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AXIOMS OF ADAPTIVITY WITH SEPARATE
MARKING FOR DATA RESOLUTION∗

C. CARSTENSEN† AND H. RABUS†

Abstract. Mixed finite element methods with flux errors in H(div)-norms and div-least-squares
finite element methods require a separate marking strategy in obligatory adaptive mesh-refining. The
refinement indicator σ2(T ,K) = η2(T ,K) + µ2(K) of a finite element domain K in an admissible
triangulation T consists of some residual-based error estimator η(T ,K) with some reduction prop-
erty under local mesh-refining and some data approximation error µ(K). Separate marking means
either Dörfler marking if µ2(T ) ≤ κη2(T ) or otherwise an optimal data approximation algorithm
with controlled accuracy. The axioms are sufficient conditions on the estimators η(T ,K) and data
approximation errors µ(K) for optimal asymptotic convergence rates. The enfolded set of axioms of
this paper simplifies [C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Comput. Math. Appl.,
67 (2014), pp. 1195–1253] for collective marking, treats separate marking established for the first
time in an abstract framework, generalizes [C. Carstensen and E.-J. Park, SIAM J. Numer. Anal.,
53 (2015), pp. 43–62] for least-squares schemes, and extends [C. Carstensen and H. Rabus, Math.
Comp., 80 (2011), pp. 649–667] to the mixed finite element method with flux error control in H(div).
The paper gives an outline of the mathematical analysis for optimal convergence rates but also serves
as a reference so that future contributions merely verify a few axioms in a new application in order
to ensure optimal mesh-refinement of the adaptive algorithm.
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1. Introduction. The understanding of adaptive mesh-refinement for finite ele-
ment methods (FEMs) has been one of the most important fields in the computational
sciences with PDEs over the last two decades following early theoretical contributions
due to Ivo Babuška et al. in the 1980s and starting in 2D with Willy Dörfler in 1997
before the first proofs of optimal rates appeared in [Ste07, CKNS08]; more detailed
historic remarks and references can be found in [CFPP14] with a first abstract ap-
proach and four axioms for the collective marking strategy cafem. Those four axioms
describe elementary properties of the total error estimator that are sufficient for op-
timal convergence rates and do not include local efficiency as this is not available for
boundary element methods. Standard adaptive schemes are based on a total error
estimator and collective marking on each level outlined in pseudocode as follows:

cafem(θ, T0)
for ` = 0, 1, . . . do

Compute σ`(K) for all K ∈ T`
T`+1 := Dörfler marking(θ, σ`(K) : K ∈ T`)

end for
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In earlier contributions [Ste07, CKNS08], the preceding step Compute σ` is re-
alized by the call of Solve and Estimate with respect to a triangulation T` and for
a given application at hand. This paper generalizes cafem and includes certain data
approximation terms, which do not allow for a forthcoming reduction property (A2)
in general. Mixed finite element schemes when the fluxes are measured in the H(div)
norm or least-squares FEMs [CDR16, BC17, BCS17] are examples where cafem is
not successful and a separate marking is obligatory.

This paper simplifies the axioms from [CFPP14], also works without the concept
of nonlinear approximation classes [BDdV04, Ste07, CKNS08], and so avoids any no-
tion of efficiency. The focus of this paper is on adaptive finite element algorithms
with separate marking (safems) for the separate data approximation. The proposed
algorithm is a modification of the standard afem: Dörfler marking is applied if the
estimated error dominates the data approximation error, while an optimal data ap-
proximation is performed otherwise; this is outlined in pseudocode as follows:

safem(θA, κ, ρB , T0)
for ` = 0, 1, . . . do

Compute η`(K), µ(K) for all K ∈ T`
if µ2

` := µ2(T`) ≤ κη2
` = κη2

` (T`, T`) then // Case (A)
T`+1 := Dörfler marking(θA, η`(K) : K ∈ T`)

else // Case (B)
T`+1 := T` ⊕ appx(ρBµ2

` , µ(K) : K ∈ T0)
end if

end for

Afems based on separate marking have been designed and established by several
authors. The algorithm in [Ste07], for example, follows a similar idea with a routine
RHS applied on each level ` for a prescribed tolerance µ0/2` in the controlled data
approximation. The algorithm in [BM08] runs Dörfler marking also for the data ap-
proximation reduction, while [CDN12] suggests separate marking for data in H−1(Ω).

The algorithm safem of this paper combines ideas from [Ste07, BM08, CR11,
Rab15] and distinguishes two cases, Cases (A) and (B), where the refinement is with
respect to the dominant refinement indication η2

` or µ2
` . The refinement in Case (B)

depends on the data approximation error and is independent of the discrete solution.
This allows for any optimal algorithm for data approximation: The output TTol =
appx(Tol, µ(K) : K ∈ T0) is expected to satisfy

µ2(TTol) ≤ Tol and |TTol| − |T0| ≤ Λ5 Tol−1/s .

Optimal convergence rates for the estimators follow from axioms (A1)–(A4) general-
ized from [CFPP14] and (B1)–(B2) for optimal data approximation with quasimono-
tonicity (QM). The results of this paper not only provide a guideline for nonexperts
in asymptotic convergence theory but also allow them a direct reference to the axioms
and reduce the work required to prove properties (A1)–(A4), (B1)–(B2), and (QM) in
an example at hand. If the global efficiency of the estimator is known, rate-optimality
of the corresponding error follows immediately.

The analysis for afems based on collective marking as in [CFPP14] is included,
when σ2(T , •) = η2(T , •) +µ2(T , •) replaces η2(T , •) in Case (A) and the refinement
indicator in Case (B) is set to zero. Thus, only Case (A) of safem applies for collective
marking, the axioms (A1)–(A4) are equivalent to those in [CFPP14], and (B1) and
(B2) are automatically satisfied in this setting.
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The subroutine appx in safem can be realized by some Dörfler marking (similar
to the algorithm in [BM08]) or by the algorithm Approx from [BDdV04, BdV04]
(applied in [CR11, Rab15]). However, the flexibility in the data reduction allows
applications of safem to problems with data approximation terms that do not satisfy
an estimator reduction property but do satisfy quasimonotonicity. In those cases,
Dörfler marking is not guaranteed to yield optimality. Two applications motivate
the present paper, where the data approximation in the L2 term cannot be avoided:
mixed FEM with flux error estimation in H(div) (rather than solely in L2(Ω) from
[CHX09, CR11]) and least-squares FEM. There already exist contributions based on
the axioms of this paper [CP15, BC17, BCS17] (it is straightforward to re-interpret
the first two; the third is already based on the precise axioms of this paper) for
least-squares FEM. But it is also important for the application of mixed FEM to
well-posed general linear second-order problems [CDNP16], for the low-order terms
enforce the consideration of the divergence of the flux in L2. The recent comprehensive
a posteriori error analysis in [CPS16] provides an efficient and reliable control in
natural norms: the error in the flux in H(div,Ω) and the error in the displacements
in L2(Ω).

The separate marking algorithms [Ste07, CDN12] may also be analyzed within
the abstract framework of this paper.

The remaining parts of this paper are organized as follows. Section 2 presents
more details on safem and guides the reader through the conditions in (A1)–(A4)
and (B1)–(B2) for the refinement indicators η and µ and asserts the optimal conver-
gence rate of safem in Theorem 2.1 with respect to σ. Together with efficiency, this
automatically leads to rate-optimality of the error. A collection of remarks follows in
section 3 before section 4 presents the proofs. Section 5 contains an application to
mixed FEMs in H(div), where separate marking is obligatory, with a discrete version
(A3) of [CPS16].

The notation A . B abbreviates A ≤ CB for some positive generic constant C,
which depends only on the initial triangulation T0 and on the universal constants in
the axioms; while A ≈ B abbreviates A . B . A. Throughout this paper standard
notation of Lebesgue and Sobolev spaces and their norms applies. The modulus
sign | • | denotes the Euclidean length, the area or volume of a domain, as well as
the counting measure; e.g., |M| is the cardinality of M and equals the number of
elements in a subset M of a triangulation.

2. Axioms and results. The axioms concern general conditions of the estima-
tors η and µ, which play different roles in the adaptive algorithm and are based on
the set T of admissible triangulations.

2.1. Partitions and admissible triangulations. Let T0 be a regular triangu-
lation of the domain Ω into (tagged) n-simplices in Rn. Any refinement P from T0 by
the newest vertex bisection (NVB) is called a partition and is written P ∈ P (T0) =: P.
A partition P ∈ P, which is a regular triangulation in the sense of Ciarlet (sometimes
called conforming triangulation), is called admissible and is written P ∈ T (T0) =: T.

