SUPERCONVERGENCE OF TIME-SPACE DISCONTINUOUS FINITE ELEMENTS FOR FIRST ORDER HYPERBOLIC PROBLEM

Chuanmiao Chen

Institute of Computation, Hunan Normal University, Changsha, Hunan, PRC cmchen@hunnu.edu.cn

Consider the first order hyperbolic problem:

$$u_t + au_x + bu = f$$
, $a > 0$, in $\Omega = \{0 < x < 1, 0 < t < T\}$

with the initial value $u(0,x)=u_0(x)$ and the boundary value $u(t,0)=g(t),g(0)=u_0(0)$. The domain is subdivided into many small rectangular elements $\tau_{ij}=I_i\times J_j, i=1,...,N, j=1,...,M$, where the subintervals $I_i=(x_{i-1},x_i),J_j=(t_{j-1},t_j)$ and the step-lengths $h_i=x_i-x_{i-1},k_j=t_j-t_{j-1}$. Assume that $h=\max h_i,k=\max k_j$ and the subdivision is quasiuniform. Denote by $S_{m,n}^{k,h}$ the discontinuous finite element space which is m-degree in time and n-degree in space polynomials in each element. Denote the limit values by $U_i^{\pm}(t)=U(t,x_i\pm 0)$ and $U_j^{\pm}=U(t_j\pm 0,x)$, and the jumps by $[U_j]=U(t_j+0,x)-U(t_j-0,x), < U_i>=U(t,x_i+0)-U(t,x_i-0)$. Define the time-space discontinuous finite element solution $U(t,x)\in S_{i,j}^{k,h}$ satisfying the following orthogonal relation

$$\int_{\tau_{ij}} (U_t + aU_x + bU - f)v dx dt + \int_{I_i} [U_{j-1}(x)] v_{j-1}^+(x) dx$$
$$+ \int_{J_j} \langle aU_{i-1} \rangle v_{i-1}^+(t) dt = 0, \quad v \in S_{n,m}^{k,h}.$$

We shall show that under certain regularities the discontinuous finite element solution has superconvergence at $(n+1) \times (m+1)$ order Radau's points (t_{α}, x_{β}) in each element τ_{ij} ,

$$\{\sum_{\tau_{ij}} \sum_{(t_{\alpha}, x_{\beta}) \in \tau_{ij}} h_i k_j |(u - U)(t_{\alpha}, x_{\beta})|^2\} = O(h^{n+2}) + O(k^{m+2}), \quad n > 0, m > 0.$$

The conclusion is also verified by our numerical experiments.