proof of Theorem 4.2(b). The assertion (a) implies the convergence of the series
&= i o < Ao} < 0.
k=041
The addition of A2 1 to the previous inequality results in
(4.10) (A + 1)€< AEE; hence &7, < g
The successive application of the previous contraction (4.10) shows
Ul%km < £Z2+m < ¢ =q" (U? + flﬂl) <q¢"(1+A)of. 0

Proof of Theorem 4.2(c). The R-linear convergence of (b) leads to

(t=k)/(2s)
—1/s q —1/s
o, "~ < =g/ q)l/@s)az forall 0 <k < 4.

This proves

“1/s %—1/5 ! o—;l/sql/(?s)

=1 -
P — 1/(2s) < .
kzzoak = (1 —q)V/(29) k;(q ) S A= V@) (1 = /) 0

LEMMA 4.3 (comparison). Suppose (Al)—(A4), (B1)-(B2) with 0 < s < oo,
(QM), 0 < g < 1 from Theorem 4.2(b), and let 0 < £ <1 and 0 < v < oo; let

(4.11) M :=M(s,0) = sup (N +1)°*mino(T (N)) < oo,

NeENy
similar to the definition of M(s,p) in (3.1). Then for any level £ € No of SAFEM
with a triangulation Ty, there exists a refinement Ty € T (T;) with (a)—(c).

(a) o(T) < €or;
(b) VT= g€ [T\ Te| < AzM;
() (1= +v+ 1+ 1/wAA) < (1+ (1+1/v)AjAs) 7 (R(T2. 7o)
+((1+ )6 + (14 1/v)A3(As + As€?)) .
Proof. Two pathological situations are excluded in the beginning of the proof.
First, if o, = 0, then 7, = 7T, satisfies the assumptions (a)—(c). Second, Theorem 4.2
guarantees convergence of some sequence of triangulations, and (QM) implies that
this holds for uniform refinements as well. Hence there exists a refinement 7, of 7
with (a) and Ty N Ty = 0. The latter implies (¢) even in case M = M (s,0) = co when
(b) is obvious.
Throughout the remaining parts of the proof, it is therefore assumed that M < oo

and oy > 0. Then (QM) implies 0 < 09 < M < oc.
1. Setup. Let Ny € Ny be minimal with

V1 —q o
M CE

The quasimonotonicity (QM) followed by the definition of M := M(s,0) < oo in
(411) and 0 < ¢ < 1,0 < £ < 1 lead to

S, < eyT—qon < &/T—aM < M.
7

(4.12) (Ne+1)7° <
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Hence, (N;+1)7° < 1 and so Ny > 1. Since N; € N is minimal with (4.12),

=
0 < (Ng + 1)_3 Sé-jx,?iMqO'( < Neis.
This implies
AM
4.13 N; < o, .
(4.13) N

2. Design of 7;. The definition of M < oo yields the existence of some optimal
Te € T (Np) with

(4.14) (N;+1)°0(Ty) < M.
The overlay triangulation T =TT [CKNSO08, Ste07] satisfies
(4.15) 72| + 170l < 72l + | T
3. Proof of (a). The quasimonotonicity (QM) followed by (4.14) and (4.12) shows
o(T7) < Aqo(Te) < AsM(Np +1)7° < €a4\/1 — q < Eoy. 0
4. Proof of (b). The definition of Ty, the overlay estimate in (4.15), and the

upper bound for Ny in (4.13) lead to

T\ Ti| <[] - 17 < 7] - ol < Ve < (e )Us

§ou/1—¢q

5. Proof of (¢). For any 0 < v < 00,0 <& <1, (Al) and (A3) result in

n(TeNTe) < A+ v)n*(Te, Te N Te) + (1+ 1/v)AT6%(Te, Te)
< (1 +rv+(1+ 1/u)A§7\3) en)
(14 1/v)A3As (nF(R(Te, 7)) + 4 ) -
This, (a), and 7 \ T € R(Tz, T¢) result in
me =0} (TenTe) + g (Te\ To)
< (14 v+ L+ 1/0)ATR ) €207 + (L4 (1+ 1/0)ATA) nE(R(Te, T2))
+ (1 +1/v)AfAs .

Some rearrangements with o7 = 77 + p2 prove (c). O

4.3. Proof of Theorem 2.1.

Proof of “<” in (2.3) of Theorem 2.1. Since 04 < 6 and the function

1= (L R+ ) + (14 R) 1+ 1/0)A2Rs ) — 51+ 1/v)A3A

f&v) = 1+ (1+1/v)A2As
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is strictly smaller than 6y = lim,_,» f(0, ), there exist v, £ such that
04 < f(&v) < by.
Given kg from Theorem 4.1, assume x < k1 := min {Ro,AIQA??l}.
Case (A). Lemma 4.3(c) and p7 < kn? prove that R(T, Te) satisfies
(1= 1+ RE +v) = (14 K)EX +1/v)ATRs — k(1 + 1/0)ATA3) n?
< (14 (1+1/v)ATA3) 57 (R(Te, 7o)

This reads 0412 < f(&v)n? < n2(R(Te, 7)) and implies that R(7z,7;) satisfies
Dérfler marking in Case (A).

