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Abstract. This paper presents mixed finite element methods of higher-order for a simplified
Signorini problem and an idealized frictional problem. The discretization is based on a mixed vari-
ational formulation proposed by Haslinger et al. which is extended to higher-order finite elements.
To guarantee the unique existence of the solution of the mixed method, a discrete inf-sup condition
is proven. Approximation results of the p-method of finite elements and some inverse estimates for
higher-order polynomials are applied. Numerical results confirm the theoretical findings.
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1. Introduction. The aim of this paper is to derive mixed finite element meth-
ods of higher-order for contact problems which play an important role in mechanical
engineering, [6, 7, 11]. Here, we consider a simplified Signorini problem and an ide-
alized frictional problem as model problems. The discretization approach is based on
mixed finite elements for contact problems introduced by Haslinger et al. in [8, 9, 10].
This approach is originally developed for lower-order finite elements. In this paper,
we extend it to higher-order finite elements. The approach relies on a saddle point
formulation where the geometrical contact condition and the frictional conditions are
captured by Lagrange multipliers. The restrictions for the Lagrange multipliers are
sign conditions or box constraints and are, therefore, simpler than the original con-
tact conditions. However, the Lagrange multipliers are additional variables which
also have to be discretized. Whereas the unique existence of a saddle point is ensured
for the non-discretized problem, we can not generally ensure this for the discretized
Lagrange multlipliers. In mixed formulations, unique existence follows from a inf-sup
condition associated to the discretization spaces. But its verification is often a cru-
cial point. For lower-order finite elements, the inf-sup condition for the introduced
contact problems is proven in the above mentioned references. In this work, we prove
the inf-sup condition for higher-order finite elements using approximation results for
the p-method of finite elements, and recently published inverse estimates for higher
order polynomials, [1, 5].
An important assumption of the proof is that the used approach allows for the dis-
cretization of the Lagrange multipliers on boundary meshes with a larger mesh size
than that of the primal variable. In pratice, this leads to a high implementational ef-
fort. We refer to [2] for a mixed finite element scheme which avoids different meshes. In
general, higher-order discretization schemes for contact problems are rarely studied in
literature, especially for mixed variational formulation. For discretization techniques
based on a primal, non-mixed formulations, we refer to [12, 13].
This paper is organized as follows: In Sections 3 and 4, the mixed variational formu-
lations are introduced for the simplified Signorini problem and the idealized frictional
problem. Higher-order finite element discretizations based on the mixed formulations
are presented in Section 5. The main part of this work, the derivation of the inf-sup
condition for higher-order finite elements, is proposed in Section 6. Numerical results
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confirming the theoretical findings are presented in Section 7.

2. Notation. Let Ω ⊂ Rk, k ∈ N, be a domain with sufficiently smooth bound-
ary Γ := ∂Ω. Moreover, let ΓD ⊂ Γ be closed with positive measure and let
ΓC ⊂ Γ\ΓD with ΓC $ Γ\ΓD and ΓN := Γ\(ΓD ∪ ΓC). L2(Ω), H l(Ω), l ≥ 1,
and H1/2(ΓC) denote the usual Sobolev spaces and

H1(Ω,ΓD) := {v ∈ H1(Ω) | γ(v) = 0 on ΓD}

with the trace operator γ. The space H−1/2(ΓC) denotes the topological dual space
of H1/2(ΓC) with the norms ‖ · ‖−1/2,ΓC

and ‖ · ‖1/2,ΓC
, respectively. Let (·, ·)0,ω,

(·, ·)0,Γ′ be the usual L2-scalar products on ω ⊂ Ω and Γ′ ⊂ Γ, respectively. We define
‖v‖2

0,ω := (v, v)0,ω and omit the subscript ω whenever ω = Ω. Moreover, we state

|v|21 := (∇v,∇v)0, ‖v‖2
1 := ‖v‖2

0 + |v|21

as the usual, equivalent H1-norms on H1(Ω,ΓD) with the gradient operator ∇ in the
weak sense. We denote the usual Laplace operator likewise in the weak sense by ∆.
Note, the linear and bounded mapping

