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This paper presents mixed variational formulation and its discretization with finite
elements of higher-order for Signorini’s problem with Tresca’s friction. To guarantee
the unique existence of the discrete saddle point of the mixed method, a discrete inf-
sup condition is proven. Moreover, a solution scheme based on the dual formulation
of the mixed method is proposed. Numerical results confirm the theoretical findings.

1 Introduction

This paper deals with finite element methods of higher-order for Signorini’s problem
with Tresca’s friction, which plays an important role in mechanical engineering [14,
15,24]. The discretization approach is based on a mixed variational formulation. For
lower-order finite elements, this approach was introduced by Haslinger et al. in [16,
18,21]. In this paper, we extend it to higher-order finite elements. The approach re-
lies on a saddle point formulation where the geometrical contact condition and the
frictional condition are captured by Lagrange multipliers. The constraints for the La-
grange multipliers are sign conditions and box constraints and are, therefore, simpler
than the original contact conditions. However, the Lagrange multipliers are additional
variables which also have to be discretized. In mixed variational formulations, unique
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existence of the discrete saddle point usually follows from an inf-sup condition asso-
ciated to the discretization spaces. Its verification is often a crucial point. For lower-
order finite elements, the inf-sup condition is proven in the above mentioned refer-
ences. In this work, we prove the inf-sup condition for higher-order finite elements
for Signorini’s problem with Tresca’s friction. We use approximation results for the
p-method of finite elements, and some inverse estimates for higher-order polynomi-
als, [1,11]. The key is to use a discretization of the Lagrange multipliers on boundary
meshes with a larger mesh size than that of the primal variable and, moreover, differ-
ent polynomial degrees for the primal variable and Lagrange multipliers.
In general, higher-order discretization schemes for contact problems are rarely stud-
ied in literature, especially for mixed variational formulation. For discretization tech-
niques based on a primal, non-mixed formulation, we refer to [26,27].

This paper is organized as follows: To motivate the subject, to show the analytical
background behind and, in particular, to introduce the discrete inf-sup condition,
we briefly summarize the main arguments of convex analysis for the derivation of
a mixed variational formulation in Section 2. If necessary, some of the proofs are
given in the appendix. In Section 3, we apply the abstract framework to obtain a
mixed variational formulation for Signorini’s problem with Tresca’s friction and to
introduce a higher-order finite element discretization. In Section 4, we consider some
simplifications of Signorini’s problem and also assert them to the abstract framework
of Section 2. The main part of this work, the derivation of the inf-sup condition for
higher-order finite elements, is proposed in Section 5.
The second focus of this work is to present a solution scheme to solve the discrete
mixed variational formulation. The scheme is based on a dual variational formulation
leading to a minimization problem in terms of the Lagrange multipliers. It follows
the same line as in the approach presented in [17,19,20]. In Section 6, we extend it
to the higher-order approach. Furthermore, we discuss an extension of the solution
scheme to time-dependent problems in Section 7. Numerical results confirming the
theoretical findings are presented in Section 8.

2 General remarks on mixed variational formulations

Frictional contact problems can be captured by the minimization problem

(H + j)(u) = min
v∈K

(H + j)(v). (1)

Here, K is a subset of a reflexive Banach space V and H, j : V → R. The special
choice for V , H and j in the context of contact problems with friction will become
clear in Section 3, below. The following results are well-known, their proofs can be
found, for instance, in [5,10,24].

Theorem 1 Let K be convex.

(i) If K is closed and H + j is weakly lower semicontinuous and coercive, then there
exists a minimizer u ∈ K of (1).

(ii) If H + j is strictly convex, (1) admits at most one minimizer.
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(iii) Let H be Fréchet-differentiable in u ∈ K with the Fréchet-derivative H ′ : V →V ′.
If u is a minimizer of (1) and j is convex, then

〈H ′(u),v−u〉+ j(v)− j(u)≥ 0 (2)

for all v ∈ K. If H is convex and (2) holds, then u is a minimizer of (1).

To derive a mixed variational formulation, we resolve the condition v ∈ K and the
functional j by using Lagrange multipliers. To this end, let Φi : V ×Λi→ R, i = 0,1,
fulfill

sup
µ0∈Λ0

Φ0(v,µ0) =

{
0, v ∈ K
∞, v 6∈ K

(3)

and
j(v) = sup

µ1∈Λ1

Φ1(v,µ1) (4)

for all v ∈V with Λi ⊂U ′i and reflexive Banach spaces U ′i . Obviously, it holds

(H + j)(u) = inf
v∈V

sup
µ0∈Λ0,µ1∈Λ1

L (v,µ0,µ1)

with the Lagrange functional L (v,µ0,µ1) := H(v)+Φ0(v,µ0)+Φ1(v,µ1). There-
fore, u is a minimizer of (1), whenever the triple (u,λ0,λ1) ∈V ×Λ0×Λ1 is a saddle
point,

L (u,λ0,λ1) = inf
v∈V

sup
µ0∈Λ0,µ1∈Λ1

L (v,µ0,µ1). (5)

Defining Φi,µi(v) := Φi(v,µi) and Φi,v(µi) := Φi(v,µi) and applying Theorem 1, we
immediately obtain

Theorem 2 Let K, Λ0 and Λ1 be convex. Moreover, let H, Φ0,λ0 , Φ1,λ1 be Fréchet-
differentiable in u ∈V and Φ0,u, Φ1,u in λ0 ∈Λ0 and λ1 ∈Λ1.

(i) If (u,λ0,λ1) is a saddle point, then

(H ′+Φ
′
0,λ0

+Φ
′
1,λ1

)(u) = 0,

〈Φ ′0,u(λ0),µ0−λ0〉+ 〈Φ ′1,u(λ1),µ1−λ1〉 ≤ 0
(6)

for all (µ0,µ1) ∈Λ0×Λ1.
(ii) If H, Φ0,λ0 , Φ1,λ1 , −Φ0,u, and −Φ1,u are convex and (6) holds, then (u,λ0,λ1) is

a saddle point.

The existence of a saddle point is stated in the following theorem,

Theorem 3 Let Λ0 and Λ1 be closed and convex. Furthermore, let the following
conditions hold:

(i) −Φ0,v and −Φ1,v are convex and weakly lower semicontinuous for all v ∈V ,
(ii) H, Φ0,µ0 and Φ1,µ1 are convex and weakly lower semicontinuous for all (µ0,µ1)∈

Λ0×Λ1,
(iii) There exists a (µ̂0, µ̂1) ∈Λ0×Λ1, so that H +Φ0,µ̂0 +Φ1,µ̂1 is coercive.
(iv) Λ0×Λ1 is bounded or (µ0,µ1) 7→ supv∈V −L (v,µ0,µ1) is coercive.
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Then, there exists a saddle point (u,λ0,λ1) ∈V ×Λ0×Λ1 of (5).

See Remark IV.2.1 and Prop IV.2.3 in [10] for a proof. A simple criterion for condi-
tion (3) is given by the following assertion.

Lemma 1 Let Λ0 be a cone with vertex at the origin and let Φ0 : V ×Λ0→ R fulfill

∀α ≥ 0, ∀(v,µ0) ∈V ×Λ0 : Φ0(v,αµ0) = αΦ0(v,µ0), (7)
v ∈ K⇔∀µ0 ∈Λ0 : Φ0(v,µ0)≤ 0. (8)

Then, Φ0 also fulfill (3).

In the following, let a be a symmetric, continuous and V -elliptic bilinear form and
`∈V ′. Furthermore, let Ui be reflexive Banach spaces, Λ1⊂U ′1 be closed, convex and
bounded, βi ∈ L(V,Ui), G⊂U0 be a closed and convex cone with vertex at the origin
and g ∈U0. We consider the class of minimimization problems which is defined by

H(v) :=
1
2

a(v,v)−〈`,v〉, j(v) := sup
µ1∈Λ1

〈µ1,β1(v)〉, (9)

K := {v ∈V | g−β0(v) ∈ G}.

Note that j is well-defined due to Theorem 1. Moreover, H is convex, continuous and,
therefore, weakly semicontinuous. Due to its ellipticity, H is strictly convex. The set
K is closed and convex, and the functional j is convex and lower semicontinuous. As
a consequence of the closedness and convexity of the epigraph epi( j) (Prop I.2,3 in
[10]) and the separation theorem of Hahn-Banach, there exist a φ ∈ V ′ and a c ∈ R
such that j(v)≥〈φ ,v〉+c. Therefore, (H+ j)(v)≥ γ‖v‖2−(‖`‖+‖φ‖)‖v‖+c which
implies that H + j is coercive. Due to its convexity and lower semicontinuity, H + j
is weakly lower semicontinuous. Applying Theorem 1 yields

Theorem 4 There exists a unique minimizer.