Let My =: ./\/léo) be the set of marked elements in the Dorfler marking on level ¢,
while M} is the optimal set of marked elements. Hence, there exists 0 < Aqpy < 00
such that

‘Md S Aopt |M2| S Aopt

R(Te. 7o)

The control over R(Tz, T7) of (A3) in Lemma 4.3(b) results in

R ) A7M 1/s
‘R(ﬁvﬁ)‘ SAref 72\72’ SAref m
Hence, Ag := AoptArCfA;/s(\/l — qf)*l/s satisfies
(4.16) (M| = 1Mol < Agh oo,

Case (B). The output of appx with input triangulation 7y and input tolerance
Tol := ppu? on the level ¢ satisfies (B1). Since 07 = n? + pu? < (1+ 1/k)u? in Case
(B), this leads to

Tl = [To] < As(1+ 1/k)p5" @oy /2.

Let 7;(0) := T¢. According to [CR11, Rabl15] for Tp11 = T¢ @ Trol there exists a finite

T4 = Reee(T,Y, M(P) - for all k=0,..., K () - 1,

which finally leads to Tp41 = E(K(m. This observation and the estimate for the
overlay with the sequence (Mgk))k:07,,,)K(5) [CR11, Theorem 3.3] show

K(0)
(4.17) D IMEP| < [ Tral = |Tol S As(1+ 1/m)p" Vo V2.
k=0
The estimate from [CR11, Theorem 3.3] is for 2D only; however, it is expected to hold

in general.
End of the proof of “<”. The overhead control of [BDdV04, Ste08] guarantees

0—1 K(j)

(k)
(4.18) T2l = |Tol < Agpav > > M),

=0 k=0
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With (4.16)—(4.17) and Theorem 4.2(c), this proves
(4.19) [Tl = 17| S (A5 + MY/ ")oy 1.

Finally, 1 < |T¢| — [To| implies 1+ |T2| - |To| < 2(Ts| — 7o) while 75| = |To| implies
1< ozl/s(Ag, + M%), Hence (4.19) proves (14 |T¢| — |To|)® < A2+ M and so “<”
in the assertion of Theorem 2.1. 0

Proof of 27 in (2.3) of Theorem 2.1. Given N € Ny, suppose that min o (T (IV))
is positive and so oy > 0 for all £ € Ny with Ny := |T¢| — |To| < N. For level ¢ in

SAFEM this leads to Nyy1 > Ny, for it only stops with Ty = Tp41 = Tey2 = ... when
o¢ = 0. Hence there exists some level ¢ with Ny < N < Nyyy. This implies
(4.20) (N +1)°’mino(T (N)) < (Neg1 + 1)%0y,

which is evident in case mino (T (NV)) = 0.

In Case (A) on the level £ of SAFEM, there is a one-level refinement to create Tp11,
where each simplex in 7Ty creates a finite number < K (n) of children in a completion
step. The constant K (n) > 2 depends only on the spatial dimension n [GSS14]. This
leads to the bound |7Tp41] < K(n)|T¢| and then to

(Nex1 +1)/(Ne+1) < K(n) + (K(n) = 1)(|To[ - 1) S 1.
In Case (B) on the level £ of SAFEM, the refinement Ty := Ty @ T1o1 is controlled by
1 Tror] — | Tol < As Tol /) < Ay p /9712 Since 02 < (14 1/k)p2 in Case (B),
the overlay estimate of [CKNSO08, Ste07] proves
Negt = N < [Tral| = |To] < Aspp/ @2 (14 1/5) /@051,
This leads to the bound
275 (Nogy +1)° < (Np +1)° + p5 /% (1 + 1/5)/2As.
Consequently, in both Cases (A) and (B), it follows that
(Nepr +1)%00 < (K(n) + (K (n) = D(IT5] — 1)° (Ne+ 100 + 205"/ 2(14+1/k) /243,
With S := sup,cy, (Ne +1)° 0, this and (4.20) imply
(N +1)*mino(T (N)) < (K(n) + (K(n) = 1)(|To| — 1))* S +2°05" (1 + 1/5)*/2A3.