The input of the underlying refinement procedure Tout := Refine(Tin,M) is
an admissible triangulation Tin ∈ T and some subset M ⊆ Tin thereof; the output
Tout ∈ T (Tin) is the smallest admissible refinement of Tin in which all T ∈ M ⊆ Tin
are at least bisected, i.e., M ⊆ Tin \ Tout. The procedure Refine specifies the NVB
with completion (to avoid hanging nodes, etc.), and more details may be found in
[Ste08]. Given T , T ′ ∈ T its overlay T ⊕ T ′ ∈ T (T ) ∩ T (T ′) is the smallest common
refinement of T and T ′.
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2.2. Estimators and distance. The axioms are defined in terms of refinement
indicators η and µ plus a global distance δ. For any admissible triangulation T ∈ T
and any element domain K ∈ T let η(T ,K) and µ(K) be a nonnegative real number
with squares η2(T ,K) and µ2(K) and their sums

η2(T ,M) :=
∑
K∈M

η2(T ,K), µ2(M) :=
∑
K∈M

µ2(K) for any M⊆ T .(2.1)

The distance δ(T , T̂ ) of T ∈ T and its refinement T̂ ∈ T(T ) is a nonnegative real
and for simplicity can be regarded as the squared energy norm of the difference of the
discrete solutions on T and T̂ . The estimators are utilized in the adaptive algorithm
and are linked with the distance function in the axioms below. The output of the
adaptive algorithm is a sequence T0, T1, T2, . . . of successive refinements that start with
T0 and give rise to the abbreviations (with a subindex ` to refer to the triangulation
as part of the output of safem)

η`(K) := η(T`,K) for K ∈ T` and η` := η(T`, T`) :=
( ∑
K∈T`

η2
` (K)

)1/2

.

The sum σ2 := η2 +µ2 and their local variants are frequently utilized throughout this
paper with σ2

` := η2
` + µ2

` for µ2
` := µ2(T`) :=

∑
K∈T` µ

2(K).

2.3. Adaptive algorithm. In more detail, safem calls Select and Refine to
realize the Dörfler marking in Case (A) from the introduction; more details on appx
in Case (B) follow in subsection 3.3.

safem(θA, κ, ρB , T0)
Input: Initial coarse triangulation T0, 0 < θA < 1, 0 < ρB < 1, 0 < κ
for ` = 0, 1, . . . do

Compute refinement indicators η2
` (K) and µ2(K) for all K ∈ T`

if µ2
` ≤ κη2

` then // Case (A)
Select a subsetM` ⊆ T` of element domains of (almost) minimal
cardinality with

θAη
2
` ≤ η2

` (M`) :=
∑

K∈M`

η2
` (K)(2.2)

Compute T`+1 := Refine(T`,M`)
else // Case (B)

Run T = appx(Tol, µ(K) : K ∈ T0) with Tol = ρBµ
2
`

Compute T`+1 := T` ⊕ T
end if

end for
Output: Tk, ηk, µk, σk :=

√
η2
k + µ2

k for k = 0, 1, . . .

The selection of M` with almost minimal cardinality means that |M`| . |M?
` |,

where M?
` denotes some set of minimal cardinality with (2.2). The point is that this

can be realized in linear CPU time [Ste07].

2.4. Axioms. The universal positive constants Λref , Λ1, Λ2, Λ3, Λ4, Λ6, and
Λ̂3 ≥ 0 as well as 0 < ρ2 < 1 in the axioms (A1)–(A4), (B2), and (QM) below solely
depend on T (whence merely on T0); the parameters s > 0 and Λ5 in (B1) also depend
on the algorithm appx and the optimal data approximation rate.
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The axioms (A1)–(A3) and (B2) concern an arbitrary triangulation T ∈ T and
any refinement T̂ ∈ T (T ) of it, while (A4) solely concerns the outcome of safem.
Recall the sum conventions for η(T ,M) and µ(T ) in subsection 2.2.

(A1) Stability. ∀T ∈ T, ∀T̂ ∈ T (T )

(A1)
∣∣∣η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )

∣∣∣ ≤ Λ1δ(T , T̂ ).

(A2) Reduction. ∀T ∈ T, ∀T̂ ∈ T (T )

(A2) η(T̂ , T̂ \ T ) ≤ ρ2η(T , T \ T̂ ) + Λ2δ(T , T̂ ).

(A3) Discrete reliability. ∀T ∈ T, ∀T̂ ∈ T (T ) ∃R(T , T̂ ) ⊆ T with T \T̂ ⊆ R(T , T̂ ),∣∣∣R(T , T̂ )
∣∣∣ ≤ Λref

∣∣∣T \ T̂ ∣∣∣ and

δ2(T , T̂ ) ≤ Λ3

(
η2(T ,R(T , T̂ )) + µ2(T )

)
+ Λ̂3η

2(T̂ ).
(A3)

(A4) Quasiorthogonality of discrete solutions. ∀` ∈ N0

(A4)
∞∑
k=`

δ2(Tk, Tk+1) ≤ Λ4σ
2
` .

(B1) Rate s data approximation. ∀Tol > 0, TTol := appx(Tol, µ(K) : K ∈ T0) ∈ T
satisfies

(B1) |TTol| − |T0| ≤ Λ5 Tol−1/(2s) and µ2(TTol) ≤ Tol .

(B2) Quasimonotonicity of µ. ∀T ∈ T, ∀T̂ ∈ T (T ), µ(T̂ ) ≤ Λ6µ(T ).

Theorem 3.2 below asserts that the aforementioned axioms imply quasimono-
tonicity of σ for small values of Λ̂3.

(QM) Quasimonotonicity of σ. ∀T ∈ T, ∀T̂ ∈ T (T ), σ(T̂ ) ≤ Λ7σ(T ).

2.5. Optimal convergence rates. The axioms (A1)–(A4), (B1)–(B2), and
(QM) ensure quasioptimality of safem for sufficiently small parameters θA and κ
as stated in Theorem 2.1 below. Recall that σ2 := η2 + µ2 and set

σ2(T ) ≡ σ(T )2 := σ2(T , T ) :=
∑
K∈T

σ2(T ,K) for T ∈ T and σ` := σ(T`).

For any N ∈ N0, the comparison with the optimal rates concerns the optimal value

minσ(T (N)) := min{σ(T ) : T ∈ T (N)}

of all admissible triangulations

T(N) := {T ∈ T : |T | ≤ |T0|+N}

of cardinality |T | ≤ |T0|+N with at most N extra cells.

Theorem 2.1 (quasioptimality). Suppose (A1)–(A4), (B1)–(B2) and (QM). This
leads to the existence of some κ0 > 0, which is +∞ if Λ6 = 1, such that any choice
of κ, θA, and ρB with

0 < κ < κ1 := min
{
κ0,Λ−2

1 Λ−1
3

}
, 0 < θA < θ0 := (1− κΛ2

1Λ3)/(1 + Λ2
1Λ3),
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and 0 < ρB < 1 implies the following. The outputs (T`)`∈N0 and (σ`)`∈N0 of safem
satisfy the equivalence

Λs5 + sup
`∈N0

(1 + |T`| − |T0|)s σ` ≈ Λs5 + sup
N∈N0

(1 +N)s minσ(T (N)).(2.3)

The theorem guarantees optimal rates in that the left-hand side of the equivalence
(2.3) is smaller than infinity if the right-hand side is, and vice versa. The quotient
is bounded below and from above by the equivalence constants, which continuously
depend on Λref , Λ1, Λ2, Λ3, Λ̂3, Λ4, Λ6, ρB , ρ2, θA, κ, and s > 0 but not on Λ5.

The (possibly unknown) parameter s is not utilized in safem. The axioms (B1)–
(B2) specify sufficient conditions for optimal convergence, where the parameter s > 0
is arbitrary and may refer to a related nonlinear approximation class.

3. Remarks.

3.1. Weak form of (A4). The axiom (A4) can be weakened with some param-
eter ε > 0, which vanishes in (A4)≡(A40).

(A4ε) Quasiorthogonality with ε > 0. ∃ε > 0 ∃0 < Λ4(ε) <∞ ∀`,m ∈ N0,

(A4ε)
`+m∑
k=`

δ2
k,k+1 ≤ Λ4(ε)σ

2
` + ε

`+m∑
k=`

σ2
k.

The axiom (A4ε) implies (A4ε′) for all 0 ≤ ε < ε′ with the same constant Λ4(ε) =
Λ4(ε′), and (A4) is (A40), i.e., (A4ε) for ε = 0. Conversely, as ε ↘ 0 it may be
expected that Λ4(ε) →∞. In the presence of (A1)–(A2), this is not the case. In fact,
(A1)–(A2) and (A4ε) imply (A4) for sufficiently small ε > 0.