Let G′ denote the dual cone of G which is defined by G′ := {µ0 ∈ U ′0 | ∀v ∈ G :
〈µ0,v〉 ≥ 0}. Moreover, let Λ0 := G′.

Theorem 5 The triple (u,λ0,λ1) ∈V ×U0×U1 is a saddle point if and only if,

a(u,v) = 〈`,v〉−〈λ0,β0(v)〉−〈λ1,β1(v)〉,
〈µ0−λ0,β0(u)−g〉+ 〈µ1−λ1,β1(u)〉 ≤ 0

(10)

for all v ∈V and (µ0,µ1) ∈Λ0×Λ1.

Theorem 6 There exists a saddle point (u,λ0,λ1) ∈ V ×Λ0×Λ1, if there exists an
α ∈ R>0 such that

α‖µ0‖U ′0 ≤ sup
v∈V,‖v‖=1

〈µ0,β0(v)〉. (11)

for all µ0 ∈U ′0.

Remark 1 It is easy to see, that the Lagrange multipliers λ0 and λ1 are unique if
β1(kerβ0) is dense in U1.
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Remark 2 Condition (11) is fulfilled, if the mapping β0 is surjective. This is a direkt
consequence of the closed range theorem, cf. [34].

Remark 3 If G = U0, then G′ = {0}, and we can omit all terms in (10) concerning
λ0. If Λ1 = {0} or β1 := 0, all terms in (10) concerning λ1 can be omitted.

Let Vh ⊂ V , U ′0,H ⊂U ′0 and U ′H,1 ⊂U ′1 be finite dimensional subspaces and Λi,H ⊂
U ′i,H , i = 0,1, where Λ0,H is a closed and convex cone with vertex at the origin and
Λ1,H is closed, convex and bounded. The discrete saddle problem consists in finding
a triple (uh,λ0,H ,λ1,H) ∈Vh×Λ0,H ×Λ1,H such that

L (uh,λ0,H ,λ1,H) = inf
vh∈Vh

sup
µ0,H∈Λ0,H ,µ1,H∈Λ1,H

L (vh,µ0,H ,µ1,H). (12)

It is easy to see that the first component is the unique minimizer of the minimization
problem (H + jhH)(uh) = minvh∈KhH (H + jhH)(vh) with KhH := {vh ∈ Vh | ∀µ0,H ∈
Λ0,H : 〈µ0,H ,β0(vh)− g〉 ≤ 0} and jhH := supµ1,H∈Λ1,H

〈µ1,H ,β1(vh)〉. Furthermore,
(uh,λ0,H ,λ1,H) ∈Vh×Λ0,H ×Λ1,H is a discrete saddle point if and only if

a(uh,vh) = 〈`,vh〉−〈λ0,H ,β0(vh)〉−〈λ1,H ,β1(vh)〉,
〈µ0,H −λ0,H ,β0(uh)−g〉+ 〈µ1,H −λ1,H ,β1(uh)〉 ≤ 0

(13)

for all vh ∈ Vh and (µ0,H ,µ1,H) ∈ Λ0,H ×Λ1,H . The first component uh is uniquely
determined.

Theorem 7 There exists a discrete saddle point, if g ∈ β0(Vh).

Since uniqueness of the Lagrange multipliers is not guaranteed, Theorem 7 is some-
what unsatisfactory. Furthermore, the existence depends on the assumption g∈ β0(Vh)
which is not fulfilled in general. The proof of the theorem is based on the closedness
of β0(Vh) as a finite dimensional subspace of U1 which enforces us to consider a sad-
dle point problem in quotient spaces (see the proof in the appendix). Of course, it is
more natural to consider a saddle point problem in the discretization space directly.

Theorem 8 Let Ũ ′1 be a Banach space and U ′1 be a dense subspace of Ũ ′1. Assume
that there exists an α ∈ R>0 such that

α‖(µ0,H ,µ1,H)‖U ′0×Ũ ′1
≤ sup

vh∈Vh,‖vh‖=1
(〈µ0,H ,β0(vh)〉+ 〈µ1,H ,β1(vh)〉) (14)

for all (µ0,H ,µ1,H) ∈U ′0,H ×U ′1,H , then there exists a unique discrete saddle point.

To proof the inf-sup condition (14), we will make use of the following general result:

Lemma 2 Let â be a continuous and V -elliptic bilinear form on V ×V and let β ∈
L(V,U) be a surjective mapping onto the Banach space U. For µ ∈U ′, there exists a
unique uµ ∈V such that

â(uµ ,v) = 〈µ,β (v)〉 (15)

for all v ∈V . Additionally, there holds C1‖µ‖U ≤ ‖uµ‖V for some constant C1 > 0.
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3 Signorini’s problem with Tresca’s friction and its higher-order finite element
discretizations

Let Ω ⊂Rk, k ∈N, be a domain with sufficiently smooth boundary Γ := ∂Ω . More-
over, let ΓD ⊂ Γ be closed with positive measure and let ΓC ⊂ Γ \ΓD with Γ C (
Γ \ΓD. L2(Ω), Hk(Ω) with k ≥ 1, and H1/2(ΓC) denote the usual Sobolev spaces
and H1

D(Ω) := {v ∈ H1(Ω) | γ(v) = 0 on ΓD} with the trace operator γ . The space
H−1/2(ΓC) denotes the topological dual space of H1/2(ΓC) with the norms ‖ ·‖−1/2,ΓC

and ‖ · ‖1/2,ΓC , respectively. Let (·, ·)0,ω , (·, ·)0,Γ ′ be the usual L2-scalar products on
ω ⊂Ω and Γ ′⊂Γ , respectively. We define the gradient operator ∇ in the weak sense.
Note that the linear and bounded mapping γC := γ|ΓC : H1

D(Ω)→ H1/2(ΓC) is surjec-
tive due to the assumptions on ΓC, cf. [24]. For functions in L2(Ω) or L2(ΓC), the
inequality symbols≥ and≤ are defined as “almost everywhere”. We set H1/2

± (ΓC) :=
{v ∈ H1/2(ΓC) | ±v ≥ 0} and L2

l (ΓC) := {µ ∈ (L2(ΓC))
l | |µ| ≤ 1 on supps, v =

0 on ΓC\supps} with the euclidian norm | · | and s ∈ L2(ΓC), s ≥ 0. Furthermore,
we define the dual cones H−1/2

± (ΓC) := (H1/2
± (ΓC))

′.

We propose a higher-order finite element discretization based on quadrangles or
hexahedrons as follows: Let T be a finite element mesh of Ω with mesh size h
and let TC be a finite element mesh of ΓC with mesh size H. We assume that a
submesh of TC is a mesh of supps. Furthermore, let ΨT : [−1,1]k → T ∈ T and
ΨC,T : [−1,1]k−1→ T ∈TC be bijective and sufficiently smooth transformations and
let pT ∈ N be a degree distribution on T and qT ∈ N be ones on TC. Using the
polynomial tensor product space Sr

k of order r on the reference element [−1,1]k, we
define

S p
h :=

{
vh ∈ H1

D(Ω) | ∀T ∈T : v|T ◦ΨT ∈ SpT
k

}
,

M q
H :=

{
µ ∈ L2(ΓC) | ∀T ∈TC : µ|T ◦ΨC,T ∈ SqT

k−1

}
.

For a finite subset M ⊂ [−1,1]k, we define

M q
H,± := {µ ∈M q

H | ∀T ∈TC : ∀x ∈M : ±µ(ΨC,T (x))≥ 0},

M q
H,l := {µ ∈ (M q

H)
l | ∀T ∈TC,T ⊂ supps : ∀x ∈M : |µ(ΨC,T (x))| ≤ 1,

µ = 0 on ΓC\supps}.