Since this holds for any N € Ny, the previous N-independent upper bound is greater
than or equal to the supremum M. This concludes the proof of “>” in (2.3). d

5. Application to mixed FEM. The a posteriori error analysis of mixed finite
element schemes [Car97, Alo96] was completed in [CPS16] with a reliable and efficient
error control in the natural functional analytical framework H (div, Q) x L?(2) for the
dual formulation of a Poisson model problem.

5.1. Mixed formulation of a Poisson model problem. Given the right-hand
side f € L?(2) in a bounded simply connected polyhedral Lipschitz domain 2 C R®
for n = 2,3, the dual formulation of the Laplace equation seeks p € H(div,2) and
u € L%(Q) with

a(p,q) +b(q,u) =0 for all ¢ € H(div,Q),

b(p,v) = —F(v) := — /Q fodx for all v € L*(Q).



AXIOMS OF ADAPTIVITY FOR SEPARATE MARKING 2657

Therein, the bilinear forms model the L? scalar product and the divergence term,
a(p,q) := / p-qgdx and b(g,v):= / v divg dx.
Q Q

It is well established that the weak solution u € V := H}(Q) to —Au = f in Q
specifies the flux p := Vu and that the two formulations are equivalent and allow for
a unique solution [BBF13].

Given an admissible triangulation 7 € T, let (7)) x U(T) be a stable pair of
discrete subspaces with the Raviart—Thomas or Brezzi-Douglas—Marini finite element
space X(T) C H(div,Q) of order k € Ny (note the index shift of k in other references)
and U(T) = Pr(T) based on triangles for n = 2 or tetrahedra for n = 3; cf., e.g.,
[BBF13] for the precise definition and stability and commuting diagram properties of
those finite element spaces. In particular, there exists a unique solution (pp,up) €
Y(T) x U(T) to the discrete problem

(5.1) a(pn,qn) + b(qn,un) =0 for all g5, € X(T),
(5.2) b(pn,vn) = —F(vp,) for all vy, € Py(T).

5.2. Error estimators and main result. Given the unique discrete solution
(pn,up) (resp., (Pn,un)) with respect to the triangulation 7 € T (resp., its refinement
T € T(T)), the error estimators of [Car97, CPS16] and the distance function in
natural norms read

772(77 K):= |K|2/n lph — vNC%H?;?(}() + |K|2/" [ CUﬂth?;?(K)

HIKM Y lonle x vz,
EcE(K)

pAK) = |1f - kaH%z(K) for any K € T,
PTT) = 15— oy + 17— unlaca)

The standard notation applies to the simplex K of area or volume | K| and its set £(K)
of the three edges or four faces and the L? projection IT; onto Pj(K) (also denoting
the L? projection onto Py (7)). The jump [e]z across an interior edge or face E with
normal unit vector vg is the difference of the respective traces [¢]g = ¢|7, —¢|7_ on E
from the two neighboring triangles 7. Given the homogeneous Dirichlet conditions
on the boundary, the jump partner is zero; [g|g := ¢|,, for the boundary side E €
E(09) of the simplex wg. The above notation is 3D and curl reduces in 2D to the
scalar function curl pj, := 9pp(1)/0x2 — Opr(2)/0x; for the (piecewise) smooth vector
function pp, = (pr(1),pr(2)), and [pr]r X vg denotes the tangential component of
[pr]E-

In the lowest-order case kK = 0, the Lagrange multiplier u;, does not enter the
estimators (Vo Po(7T) = 0), and hence the distance function may be reduced to the
flux approximations only. This simplification allows for a coarse initial triangulation
for £k = 0, while for £ > 1, the initial triangulation 7y has to be sufficiently fine.
The subsequent theorem asserts the axioms of this paper and so allows for optimal
convergence rates of the adaptive algorithm.

THEOREM 5.1 ((Al)-(A4)). In the lowest-order case k = 0, the aforementioned
estimators and distance functions satisfy (Al)—(A4) and (B2) with Ajer = 1 = Ag
and A3 =0 for R(T,T) :=T\T forn=2; forn=3, R(T,T) is T\ T plus one

extra layer of tetrahedra around it in T .
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In the remaining cases k > 1, this holds under the additional condition that the
mesh-size hyax of the initial mesh Ty is sufficiently small.

The estimator is reliable and efficient [Car97, CPS16] in that the exact (resp.,
discrete) solution (p,u) (resp., (pn,wun) with respect to T € T) satisfies

o(T) = |lp — prlla@iv.0) + lv —unllL2(@)-

The divergence contribution in the H(div,)-norm of p — p, on the right-hand side
is || f — I fllz2(q), and so the right-hand side includes the data approximation part
u(T). Consequently, the optimal rates of the estimators are equivalent to the optimal
rates of the errors in terms of nonlinear approximation classes with respect to the
natural norms in H(div) x L? of the mixed FEM.