Theorem 3.1 ((A4ε)⇒(A4)). Let θA be the parameter of safem, let 0 < ρ12 < 1
be the reduction factor for the total error estimator with constant 0 < Λ12 < ∞ in
Theorem 4.1 below, and let 0 ≤ ε < (1− ρ12)/Λ12. Then (A1)–(A2) and (A4ε) imply
(A4) with Λ4 := Λ4(ε) + ε(1 + Λ12Λ4(ε))/(1− ρ12 − εΛ12).

This was first observed in [CFPP14] for cafem and is proved in subsection 4.2
for completeness and applied below in Theorem 5.1.

3.2. Quasimonotonicity. The axiom (B2) explicitly ensures the quasimono-
tonicity of µ. The strict inequality M̂ := (Λ2

1 + Λ2
2)Λ̂3 < 1 implies (QM) with

Λ7 :=
√

Λ2
6 + Λ2

8, M := (Λ2
1 + Λ2

2)Λ3, and

Λ8 :=
1 +M(1− M̂) + M̂ + 2

√
M(1− M̂) + M̂

(1− M̂)2
.

Theorem 3.2 (quasimonotonicity). Suppose (A1)–(A3) and M̂ < 1. Then, any
T ∈ T and T̂ ∈ T (T ) satisfy η(T̂ ) ≤ Λ8σ(T ).

Proof. Given λ := (
√
M + M̂ −MM̂ − M̂)/(M + M̂) < 1/M̂ − 1, recall the

following implication of the axioms (A1)–(A3): namely,

η2(T̂ , T̂ ∩ T ) ≤ (1 + 1/λ)η2(T , T̂ ∩ T ) + (1 + λ)Λ2
1δ

2(T , T̂ ),

η2(T̂ , T̂ \ T ) ≤ (1 + 1/λ)ρ2
2η

2(T , T \ T̂ ) + (1 + λ)Λ2
2δ

2(T , T̂ ),

δ2(T , T̂ ) ≤ Λ3σ
2(T ) + Λ̂3η

2(T̂ ).



2650 C. CARSTENSEN AND H. RABUS

Those inequalities plus the split η2(T̂ ) = η2(T̂ , T̂ ∩ T ) + η2(T̂ , T̂ \ T ) verify

η2(T̂ ) ≤ (1 + 1/λ)η2(T ) + (1 + λ)(Λ2
1 + Λ2

2)
(

Λ3σ
2(T ) + Λ̂3η

2(T̂ )
)
.

3.3. Optimal data approximation with APPROX. Case (B) of safem runs
a data approximation algorithm appx(Tol, µ(K) : K ∈ T0) with output in T. The
data approximation algorithm Approx [BDdV04, BdV04] is based on the refinement
of partitions and has been incorporated into separate marking algorithms of the type
safem of this paper for data approximation reduction in [CR11, Rab15]. Approx is
one possible realization of appx in safem.

Let P̂ be some NVB refinement of P ∈ P. Let K ∈ P and P̂ ∈ P (P); then the
refinement of K in P̂ is the set P̂(K) := {T ∈ P̂ |T ⊆ K} in the following.

(SA) Subadditivity. ∃Λ6 <∞, ∀P ∈ P, ∀P̂ ∈ P (P) , ∀M ⊆ P

µ2(P̂(M)) :=
∑
K∈M

∑
T∈P̂(K)

µ2(T ) ≤ Λ6µ
2(M).(SA)

Note that the notation of the data approximation term µ is a straightforward extension
of its definition in (2.1) for admissible triangulations to partitions.

The algorithm Approx is introduced and analyzed in [BDdV04, BdV04] with
input tolerance Tol′ := Tol /Λ6 = ρBµ`/Λ6 and the values µ(K) on the coarse trian-
gulation T0.

Theorem 3.3 (see [BdV04, BDdV04]). (SA) in Approx implies (B1)–(B2) with
rate-s-optimality in the sense that

(3.1) M(s, µ) := sup
N∈N0

(1 +N)s minµ(T (N)) ≈ Λs5

holds for all s > 0 (and M(s, µ) < ∞ if and only if Λ5 < ∞) with equivalence
constants which may depend on s.

Proof. This follows from near optimality proven in [BdV04, Theorem 6.1] and
[BDdV04, Lemma 4.4].

Note that Approx given in [BdV04, BDdV04] is even instance optimal.

3.4. Collective Dörfler marking is optimal for ‖hf‖L2(Ω). The optimality
of cafem also suggests an algorithm for the reduction of the L2-norm of a mesh-size
weight h times a given data like h f .

Given f ∈ L2(Ω) in the polyhedral domain Ω ⊆ Rn partitioned into the regular
triangulation T0, set η(T`,K) := |K|2/n |f |L2(K) for all K ∈ T`. Let η` = η(T`, T`).
Then, (A1)–(A4) are satisfied with appropriate weight functions hT of mesh-sizes in
T (resp., the mesh-sizes hT̂ =: ĥT with respect to the finer triangulation T̂ ) and

δ(T , T̂ ) :=
∥∥∥(hT − ĥT )f

∥∥∥
L2(Ω)

.

Hence cafem with collective Dörfler marking implies optimal data approximation for
this particular data error term with a mesh-size weight hT . This is in agreement with
the well-established fact that first-order conforming and nonconforming FEMs do not
need a data reduction with safem.
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4. Proofs. This section is devoted to the proof of Theorem 2.1. The abbreviation
δ`,`+1 := δ(T`, T`+1) applies in this section.

4.1. Estimator reduction. The constant Λ6 ≥ 1 in the following theorem leads
to κ0 set to +∞ for Λ6 = 1; this holds in all the examples of this paper.

Theorem 4.1 ((A12) reduction). Suppose (A1)–(A2) and parameters 0 < θA ≤
1, 0 < κ, and 0 < ρB < 1/Λ6 from safem. Any choice of γ and λ with

0 < γ < ρ−2
2 − 1 and 0 < λ < min

{(
1− (1 + γ)ρ2

2
) θA

1− θA
, κ(1− ρB)

}
(4.1)

leads to the constants

0 < Λ12 := (1 + 1/λ)Λ2
1 + (1 + 1/γ)Λ2

2 <∞,(4.2)

0 < ρA := (1 + λ)(1− θA) + (1 + γ)ρ2
2θA < 1,(4.3)

0 < κ0 := (1− ρA)/(Λ6 − 1) (with κ0 := +∞ if Λ6 = 1),(4.4)
0 < ρ12 := max {ρA + κΛ6, 1 + λ+ κρB} /(1 + κ) ≤ 1.(4.5)

Then 0 < κ < κ0 implies ρ12 < 1 and

(A12) σ2
`+1 ≤ ρ12σ

2
` + Λ12δ

2
`,`+1 for all ` ∈ N0

for the output σ2
` of safem.

Proof. For γ and λ as in (4.1), the axioms (A1)–(A2) imply

η2
`+1(T`+1 ∩ T`) ≤ (1 + λ)η2

` (T`+1 ∩ T`) + (1 + 1/λ)Λ2
1δ

2
`,`+1,

η2
`+1(T`+1 \ T`) ≤ (1 + γ)ρ2

2η
2
` (T` \ T`+1) + (1 + 1/γ)Λ2

2δ
2
`,`+1.

The sum of those two inequalities leads to

η2
`+1 ≤ (1 + λ)η2

` + ((1 + γ)ρ2
2 − (1 + λ))η2

` (T` \ T`+1) + Λ12δ
2
`,`+1.(4.6)

The restrictions on λ and γ ensure (1 + γ)ρ2
2 < 1 < 1 + λ. Thus, in general,

η2
`+1 ≤ (1 + λ)η2

` + Λ12δ
2
`,`+1.

In Case (A) on the level `, when Dörfler’s marking ensures θAη2
` ≤ η2

` (T` \ T`+1), this
and (4.6) lead to an improvement of the last estimate, namely

η2
`+1 ≤

(
(1 + λ)(1− θA) + (1 + γ)ρ2

2θA
)
η2
` + Λ12δ

2
`,`+1 = ρAη

2
` + Λ12δ

2
`,`+1.

The restrictions on λ and γ reveal ρA < 1. Altogether, let

R` :=

{
ρA in Case (A) on level `,
1 + λ in Case (B) on level `.