Contact problems in mechanical engineering with small deformations are often mod-
elled by Signorini’s problem with Tresca’s friction where a linear elastic material law
is used to describe the deformation of elastic bodies through linearized stress and
strain tensors. We consider a body which is described by Ω ⊂ Rk, k ∈ {2,3}. The
body is clamped at the boundary part ΓD, volume and surface forces given by func-
tions f ∈ (L2(Ω))k and b∈ (L2(ΓN))

k−1 with ΓN ⊂Γ \(ΓD∪Γ C) act on the body lead-
ing to a deformation. For the displacement field v we define the strain tensor ε(v) :=
1
2 (∇v+(∇v)>) and the stress tensor σ(v)i j := Ci jklε(v)kl where Ci jkl ∈ L∞(Ω) with
Ci jkl = C jilk = Ckli j and Ci jklτi jτkl ≥ κτ2

i j for τ ∈ L2(Ω)k×k
sym and a κ > 0. We assume

that ΓC and the section of the obstacle’s surface which possibly gets in contact are
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parameterized by sufficiently smooth functions ψ,ϕ : Rk−1 → R. Provided that the
body is located under the obstacle, we obtain

ϕ(x)+ v3(x,ϕ(x))≤ ψ(x1 + v1(x,ϕ1(x)), . . . ,xk−1 + v2(x,ϕ(x))) (16)

with x := (x1, . . . ,xk−1) ∈ Rk−1. In general, the geometrical contact condition (16)
is non-linear. An appropriate linearization is introduced in [24] by g− vn ≥ 0 with
g(x,ψ(x)) := (ψ(x)−ϕ(x))(1+(∇φ(x))>∇φ(x))−1/2 with the outer normal n.
Frictional contact conditions can be introduced assuming that sliding does not occur
if the magnitude of the tangential forces is below a critical value described by a
frictional function s ∈ L2(ΓC) with s ≥ 0. If the tangential forces reach this critical
value, sliding is obtained in the direction of the tangential forces. Such Tresca friction
can be extended to Coulomb’s friction setting s to the magnitude of the normal forces
times a friction coefficient and integrating the problem into a fixed point scheme, see
Section 6. Taking the linearized geometrical as well as frictional contact conditions
into account, Signorini’s problem with Tresca’s friction is to find a displacement field
u ∈W := {v ∈ (H1(Ω))k | σ(v) ∈ H(div,Ω), u = 0 on ΓD} such that

−div(σ(u)) = f in Ω , σn(u) = b on ΓN ,

un−g≤ 0, σnn(u)≤ 0, σnn(u)(un−g) = 0 on ΓC,

|σnt(u)| ≤ s with
{
|σnt(u)|< s⇒ ut = 0,
|σnt(u)|= s⇒∃ζ ∈ R≥0 : ut =−ζ σnt(u)

}
on ΓC.

Here, t denotes the matrix containing the tangential vectors and σn, j := σi jni, σnn :=
σi jnin j, σnt,k := σi jnit jk, un := uini and ut, j := uiti j.
The function u ∈W is a solution if and only if the variational inequality

(σ(u),ε(v−u))0 +(s, |γt(v)|− |γt(u)|)0,ΓC ≥ ( f ,v−u)0 +(b,γN(v−u))0,ΓN (17)

is fulfilled for all v ∈ K := {v ∈ H1(Ω ,ΓD)
k | g− γn(v) ≥ 0}, cf. [8]. Here, we de-

fine γn(v) := γC(vi)ni, γt(v) j := γC(vi)ti j and γN := γ|ΓN . Using the notation of Section

2, we set V := (H1
D(Ω))k, β0 := γn, U0 := H1/2(ΓC), G := H1/2

+ (ΓC) and 〈`,v〉 :=
( f ,v)0 + (b,γN(v))0,ΓN . Furthermore, we define the bilinear form a as a(v,w) :=
(σ(v),ε(w))0 which is symmetric, continuous, and, due to Korn’s inequality, ellip-
tic. It is easy to see, that j(v) := (s, |γt(v)|)0,ΓC is continuous, convex and can be
expressed through j(v) = supµ∈Λ1

(µ1,sγt(v))0,ΓC with Λ1 := L2
k−1(ΓC) (see Section

4). Setting β1 := sγt , U1 := (L2(ΓC))
k−1 and applying the results of Section 2, we

obtain u as the unique minimizer of (1). Again, from Lemma 6 and Remark 2, we
obtain a unique saddle point (u,λ0,λ1) ∈ (H1

D(Ω))k×H1/2
+ (ΓC)×L2

k−1(ΓC) which is
equivalently characterized by the mixed variational formulation

(σ(u),ε(v))0 = ( f ,v)0 +(b,γN(v))0,ΓN −〈λ0,γn(v)〉− (λ1,γt(v))0,ΓC ,

〈µ0−λ0,γn(v)−g〉+(µ1−λ1,sγt(u))0,ΓC ≤ 0

for all v ∈ (H1
D(Ω))k and (µ0,µ1) ∈ H1/2

+ (ΓC)× L2
k−1(ΓC). The discretization is to

find (uh,λ0,H ,λ1,H) ∈ Sp
h ×M q

H,+×M q
H,k−1 such that

(σ(uh),ε(vh))0 = ( f ,vh)0 +(b,γN(vh))0,ΓN − (λ0,H ,γn(vh))0,ΓC − (λ1,H ,γt(vh))0,ΓC ,

(µ0,H −λ0,H ,γn(uh)−g)0,ΓC +(µ1,H −λ1,H ,sγt(uh))0,ΓC ≤ 0
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for all v∈ (S p
h )

k and (µ0,H ,µ1,H)∈M q
H,+×M q

H,k−1. Note that both the geometrical
obstacle function g and frictional function s are included in this formulation in a weak
sense.

If the contact area and normal force known a priori, Signorini’s problem can be sim-
plified to Signorini’s problem with prescribed normal force which is to find a dis-
placement field u ∈W such that

−div(σ(u)) = f in Ω , σn(u) = q on ΓN , σnn(u) = s on ΓC,

|σnt(u)| ≤ s with
{
|σnt(u)|< s⇒ ut = 0,
|σnt(u)|= s⇒∃ζ ∈ R≥0 : ut =−ζ σnt(u)

}
on ΓC.

The function u ∈W is a solution, if and only if the variational inequality (17) is
fulfilled with K := (H1

D(Ω))k. We use the same notation as for Signorini’s problem
with Tresca’s friction, but here, we set G := H1/2(ΓC). Due to the results of Sec-
tion 2, we obtain u as the unique minimizer of (1). A unique saddle point (u,λ1) ∈
(H1

D(Ω))k×L2
k−1(ΓC) is equivalently characterized by the mixed variational formu-

lation

(σ(u),ε(v))0 = ( f ,v)0 +(b,γN(v))0,ΓN +(s,γn(v))0,ΓC − (λ1,γt(v))0,ΓC ,

(µ1−λ1,sγt(u))0,ΓC ≤ 0

for all v ∈ (H1
D(Ω))k and µ1 ∈ L2

k−1(ΓC). The discretization is to find (uh,λ1,H) ∈
(S p

h )
k×M q

H,k−1 such that

(σ(uh),ε(vh))0 = ( f ,vh)0 +(q,γN(vh))0,ΓN +(s,γn(vh))0,ΓC − (λ1,H ,γt(vh))0,ΓC ,

(µ1,H −λ1,H ,sγt(uh))0,ΓC ≤ 0

for all v ∈ (S p
h )

k and µ1,H ∈M q
H,k−1.