5.3. Proof of (A1)—(A2). The proof of (A1)-(A2) follows [CKNS08] and relies
on all kinds of elementary (reverse) triangle inequalities and Cauchy inequalities plus
on the following lemma.

LEMMA 5.2 (discrete jump control). There exists a universal constant Cjc, which
depends on the shape regularity in T and the degree k € Ny, such that any g € Pp(T)
with jumps

lglm = (gl )le — (gl )|e  for E € £(Q) with E =0T, NoT_,
PE =\ ol for E € £(09) N £(K)

across any side E € £ satisfies

Z \K|1/n Z ||[g]E||2L2(E) < Cj2c||g||%2((2)'
KeT Eec&(K)

Proof. Recall the discrete trace inequality [DPE12, p. 27] on a side E € £(K) of
a simplex K € T for the polynomial g|x of degree at most k in the form

‘K|1/(2") ||g|KHL2(E) < Cagr HgHLZ(K)

with a constant Cgt,, which depends on the shape regularity in T and on k& € Nj.
The contributions to the left-hand side of the asserted inequality for an interior side
E =0T, N9T- with patch wg := int(T} UT_) sum up to

(1 171 gl 2,

The triangle inequality, the discrete trace inequality for K = T, and the Cauchy
inequality in R? lead to

2

Nl < (lglr lzace + gl o)
2 —1/(2n) —1/(2n) ?
< G (T4 17 gl o, + 17217/ lgl 2 )

< G (1T 77 4T 777 g2

(we)*

Let hy :=|T+|/(n|E|) be the heights of the two neighboring simplices Ty which share
the side E of length or area |E|. Then, (|74 |Y/™ + |T_|¥/") (|T4 7Y™ + [T_|71/") can
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be written as (hl/n + hl/")(hll/" + h:l/"). The shape regularity in T bounds the
quotient of the heights h from above by some universal constant C%. Consequently,

(1 17 1) gl ) < CRaC gl o

With the same constant, this estimate holds for a boundary side £ = 07y N 0N with

wg = int(T4) (and without T_ := }). The sum of all those contributions reads
DK Y lgleliem < C3uCh D 1912w
KeT Eec&(K) Eeg

Since at most n+ 1 of the side-patches (wg : E € &) overlap, this proves the assertion
with Cjc := v/n + 1 C4t,:Cer. 0

Proof of stability (A1) in Theorem 5.1. A reverse triangle inequality in R™ (for
the number m := |7 N 7| of simplices in 7 N7 implies

T T T TS Y (w1 (1)
TETNT

Each of the terms 5(7, T) and 5(T, T) is a Euclidean norm in R3*" of terms, which are
Lebesgue norms and so allow for a reverse triangle inequality. With the abbreviations
g :=pp — pr and e := u;, — uy,, this leads to

~ 2
(n(T57) =0T )) " < TP g = Vel + 1T/ llowrl gl

n 2
+IT™ Y lgle x veljze,)
Ec&(T)

The sum over all T € 7 N7 involves volume and jump terms. The latter terms
are bounded via Lemma 5.2. The volume terms are estimated by inverse estimates
(with universal constant Ciy,,) for the polynomials and their derivatives. This and
|T| < Rl oy /n! result in

(T TAT) = (T, TN TP < (Cf + Chay + 21 /)9l 72 () + 2050 el 72

This is (Al) with A; = max{\/C2 + C2 4 2h2,./nl, \/ECinV}. O
Proof of reduction (A2) in Theorem 5.1. The error estimator for the m refined

simplices T € T(K) :={T € T|T C K} of K € T\ T reads

AT = S (P50 = Va3 + [T curl Bil3 )
TeT\T

n ~ 2
T3 e < vela)-
FeE(T)

With the abbreviations g := p, — pn, and e := wuy, — uy, from the previous proof, the
triangle inequality in R(®+)™ and reverse triangle inequalities in the Lebesgue norms
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over simplices and sides show

n(ffrms( 3 (T|2/”||phwhnim+|T2/"||cur1ph||iam

KeT\T,
TeT(K)

1/2
LIPS llnle < el ) )

Fe&(T)

n ( 3 (|T|2/"||g Vel + TP/ curl g2
TeT\T

1/2
LT Y ||[g1pxup||%zm)) |

Fe&(T)

Since [pn, X vp|p = 0 for a side F € &(int(K)) in the interior of a coarse simplex,
and |T| < |K|/2 for T € T(K), the first term on the right-hand side of the above
displayed formula < pon(7, T \ T) for ps = 272/(%) The remaining second term is
estimated with Lemma 5.2 as above with A; = As. 0

5.4. Proof of discrete reliability (A3). The proof of (A3) in Theorem 5.1
requires a discrete intermediate solution (py,us) € £(T) x Py(T) with respect to
the fine triangulation T to the above Poisson model problem with a right-hand side
I f € Px(T) with respect to the coarse triangulation 7. Recall that —divp, =