(4.7)

Then, the output of safem satisfies

η2
`+1 ≤ R`η2

` + Λ12δ
2
`,`+1 for all ` ∈ N0.(4.8)
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In Case (A) on any level ` with R` = ρA from (4.3) and Λ12 from (4.2), it also holds
that µ2

`+1 ≤ Λ6µ
2
` and µ2

` ≤ κη2
` . Since α := (Λ6 − ρA)/(κ + 1) > 0, this and (4.8)

lead to

σ2
`+1 ≤ (ρA + ακ)η2

` + (Λ6 − α)µ2
` + Λ12δ

2
`,`+1 =

ρA + κΛ6

1 + κ
σ2
` + Λ12δ

2
`,`+1.

In Case (B) on the level ` with R` = 1 + λ, it holds that µ2
`+1 ≤ ρBµ2

` and κη2
` < µ2

` .
Since β := κ(1 + λ− ρB)/(1 + κ) > 0, this and (4.8) lead to

σ2
`+1 < (1 + λ− β)η2

` + (ρB + β/κ)µ2
` + Λ12δ

2
`,`+1 =

1 + κρB + λ

1 + κ
σ2
` + Λ12δ

2
`,`+1.

This proves the total error estimator reduction (A12) with ρ12 from (4.5).

4.2. Convergence. The plain convergence follows from the estimator reduc-
tion (A12) plus quasiorthogonality (A4). The elementary proofs are adopted from
[CFPP14] and given for completeness.

Theorem 4.2. Suppose 0 < θA ≤ 1, 0 < κ, 0 < ρB < 1, and suppose (A4) and
(A12) with constants 0 < ρ12 < 1 and 0 < Λ12 <∞. Then Λ := (1+Λ12Λ4)/(1−ρ12),
q := Λ/(1 + Λ) < 1, and the output of safem satisfy the following assertions.

(a) (Plain convergence) ∀`,m ∈ N0,
∑`+m
k=` σ

2
k ≤ Λσ2

` .
(b) (R-linear convergence on each level) ∀`,m ∈ N0, σ2

`+m ≤
qm

1−qσ
2
` .

(c) (Reciprocal sum) ∀s > 0, ∀` ∈ N,
∑`−1
k=0 σ

−1/s
k ≤ q1/(2s)σ

−1/s
`

(1−q)1/(2s)(1−q1/(2s)) .

Proof of Theorem 4.2(a). For all `, m ∈ N0, (A12) implies

`+m∑
k=`

σ2
k = σ2

` +
`+m∑
k=`+1

σ2
k ≤ σ2

` + ρ12

`+m∑
k=`

σ2
k + Λ12

`+m∑
k=`

δ2
k,k+1.(4.9)

This plus (A4) verifies

(1− ρ12)
`+m∑
k=`

σ2
k ≤ σ2

` + Λ12Λ4σ
2
` .

This proves (a) with the asserted constant Λ.

Proof of Theorem 3.1. The same argument as in the proof of Theorem 4.2(a)
shows that (A12) and (A4ε) imply (A4) for small ε. In fact, (4.9) and (A4ε) show

(1− ρ12)
`+m∑
k=`

σk ≤ σ2
` + Λ12

(
Λ4(ε)σ

2
` + ε

`+m∑
k=`

σk

)
.

In other words

(1− ρ12 − εΛ12)
`+m∑
k=`

σ2
k ≤

(
1 + Λ12Λ4(ε)

)
σ2
` .

This plus (A4ε) leads to (A4) with Λ4 := Λ4(ε) + ε(1 + Λ12Λ4(ε))/(1− ρ12 − εΛ12),

`+m∑
k=`

δ2
k,k+1 ≤ Λ4(ε)σ

2
` + ε

`+m∑
k=`

σ2
k ≤ Λ4σ

2
` .
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Proof of Theorem 4.2(b). The assertion (a) implies the convergence of the series

ξ2
`+1 :=

∞∑
k=`+1

σ2
k ≤ Λσ2

` <∞.

The addition of Λξ2
`+1 to the previous inequality results in

(Λ + 1)ξ2
`+1 ≤ Λξ2

` ; hence ξ2
`+1 ≤ qξ2

` .(4.10)

The successive application of the previous contraction (4.10) shows

σ2
`+m ≤ ξ2

`+m ≤ qmξ2
` = qm

(
σ2
` + ξ2

`+1
)
≤ qm(1 + Λ)σ2

` .

Proof of Theorem 4.2(c). The R-linear convergence of (b) leads to

σ
−1/s
k ≤ q(`−k)/(2s)

(1− q)1/(2s)σ
−1/s
` for all 0 ≤ k < `.

This proves

`−1∑
k=0

σ
−1/s
k ≤

σ
−1/s
`

(1− q)1/(2s)

`−1∑
k=0

(
q1/(2s)

)`−k
≤

σ
−1/s
` q1/(2s)

(1− q)1/(2s)(1− q1/(2s))
.

Lemma 4.3 (comparison). Suppose (A1)–(A4), (B1)–(B2) with 0 < s < ∞,
(QM), 0 < q < 1 from Theorem 4.2(b), and let 0 < ξ < 1 and 0 < ν <∞; let

(4.11) M := M(s, σ) := sup
N∈N0

(N + 1)s minσ(T (N)) <∞,

similar to the definition of M(s, µ) in (3.1). Then for any level ` ∈ N0 of safem
with a triangulation T`, there exists a refinement T̂` ∈ T (T`) with (a)–(c).

(a) σ(T̂`) ≤ ξσ`;
(b)
√

1− qξ σ`
∣∣∣T` \ T̂`∣∣∣s ≤ Λ7M ;

(c) (1− ξ2(1 + ν + (1 + 1/ν)Λ2
1Λ̂3))η2

` ≤
(
1 + (1 + 1/ν)Λ2

1Λ3
)
η2
` (R(T`, T̂`))

+ ((1 + ν)ξ2 + (1 + 1/ν)Λ2
1(Λ3 + Λ̂3ξ

2))µ2
` .

Proof. Two pathological situations are excluded in the beginning of the proof.
First, if σ` = 0, then T̂` = T` satisfies the assumptions (a)–(c). Second, Theorem 4.2
guarantees convergence of some sequence of triangulations, and (QM) implies that
this holds for uniform refinements as well. Hence there exists a refinement T̂` of T`
with (a) and T̂` ∩T` = ∅. The latter implies (c) even in case M ≡M(s, σ) =∞ when
(b) is obvious.

Throughout the remaining parts of the proof, it is therefore assumed that M <∞
and σ` > 0. Then (QM) implies 0 < σ0 ≤M <∞.

1. Setup. Let N` ∈ N0 be minimal with

(N` + 1)−s ≤ ξ
√

1− q
Λ7M

σ`.(4.12)

The quasimonotonicity (QM) followed by the definition of M := M(s, σ) < ∞ in
(4.11) and 0 < q < 1, 0 < ξ < 1 lead to

ξ
√

1− q
Λ7

σ` ≤ ξ
√

1− q σ0 ≤ ξ
√

1− qM < M.
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Hence, (N` + 1)−s < 1 and so N` ≥ 1. Since N` ∈ N is minimal with (4.12),

0 < (N` + 1)−s ≤ξ
√

1− q
Λ7M

σ` < N−s` .

This implies

Ns
` <

Λ7M

ξ
√

1− q
σ−1
` .(4.13)

2. Design of T̂`. The definition of M < ∞ yields the existence of some optimal
T̃` ∈ T (N`) with

(N` + 1)s σ(T̃`) ≤M.(4.14)

The overlay triangulation T̂` := T` ⊕ T̃` [CKNS08, Ste07] satisfies∣∣∣T̂`∣∣∣+ |T0| ≤ |T`|+
∣∣∣T̃`∣∣∣ .(4.15)

3. Proof of (a). The quasimonotonicity (QM) followed by (4.14) and (4.12) shows

σ(T̂`) ≤ Λ7σ(T̃`) ≤ Λ7M(N` + 1)−s ≤ ξσ`
√

1− q < ξσ`.

4. Proof of (b). The definition of T̃`, the overlay estimate in (4.15), and the
upper bound for N` in (4.13) lead to

∣∣∣T` \ T̂`∣∣∣ ≤ ∣∣∣T̂`∣∣∣− |T`| ≤ ∣∣∣T̃`∣∣∣− |T0| ≤ N` ≤
(

Λ7M

ξσ`
√

1− q

)1/s

.

5. Proof of (c). For any 0 < ν <∞, 0 < ξ < 1, (A1) and (A3) result in

η2
` (T` ∩ T̂`) ≤ (1 + ν)η2(T̂`, T̂` ∩ T`) + (1 + 1/ν)Λ2

1δ
2(T`, T̂`)

≤
(

1 + ν + (1 + 1/ν)Λ2
1Λ̂3

)
η2(T̂`)

+ (1 + 1/ν)Λ2
1Λ3

(
η2
` (R(T`, T̂`)) + µ2

`

)
.