4 Simplications of Signorini’s problem

Both the geometrical part and the frictional part of Signorini’s problem with Tresca’s
friction can be studied separately considering model problems. A simplified version
of Signorini’s problem, which only captures the geometrical condition, is to find a
function u ∈ H1

D(Ω)∩H2(Ω) such that

−∆u = f in Ω , ∂nu = 0 on ΓN ,

u≥ g, ∂nu≥ 0, ∂nu(u−g) = 0 on ΓC,
(18)

where f ∈ L2(Ω). The function g ∈H1/2(ΓC) represents an obstacle on the boundary
ΓC. Multiplying with a test function and integrating by parts yield that u ∈ H1

D(Ω)∩
H2(Ω) is a solution if and only if u ∈ K := {v ∈ H1

D(Ω) | γC(v)≥ g} and

(∇u,∇(v−u))0 ≥ ( f ,(v−u))0 (19)
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for all v ∈ K. Using the notation of Section 2, we set V := H1
D(Ω), U0 := H1/2(ΓC),

β0 := γC, G := H1/2
− (ΓC), j := 0, a(v,w) := (∇v,∇w)0 and 〈`,v〉 := ( f ,v)0. The bi-

linear form a is symmetric, continuous, and V -elliptic, due to Poincare’s inequal-
ity. Therefore, u is the unique minimizer of (1). Due to Theorem 6 and Remark 2,
we obtain a unique saddle point (u,λ0) ∈ H1

D(Ω)×H−1/2
− (ΓC) which is equivalently

characterized by the mixed variational formulation

(∇u,∇v)0 = ( f ,v)0−〈λ0,γC(v)〉,
〈µ0−λ0,γC(u)−g〉 ≤ 0

for all v ∈H1
D(Ω) and µ0 ∈H−1/2

− (ΓC). A discretization is given by setting Vh :=S p
h

and U ′0,H := M q
H,−. Due to Theorem 7, we obtain a saddle point (uh,λ0,H) ∈S p×

M q
H,− which is equivalently characterized by

(∇uh,∇vh)0 = ( f ,vh)0− (λ0,H ,γC(vh))0,ΓC ,

(µ0,H −λ0,H ,γC(uh)−g)0,ΓC ≤ 0

for all vh ∈S p
h and µ0,H ∈M q

H,−.

An idealized frictional problem is to find a function u ∈ H1
D(Ω)∩H2(Ω) such that

−∆u = f in Ω , ∂nu = 0 on ΓN ,

|∂nu| ≤ s with

{ |∂nu| < s⇒ u = 0,
∂nu = s⇒ u≥ 0,
−∂nu = s⇒ u≤ 0

}
on ΓC

with f ∈ L2(Ω) and s ∈ L2(ΓC), s ≥ 0. Again, multiplying by a test function and
integrating by parts, we obtain that u ∈ H1(Ω ,ΓD)∩H2(Ω) is a solution if and only
if

(∇u,∇(v−u))0 +(s, |γ(v)|− |γ(u)|)0,ΓC ≥ ( f ,v−u)0 (20)

for all v ∈ H1(Ω ,ΓD). Here, we set V := H1
D(Ω), U0 := H1/2(ΓC), β0 := γC, G :=

H1/2(ΓC), and j(v) := (s, |γ(v)|)0,ΓC . Futhermore, we define a and ` as above and
conclude that u is the unique minimizer of (1). For a mixed variational formulation,
we have to ensure that j can be expressed as in (9). To this end, we define β1 :=
sγC, U1 := L2(ΓC), Λ1 := L2

1(ΓC). For µ1 ∈ L2
1(ΓC) and v ∈ H1(Ω ,ΓD), there holds

(µ1,sγC(v))0,ΓC ≤ (|µ1|,s|γC(v)|)0,ΓC ≤ j(v). Furthermore, we have

j(v) =
∫

Γ̃C

s|γC(v)|−1
γC(v)2 dΓ ≤ sup

µ∈Λ1

(µ1,sγC(v))0,ΓC

with Γ̃C := ΓC\{x ∈ ΓC | γ(v(x)) = 0}. Altogether, we obtain (4). Due to Lemma 6
and Remark 2, we obtain a unique saddle point (u,λ1) ∈ H1

D(Ω)×L2
1(ΓC) which is

equivalently characterized by the mixed variational formulation

(∇u,∇v)0 = ( f ,v)0− (λ1,sγC(v))0,ΓC ,

(µ1−λ1,sγC(u))0,ΓC ≤ 0
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for all v ∈ H1
D(Ω) and µ1 ∈ L2

1(ΓC). The discrete mixed variational formulation is to
find (uh,λ1,H) ∈S p

h ×M q
H,1 such that

(∇uh,∇vh)0 = ( f ,vh)0− (λ1,H ,sγC(vh))0,ΓC ,

(µ1,H −λ1,H ,sγC(uh))0,ΓC ≤ 0

for all vh ∈S p
h and µ1,H ∈M q

H,1.

5 The inf-sup condition for Signorini’s problem with Tresca’s friction

In this section, we prove the unique existence of a discrete saddle point for Signorini’s
problem with Tresca’s friction. According to Theorem 8, we have to show the discrete
inf-sup condition (14). Signorini’s problem with prescribed normal force is likewise
included. Similar results for the simplified version of Signorini’s problem and the
idealized frictional problem can be found in [31].
In particular, we show that the constant α in (14) can be chosen independently from
h, H, p and q. For the proof, we make use of an higher order approximation result
(Lemma 3) and of an inverse inequality for negative norms (Lemma 4). We follow the
proof of Lemma 3.1 in [18] where this condition is derived for discretization schemes
of lower-order and combine it with the proof given for the idealized frictional problem
as shown in [31].

The interpolation spaces H1+θ (Ω) and H−1/2+θ (ΓC) are defined as H1+θ (Ω) :=
[H1(Ω),H2(Ω)]θ ,2 and H−1/2+θ (ΓC) := [H−1/2(ΓC),H1/2(ΓC))]θ ,2, 0 < θ ≤ 1, with
norms ‖ · ‖1+θ and ‖ · ‖−1/2+θ ,ΓC , respectively, see [28,32]. We assume that T and
TC are quasi-uniform and p and q are constant degree distributions. With â(v,w) :=
(ε(v),ε(w))0 + (v,w)0, v,w ∈ (H1(Ω))k, and β := (γn,γt) with V := H1

D(Ω) and
U := H1/2(ΓC)× (H−1/2(ΓC))

2, we call the variational problem (15) regular, if uµ

i ∈
H1

D(Ω)∩H1+θ (Ω), i = 1, . . . ,k, and

‖uµ

i ‖1+θ ≤C4

k

∑
i=1
‖µi‖−1/2+θ ,ΓC (21)

for all µ ∈ (H−1/2+θ (ΓC))
k and a constant C4 > 0. For k = 2 and parallelogram

meshes, there holds

Lemma 3 Let µ ∈ (L2(ΓC))
k and uµ

i ∈ H1
D(Ω)∩H1+θ (Ω), i = 1, . . . ,k, be the solu-

tion of (15), then there exists a function uµ

I ∈ (S
p

h )
k and a constant C2 > 0, indepen-

dent of uµ , h and p, such that

‖uµ −uµ

I ‖1 ≤C2
hθ

pθ

k

∑
i=1
‖uµ

i ‖1+θ .

Proof See [1, Thm. 4.6]. 2

For k > 2, we refer to [2].
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Lemma 4 There exists a constant C3 > 0 which is independent of H and q, such that

‖µH‖−1/2+θ ,ΓC ≤C3
max{1,q}2θ

Hθ
‖µH‖−1/2,ΓC

for all µH ∈M q
H .

Proof See [11, Thm. 3.5., Thm. 3.9]. 2

Lemma 5 Let L̃2(ΓC) := {µ ∈ (L2(ΓC))
k−1 | µ = 0 on ΓC\supps} and C,C′ > 0.

There exists a κ > 0, such that for h, H, p and q satisfying

Π(h,H, p,q) :=
(
hH−1 max{1,q}2 p−1)θ

< κ

there holds

k−1

∑
i=1

(
C‖sµ1,H,i‖−1/2,ΓC −C′Π(h,H, p,q)‖µ1,H,i‖−1/2,ΓC

)
≥ κ

k−1

∑
i=1
‖µ1,H,i‖−1/2,ΓC

for all µ1,H ∈ (M q
H)

k−1∩ L̃2(ΓC).

Proof Assume that for all κ > 0 there exist hκ , Hκ , pκ and qκ such that

Πκ := Π(hκ ,Hκ , pκ ,qκ)< κ

and there exists a function µκ ∈ (M qκ

Hκ
)k−1∩ L̃2(ΓC), such that

k−1

∑
i=1

(
C‖sµκ,i‖−1/2,ΓC −C′Πκ‖µκ,i‖−1/2,ΓC

)
< κ

k−1

∑
i=1
‖µκ,i‖−1/2,ΓC . (22)

Obviously, µκ 6= 0. Defining µ̃κ := ‖µκ‖−1
−1/2,ΓC

µκ ∈ L̃2(ΓC), we obtain ‖µ̃κ‖−1/2,ΓC =

1. Due to the reflexivity of L2(ΓC) and the convexity as well as the closedness of
L̃2(ΓC), there exists some µ̃ ∈ L̃2(ΓC) such that µ̃κn ⇀ µ̃ for a sequence κn→ 0. This
also implies µ̃κn → µ̃ in the norm ‖ · ‖−1/2,ΓC using a well known compactnes result.
Therefore, ‖µ̃‖−1/2,ΓC = 1 and µ̃ 6= 0 on supps. From (22), we have

C
k−1

∑
i=1
‖sµ̃κn,i‖−1/2,ΓC < (k−1)(1+C′)κn

which implies ∑
k−1
i=1 ‖sµ̃i‖−1/2,ΓC = 0 and therefore, sµ̃ = 0, which is a contradiction

to µ̃ 6= 0 on supps. 2

Using Lemma 2, Lemma 3 and Lemma 4 as well as the regularity assumption (21)
on uµ and Lemma 5, we are able to prove the main theorem.