Il f € Pi(T) (the orthogonal projection of f onto Py (7)).
LEMMA 5.3. It holds that |[Bh —Pn ||icaiv.0) + 1@ — @nll 2 ) S 1k f =i fll22(q) -

Proof. The inf sup stability of the mixed FEM on the fine level leads to the exis-
tence of a test function (g, v5,) € X(T) x U(T) of bounded norm in H(div, Q) x L?()
with

1Pr — Phlla(div,0) + [tn — unl 220
= a(ﬁfﬁa(ﬁl) +b((j}\17@ - E}/L) +b(ﬁ7ﬁaa)

Since (pp,un) and (pp,, up) solve discrete problems with respect to the fine level with
the test function (g, vy,), the previous terms are equal to

/ T div(@ — pr) dx = / T — Tf) dx < |Tief — Meflliaey. O
Q Q

The following lemma is key in the L? flux error control [CHX09, CR11, HX12].
LEMMA 5.4 (see [HX12]). It holds that ||py — pall 2y < n(T, R(T,T)).

Proof. This is shown in (3.2)—(3.3) of Lemma 3.1 in [HX12], where the right-hand
side f is replaced by ﬁkf. We refer the reader to [CHX09, CR11, HX12] for further
details and give merely an overview over the arguments in this paper: Since the
L? vector function p;, — py, is divergence-free, the discrete Helmholtz decomposition
(proven in Lemma 2.6 in [HX12]) asserts that it is equal to some rotation curl 3, for
some function B; of piecewise polynomials of degree k + 1 or k + 2 (with curlB; =
(—8@/ Oxa, 6@/83:1)) in n = 2 and for some first-kind Nédélec finite element func-
tion in n = 3 dimensions. An appropriate quasi-interpolation leads to curl 5, and,
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according to the discrete equations, shows a(p, — pp,curl5,) = 0 = a(ﬁ,curl@).
This and piecewise integration by parts followed by trace inequalities and approxi-
mation and stability properties of the quasi-interpolation error 35 — ) conclude the
proof. ]

The new ingredient of the discrete reliability proof for the natural norms is the
following lemma based on the surjective operator div : H}(Q; R™) — L3(€).

LEMMA 5.5. It holds that ||ﬂﬁfuh||L2(Q) < H/ﬁ}:*phHL2(Q)+”hT(ph*vNC‘uh>HL2(Q’)
for the subdomain Q' covered by the refined region T \ T .

Proof. Extend uy, —uyp, by zero outside of 2, and consider this expansion as a right-
hand side of a Poisson problem on a large ball that includes 2 with zero boundary

values on the boundary of this ball. Let z € H?(Q) be the restriction of the smooth
solution to € to infer

(5.3) —Az =up —up ae.in Q@ and ||z||g2) < lJun — unllL20)-

The mixed FEMs under consideration allow for some interpolation operator I :
HY R — X(T) (resp., Ir : HY(;R™) — X(T)) with the commuting diagram
property Il div ¥ = div IV and the first-order approximation properties Hh}l(\ll -
Ip®)|| S [|¥]| 1) for any ¥ € H'(Q;R") (and corresponding results for Ir and I,
with respect to ’f‘) The commuting property leads to

sl = - |

(up,—up) divVz dx = /
Q

up, div [pVz dx—/ ay, divIpVz dx.
Q

Q

The discrete equations on the fine and coarse levels lead to
[ —unl|2 () = a(Ph. IpV2)—a(pn, IpVz) = a(ph—pn, IpVz)+a(pn, I Vz—IpVz).
The Cauchy inequality in L2, the stability of I, and the bound (5.3) show

a(Ph = prs TrV2) S i = unllz2(o) 1Pk = pall2(0)-

Notice that f;Vz — IrVz vanishes on T N 7A'7 and let @’ denote the L? scalar product
over €)', Then, the split

a(pp, f;Vz—IFVz) = d'(pn, EVZ—IFVZ) =ad (pn,Vz—IrVz)—d (pn, VZ—T;VZ)

allows arguments of [CPS16] on the coarse and fine levels. The Raviart-Thomas
and the Brezzi-Douglas-Marini finite element spaces lead to the L? orthogonality
of Vz — Ip onto Vycup € Pr_1(T;R™) (with the convention P_y := {0}). This,
the elementwise first-order approximation property (on the fine level even with some
smaller 14 ), and (5.3) in the end show

| (pn, V2 = IpV2)| = |a'(pn — Vveun, Vz — IpVz)]
< \hr(on — Vvcun) |2 1h7 (V2 = TV 2)|| 220y
S b7 (pn = Viveun) | L2y l[un — unllL2()-