γC := γ|ΓC
: H1(Ω,ΓD) → H1/2(ΓC)

is surjective due to the assumptions on ΓC , [11]. As these assumptions are fulfilled

in most cases, we can avoid the introduction of complicated H
1/2
00 (ΓC)-spaces. For

functions in L2(Ω) or L2(ΓC), the inequality symbols ≥ and ≤ are defined by means
of “almost everywhere”.

3. Mixed variational formulation of a simplified Signorini problem. A
simplified Signorini problem is to find a function u ∈ H1(Ω,ΓD) ∩ H2(Ω) such that

−∆u = f in Ω,

∂nu = 0 on ΓN ,

u ≥ g, ∂nu ≥ 0, ∂nu (u − g) = 0 on ΓC ,

(3.1)

where f ∈ L2(Ω). The function g ∈ H1/2(ΓC) represents an obstacle on the boundary
ΓC . It is well-known, that u ∈ H1(Ω,ΓD) ∩ H2(Ω) is a solution of the simplified
Signorini problem if and only if u ∈ K := {v ∈ H1(Ω,ΓD) | γ(v) ≥ g on ΓC} and

∀v ∈ K : (∇u,∇(v − u))0 ≥ (f, (v − u))0. (3.2)

Moreover, u ∈ H1(Ω,ΓD) fulfills (3.2) if and only if u is a minimizer of the functional

E(v) :=
1

2
(∇v,∇v)0 − (f, v)0

in K. The functional E is strictly convex, continuous and coercive due to Cauchy’s
and Poincaré’s inequalities. This implies the unique existence of a minimizer u.
In order to derive a mixed formulation, let

H
1/2
− (ΓC) := {w ∈ H1/2(ΓC) | w ≤ 0},

H
−1/2
− (ΓC) := {µ ∈ H−1/2(ΓC) | ∀w ∈ H

1/2
− (ΓC) : 〈µ,w〉 ≥ 0}.
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Using the Hahn-Banach theorem it can be proven that

sup
µ0∈H

−1/2
− (ΓC)

〈µ0, γC(v) − g〉 =

{

0, if v ∈ K

∞, else.

Therefore, we obtain

E(u) = inf
v∈H1(Ω,ΓD)

sup
µ0∈H

−1/2
− (ΓC)

L0(v, µ0)

with the Lagrange functional

L0(v, µ0) := E(v) + 〈µ0, γC(v) − g〉

on H1(Ω,ΓD) × H
−1/2
− (ΓC). This states, whenever (u, λ0) ∈ H1(Ω,ΓD) × H

1/2
− (ΓC)

is a saddle point of L0, that u is a minimizer of E.
The existence of a unique saddle point is guaranteed, if there exists a constant α > 0
such that

α‖µ‖−1/2,ΓC
≤ sup

v∈H1(Ω,ΓD), ‖v‖1=1

〈µ, γC(v)〉 (3.3)

is fulfilled for all µ ∈ H−1/2(ΓC), [11]. In fact, it follows from the closed range theo-
rem and the surjectivity of γC , that (3.3) is valid.
Let L′

0,λ0
: H1(Ω,ΓD) → (H1(Ω,ΓD))∗ and L′

0,u : H−1/2(ΓC) → (H−1/2(ΓC))∗ ≃

H1/2(ΓC) be the Fréchet derivatives of L0,λ0
:= L0(·, λ0) and L0,u := L0(u, ·), respec-

tively. Then, (u, λ0) ∈ H1(Ω,ΓD) × H
−1/2
− (ΓC) is a saddle point of L0, if and only if

the stationary conditions L′
0,λ0

(u) = 0 and 〈µ0 −λ0,L
′
u(λ0)〉 ≤ 0 for µ0 ∈ H

−1/2
− (ΓC)

are fulfilled. Thus, (u, λ0) is equivalently characterized by the mixed variational for-
mulation

∀v ∈ H1(Ω,ΓD) : (∇u,∇v)0 = (f, v)0 − 〈λ0, γC(v)〉,

∀µ0 ∈ H
−1/2
− (ΓC) : 〈µ0 − λ0, γC(u) − g〉 ≤ 0.