Theorem 9 Let the variational problem (15) be regular for θ ≤ 1/2 and s ∈ L∞(ΓC).
Furthermore, let Π(h,H, p,q) be sufficiently small. Then, the inf-sup condition (14)
with Ũ ′1 := (H−1/2(ΓC))

k−1 is fulfilled with α independent from h, H, p und q.
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Proof Let µH := (µ0,H ,µ1,H) ∈M q
H × (M q

H)
k−1 and uµ

h ∈ (S p
h )

k be the solution of
(15) with V := (S p

h )
k and µ := µs,H := (µ0,H ,sµ1

1,H , . . . ,sµ
k−1
1,H ). Using the Galerkin

orthogonality, Lemma 3, the regularity assumption and Lemma 4, we obtain

‖uµs,H −uµs,H
h ‖1 ≤ ‖uµs,H −uµs,H

I ‖1 ≤C2
hθ

pθ

k

∑
i=1
‖uµs,H,i‖1+θ

≤C2C4
hθ

pθ

k

∑
i=1
‖µs,H,i‖−1/2+θ ,ΓC

≤C2C4
hθ

pθ
max{1,‖s‖∞,ΓC}

k

∑
i=1
‖µH,i‖−1/2+θ ,ΓC

≤C2C3C4

(
hθ

pθ

max{1,q}2θ

Hθ

)
max{1,‖s‖∞,ΓC}

k

∑
i=1
‖µH,i‖−1/2,ΓC

=C2C3C4Π(h,H, p,q)max{1,‖s‖∞,ΓC}
k

∑
i=1
‖µH,i‖−1/2,ΓC .

From Lemma 2 and the norm equivalence

C0‖µ‖H−1/2(ΓC)×(H−1/2(ΓC))k−1 ≤
k

∑
i=0
‖µi‖−1/2,ΓC ≤C−1

0 ‖µ‖H−1/2(ΓC)×(H−1/2(ΓC))k−1

with a constant C0 > 0, we obtain

sup
vh∈Sp(Th)\{0}

(µ0,H ,γn(vh))0,ΓC +(µ1,H ,sγt(vh))0,ΓC

‖vh‖1

≥
(µ0,H ,γn(u

µs,H
h ))0,ΓC +(sµ1,H ,γt(u

µs,H
h ))0,ΓC

‖uµs,H
h ‖1

= ‖uµs,H
h ‖1

≥ ‖uµs,H‖1−‖uµs,H −uµs,H
h ‖1

≥C0C1

k

∑
i=1
‖µs,H,i‖−1/2,ΓC −C2C3C4Π(h,H, p,q)max{1,‖s‖∞,ΓC}

k

∑
i=1
‖µH,i‖−1/2,ΓC

≥ (C0C1−C2C3C4Π(h,H, p,q)max{1,‖s‖∞,ΓC})‖µ0,H‖−1/2,ΓC

+
k−1

∑
i=1

(
C1‖µ1,H,i‖−1/2,ΓC −C2C3C4Π(h,H, p,q)max{1,‖s‖∞,ΓC}‖µ1,H,i‖−1/2,ΓC

)
≥ (C0C1−C2C3C4Π(h,H, p,q)max{1,‖s‖∞,ΓC})‖µ0,H‖−1/2,ΓC +κ

k−1

∑
i=1
‖µ1,H,i‖−1/2,ΓC

≥ (C0C1−C2C3C4ε max{1,‖s‖∞,ΓC})‖µ0,H‖−1/2,ΓC + ε

k−1

∑
i=1
‖µ1,H,i‖−1/2,ΓC

≥min{C0C1−C2C3C4ε max{1,‖s‖∞,ΓC},ε}
k

∑
i=0
‖µH,i‖−1/2,ΓC

≥C0 min{C0C1−C2C3C4ε max{1,‖s‖∞,ΓC},ε}‖µH‖H−1/2(ΓC)×(H−1/2(ΓC))k−1
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with Π(h,H, p,q)≤ ε < min{C0C1(C2C3C4 max{1,‖s‖∞})−1,κ}. 2

Hence, from Theorem 8 and Theorem 9 we obtain

Corollary 1 Under the assumptions of Theorem 9, there exists a unique discrete sad-
dle point of Signorini’s problem with Tresca’s friction.

Remark 4 The assumptions of Theorem 9 seem hard to be verified in practice as it
is not clear when Π(h,H, p,q) is sufficiently small. Furthermore, it is often unclear
whether the regularity assumption (21) holds. For convex domains, this assumption
is fulfilled. Nevertheless, Theorem 9 justifies the modification of the discretization
scheme by coarsening the mesh TC or by decreasing the polynomial degree q to
obtain a stable scheme. In Section 8, numerical results confirm this theoretical obser-
vation.

Remark 5 The choice Ũ ′1 = ((H1/2(ΓC))
k−1)′ is important. To use Theorem 8 we

might choose Ũ ′1 = (L2(ΓC))
k−1. However, in this case, the mapping β would not be

surjective and Lemma 2 could not be applied in the proof of Theorem 9.

6 Solution scheme based on the dual formulation

In this section, we propose a solution scheme which is based on the dual formulation
of the discrete mixed variational formulation and is, in particular, convenient to han-
dle discretizations of higher-order. We first introduce the scheme within the abstract
framework of Section 2. Thereafter, we discuss the application of the scheme to the
higher-order discretization of Section 3.

Introducing a basis {ϕ j}0≤ j<n of Vh and bases {ψi j}0≤ j<mi of U ′i,H with n := dimVi

and mi := dimU ′i,H and setting Λ̄i := {z ∈ Rmi | z jψi j ∈Λi,H}, the discretization (13)
is to find (x,y0,y1) ∈ Rn× Λ̄0× Λ̄1 such that

A x = L −B>0 y0−B>1 y1,

(y0− z0)
>(B0x−G )+(y1− z1)

>B1x≤ 0
(23)

for all (z0,z1) ∈ Λ̄0× Λ̄1. Here, A ∈ Rn×n, L ∈ Rn, Bi ∈ Rmi×n and G ∈ Rm0 are
defined as A jk := a(ϕk,ϕ j), L j := 〈`,ϕ j〉, Bi, jk := 〈ψi, j, βi(ϕk)〉 and G j := 〈ψ0, j,g〉.
The solution is given by (uh,λ0,H ,λ1,H) = (xiϕi,y0, jψ0, j,y1, jψ1, j). With

B :=
(

B0
B1

)
, G̃ :=

(
G
0

)
,

and Λ̄ := Λ̄0× Λ̄1, the system (23) is equivalent to find (x,y) ∈ Rn× Λ̄ such that

A x = L −B>y,

(y− z)>(Bx− G̃ )≤ 0
(24)
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for all z ∈ Λ̄ . A simple iterative scheme with projection is often refered to solve the
system (24), cf. [15]. With a suitable projection P :Rm0×Rm1→ Λ̄ and S −1 ∈Rn×n,
this scheme reads

xn+1 = xn−ρ1S
−1(Axn +B>yn−L ),

yn+1 = P(yn +ρ2(Bxn+1− G̃ )).

Usually, S −1 is chosen as A −1 or as an appropriate approximation of A −1. Since
it is not obvious to define the projection P for higher-order discretizations with pos-
sibly non-nodal basis functions, we consider an alternative scheme based on the dual
formulation of (24). The basic idea is to reformulate (24) into a minimzation problem
in terms of the Lagrange multipliers using a Schur complement ansatz.

Theorem 10 The pair (x,y) fulfills (24) if and only if

F(y) = min
z∈Λ̄

F(z), F(z) :=
1
2

z>BA −1B>z− z>
(
BA −1L − G̃

)
(25)

and x = A −1(L −B>y).