The same arguments apply verbatim to the term a’(pp, Vz — IpVz) with the mesh-
size h7 on the coarse level as displayed above. The combination of the preceding four
displayed estimates concludes the proof:

[un — unll72 0y S lun = unll2@)(IPr = pallz2@) + 17 (Ph — Vivoun) | L2@))- D
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Proof of (A3) in Theorem 5.1. The triangle inequality and the three aforemen-
tioned lemmas lead to the asserted discrete reliability. Lemma 5.3, Il f = Il f in
Q\ ', and a triangle inequality show

ST, T) S pn — prllaiv.oy + @n — unllze() + 1Tk f — T f 2oy
The combination with Lemmas 5.4-5.5 concludes the proof. ]

5.5. Proof of quasiorthogonality (A4). The flux or stress approximations in
the mixed finite element schemes allow for an orthogonality up to some perturbation
with data oscillations. This leads to a proof of the axiom (A4.) for any £ > 0 and,
together with (A1)-(A2), Theorem 3.1 provides (A4). The analysis for the error of
the Lagrange multiplier is based on the smaller L? error of the L? projection onto the
discrete space of the error in the displacement variable for sufficiently fine meshes.

LEMMA 5.6. Ghven the polyhedral Lipschitz domain €, there exists some index
a > 1/2 such that any discrete solution (pp,up) € X(T) x Px(T) and the L? projection
Ixu of the displacement u of the exact solution p = Vu onto Py(T) with respect to
the triangulation T € T satisfies |Iru — un|| r2() S Moax |0 = Prll2(0) + osc(f, T).
If k> 1, then ||Hyu — up | 2(0) S hax (IIp — PrllL2(0) + 0se(f, T)).

Proof. Adopt the notation and arguments from Lemma 5.5 for the right-hand side
yu—up € Py(T) of the Poisson equation applied to 2 with weak solution z € H} ().
The reduced elliptic regularity of the polyhedral domain 2 [Dau88] leads to the index
0 < a<1with

—Az = Hku — Up in Q and ||Z||H1+Q(Q) SJ ||Hku - uh||L2(Q)-

The interpolation operator I can be extended to Ir : H*(Q;R™)NH (div, Q) — %(T)
and allows for the error estimate

(5.4) V2 = IrVz|r20) S hmax 12l H142 @) S Phax ITku — un || 2 ()

The commuting diagram property shows that the piecewise polynomial right-hand
side is equal to up — lyu = divVz = divIpVz. This, the discrete equation for
(ph,un), and an integration by parts with u € Hg () result in

[[Tgew — uhH%Q(Q) = / (up, — Mpu)Az dx = /(uh —u)divIpVz dx
Q Q

:/(p—ph) ApVz dx.
Q
The approximation properties (5.4) of the Fortin interpolation show
[ on =) (92 = 1rV2) xS il = il Mot = vl
An integration by parts with z € H () and the discrete and exact equations lead to

/{)(zo—ph).v»z dx:/Qz<f—nkf>dx:/(z—nkzxf—nkf)dx.

Q

A piecewise Poincaré inequality and the above regularity of z lead to the bound

/ (pn— p) - Vz dx < B, ose( £, T Meu — un 2o
Q
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with 8 =0 for £k = 0 and § = « for £ > 1. The combination of the preceding four
displayed formulas results in

IMw — w720y S ITew — unll 2@ (Aax P = Prll2(@) + Bl 05e(f,T)). O
A corresponding lemma for the flux error is known from [CHX09, CR11, HX12].
LEMMA 5.7 (see [HX12]). It holds that ||pr, — pnllz2() S (T, R(T, 7).

Proof. This is shown in (3.1) of Lemma 3.1 in [HX12]. |

The proof of (A4) in Theorem 5.1 recalls the L? quasiorthogonality of the flux
errors of [CHX09, Theorem 3.2] or [CR11, Lemma 4.3 and (4.4)] in the form

[pe+1 — p€||2L2(Q) +lp —pe+1||%2(9) —lp— pe||2m(9) S e = pesallzz) osc(fera, Te)-
The mixed FEM fixes the divergence — divp, = Il;f =: f; and their orthogonality
[ fer1 = fell 2y + 1f = Feilliey = I1f = fell 72y =0
leads (for all £ € N) in the aforementioned L? quasiorthogonality to
|\Pe+1*pe||§1(div,9)+||10*pe+1||§1(div,m*|\P*pe||§1(div,9) S lp—pesill2() osc(ferr, Te)-

For any 0 < ¢ with eAs < 1 and the multiplicative constant C' ~ 1 hidden in the
notation <, the sum of those estimates results for any ¢, m € Ny in

/+m l+m—1
Z Ipkr1 = Pl Fraiv.) < Ip = PellFrqaiv.) +€/As Z Ip = prsallZzq)
k=¢ k=t
(55) L4+m
+C?As/e > 0s¢®(fug1, T)-
k=¢

For a sequence of uniformly refined meshes 7, the discrete reliability (A3) leads (in
the limit hz — 0) to the reliability of [CPS16], with the abbreviation o7 := 02(7y),

(5.6) lp— pf”%{(div,Q) + flu— W||2L2(Q) < Agoj for all £ € Ny.