This, (a), and T` \ T̂` ⊆ R(T`, T̂`) result in

η2
` = η2

` (T` ∩ T̂`) + η2
` (T` \ T̂`)

≤
(

1 + ν + (1 + 1/ν)Λ2
1Λ̂3

)
ξ2σ2

` +
(
1 + (1 + 1/ν)Λ2

1Λ3
)
η2
` (R(T`, T̂`))

+ (1 + 1/ν)Λ2
1Λ3µ

2
` .

Some rearrangements with σ2
` = η2

` + µ2
` prove (c).

4.3. Proof of Theorem 2.1.

Proof of “.” in (2.3) of Theorem 2.1. Since θA < θ0 and the function

f(ξ, ν) :=
1− ξ2

(
(1 + κ)(1 + ν) + (1 + κ)(1 + 1/ν)Λ2

1Λ̂3

)
− κ(1 + 1/ν)Λ2

1Λ3

1 + (1 + 1/ν)Λ2
1Λ3
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is strictly smaller than θ0 = limν→∞ f(0, ν), there exist ν, ξ such that

θA < f(ξ, ν) < θ0.

Given κ0 from Theorem 4.1, assume κ < κ1 := min
{
κ0,Λ−2

1 Λ−1
3

}
.

Case (A). Lemma 4.3(c) and µ2
` ≤ κη2

` prove that R(T`, T̂`) satisfies(
1− (1 + κ)ξ2(1 + ν)− (1 + κ)ξ2(1 + 1/ν)Λ2

1Λ̂3 − κ(1 + 1/ν)Λ2
1Λ3

)
η2
`

≤
(
1 + (1 + 1/ν)Λ2

1Λ3
)
η2
` (R(T`, T̂`)).

This reads θAη
2
` ≤ f(ξ, ν)η2

` ≤ η2
` (R(T`, T̂`)) and implies that R(T`, T̂`) satisfies

Dörfler marking in Case (A).
LetM` =:M(0)

` be the set of marked elements in the Dörfler marking on level `,
while M?

` is the optimal set of marked elements. Hence, there exists 0 < Λopt < ∞
such that

|M`| ≤ Λopt |M?
` | ≤ Λopt

∣∣∣R(T`, T̂`)
∣∣∣ .

The control over R(T`, T̂`) of (A3) in Lemma 4.3(b) results in∣∣∣R(T`, T̂`)
∣∣∣ ≤ Λref

∣∣∣T` \ T̂`∣∣∣ ≤ Λref

(
Λ7M√

1− qξσ`

)1/s

.

Hence, Λ9 := ΛoptΛrefΛ
1/s
7 (
√

1− qξ)−1/s satisfies∣∣∣M(0)
`

∣∣∣ = |M`| ≤ Λ9M
1/sσ

−1/s
` .(4.16)

Case (B). The output of appx with input triangulation T0 and input tolerance
Tol := ρBµ

2
` on the level ` satisfies (B1). Since σ2

` = η2
` + µ2

` ≤ (1 + 1/κ)µ2
` in Case

(B), this leads to

|TTol| − |T0| ≤ Λ5(1 + 1/κ)ρ−1/(2s)
B σ

−1/s
` .

Let T (0)
` := T`. According to [CR11, Rab15] for T`+1 = T` ⊕ TTol there exists a finite

sequence (M(k)
` )k=0,...,K(`) of sets of marked element domains that satisfies

T (k+1)
` = Refine(T (k)

` ,M(k)
` ) for all k = 0, . . . ,K(`)− 1,

which finally leads to T`+1 = T (K(`))
` . This observation and the estimate for the

overlay with the sequence (M(k)
` )k=0,...,K(`) [CR11, Theorem 3.3] show

K(`)∑
k=0

|M(k)
` | ≤ |TTol| − |T0| . Λ5(1 + 1/κ)ρ−1/(2s)

B σ
−1/s
` .(4.17)

The estimate from [CR11, Theorem 3.3] is for 2D only; however, it is expected to hold
in general.

End of the proof of “.”. The overhead control of [BDdV04, Ste08] guarantees

|T`| − |T0| ≤ ΛBDdV

`−1∑
j=0

K(j)∑
k=0

|M(k)
j |.(4.18)
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With (4.16)–(4.17) and Theorem 4.2(c), this proves

|T`| − |T0| . (Λ5 +M1/s)σ−1/s
` .(4.19)

Finally, 1 ≤ |T`| − |T0| implies 1 + |T`| − |T0| ≤ 2(|T`| − |T0|) while |T`| = |T0| implies
1 ≤ σ−1/s

` (Λ5 +M1/s). Hence (4.19) proves σ`(1 + |T`| − |T0|)s . Λs5 +M and so “.”
in the assertion of Theorem 2.1.

Proof of “&” in (2.3) of Theorem 2.1. GivenN ∈ N0, suppose that minσ(T (N))
is positive and so σ` > 0 for all ` ∈ N0 with N` := |T`| − |T0| ≤ N . For level ` in
safem this leads to N`+1 > N`, for it only stops with T` = T`+1 = T`+2 = . . . when
σ` = 0. Hence there exists some level ` with N` < N ≤ N`+1. This implies

(4.20) (N + 1)s minσ(T (N)) ≤ (N`+1 + 1)sσ`,

which is evident in case minσ(T (N)) = 0.
In Case (A) on the level ` of safem, there is a one-level refinement to create T`+1,

where each simplex in T` creates a finite number ≤ K(n) of children in a completion
step. The constant K(n) ≥ 2 depends only on the spatial dimension n [GSS14]. This
leads to the bound |T`+1| ≤ K(n) |T`| and then to

(N`+1 + 1)/(N` + 1) ≤ K(n) + (K(n)− 1)(|T0| − 1) . 1.

In Case (B) on the level ` of safem, the refinement T`+1 := T`⊕TTol is controlled by
|TTol| − |T0| ≤ Λ5 Tol−1/(2s) ≤ Λ5ρ

−1/(2s)
B µ

−1/s
` . Since σ2

` ≤ (1 + 1/κ)µ2
` in Case (B),

the overlay estimate of [CKNS08, Ste07] proves

N`+1 −N` ≤ |TTol| − |T0| ≤ Λ5ρ
−1/(2s)
B (1 + 1/κ)1/(2s)σ

−1/s
` .

This leads to the bound

2−s(N`+1 + 1)s ≤ (N` + 1)s + ρ
−1/2
B (1 + 1/κ)1/2Λ5.

Consequently, in both Cases (A) and (B), it follows that

(N`+1 + 1)sσ` ≤ (K(n) + (K(n)− 1)(|T0| − 1))s (N` + 1)sσ` + 2sρ−s/2B (1 + 1/κ)s/2Λs5.

With S := sup`∈N0
(N` + 1)s σ`, this and (4.20) imply

(N + 1)s minσ(T (N)) ≤ (K(n) + (K(n)− 1)(|T0| − 1))s S + 2sρ−s/2B (1 + 1/κ)s/2Λs5.

Since this holds for any N ∈ N0, the previous N -independent upper bound is greater
than or equal to the supremum M . This concludes the proof of “&” in (2.3).

5. Application to mixed FEM. The a posteriori error analysis of mixed finite
element schemes [Car97, Alo96] was completed in [CPS16] with a reliable and efficient
error control in the natural functional analytical framework H(div,Ω)×L2(Ω) for the
dual formulation of a Poisson model problem.

5.1. Mixed formulation of a Poisson model problem. Given the right-hand
side f ∈ L2(Ω) in a bounded simply connected polyhedral Lipschitz domain Ω ⊂ Rn
for n = 2, 3, the dual formulation of the Laplace equation seeks p ∈ H(div,Ω) and
u ∈ L2(Ω) with

a(p, q) + b(q, u) = 0 for all q ∈ H(div,Ω),

b(p, v) = −F (v) := −
∫

Ω
fv dx for all v ∈ L2(Ω).
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Therein, the bilinear forms model the L2 scalar product and the divergence term,

a(p, q) :=
∫

Ω
p · q dx and b(q, v) :=

∫
Ω
v div q dx .

It is well established that the weak solution u ∈ V := H1
0 (Ω) to −∆u = f in Ω

specifies the flux p := ∇u and that the two formulations are equivalent and allow for
a unique solution [BBF13].