Proof Resolving the equation in (24) leads to x = A −1(L −B>y). Replacing x in
the inequality, we obtain(

BA −1B>y− (BA −1L − G̃ )
)>

(z− y)≥ 0

for all z ∈ Λ̄ . Applying the general Theorem 1 completes the proof. 2

To solve Problem (25), within an optimization scheme of quadratic programming,
we usually have to specify an evaluation routine for the objective function F which
is given as follows

(i) b = B>z
(ii) Solve Ax̃ = b

(iii) z̃ = Bx̃
(iv) F = 0.5z>z̃− z>w

with some auxiliary vectors b, x̃ ∈Rn and z,w ∈Rm, m := m0 +m1. The vector w can
be evaluated in a preprocessing step by

(i) Solve Ax̃ = L
(ii) z̃ = Bx̃

(iii) w = z̃− G̃

Using a direct solver, only a single factorization of the matrix A is necessary. Instead
of a direct solver, which may be more suited to higher-order discretizations, iterative
or multigrid schemes can be used, too.
Note that the dimension m of the opimization variable given by the Lagrange mul-
tipliers is, in general, much smaller than the dimension of the discrete displacement
variable n. Therefore, the total amount to solve the system mainly depends on m and
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on an efficient matrix-vector computation to evaluate the objective function F . In the
end, this fact makes this approach applicable. It may be, therefore, also an alternative
to other very efficient approaches for solving contact problems. We refer to some re-
cent works [6,22,23,25,33].
For lower-order finite elements, the introduced approach is widely studied and en-
hanced for many applications in frictional contact problems. We refer to [7,17,19]
for more details. In particular, the block structure of the matrix B>A −1B can be
further exploited using splitting type algorithms [20] as well as domain decomposi-
tion techniques can be applied [7]. Also the application of this approach to multibody
contact problems is possible. Especially, the discrete mixed variational formulation
allows for the use of non-matching grids which can be directly included in the solu-
tion scheme. We refer to [4] for more details.
In our case, we prefer this general approach since it seems to be very convenient for
higher-order finite element discretizations and, in particular, for the discrete mixed
variational formulation proposed in this work. An advantage of the approach is that
the additional implementational effort is small, if one uses a standard optimization
tool based on QP- or SQP-techniques. In particular, for varying polynomial degrees,
for instance in hp-adaptive schemes, cf. [30], the constraints can be profoundly com-
plicated so that the derivation of more sophisticated algorithms which capture the
specific properties of the higher-order discretization is not obvious.

The application of the solution scheme to higher-order discretizations is given as
follows. Using the discretization as introduced in Section 3, we have Λ0,H = M q

H,±
and Λ1,H = M q

H,l . To determine Λ̄i, i = 0,1, suppose that {κ j}0≤ j<mr is a basis of
Sr

k−1 with mr := dimSr
k−1. With ζ (Tl) := ∑

l−1
i=0 mqTi , a basis of M q

H is simply given by

ψ̃ζ (Tl)+ j := κ j ◦Ψ
−1

Tl

on Tl ∈ TC = {T0,T1, . . . ,Tm̃−1} and 0 on ΓC\Tl . Assuming M = {x0, . . . ,xd−1}, we
define a matrix C ∈ Rdm̃×m0 , m0 := dimM q

H , by

Cld+ν ,ζ (Tl)+ j := κ j(xν),

j = 0, . . . ,mqTl , ν = 0, . . . ,d, and 0 otherwise. Thus, we have

Λ̄0 = {z ∈ Rm0 | ±Cz≤ 0}, Λ̄1 = {z ∈ Rm1 | f (z)≤ 1}

with m1 := (m0)
k−1 and

f (z1,0, . . . ,z1,k−2) j :=
k−2

∑
i=0

((Cz1,i) j)
2,

j = 0, . . . ,dm̃−1. Hence, (25) reads

F(y) = min
z=(z0 ,z1)∈R

m0×Rm1 ,
±Cz0≤0, f (z1)≤1

F(z). (26)

Note that the set M should be chosen so that the additional numerical error is mini-
mized. We use Chebycheff points to ensure the additional error to be small. We refer
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to [9] for a further justification of this choice.
In view of (26), we have linear constraints for the variable z0. For the variable z1, we
also have linear constraints in the case k = 2 and non-linear constraints in the case
k = 3. In our implementation, we use the sqopt-method of the SQP-package Snopt
by Gill et. al [12,13] to include the linear constraints and the snopt-method of this
package for the general non-linear constraints.

It should be mentioned that the solution scheme is also convenient to implement
Coulomb friction law, where the frictional function s is defined as s := F |σnn(u)|
with some frictional coefficient F > 0. Under certain regularity assumptions, the La-
grange multiplier λ0 coincides with the normal contact stress−σnn(u). However, set-
ting s := F |λ0| would lead to a formulation which is not captured by the introduced
framework of Section 2. Instead, we can embed Coulomb’s friction into our frame-
work using a simple fix point scheme: For an arbitrary frictional function s ∈ L2(ΓC)
with s ≥ 0, we define (u(s),λ0(s),λ1(s)) as the unique saddle point of Signorini’s
problem with Tresca’s friction, and furthermore, the operator H (s) := F |λ0(s)|.
Assuming that H has a fix point, i.e., H (s̄) = s̄, the saddlepoint (u(s̄),λ0(s̄),λ1(s̄))
fulfills Coulomb friction law. Transfering this concept to the discrete mixed vari-
ational formulation, we obtain (x(s),y0(s),y1(s)) as the solution of (23) and de-
fine H̃ (s) := F |y0, j(s)ψ0, j|. Again, a fix point s̃ of H̃ (or a suitable approxi-
mation) leads to solution vectors (x(s̃),y0(s̃),y1(s̃)) yielding a discrete saddlepoint
(uh(s̃),λ0,H(s̃),λ1,H(s̃)) which approximatively fulfills Coulomb friction law. We re-
fer to [20,17] and reference therein for more details on this well-known proceeding.

7 An extension to time-dependent problems

The use of the solution scheme as proposed in Section 6 is not restricted to the static
case, which is, in a sense, uninteresting in many applications of engineering. It is
also applicable to dynamic contact problems. To demonstrate this, we extend the
simplified version of Signorini’s problem of Section 4 to a time-dependent model
problem which is to find a time-dependent function u ∈ H2(I;H1

D(Ω)∩H2(Ω)) on
Ω × I, I := [0,T ], with u(0) = u0 ∈ H1

D(Ω), u̇(0) = v0 ∈ H1
D(Ω) such that

ü−∆u = f in I×Ω , ∂nu = 0 on ΓN× I,

u≥ g, ∂nu≥ 0, ∂nu(u−g) = 0 on ΓC× I

with a time-dependent load function f and a time-dependent obstacle function g on
Ω×I and ΓC×I, respectively. Again, multiplying by a test function and integrating by
parts yield, that u is a solution if and only if u∈ K̃ := {v∈V | γC(v(t))≥ g, t ∈ [0,T ]}
and

(ü(t),v(t)−u(t))0 +(∇u(t),∇(v(t)−u(t)))0 ≥ ( f (t),v(t)−u(t))0

for almost all t ∈ [0,T ] and all v∈ K̃, cf. [29]. Here, we set V :=W 2,∞([0,T ];L2(Ω))∩
L∞([0,T ];H1

D(Ω)). To discretize this variational problem in time, we may use Rothe’s



17

method on the basis of a Newmark scheme. Setting u0 := u0, u̇0 := v0, we succes-
sively seek a function un := u(tn) ∈ Kn := {v ∈ H1

D(Ω) | γC(v) ≥ gn := g(tn)} such
that

a(un,v−un)≥ (Fn,v−un)0 (27)

for all v ∈ Kn in each time step tn := nk, k := T/N, N ∈ N. Here, the bilinear form a
is defined as a(u,v) := 2k−2(u,v)0 +(∇u,∇v)0. Furthermore, we set

ün := 2k−2(un−un−1)−2k−1u̇n−1, u̇n := u̇n−1 +2−1k(ün−1 + ün),

Fn := f (tn)+2k−2un−1 +2k−1u̇n−1.