The oscillation osc(fry1, Te) = [[he(fr+1— fr)ll L2 (o) is bounded by ||kl Lo () || fot+1—
JrllL2(). The L? orthogonality of the integrands shows

l+m

Z 08¢ (frr1, Te) < P | fewmar = fell T2y < Moo |f = fellZ2(q)-
k=t

The combination of the previous estimates with (5.5) leads to the quasiorthogonality
(A4,) for the flux contribution in the form

+m +m
(57) ||p/€+1 - pk”%[ div,Q < A3Ul? +e UI% + C2A3h12nax/5 M2<7z)
(div,2)
k=( k=0+1

Since the Lagrange multipliers are not orthogonal in general, the critical term is
controlled with Lemma 5.6 with the L? projection I, onto Py (7;) with respect to Tg
with maximal mesh-size < hyax by

ITLew — wel|L2() S PomaxllP — pellL2() + 0sc(f, Te).
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This estimate on the level ¢ + 1 and elementary algebra result in

Jwers — UZH%Z(Q) —lu— UZH%Z(Q) + flu — Uz+1||%2(9)
= 2(u — ugp1,ue — wpy1)r2(0) = 2(Mpp1u — wpg1, we — ugy1) 12(0)
S lwetr — well2 ) (hpaxllp — PetllL2 @) + ose(f, Tet1))
< haxllwer s — well 2 @) 1P = pesa |l (div,0)-
(Utilize 0 < a < 1 and div(p — pey1) = Hey1f — f in the final step.) The best

approximation of the mixed FEM implies ||p —pet1 2 (aiv,0) S 10— Pell #(aiv,0) + llu—
|| p2(q). This and (5.6) show

1/2 |Juer = well7ziq) = llu = well 720y + lv = wera |72 (0

S h?noéxHP - pZJrl”%I(div,Q) S h?n();xo-l%'

The sum over all those inequalities reads

l+m L+m
Z a1 — urll72 () S llu— w72 (q) + M Z o
k=0 k=(+1

The combination of (5.6) with the previous flux error control leads to

l+m L+m
(5.8) Y (T Tisa) S 07 + hiee D 05
j=¢ Jj=t+1

In other words, some generic constant Ay ~ 1 and ¢ = A4h2%  satisfy (A4.) and
€ — 0 as hyax — 0; further details are omitted for £ > 1.

It remains to prove (A4) for k = 0 without any assumption on the smallness of
hmax- In case k = 0, the piecewise derivatives of uy in n(7) vanish, and the error
estimator 7(7) does not contain any wuy, at all. Set &(7,7) = |[pr — Pull H(aiv,0),
and observe from the arguments of this section that (A1)—(A3) hold with § replaced
by ¢’ (even with possibly smaller constants). The estimate (5.7) is (A4.) for any
0 < e < 1/A3 when ¢ is replaced by ¢§’. Utilizing the general theory with ¢ replaced
by ¢’, Theorem 4.2 implies plain convergence of the error estimator. Hence the right-
hand side of (5.8) is < o7, and this proves (A4) for the original distance function 4
and no reference to hy.x small. 0

Acknowledgment. This work was rewritten while the first author enjoyed the
hospitality of the Hausdorff Research Institute of Mathematics in Bonn, Germany,
during the Hausdorff Trimester Program Multiscale Problems: Algorithms, Numerical
Analysis and Computation.

REFERENCES

[Alo96] A. ALONSO, Error estimators for a mized method, Numer. Math., 74 (1996), pp. 385-395.

[BBF13] D. Borri, F. BREZZI, AND M. FORTIN, Mized Finite Element Methods and Applications,
Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013.

[BC17] P. BRINGMANN AND C. CARSTENSEN, An adaptive least-squares FEM for the Stokes
equations with optimal convergence rates, Numer. Math., 135 (2017), pp. 459-492.

[BCS17] P. BRINGMANN, C. CARSTENSEN, AND G. STARKE, An adaptive least-squares FEM for
linear elasticity with optimal convergence rates, SIAM J. Numer. Anal., to appear.