(3.4)

4. Mixed variational formulation of an idealized frictional problem. An
idealized frictional problem is to find a function u ∈ H1(Ω,ΓD) ∩ H2(Ω) such that

−∆u = f in Ω,

∂nu = 0 on ΓN ,

|∂nu| ≤ s with

{ |∂nu| < s ⇒ u = 0,
∂nu = s ⇒ u ≥ 0,
−∂nu = s ⇒ u ≤ 0

}

on ΓC

for f ∈ L2(Ω) and s ∈ L2(ΓC), s ≥ 0. Here, u ∈ H1(Ω,ΓD) ∩ H2(Ω) is a solution if
and only if

∀v ∈ H1(Ω,ΓD) : (∇u,∇(v − u))0 + (s, |γ(v)| − |γ(u)|)0,ΓC
≥ (f, v − u)0. (4.1)

It is well-known, that u ∈ H1(Ω,ΓD) fulfills (4.1) if and only if u is a minimizer of the
(non-differentiable) functional E + j in H1(Ω,ΓD) with j(v) := (s, |γC(v)|)0,ΓC

, [7].
Since j is strictly convex, continuous and coercive, the unique existence of a minimizer
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u is guaranteed.
We define

L2
1(ΓC) :=

{

µ1 ∈ L2(ΓC) | |µ1| ≤ 1 on supp s, µ1 = 0 on ΓC\ supp s
}

.

For µ1 ∈ L2
1(ΓC) and v ∈ H1(Ω,ΓD), there holds

(µ1, sγC(v))0,ΓC
≤ (|µ1|, s|γC(v)|)0,ΓC

≤ j(v).

Furthermore, we have

j(v) =

∫

ΓC

µ̃1sγC(v) dΓ ≤ sup
µ1∈L2

1(ΓC)

(µ1, sγC(v))0,ΓC

with µ̃1 := sign(γC(v)) on supp s and µ̃1 := 0 on ΓC\ supp s. In conclusion, we obtain

j(v) = sup
µ1∈L2

1(ΓC)

(µ1, sγC(v))0,ΓC

and

(E + j)(u) = inf
v∈H1(Ω,ΓD)

sup
µ1∈L2

1(ΓC)

L1(v, µ1)

with the Lagrange functional

L1(v, µ1) := E(v) + (µ1, sγC(v))0,ΓC

on H1(Ω,ΓD) × L2
1(ΓC). Thus, u is a minimizer of E + j if (u, λ1) ∈ H1(Ω,ΓD) ×

L2
1(ΓC) is a saddle point of L1. Due to the boundness of L2

1(ΓC), the existence of a
saddle point is guaranteed, [4].
In analogy to the simplified Signorini problem, the pair (u, λ1) ∈ H1(Ω,ΓD)×L2

1(ΓC)
is equivalently characterized by the mixed variational formulation,

∀v ∈ H1(Ω,ΓD) : (∇u,∇v)0 = (f, v)0 − (λ1, sγC(v))0,ΓC
,

∀µ ∈ L2
1(ΓC) : (µ1 − λ1, sγC(u))0,ΓC

≤ 0.
(4.2)

Since H1/2(ΓC) is dense in L2(ΓC), we conclude from (4.2) that the Lagrange multi-
plier is unique, too.
An alternative mixed formulation for the idealized frictional problem is given through
the definition of

L2
s(ΓC) := {µ1 ∈ L2(ΓC) | |µ1| ≤ s}.