Note that the bilinear form a is symmetric, continuous and V -elliptic. Therefore, us-
ing the same notations as introduced in Section 4 for the static problem and the gen-
eral results of Section 2, we obtain existence and uniqueness of the solution un of
(27). In particular, we obtain an appropriate mixed variational formulation with a
unique saddle point (un,λ n

0 )

a(un,v)0 = (Fn,v)0−〈λ n
0 ,γC(v)〉,

〈µ0−λ
n
0 ,γC(u)−gn〉 ≤ 0

for all v ∈ H1
D(Ω) and µ0 ∈ H−1/2

− (ΓC).
To discretize in space, we set u0

h := ihu0, u̇0
h := ihv0 with some interpolation operator

ih and successively determine the discrete saddle point (un
h,λ

n
0,H) ∈S p

h ×M q
H,− of

the discrete mixed variational formulation

a(un
h,vh)0 = (Fn

h ,vh)0− (λ n
0,H ,γC(vh))0,ΓC ,

(µ0,H −λ
n
0,H ,γC(un

h)−g)0,ΓC ≤ 0

for all vh ∈S p
h and µ0,H ∈M q

H,−. Here, we set Fn
h := f (tn)+2k−2un−1

h +2k−1u̇n−1
h .

Again, sufficiently small quotients h/H and max{1,q}2 p−1 guarantees the discrete
inf-sup condition (14) to be valid and therewith the unique existence of the discrete
saddle point, cf. Section 5 and [31].
In the end, having the discrete mixed variational formulation at hand, we are able
to use the solution scheme based on the dual formulation of Section 6. In [3], we
apply the general solution scheme to time-dependent problems, which we briefly
outline in this Section, on a broad range where we study dynamic problems including
frictional, thermo-mechanical and rolling contact problems. Similar to the dynamic
model problem as discussed in this section, the key to derive a solution scheme for
more complex dynamic contact problems is to discretize in time and, then, to use a
discretization in space based on a discrete mixed variational formulation.

8 Numerical Results

In our numerical experiments, we study Signorini’s problem with Tresca’s friction by
means of an example in production engineering which is given by a robot-based belt



18

grinding process, see Figure 1(a). The domain, which corresponds to a quarter of the
contact wheel of the belt grinding machine, is given by

Ω :=

(x,y,z) ∈ R3

∣∣∣∣∣ r(x,z) ∈ (1.295,1.625),
ϕ(x,z) ∈ [0,π/4)∪ (7π/4,0],

y ∈ (−0.575,0.575)


where (r,ϕ) are the polar coordinates with the origin in (−1.625,0). We set ΓD :=
{(x,y,z) ∈ Ω | r(x,z) = 1.295} and ΓC := {(x,y,z) ∈ Ω | r(x,z) = 1.625}. Further-
more, we set f := 0 and b := 0. The obstacle function describing the surface of a
workpiece (here a water tap) is defined as

ψ(y,z) :=

{
d +1−

√
1− (z+0.5y)2, |z+0.5y| ≤ r

d +1, |z+0.5y|> r

where the parameter d ∈R denotes the infeed of the obstacle along x-axis, cf. Figure
1(b,c). We use Hooke’s law with Young’s modulus E := 2mN/dm2 and Poisson’s
number ν := 0.42.

(a) (b) (c)

Fig. 1 (a) A robot is pressing a workpiece (water tap) against the contact wheel of the belt grinding
machine, (b),(c) quarter of the contact wheel, surface of the workpiece.

(a) (b) (c)

Fig. 2 (a),(b) Deformable body and obstacle’s surface in contact with infeed d :=−0.05dm, (b) normal
contact force σnn(u) on ΓC .
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In Figure 2(a,b) the deformation of the body is depicted for frictionless contact where
s := 0. The deformation reflects the geometrical contact condition un−g ≤ 0 on ΓC.
The complementary condition σnn(u)(un− g) = 0 and the condition σnn(u) ≤ 0 are
shown in Figure 2(c). The normal contact forces σnn(u) describes pressure in the
contact zone and is zero outside.

(a) (b)

Fig. 3 Tangential displacements on ΓC for (a) Signorini’s problem with prescribed normal force and (b)
Signorini’s problem with Coulomb friction law.

In Figure 3(a) the tangential displacements on ΓC for Signorini’s problem with pre-
scribed normal forces are depicted. Here, the prescribed normal force

qn :=

{
−0.2, |z+0.5y| ≤ r
0, |z+0.5y|> r

are applied. Hence, the contact zone is given by |z+0.5y| ≤ r. We define s := F |qn|
with the coefficient of friction F := 0.5. To obtain considerable tangential forces and
displacements on ΓC, we insert additional tangential forces bt by exchanging σnt(u)
with bt −σnt(u). This leads to the additional integral (bt ,γt(v))0,ΓC within the mixed
variational formulations. In our numerical experiments, we set bt :=(0,−0.05)>. The
numerical results are based on descritizations with uniform h, H, p and q for which
the validation of the discrete inf-sup condition is numerically verified, see below. Fur-
thermore, the solution scheme using the dual formulation as described in Section 6 is
applied.
Figure 3(a) shows that outside of the contact zone the tangential displacements cor-
respond to the tangential forces bt . In the contact zone, we observe areas with gliding
indicated by the logarithmically scaled displacement vectors. The displacements are
zero in areas with sticking which are located in the center of the contact zone. Dis-
placement vectors are not depicted there. In Figure 3(b) the tangential displacements
on ΓC for Signorini’s problem with Coulomb friction law are shown, where areas with
gliding and sticking are depicted.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 −λ0,H with p≡ 1, q≡ 0 and (a,c) h/H = 1 and (b,d) h/H = 0.5, furthermore −λn,H with p≡ 2,
q≡ 1 and (e) h/H = 1 and (f) h/H = 0.5 on an adaptive mesh.

As stated in Section 2, the discretization with mixed finite elements admits a unique
solution if the discrete inf-sup condition (14) is fulfilled. In Theorem 9 it is proven,
that (14) holds if Π(h,H, p,q) is sufficiently small. This theoretical statement can
also be observed in numerical experiments. Figures 4(a,c) show −λ0,H with p ≡ 1
and q ≡ 0. In the case h/H = 1, we observe checkerboard patterns which typically
indicate that the discrete inf-sup condition is not fulfilled. In the case h/H = 0.5,
these patterns do not occur which shows that Π(h,H, p,q) is small enough so that
the discrete inf-sup condition holds, see Figure 4(b,d). In Figure 4 (c,d), an adap-
tive mesh is applied in order to resolve the contact zone more accurately. Also in the
case p ≡ 2 und q ≡ 1 and h/H = 1, the checkerboard patterns occur. Again, using
h/H = 0.5, these patterns vanish, see Figure 4 (e,f). For p > 2, we observe similar
results. Consequently, the combination q = p−1 and H = 2h seems to be convenient
to obtain a stable scheme.
However, the use of different mesh sizes h and H leads to a certain implementational
effort. Obviously, it is much simpler to use the mesh TC := {F | F ∈ E , F ⊂ ΓC}
where E is the set of all faces (or edges) of T . In this case, we have h = H. Thus,
we can only vary the polynomial degree p and q to ensure that Π(h,H, p,q) is suf-
ficiently small. In Figure 5, we choose p = 2 and q = 0 and obtain stable numerical
results for the discrete Lagrange multipliers λ0,H and λ1,H . Here, Coulomb friction
law is used which is incorparated via the fix point method as described in Section 6.
In this numerical experiment, the infeed d is set to −0.25 which results in a slightly
larger contact zone.
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no name

(a)

no name

(b)

no name

(c)
no name

(d)

no name

(e)

no name

(f)

Fig. 5 (a) λ0,H , (b) λ 1
1,H and (c) λ 2

1,H with p≡ 2, q≡ 0, (d,e,f) smoothed values of the discrete Lagrange
multipliers.

9 Conclusions

In this work, we study contact problems based on Signorini’s problem with Tresca’s
friction and introduce a mixed variational formulation and its discretization with
higher-order finite elements. In particular, the frictional function of Tresca’s fric-
tion is included in a weak variational sense. For the existence and uniqueness of
the discrete saddle point, a discrete inf-sup condition is considered which is moti-
vated within an abstract framework of convex analysis. To prove the discrete inf-sup
condition we use an higher-order approximation result and an inverse inequality for
negative norms. The main result is that stability can be ensured if one reduces the
quotient of the mesh sizes for the displacement variable and the Lagrange multipliers
or the quotient of their polynomial degrees.
The discrete mixed variational formulation can be solved using its dual formulation
which is given by a reformulation as a minimization problem. The approach is justi-
fied by the small number of variables capturing the Lagrange multipliers. Our main
interest is to extend this approach to discretizations of higher-order where we use
a standard tool of quadratic programming to capture the complicated higher-order
constraints. We point out that the proposed solution scheme can also be used for
time-dependent problems. Finally, numerical results are presented which show the
applicability of the discrete mixed discretization by means of an example in produc-
tion engineering. In particular, we demonstrate the influence of varying the quotient
of mesh sizes and, therewith, the prediction of the theoretical findings.