[BDAV04]
[BdV04]
[BMOg]
[Car97)
[CDN12]

[CDNP16]

[CDR16]
[CFPP14]
[CHX09]

[CKNSO08]

[CP15]

[CPS16]

[CR11]
[Dau8y|

[DPE12]

[GSS14]

[HX12]

[Rab15]
[Ste0T]

[Ste08]

AXIOMS OF ADAPTIVITY FOR SEPARATE MARKING 2665

e

. BINEV, W. DAHMEN, AND R. DE VORE, Adaptive finite element methods with conver-
gence rates, Numer. Math., 97 (2004), pp. 219-268.

P. BINEV AND R. DE VORE, Fast computation in adaptive tree approximation, Numer.
Math., 97 (2004), pp. 193-217.

. BECKER AND S. MAO, An optimally convergent adaptive mized finite element method,
Numer. Math., 111 (2008), pp. 35-54.

. CARSTENSEN, A posteriori error estimate for the mized finite element method, Math.
Comp., 66 (1997), pp. 465-476.

. COHEN, R. DEVORE, AND R.H. NocHETTO, Convergence rates of AFEM with H~1
data, Found. Comput. Math., 5 (2012), pp. 671-718.

. CARSTENSEN, A. DOND, N. NATARAJ, AND A.K. PANI, Error analysis of nonconform-
ing and mized FEMs for second-order linear non-selfadjoint and indefinite elliptic
problems, Numer. Math., 133 (2016), pp. 557-597.

C. CARSTENSEN, A. DOND, AND H. RABUS, Quasi-optimality of adaptive mized FEMs

for general second-order linear elliptic problems, in preparation, 2017.

C. CARSTENSEN, M. FEISCHL, M. PAGE, AND D. PRAETORIUS, Axioms of adaptivity,
Comput. Math. Appl., 67 (2014), pp. 1195-1253.

L. CHEN, M. HoLsT, AND J. XU, Convergence and optimality of adaptive mized finite
element methods, Math. Comp., 78 (2009), pp. 35-53.

J.M. CaAscoN, C. KREUZER, R.H. NOCHETTO, AND K.G. SIEBERT, Quasi-optimal conver-
gence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008),
pp. 2524-2550, https://doi.org/10.1137/07069047X.

C. CARSTENSEN AND E.-J. PARK, Convergence and optimality of adaptive least squares
finite element methods, SIAM J. Numer. Anal., 53 (2015), pp. 43-62, https://doi.
org/10.1137/130949634.

C. CARSTENSEN, D. PETERSEIM, AND A. SCHRODER, The norm of a discretized gradient
in H(div)* for a posteriori finite element error analysis, Numer. Math., 132 (2016),
pp. 519-539.

C. CARSTENSEN AND H. RABUS, An optimal adaptive mized finite element method, Math.
Comp., 80 (2011), pp. 649-667.

M. DAUGE, Elliptic Boundary Value Problems on Corner Domains: Smoothness and
Asymptotics of Solutions, Lecture Notes in Math. 1341, Springer, Berlin, 1988.
D.A. D1 PIETRO AND A. ERN, Mathematical Aspects of Discontinuous Galerkin Methods,
Mathématiques & Applications (Berlin) [Mathematics & Applications] 69, Springer,

Heidelberg, 2012.

D. GALLISTL, M. SCHEDENSACK, AND R. STEVENSON, A remark on newest vertex bi-
section in any space dimension, Comput. Methods Appl. Math., 14 (2014), pp.
317-320.

J.G. HUANG AND Y.F. XU, Convergence and complexity of arbitrary order adaptive mized
element methods for the Poisson equation, Sci. China Math., 55 (2012), pp. 1083—
1098.

H. RABUS, Quasi-optimal convergence of AFEM based on separate marking—Parts 1
and II, J. Numer. Math., 23 (2015), pp. 137156, 157-174.

R. STEVENSON, Optimality of a standard adaptive finite element method, Found. Com-
put. Math., 7 (2007), pp. 245-269.

R. STEVENSON, The completion of locally refined simplicial partitions created by bisec-

tion, Math. Comp., 77 (2008), pp. 227-241.

aQ » o w


https://doi.org/10.1137/07069047X
https://doi.org/10.1137/130949634
https://doi.org/10.1137/130949634

	Introduction
	Axioms and results
	Partitions and admissible triangulations
	Estimators and distance
	Adaptive algorithm
	Axioms
	Optimal convergence rates

	Remarks
	Weak form of (A4)
	Quasimonotonicity
	Optimal data approximation with Approx
	Collective Dörfler marking is optimal for ...

	Proofs
	Estimator reduction
	Convergence
	Proof of Theorem 2.1

	Application to mixed FEM
	Mixed formulation of a Poisson model problem
	Error estimators and main result
	Proof of (A1)–(A2)
	Proof of discrete reliability (A3)
	Proof of quasiorthogonality (A4)

	References

