Institut für Mathematik der Humboldt-Universität zu Berlin
Ausgewählte Themen der Numerischen Mathematik
C. Carstensen Sommersemester 2017

Tutorials

Exercise 1

Let $\mathcal{T}_{1}, \mathcal{T}_{2} \subset \bigcup \mathbb{T}$ be two regular triangulations of Ω into admissible triangles and let \mathcal{N}_{j} denote the set of nodes of the triangulation \mathcal{T}_{j} for $j=1,2$. Given $\mathcal{N}_{1}=\mathcal{N}_{2}$, show that $\mathcal{T}_{1}=\mathcal{T}_{2}$.

Exercise 2

Show that the admissible triangulations \mathbb{T} with respect to a regular triangulation \mathcal{T}_{0} of the domain $\Omega \subset \mathbb{R}^{2}$ are exactly the regular triangulations of Ω into admissible triangles

$$
\mathbb{T}=\{\mathcal{T} \text { regular triangulation }: \mathcal{T} \subseteq \bigcup \mathbb{T}\}
$$

Exercise 3

Given two admissible triangulations $\mathcal{T}_{1}, \mathcal{T}_{2} \in \mathbb{T}$ with respect to a regular triangulation \mathcal{T}_{0} of the domain $\Omega \subset \mathbb{R}^{2}$, prove that their overlay $\mathcal{T}_{1} \oplus \mathcal{T}_{2}$ satisfies

$$
\left|\mathcal{T}_{1} \oplus \mathcal{T}_{2}\right|+\left|\mathcal{T}_{0}\right| \leqslant\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|
$$

Exercise 4

Write an essay on overhead control, explaining the proof of the theorem of Binev-DahmenDeVore and its meaning.

Exercise 5

Write an essay on the optimality of adaptive algorithms. Explain especially what adaptivity is and what optimality means for an adaptive algorithm.

Exercise 6

Given Theorem 2.11 (comparison lemma), Theorem 2.12 (optimality) and their proofs, find an upper bound $\Theta<1$ for θ_{0} from Theorem 2.11. Recall that θ_{0} already satisfies $0<\theta_{0}<1$ and $\theta_{0} \eta^{2} \leqslant \eta^{2}(\mathcal{T} \backslash \hat{\mathcal{T}})$ for $\hat{\mathcal{T}} \in \mathbb{T}(\mathcal{T})$.

Exercise 7

Let (V, a) a real Hilbert space, $V_{0} \subset V_{1} \subset V_{2} \subset \ldots \subset V$ a nested sequence of finite-dimensional subspaces and $F \in V^{*}$. Prove that the Galerkin solutions $\left(u_{\ell}\right)_{\ell \in \mathbb{N}_{0}}$, i.e. $a\left(u_{\ell}, \bullet\right)=F$ in V_{ℓ} for all $\ell \in \mathbb{N}_{0}$, converge strongly to u_{∞}. When is u_{∞} the solution to $a(u, \bullet)=F$ in V ?

Exercise 8

Let (V, a) a real Hilbert space, $V_{0} \subsetneq V_{1} \subsetneq V_{2} \subsetneq \ldots \subseteq V$ a strictly nested sequence of finitedimensional subspaces and $\left(\delta_{j}\right)_{j \in \mathbb{N}_{0}}$ a monotone decreasing sequence of positive real numbers with $\lim _{j \rightarrow \infty} \delta_{j}=0$.
Prove the existence of $F \in V^{*}$ such that the Galerkin solutions $\left(u_{\ell}\right)_{\ell \in \mathbb{N}_{0}}$ satisfy $\left\|u-u_{\ell}\right\|=\delta_{\ell}$ for all $\ell \in \mathbb{N}_{0}$ and the solution u to $a(u, \bullet)=F$ in V.

Exercise 9

Given the Crouzeix-Raviart-FEM solution u_{CR}, write $\left[\frac{\partial u_{\mathrm{CR}}}{\partial \nu_{E}}\right]_{E}$ as a function of the right-hand side F and the local geometry for any $E \in \mathcal{E}(\Omega)$.

Exercise 10

Given $T \in \mathcal{T} \in \mathbb{T}, w \in P_{1}(T)$ and $z \in \mathcal{N}(T)$, compute $C_{1}, C_{2} \approx 1$ such that

$$
C_{1}\|\nabla w\|_{L^{2}(T)} \leqslant h_{T}^{-1}\|w-w(z)\|_{L^{2}(T)} \leqslant C_{2}\|\nabla w\|_{L^{2}(T)}
$$

Exercise 11

Given $w \in H^{1}\left(\omega_{z}\right)$ and $T \in \mathcal{T}(z)$, compute $C_{1}, C_{2} \approx 1$ with

$$
\|w\|_{L^{2}\left(\omega_{z}\right)} \leqslant C_{1}\|w\|_{L^{2}(T)}+C_{2} h_{z}\|\nabla w\|_{L^{2}\left(\omega_{z}\right)}
$$

in terms of Poincaré constants.

Exercise 12

Compute all the pairs $(u, f) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ with vanishing seminorm, $|(u, f)|_{\mathcal{A}_{\sigma}}=0$. Prove that the seminorm is a norm on the vector space of all pairs $(u, f) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ with $f+\Delta u=0$.

Exercise 13

Given a polygonal bounded Lipschitz domain $\Omega \subset \mathbb{R}^{2}$ with $J+1$ connection components $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{J}$ of the boundary $\partial \Omega$, define

$$
\begin{aligned}
& \mathrm{CR}_{*}^{1}:=\left\{v_{\mathrm{CR}} \in \mathrm{CR}^{1}(\mathcal{T}) \mid \exists c_{1}, c_{2}, \ldots, c_{J} \in \mathbb{R}, c_{0}:=0\right. \\
&\left.\forall j=0, \ldots, J \quad \forall E \in \mathcal{E}\left(\Gamma_{j}\right) \quad v_{\mathrm{CR}}(\operatorname{mid}(E))=c_{j}\right\} .
\end{aligned}
$$

Prove that $P_{0}\left(\mathcal{T}, \mathbb{R}^{2}\right)=\nabla_{\mathrm{NC}} \mathrm{CR}_{*}^{1}(\mathcal{T}) \oplus \operatorname{Curl}\left(S^{1}(\mathcal{T}) / \mathbb{R}\right)$.

Exercise 14

Prove (A1)-(A2) for the error estimator of the CR-NCFEM.

Exercise 15

Conclude the proof of $\left(\mathrm{A} 4_{\varepsilon}\right)$ for any $\varepsilon>0$ for the MFEM from Lemma 5.11 in the spirit of the lectures on CR-NCFEM.

Exercise 16

Compute the constant $C_{\mathrm{qo}} \approx 1$ of the quasi-orthogonality for the CRFEM from Lemma 4.11.

Exercise 17

Prove that for any $\mathcal{T} \in \mathbb{T}$ and $E \in \mathcal{E}$, it holds

$$
|E|\left\|\left[p_{R T}\right]_{E} \cdot \tau_{E}\right\|_{L^{2}(E)}^{2} \lesssim\left\|p-p_{R T}\right\|_{L^{2}\left(\omega_{E}\right)}^{2} .
$$