Appendix

Proof (Lemma 1) Since 0 is contained in Λ0, there holds Φ0(v,0) = 0 for all v ∈
V due to (7). The condition (8) yields supµ0∈Λ0

Φ0(v,µ0) = 0 for v ∈ K. If v 6∈ K,
then there exist a µ̃0 ∈ Λ0, so that Φ(v, µ̃0) > 0. Therefore, supµ0∈Λ0

Φ0(v,µ0) ≥
supα>0 Φ0(v,αµ̃0) = supα>0 αΦ0(v, µ̃0) = ∞. 2
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Proof (Theorem 5) H is Fréchet-differentiable in V with the Fréchet-derivative H ′(v)=
A(v)− ` where the functional A ∈ L(V,V ′) is defined as 〈A(v),w〉 := a(v,w) for
v,w∈V . For Φ0(v,µ0) := 〈µ0,β0(v)−g〉, the condition (7) obviously holds. Let v∈V
with Φ0(v,µ0)≤ 0 for all µ0 ∈Λ0. Assuming, that g−β0(v) 6∈ G. Due to the closed-
ness and convexity of G and the separation theorem of Hahn-Banach there exists a
µ̃0 ∈U ′0 with

〈µ̃0,g−β0(v)〉< inf
w∈G
〈µ̃0,w〉. (28)

Since 0 ∈ G, there holds
〈µ̃0,g−β0(v)〉< 0. (29)

For t ≥ 0 and w ∈ G, we obtain tw ∈ G. Assuming, that infw∈G〈µ̃0,w〉 < 0, then
we have infw∈G〈µ̃0, tw〉 = t infw∈G〈µ̃0,w〉 → −∞ for t → ∞ in contradiction to (28).
Therefore, there holds µ̃0 ∈G′ which is a contradiction to (29). Thus, condition (8) is
also fulfilled. From Lemma 1, we obtain that Φ0 fulfills (3). By defining Φ1(v,µ1) :=
〈µ1,β1(v)〉, we finally obtain the assertion from Theorem 2. 2

Proof (Theorem 6) The proof is standard, e.g., [24, Lem. 3.2]. For completeness, we
present a proof including the boundedness of Λ1. Evidently, the conditions (i)-(iii) of
Theorem 3 hold with Φ0 and Φ1 as defined in the proof of Theorem 5. If G′ = {0},
then Λ0×Λ1 is bounded and we immediately obtain the assertion from Theorem 3.
If G′ 6= {0}, then G′ is unbounded and we need to varify that the mapping

(µ0,µ1) 7→ sup
v∈V
−(1

2
a(v,v)−〈`,v〉+ 〈µ0,β0(v)−g〉+ 〈µ1,β1(v)〉) (30)

is coercive. For this purpose, let ν0,ν1 be the constants of continuity and ellipticity,
and µ := (µ0,µ1) ∈Λ0×Λ1. From Theorem 1, we obtain a vµ with L (vµ ,µ0,µ1) =
infv∈V L (v,µ0,µ1) and a(vµ ,v) = 〈`,v〉−〈µ0,β0(v)〉−〈µ1,β1(v)〉 for all v ∈V . Due
to the boundedness of Λ1, there exists a c ∈ R+ with ‖µ1‖U ′1 ≤ c. Therefore, we
obtain α‖µ0‖U ′0 ≤ supv∈V,‖v‖V=1〈`,v〉− a(vµ ,v)−〈µ1,β1(v)〉 ≤ ‖`‖V ′ +ν0‖vµ‖V +

c‖β1‖L(V,U1). Thus, we have ‖vµ‖V → ∞ for ‖µ‖U ′0×U ′1
→ ∞. The assertion follows

from−L (vµ ,µ)=
1
2 a(vµ ,vµ)−〈µ0,g〉≥ 1

2 ν1‖vµ‖2
V−α−1‖g‖U0(‖`‖V ′+ν0‖vµ‖V +

c‖β1‖L(V,U1)). 2

Proof (Theorem 7) Since β0(Vh) is closed in U0, we obtain from the closed range
theorem, [34], that there exists an α ∈ R>0

α‖[µ0]‖U ′0/kerβ ′0|Vh
≤ sup

v∈Vh,‖vh‖=1
〈µ0,β0(vh)〉 (31)

for all [µ0] ∈U ′0/kerβ ′0|Vh
where [µ0] := µ0 + kerβ ′0|Vh

and β ′0|Vh
: U ′0 → V ′h denotes

the transpose of β0|Vh
. With Λ̃0,H := {[µ0,H ] ∈U ′0/kerβ ′0|Vh

| µ0,H ∈Λ0,H} we define

L̃ (vh, [µ0,H ],µ1,H) := L (vh,µ0,H ,µ1,H)

which is well-defined in Vh× Λ̃0,H ×Λ1,H due to the assumption g ∈ β0(Vh). By the
same arguments as in the proof of Lemma 6, we obtain that

Λ̃0,H ×Λ1,H 3 ([µ0,H ],µ1,H) 7→ sup
vh∈Vh

−L̃ (vh, [µ0,H ],µ1,H)
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is coercive. By Theorem 3 there exists (uh, [λ0,H ],λ1,H) ∈Vh× Λ̃0,H ×Λ1,H with

L̃ (uh, [λ0,H ],λ1,H) = inf
vh∈Vh

sup
[µ0,H ]∈Λ̃0,H ,λ1,H∈Λ1,H

L̃ (vh, [µ0,H ],µ1,H).

Thus, (uh,λ0,H ,λ1,H) fulfills (12). 2

Proof (Theorem 8) In the same way as in the proof of Theorem 6, we conclude that

Λ0,H ×Λ1,H 3 (µ0,H ,µ1,H) 7→ sup
vh∈Vh

−L (vh,µ0,H ,µ1,H)

is coercive and, thus, a saddle point exists. The uniqueness is a direct consequence of
(14) and the density of U ′1 in Ũ ′1. 2

Proof (Lemma 2) The unique existence of uµ ∈V is guaranteed by the Lax-Milgram
Lemma. The mapping β̂ : V/kerβ →U with β̂ ([v]) := β (v) and [v] := v+ kerβ ∈
V/kerβ is bijective and continuous. Since V and U are Banach spaces, the inverse
β̂−1 is continuous, too. Let Ṽ := {v ∈ V | ‖v‖V ≤ ‖β̂−1‖L(U,V/kerβ )‖β (v)‖U}. In
order to show that Ṽ is a non-empty set, let w ∈U and v ∈ V with β̂−1(w) = [v]. If
z̄ ∈ kerβ such that ‖v− z̄‖V = infz∈kerβ ‖v− z‖V and v∗ := v− z̄, we obtain

β (v∗) = β (v− z̄) = β (v) = β̂ ([v]) = w. (32)

Therefore, we have

‖v∗‖V = inf
z∈kerβ

‖v− z‖V = ‖β̂−1(w)‖V/kerβ ≤ ‖β̂−1‖L(U,V/kerβ ) ‖w‖U

= ‖β̂−1‖L(U,V/kerβ ) ‖β (v∗)‖U ,

which implies that v∗ ∈ Ṽ . Moreover, there is a v∗ ∈ Ṽ for each w ∈U such that (32)
is valid, i.e., β (Ṽ ) =U . Using these preparations, we conclude from the definition of
the dual norm and continuity of â with constant C, that

‖µ‖U ′ = sup
w∈U\{0}

〈µ,w〉
‖w‖U

= sup
v∈V\{0}

〈µ,β (v)〉
‖β (v)‖U

= sup
v∈Ṽ\{0}

â(uµ ,v)
‖β (v)‖U

≤ sup
v∈Ṽ\{0}

C‖uµ‖V‖v‖V
‖β (v)‖U

≤C‖β̂−1‖−1
L(U,V/kerβ )‖u

µ‖V .

Setting C1 :=C‖β̂−1‖L(U,V/kerβ ), we obtain the assertion. 2
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