Given an admissible triangulation T ∈ T, let Σ(T ) × U(T ) be a stable pair of
discrete subspaces with the Raviart–Thomas or Brezzi–Douglas–Marini finite element
space Σ(T ) ⊂ H(div,Ω) of order k ∈ N0 (note the index shift of k in other references)
and U(T ) = Pk(T ) based on triangles for n = 2 or tetrahedra for n = 3; cf., e.g.,
[BBF13] for the precise definition and stability and commuting diagram properties of
those finite element spaces. In particular, there exists a unique solution (ph, uh) ∈
Σ(T )× U(T ) to the discrete problem

a(ph, qh) + b(qh, uh) = 0 for all qh ∈ Σ(T ),(5.1)
b(ph, vh) = −F (vh) for all vh ∈ Pk(T ).(5.2)

5.2. Error estimators and main result. Given the unique discrete solution
(ph, uh) (resp., (p̂h, ûh)) with respect to the triangulation T ∈ T (resp., its refinement
T̂ ∈ T(T )), the error estimators of [Car97, CPS16] and the distance function in
natural norms read

η2(T ,K) := |K|2/n ‖ph −∇NCuh‖2L2(K) + |K|2/n ‖ curl ph‖2L2(K)

+ |K|1/n
∑

E∈E(K)

‖[ph]E × νE‖2L2(E),

µ2(K) := ‖f −Πkf‖2L2(K) for any K ∈ T ,

δ2(T , T̂ ) := ‖p̂h − ph‖2H(div,Ω) + ‖ûh − uh‖2L2(Ω).

The standard notation applies to the simplex K of area or volume |K| and its set E(K)
of the three edges or four faces and the L2 projection Πk onto Pk(K) (also denoting
the L2 projection onto Pk(T )). The jump [•]E across an interior edge or face E with
normal unit vector νE is the difference of the respective traces [q]E := q|T+−q|T− on E
from the two neighboring triangles T±. Given the homogeneous Dirichlet conditions
on the boundary, the jump partner is zero; [q]E := q|ωE for the boundary side E ∈
E(∂Ω) of the simplex ωE . The above notation is 3D and curl reduces in 2D to the
scalar function curl ph := ∂ph(1)/∂x2− ∂ph(2)/∂x1 for the (piecewise) smooth vector
function ph = (ph(1), ph(2)), and [ph]E × νE denotes the tangential component of
[ph]E .

In the lowest-order case k = 0, the Lagrange multiplier uh does not enter the
estimators (∇NCP0(T ) = 0), and hence the distance function may be reduced to the
flux approximations only. This simplification allows for a coarse initial triangulation
for k = 0, while for k ≥ 1, the initial triangulation T0 has to be sufficiently fine.
The subsequent theorem asserts the axioms of this paper and so allows for optimal
convergence rates of the adaptive algorithm.

Theorem 5.1 ((A1)–(A4)). In the lowest-order case k = 0, the aforementioned
estimators and distance functions satisfy (A1)–(A4) and (B2) with Λref = 1 = Λ6

and Λ̂3 = 0 for R(T , T̂ ) := T \ T̂ for n = 2; for n = 3, R(T , T̂ ) is T \ T̂ plus one
extra layer of tetrahedra around it in T .
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In the remaining cases k ≥ 1, this holds under the additional condition that the
mesh-size hmax of the initial mesh T0 is sufficiently small.

The estimator is reliable and efficient [Car97, CPS16] in that the exact (resp.,
discrete) solution (p, u) (resp., (ph, uh) with respect to T ∈ T) satisfies

σ(T ) ≈ ‖p− ph‖H(div,Ω) + ‖u− uh‖L2(Ω).

The divergence contribution in the H(div,Ω)-norm of p − ph on the right-hand side
is ‖f − Πkf‖L2(Ω), and so the right-hand side includes the data approximation part
µ(T ). Consequently, the optimal rates of the estimators are equivalent to the optimal
rates of the errors in terms of nonlinear approximation classes with respect to the
natural norms in H(div)× L2 of the mixed FEM.

5.3. Proof of (A1)–(A2). The proof of (A1)–(A2) follows [CKNS08] and relies
on all kinds of elementary (reverse) triangle inequalities and Cauchy inequalities plus
on the following lemma.

Lemma 5.2 (discrete jump control). There exists a universal constant Cjc, which
depends on the shape regularity in T and the degree k ∈ N0, such that any g ∈ Pk(T )
with jumps

[g]E =

{
(g|T+)|E − (g|T−)|E for E ∈ E(Ω) with E = ∂T+ ∩ ∂T−,
g|E for E ∈ E(∂Ω) ∩ E(K)

across any side E ∈ E satisfies∑
K∈T

|K|1/n
∑

E∈E(K)

‖[g]E‖2L2(E) ≤ C
2
jc‖g‖2L2(Ω).

Proof. Recall the discrete trace inequality [DPE12, p. 27] on a side E ∈ E(K) of
a simplex K ∈ T for the polynomial g|K of degree at most k in the form

|K|1/(2n) ‖g|K‖L2(E) ≤ Cdtr ‖g‖L2(K)

with a constant Cdtr, which depends on the shape regularity in T and on k ∈ N0.
The contributions to the left-hand side of the asserted inequality for an interior side
E = ∂T+ ∩ ∂T− with patch ωE := int(T+ ∪ T−) sum up to(

|T+|1/n + |T−|1/n
)
‖[g]E‖2L2(E).

The triangle inequality, the discrete trace inequality for K = T±, and the Cauchy
inequality in R2 lead to

‖[g]E‖2L2(E) ≤
(
‖g|T+‖L2(E) + ‖g|T−‖L2(E)

)2
≤ C2

dtr

(
|T+|−1/(2n)‖g‖L2(T+) + |T−|−1/(2n)‖g‖L2(T−)

)2

≤ C2
dtr

(
|T+|−1/n + |T−|−1/n

)
‖g‖2L2(ωE).

Let h± := |T±|/(n |E|) be the heights of the two neighboring simplices T± which share
the side E of length or area |E|. Then,

(
|T+|1/n + |T−|1/n

) (
|T+|−1/n + |T−|−1/n

)
can
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be written as (h1/n
+ + h

1/n
− )(h−1/n

+ + h
−1/n
− ). The shape regularity in T bounds the

quotient of the heights h± from above by some universal constant C2
sr. Consequently,(

|T+|1/n + |T−|1/n
)
‖[g]E‖2L2(E) ≤ C

2
dtrC

2
sr ‖g‖2L2(ωE).

With the same constant, this estimate holds for a boundary side E = ∂T+ ∩ ∂Ω with
ωE := int(T+) (and without T− := ∅). The sum of all those contributions reads∑

K∈T
|K|1/n

∑
E∈E(K)

‖[g]E‖2L2(E) ≤ C
2
dtrC

2
sr

∑
E∈E
‖g‖2L2(ωE).

Since at most n+ 1 of the side-patches (ωE : E ∈ E) overlap, this proves the assertion
with Cjc :=

√
n+ 1CdtrCsr.

Proof of stability (A1) in Theorem 5.1. A reverse triangle inequality in Rm (for
the number m := |T ∩ T̂ | of simplices in T ∩ T̂ ) implies

|η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )|2 ≤
∑

T∈T ∩T̂

(
η(T̂ , T )− η(T , T )

)2
.

Each of the terms η(T̂ , T ) and η(T , T ) is a Euclidean norm in R3+n of terms, which are
Lebesgue norms and so allow for a reverse triangle inequality. With the abbreviations
g := p̂h − ph and e := ûh − uh, this leads to(

η(T̂ , T )− η(T , T )
)2
≤ |T |2/n ‖g −∇e‖2L2(T ) + |T |2/n ‖curl g‖2L2(T )

+ |T |1/n
∑

E∈E(T )

‖[g]E × νE‖2L2(E) .

The sum over all T ∈ T ∩ T̂ involves volume and jump terms. The latter terms
are bounded via Lemma 5.2. The volume terms are estimated by inverse estimates
(with universal constant Cinv) for the polynomials and their derivatives. This and
|T | ≤ hnmax/n! result in

|η(T̂ ,T ∩ T̂ )− η(T , T ∩ T̂ )|2 ≤ (C2
jc + C2

inv + 2hnmax/n!)‖g‖2L2(Ω) + 2C2
inv ‖e‖

2
L2(Ω) .

This is (A1) with Λ1 = max{
√
C2

jc + C2
inv + 2hnmax/n!,

√
2Cinv}.

Proof of reduction (A2) in Theorem 5.1. The error estimator for the m refined
simplices T ∈ T̂ (K) := {T ∈ T̂ |T ⊂ K} of K ∈ T \ T̂ reads

η2(T̂ , T̂ \ T ) =
∑

T∈T̂ \T

(
|T |2/n‖p̂h −∇ûh‖2L2(T ) + |T |2/n‖ curl p̂h‖2L2(T )

+ |T |1/n
∑

F∈E(T )

‖[p̂h]F × νF ‖2L2(F )

)
.