We obtain

j(v) = sup
µ1∈L2

s(ΓC)

(µ1, γC(v))0,ΓC

by similar arguments as above. Therefore, we have

(E + j)(u) = inf
v∈H1(Ω,ΓD)

sup
µ1∈L2

s(ΓC)

L̃1(v, µ1)

with the Lagrange functional

L̃1(v, µ1) := E(v) + (µ1, γC(v))0,ΓC

on H1(Ω,ΓD) × L2
s(ΓC). A saddle point (u, λ1) ∈ H1(Ω,ΓD) × L2

s(ΓC) of L̃1 is
equivalently characterized by

∀v ∈ H1(Ω,ΓD) : (∇u,∇v)0 = (f, v)0 − (λ1, γC(v))0,ΓC
,

∀µ ∈ L2
s(ΓC) : (µ1 − λ1, γC(u))0,ΓC

≤ 0.
(4.3)
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5. Higher-order discretization of the mixed variational formulations.

We propose a higher-order finite element discretization based on quadrangles or hex-
ahedrons as follows: Let Th and TC,H be finite element meshes of Ω and ΓC with
mesh sizes h and H, respectively. Let ΨT : [−1, 1]k → T ∈ Th, ΨC,TC

: [−1, 1]k−1 →
TC ∈ TC,H be bijective and sufficiently smooth transformations and let pT , pC,TC

∈ N
be degree distributions on Th and TC,H , respectively. Using the polynomial tensor
product space Sq

k of order q on the reference element [−1, 1]k, we define

Sp(Th) :=
{

v ∈ H1(Ω,ΓD) | ∀T ∈ Th : v|T ◦ ΨT ∈ SpT

k

}

and

MpC (TC,H) :=
{

µ ∈ L2(ΓC) | ∀TC ∈ TC,H : µ|TC
◦ ΨC,TC

∈ S
pC,TC

k−1

}

.

Moreover, we define

MpC

− (TC,H) := {µ0,H ∈ MpC (TC,H) | µ0,H ≤ 0},

MpC

1 (TC,H) := {µ1,H ∈ MpC (TC,H) | |µ1,H | ≤ 1 on supp s,

µ1,H = 0 on ΓC\ supp s},

MpC
s (TC,H) := {µ1,H ∈ MpC (TC,H) | |µ1,H | ≤ s}.

The discrete saddle problem of the simplified Signorini problem consists in finding a
discrete saddle point (uh, λ0,H) ∈ Sp(Th) × MpC

− (TC,H), such that

L0(uh, λ0,H) = inf
vh∈Sp(Th)

sup
µ0,H∈M

pC
− (TC,H)

L0(vh, µ0,H). (5.1)

It is easy to see, that the first component of the discrete saddle point is the unique
minimizer of the minimization problem

E(uh) = min
vh∈KhH

E(vh)

with KhH := {vh ∈ Sp(Th) | ∀µ0,H ∈ MpC

− (TC,H) : (µ0,H , γC(vh) − g)0,ΓC
≤ 0}. By

the stationary condition, we conclude that the discrete saddle point is equivalently
characterized by

∀vh ∈ Sp(Th) : (∇uh,∇vh)0 = (f, vh)0 − (λ0,H , γC(vh))0,ΓC
,

∀µ0,H ∈ MpC

− (TC,H) : (µ0,H − λ0,H , γC(uh) − g)0,ΓC
≤ 0.

(5.2)

Following the approach of Oden et al., [11, Remark 3.4.3] and [15], we conclude

Theorem 5.1. Let g ∈ γC(Sp(Th)), then there exists a discrete saddle point of

the simplified Signorini problem.

