

Tutorials

Exercise 1

Let $\mathcal{T}_1, \mathcal{T}_2 \subset \bigcup \mathbb{T}$ be two regular triangulations of Ω into admissible triangles and let \mathcal{N}_j denote the set of nodes of the triangulation \mathcal{T}_j for j = 1, 2. Given $\mathcal{N}_1 = \mathcal{N}_2$, show that $\mathcal{T}_1 = \mathcal{T}_2$.

Exercise 2

Show that the admissible triangulations \mathbb{T} with respect to a regular triangulation \mathcal{T}_0 of the domain $\Omega \subset \mathbb{R}^2$ are exactly the regular triangulations of Ω into admissible triangles

$$\mathbb{T} = \left\{ \mathcal{T} \text{ regular triangulation } : \mathcal{T} \subseteq \bigcup \mathbb{T} \right\}.$$

Exercise 3

Given two admissible triangulations $\mathcal{T}_1, \mathcal{T}_2 \in \mathbb{T}$ with respect to a regular triangulation \mathcal{T}_0 of the domain $\Omega \subset \mathbb{R}^2$, prove that their overlay $\mathcal{T}_1 \oplus \mathcal{T}_2$ satisfies

$$|\mathcal{T}_1 \oplus \mathcal{T}_2| + |\mathcal{T}_0| \leq |\mathcal{T}_1| + |\mathcal{T}_2|.$$

Exercise 4

Write an essay on overhead control, explaining the proof of the theorem of Binev-Dahmen-DeVore and its meaning.

Exercise 5

Write an essay on the optimality of adaptive algorithms. Explain especially what adaptivity is and what optimality means for an adaptive algorithm.

Exercise 6

Given Theorem 2.11 (comparison lemma), Theorem 2.12 (optimality) and their proofs, find an upper bound $\Theta < 1$ for θ_0 from Theorem 2.11. Recall that θ_0 already satisfies $0 < \theta_0 < 1$ and $\theta_0 \eta^2 \leq \eta^2(\mathcal{T} \setminus \hat{\mathcal{T}})$ for $\hat{\mathcal{T}} \in \mathbb{T}(\mathcal{T})$.

Exercise 7

Let (V, a) a real Hilbert space, $V_0 \subset V_1 \subset V_2 \subset ... \subset V$ a nested sequence of finite-dimensional subspaces and $F \in V^*$. Prove that the Galerkin solutions $(u_\ell)_{\ell \in \mathbb{N}_0}$, i.e. $a(u_\ell, \bullet) = F$ in V_ℓ for all $\ell \in \mathbb{N}_0$, converge strongly to u_∞ . When is u_∞ the solution to $a(u, \bullet) = F$ in V?

Exercise 8

Let (V, a) a real Hilbert space, $V_0 \subsetneq V_1 \subsetneq V_2 \subsetneq ... \subseteq V$ a strictly nested sequence of finitedimensional subspaces and $(\delta_j)_{j \in \mathbb{N}_0}$ a monotone decreasing sequence of positive real numbers with $\lim_{j\to\infty} \delta_j = 0$.

Prove the existence of $F \in V^*$ such that the Galerkin solutions $(u_\ell)_{\ell \in \mathbb{N}_0}$ satisfy $||u - u_\ell|| = \delta_\ell$ for all $\ell \in \mathbb{N}_0$ and the solution u to $a(u, \bullet) = F$ in V.

Exercise 9

Given the Crouzeix-Raviart-FEM solution u_{CR} , write $\begin{bmatrix} \frac{\partial u_{\text{CR}}}{\partial \nu_E} \end{bmatrix}_E$ as a function of the right-hand side F and the local geometry for any $E \in \mathcal{E}(\Omega)$.

Exercise 10

Given $T \in \mathcal{T} \in \mathbb{T}$, $w \in P_1(T)$ and $z \in \mathcal{N}(T)$, compute $C_1, C_2 \approx 1$ such that

$$C_1 \|\nabla w\|_{L^2(T)} \leq h_T^{-1} \|w - w(z)\|_{L^2(T)} \leq C_2 \|\nabla w\|_{L^2(T)}.$$

Exercise 11

Given $w \in H^1(\omega_z)$ and $T \in \mathcal{T}(z)$, compute $C_1, C_2 \approx 1$ with

$$||w||_{L^{2}(\omega_{z})} \leq C_{1} ||w||_{L^{2}(T)} + C_{2}h_{z} ||\nabla w||_{L^{2}(\omega_{z})}$$

in terms of Poincaré constants.

Exercise 12

Compute all the pairs $(u, f) \in H_0^1(\Omega) \times L^2(\Omega)$ with vanishing seminorm, $|(u, f)|_{\mathcal{A}_{\sigma}} = 0$. Prove that the seminorm is a norm on the vector space of all pairs $(u, f) \in H_0^1(\Omega) \times L^2(\Omega)$ with $f + \Delta u = 0$.

Exercise 13

Given a polygonal bounded Lipschitz domain $\Omega \subset \mathbb{R}^2$ with J + 1 connection components $\Gamma_0, \Gamma_1, \ldots, \Gamma_J$ of the boundary $\partial \Omega$, define

$$CR^{1}_{*} := \{ v_{CR} \in CR^{1}(\mathcal{T}) | \exists c_{1}, c_{2}, \dots, c_{J} \in \mathbb{R}, c_{0} := 0 \\ \forall j = 0, \dots, J \quad \forall E \in \mathcal{E}(\Gamma_{j}) \quad v_{CR}(mid(E)) = c_{j} \}$$

Prove that $P_0(\mathcal{T}, \mathbb{R}^2) = \nabla_{\mathrm{NC}} \mathrm{CR}^1_*(\mathcal{T}) \oplus \mathrm{Curl}(S^1(\mathcal{T})/\mathbb{R}).$

Exercise 14

Prove (A1)–(A2) for the error estimator of the CR-NCFEM.

Exercise 15

Conclude the proof of $(A4_{\varepsilon})$ for any $\varepsilon > 0$ for the MFEM from Lemma 5.11 in the spirit of the lectures on CR-NCFEM.

Exercise 16

Compute the constant $C_{qo} \approx 1$ of the quasi-orthogonality for the CRFEM from Lemma 4.11.

Exercise 17

Prove that for any $\mathcal{T} \in \mathbb{T}$ and $E \in \mathcal{E}$, it holds

 $|E|||[p_{RT}]_E \cdot \tau_E||^2_{L^2(E)} \lesssim ||p - p_{RT}||^2_{L^2(\omega_E)}.$