With the abbreviations g := p̂h − ph and e := ûh − uh from the previous proof, the
triangle inequality in R(3+n)m and reverse triangle inequalities in the Lebesgue norms
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over simplices and sides show

η(T̂ , T̂ \ T ) ≤
( ∑
K∈T \T̂ ,
T∈T̂ (K)

(
|T |2/n ‖ph −∇uh‖2L2(T ) + |T |2/n ‖curl ph‖2L2(T )

+ |T |1/n
∑

F∈E(T )

‖[ph]F × νF ‖2L2(F )

))1/2

+
( ∑
T∈T̂ \T

(
|T |2/n‖g −∇e‖2L2(T ) + |T |2/n‖ curl g‖2L2(T )

+ |T |1/n
∑

F∈E(T )

‖[g]F × νF ‖2L2(F )

))1/2

.

Since [ph × νF ]F = 0 for a side F ∈ Ê(int(K)) in the interior of a coarse simplex,
and |T | ≤ |K|/2 for T ∈ T (K), the first term on the right-hand side of the above
displayed formula ≤ ρ2η(T , T \ T̂ ) for ρ2 = 2−1/(2n). The remaining second term is
estimated with Lemma 5.2 as above with Λ1 = Λ2.

5.4. Proof of discrete reliability (A3). The proof of (A3) in Theorem 5.1
requires a discrete intermediate solution (p̃h, ũh) ∈ Σ(T̂ ) × Pk(T̂ ) with respect to
the fine triangulation T̂ to the above Poisson model problem with a right-hand side
Πkf ∈ Pk(T ) with respect to the coarse triangulation T . Recall that −div p̂h =
Π̂kf ∈ Pk(T̂ ) (the orthogonal projection of f onto Pk(T̂ )).

Lemma 5.3. It holds that ‖p̂h− p̃h‖H(div,Ω) +‖ûh− ũh‖L2(Ω) . ||Π̂kf−Πkf‖L2(Ω).

Proof. The inf sup stability of the mixed FEM on the fine level leads to the exis-
tence of a test function (q̂h, v̂h) ∈ Σ(T̂ )×U(T̂ ) of bounded norm in H(div,Ω)×L2(Ω)
with

‖p̂h − p̃h‖H(div,Ω) + ‖ûh − ũh‖L2(Ω)

= a(p̂h − p̃h, q̂h) + b(q̂h, ûh − ũh) + b(p̂h − p̃h, v̂h).

Since (p̂h, ûh) and (p̃h, ũh) solve discrete problems with respect to the fine level with
the test function (q̂h, v̂h), the previous terms are equal to∫

Ω
v̂h div(p̂h − p̃h) dx =

∫
Ω
v̂h(Πkf − Π̂kf) dx . ‖Π̂kf −Πkf‖L2(Ω).

The following lemma is key in the L2 flux error control [CHX09, CR11, HX12].

Lemma 5.4 (see [HX12]). It holds that ‖p̃h − ph‖L2(Ω) . η(T ,R(T , T̂ )).

Proof. This is shown in (3.2)–(3.3) of Lemma 3.1 in [HX12], where the right-hand
side f is replaced by Π̂kf . We refer the reader to [CHX09, CR11, HX12] for further
details and give merely an overview over the arguments in this paper: Since the
L2 vector function p̃h − ph is divergence-free, the discrete Helmholtz decomposition
(proven in Lemma 2.6 in [HX12]) asserts that it is equal to some rotation curl β̂h for
some function β̂h of piecewise polynomials of degree k + 1 or k + 2 (with curl β̂h :=
(−∂β̂h/∂x2, ∂β̂h/∂x1)) in n = 2 and for some first-kind Nédélec finite element func-
tion in n = 3 dimensions. An appropriate quasi-interpolation leads to curlβh, and,
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according to the discrete equations, shows a(p̃h − ph, curlβh) = 0 = a(p̃h, curl β̂h).
This and piecewise integration by parts followed by trace inequalities and approxi-
mation and stability properties of the quasi-interpolation error β̂h − βh conclude the
proof.

The new ingredient of the discrete reliability proof for the natural norms is the
following lemma based on the surjective operator div : H1

0 (Ω; Rn)→ L2
0(Ω).

Lemma 5.5. It holds that ‖ũh−uh‖L2(Ω) . ‖p̃h−ph‖L2(Ω)+‖hT (ph−∇NCuh)‖L2(Ω′)

for the subdomain Ω′ covered by the refined region T \ T̂ .

Proof. Extend ũh−uh by zero outside of Ω, and consider this expansion as a right-
hand side of a Poisson problem on a large ball that includes Ω with zero boundary
values on the boundary of this ball. Let z ∈ H2(Ω) be the restriction of the smooth
solution to Ω to infer

(5.3) −∆z = ũh − uh a.e. in Ω and ‖z‖H2(Ω) . ‖ũh − uh‖L2(Ω).

The mixed FEMs under consideration allow for some interpolation operator IF :
H1(Ω; Rn) → Σ(T ) (resp., ÎF : H1(Ω; Rn) → Σ(T̂ )) with the commuting diagram
property Πk div Ψ = div IFΨ and the first-order approximation properties ‖h−1

T (Ψ−
IFΨ)‖ . ‖Ψ‖H1(Ω) for any Ψ ∈ H1(Ω; Rn) (and corresponding results for ÎF and Π̂k

with respect to T̂ ). The commuting property leads to

‖ũh−uh‖2L2(Ω) = −
∫

Ω
(ũh−uh) div∇z dx =

∫
Ω
uh div IF∇z dx−

∫
Ω
ũh div ÎF∇z dx .

The discrete equations on the fine and coarse levels lead to

‖ũh−uh‖2L2(Ω) = a(p̃h, ÎF∇z)−a(ph, IF∇z) = a(p̃h−ph, ÎF∇z)+a(ph, ÎF∇z−IF∇z).

The Cauchy inequality in L2, the stability of ÎF , and the bound (5.3) show

a(p̃h − ph, ÎF∇z) . ‖ũh − uh‖L2(Ω) ‖p̃h − ph‖L2(Ω).

Notice that ÎF∇z− IF∇z vanishes on T ∩ T̂ , and let a′ denote the L2 scalar product
over Ω′. Then, the split

a(ph, ÎF∇z−IF∇z) = a′(ph, ÎF∇z−IF∇z) = a′(ph,∇z−IF∇z)−a′(ph,∇z− ÎF∇z)

allows arguments of [CPS16] on the coarse and fine levels. The Raviart–Thomas
and the Brezzi–Douglas–Marini finite element spaces lead to the L2 orthogonality
of ∇z − ÎF onto ∇NCuh ∈ Pk−1(T ; Rn) (with the convention P−1 := {0}). This,
the elementwise first-order approximation property (on the fine level even with some
smaller hT̂ ), and (5.3) in the end show

|a′(ph,∇z − ÎF∇z)| = |a′(ph −∇NCuh,∇z − ÎF∇z)|

≤ ‖hT (ph −∇NCuh)‖L2(Ω′) ‖h−1
T (∇z − ÎF∇z)‖L2(Ω′)

. ‖hT (ph −∇NCuh)‖L2(Ω′) ‖ũh − uh‖L2(Ω).

The same arguments apply verbatim to the term a′(ph,∇z − IF∇z) with the mesh-
size hT on the coarse level as displayed above. The combination of the preceding four
displayed estimates concludes the proof:

‖ũh − uh‖2L2(Ω) . ‖ũh − uh‖L2(Ω)(‖p̃h − ph‖L2(Ω) + ‖hT (ph −∇NCuh)‖L2(Ω′)).
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Proof of (A3) in Theorem 5.1. The triangle inequality and the three aforemen-
tioned lemmas lead to the asserted discrete reliability. Lemma 5.3, Π̂kf = Πkf in
Ω \ Ω′, and a triangle inequality show

δ(T , T̂ ) . ‖p̃h − ph‖H(div,Ω) + ‖ũh − uh‖L2(Ω) + ‖Π̂kf −Πkf‖L2(Ω′).

The combination with Lemmas 5.4–5.5 concludes the proof.

5.5. Proof of quasiorthogonality (A4). The flux or stress approximations in
the mixed finite element schemes allow for an orthogonality up to some perturbation
with data oscillations. This leads to a proof of the axiom (A4ε) for any ε > 0 and,
together with (A1)–(A2), Theorem 3.1 provides (A4). The analysis for the error of
the Lagrange multiplier is based on the smaller L2 error of the L2 projection onto the
discrete space of the error in the displacement variable for sufficiently fine meshes.

Lemma 5.6. Given the polyhedral Lipschitz domain Ω, there exists some index
α > 1/2 such that any discrete solution (ph, uh) ∈ Σ(T )×Pk(T ) and the L2 projection
Πku of the displacement u of the exact solution p = ∇u onto Pk(T ) with respect to
the triangulation T ∈ T satisfies ‖Πku− uh‖L2(Ω) . hαmax ‖p− ph‖L2(Ω) + osc(f, T ).

If k ≥ 1, then ‖Πku− uh‖L2(Ω) . hαmax
(
‖p− ph‖L2(Ω) + osc(f, T )

)
.

Proof. Adopt the notation and arguments from Lemma 5.5 for the right-hand side
Πku−uh ∈ Pk(T ) of the Poisson equation applied to Ω with weak solution z ∈ H1

0 (Ω).
The reduced elliptic regularity of the polyhedral domain Ω [Dau88] leads to the index
0 < α ≤ 1 with

−∆z = Πku− uh in Ω and ‖z‖H1+α(Ω) . ‖Πku− uh‖L2(Ω).

The interpolation operator IF can be extended to IF : Hα(Ω; Rn)∩H(div,Ω)→ Σ(T )
and allows for the error estimate

(5.4) ‖∇z − IF∇z‖L2(Ω) . hαmax ‖z‖H1+α(Ω) . hαmax ‖Πku− uh‖L2(Ω).

The commuting diagram property shows that the piecewise polynomial right-hand
side is equal to uh − Πku = div∇z = div IF∇z. This, the discrete equation for
(ph, uh), and an integration by parts with u ∈ H1

0 (Ω) result in

‖Πku− uh‖2L2(Ω) =
∫

Ω
(uh −Πku)∆z dx =

∫
Ω

(uh − u) div IF∇z dx

=
∫

Ω
(p− ph) · IF∇z dx .

The approximation properties (5.4) of the Fortin interpolation show∫
Ω

(ph − p) · (∇z − IF∇z) dx . hαmax‖p− ph‖L2(Ω)‖Πku− uh‖L2(Ω).

An integration by parts with z ∈ H1
0 (Ω) and the discrete and exact equations lead to∫

Ω
(p− ph) · ∇z dx =

∫
Ω
z (f −Πkf) dx =

∫
Ω

(z −Πkz)(f −Πkf) dx .

A piecewise Poincaré inequality and the above regularity of z lead to the bound∫
Ω

(ph − p) · ∇z dx . hβmax osc(f, T )‖Πku− uh‖L2(Ω)
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with β = 0 for k = 0 and β = α for k ≥ 1. The combination of the preceding four
displayed formulas results in

‖Πku− uh‖2L2(Ω) . ‖Πku− uh‖L2(Ω)
(
hαmax‖p− ph‖L2(Ω) + hβmax osc(f, T )

)
.

A corresponding lemma for the flux error is known from [CHX09, CR11, HX12].

Lemma 5.7 (see [HX12]). It holds that ‖p̃h − ph‖L2(Ω) . η(T ,R(T , T̂ )).

Proof. This is shown in (3.1) of Lemma 3.1 in [HX12].

The proof of (A4) in Theorem 5.1 recalls the L2 quasiorthogonality of the flux
errors of [CHX09, Theorem 3.2] or [CR11, Lemma 4.3 and (4.4)] in the form

‖p`+1 − p`‖2L2(Ω) + ‖p− p`+1‖2L2(Ω) − ‖p− p`‖
2
L2(Ω) . ‖p− p`+1‖L2(Ω) osc(f`+1, T`).

The mixed FEM fixes the divergence −div p` = Π`f =: f` and their orthogonality

‖f`+1 − f`‖2L2(Ω) + ‖f − f`+1‖2L2(Ω) − ‖f − f`‖
2
L2(Ω) = 0

leads (for all ` ∈ N) in the aforementioned L2 quasiorthogonality to

‖p`+1−p`‖2H(div,Ω)+‖p−p`+1‖2H(div,Ω)−‖p−p`‖
2
H(div,Ω) . ‖p−p`+1‖L2(Ω) osc(f`+1, T`).

For any 0 < ε with εΛ3 < 1 and the multiplicative constant C ≈ 1 hidden in the
notation ., the sum of those estimates results for any `,m ∈ N0 in

`+m∑
k=`

‖pk+1 − pk‖2H(div,Ω) ≤ ‖p− p`‖
2
H(div,Ω) + ε/Λ3

`+m−1∑
k=`

‖p− pk+1‖2L2(Ω)

+ C2Λ3/ε

`+m∑
k=`

osc2(fk+1, Tk).

(5.5)

For a sequence of uniformly refined meshes T̂ , the discrete reliability (A3) leads (in
the limit hT̃ → 0) to the reliability of [CPS16], with the abbreviation σ2

` := σ2(T`),

(5.6) ‖p− p`‖2H(div,Ω) + ‖u− u`‖2L2(Ω) ≤ Λ3 σ
2
` for all ` ∈ N0.

The oscillation osc(fk+1, Tk) = ‖h`(fk+1−fk)‖L2(Ω) is bounded by ‖h`‖L∞(Ω) ‖fk+1−
fk‖L2(Ω). The L2 orthogonality of the integrands shows

`+m∑
k=`

osc2(fk+1, Tk) ≤ h2
max ‖f`+m+1 − f`‖2L2(Ω) ≤ h

2
max ‖f − f`‖2L2(Ω).

The combination of the previous estimates with (5.5) leads to the quasiorthogonality
(A4ε) for the flux contribution in the form

(5.7)
`+m∑
k=`

‖pk+1 − pk‖2H(div,Ω) ≤ Λ3σ
2
` + ε

`+m∑
k=`+1

σ2
k + C2Λ3h

2
max/ε µ

2(T`).

Since the Lagrange multipliers are not orthogonal in general, the critical term is
controlled with Lemma 5.6 with the L2 projection Π` onto Pk(T`) with respect to T`
with maximal mesh-size ≤ hmax by

‖Π`u− u`‖L2(Ω) . hαmax‖p− p`‖L2(Ω) + osc(f, T`).



2664 C. CARSTENSEN AND H. RABUS

This estimate on the level `+ 1 and elementary algebra result in

‖u`+1 − u`‖2L2(Ω) − ‖u− u`‖
2
L2(Ω) + ‖u− u`+1‖2L2(Ω)

= 2(u− u`+1, u` − u`+1)L2(Ω) = 2(Π`+1u− u`+1, u` − u`+1)L2(Ω)

. ‖u`+1 − u`‖L2(Ω)(hαmax‖p− p`+1‖L2(Ω) + osc(f, T`+1))

. hαmax‖u`+1 − u`‖L2(Ω) ‖p− p`+1‖H(div,Ω).

(Utilize 0 < α ≤ 1 and div(p − p`+1) = Π`+1f − f in the final step.) The best
approximation of the mixed FEM implies ||p−p`+1‖H(div,Ω) . ‖p−p`‖H(div,Ω) +‖u−
u`‖L2(Ω). This and (5.6) show

1/2 ‖u`+1 − u`‖2L2(Ω) − ‖u− u`‖
2
L2(Ω) + ‖u− u`+1‖2L2(Ω)

. h2α
max‖p− p`+1‖2H(div,Ω) . h2α

maxσ
2
` .

The sum over all those inequalities reads

`+m∑
k=`

‖uk+1 − uk‖2L2(Ω) . ‖u− u`||2L2(Ω) + h2α
max

`+m∑
k=`+1

σ2
k.

The combination of (5.6) with the previous flux error control leads to

(5.8)
`+m∑
j=`

δ2(Tj , Tj+1) . σ2
` + h2α

max

`+m∑
j=`+1

σ2
j .

In other words, some generic constant Λ4 ≈ 1 and ε = Λ4h
2α
max satisfy (A4ε) and

ε→ 0 as hmax → 0; further details are omitted for k ≥ 1.
It remains to prove (A4) for k = 0 without any assumption on the smallness of

hmax. In case k = 0, the piecewise derivatives of uh in η(T ) vanish, and the error
estimator η(T ) does not contain any uh at all. Set δ′(T , T̂ ) := ‖p̂h − ph‖H(div,Ω),
and observe from the arguments of this section that (A1)–(A3) hold with δ replaced
by δ′ (even with possibly smaller constants). The estimate (5.7) is (A4ε) for any
0 < ε < 1/Λ3 when δ is replaced by δ′. Utilizing the general theory with δ replaced
by δ′, Theorem 4.2 implies plain convergence of the error estimator. Hence the right-
hand side of (5.8) is . σ2

` , and this proves (A4) for the original distance function δ
and no reference to hmax small.
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