Proof. Due to the closeness of γC(Sp(Th)) in H1/2(ΓC), we obtain from the closed
range theorem, [17], that there exists a constant α > 0 such that

α‖[µ]‖ ≤ sup
vh∈Vh, ‖vh‖=1

〈µ, γC(vh)〉 (5.3)

for all [µ] ∈ H−1/2(ΓC)/ ker γ′
C|Sp(Th) where [µ] := µ + ker γ′

C|Sp(Th), and ‖[µ]‖ :=

infκ∈ker γ′
C|Sp(Th)

‖µ + κ‖1/2,ΓC
and γ′

C|Sp(Th) : H−1/2(ΓC) → (Sp(Th))∗ denotes the

transpose of γC|Sp(Th). We define

L̂(vh, [µ]) := E(vh) + 〈µ, γC(vh) − g〉,
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which is well-defined due to g ∈ γC(Sp(Th)). Using (5.3), we conclude by standard
arguments (e.g. [11, Lem. 3.2]), that

H−1/2(ΓC)/ ker γ′
C|Sp(Th) ∋ [µ] 7→ sup

vh∈Sp(Th)

−L̂(vh, [µ])

is coercive. We set

M̂pC

− (TC,H) :=
{

[µ0,H ] ∈ H−1/2(ΓC)/ ker γ′
C|Sp(Th) | µ0,H ∈ MpC

− (TC,H)
}

which is a closed and convex set. Due to [4, Prop IV.2.3 and Remark IV.2.1], there
exists (uh, [λ0,H ]) ∈ Sp(Th) × M̂pC

− (TC,H) with

L̂(uh, [λ0,H ]) = inf
vh∈Sp(Th)

sup
µ0,H∈M̂

pC
− (TC,H)

L̂(vh, [µ0,H ]).

Thus, (uh, λ0,H) fulfills (5.1).

remark 5.2. Theorem 5.1 is an alternative to the existence result established
by Hlavacek et al. [10, Lem. 5.6], where K◦

hH 6= ∅ instead of g ∈ γC(Sp(Th)).

Theorem 5.1 does not imply the uniqueness of a saddle point. Furthermore, the
existence of a saddle point depends on the assumption g ∈ γC(Sp(Th)) which is not ful-
filled in general. Condition (5.3) is based on the closeness of γC(Sp(Th)) and requires
to consider a saddle point problem in Sp(Th) × H−1/2(ΓC)/ ker γ′

C|Sp(Th). Hence, it

is more natural to directly claim the inf-sup condition for Sp(Th) × MpC (TC,H).

Theorem 5.3. If there is a constant α > 0 such that

α‖µH‖−1/2,ΓC
≤ sup

vh∈Sp(Th), ‖vh‖1=1

(µH , γC(vh))0,ΓC
(5.4)

for all µH ∈ MpC (TC,H), then there exists a unique discrete saddle point of the sim-

plified Signorini problem.

Proof. Analogously to the proof of Theorem 5.1, we conclude that

MpC (TC,H) ∋ µH 7→ sup
vh∈Sp(Th)

−L0(vh, µH)

is coercive. This implies the existence of a saddle point. The uniqueness is a direct
consequence of (5.4).

The discrete saddle point problem of the idealized frictional problem is to find a
pair (uh, λ1,H) ∈ Sp(Th) × MpC

1 (TC,H) such that

L1(uh, λ1,H) = inf
vh∈Sp(Th)

sup
µ1,H∈M

pC
1 (TC,H)

L1(vh, µ1,H). (5.5)

The first component is the unique minimizer of the minimization problem

E(uh) = min
vh∈Sp(Th)

E(vh) + jhH(vh),

where jhH(vh) := supµ1,H∈M
pC
1 (TC,H)(µ1,H , sγC(vh))0,ΓC

. The discrete saddle point is
equivalently characterized by

∀vh ∈ Sp(Th) : (∇uh,∇vh)0 = (f, vh)0 − (λ1,H , sγC(vh))0,ΓC
,

∀µ1,H ∈ MpC

1 (TC,H) : (µ1,H − λ1,H , sγC(uh))0,ΓC
≤ 0.

(5.6)
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Alternatively, we may seek a discrete saddle point (uh, λ1,H) ∈ Sp(Th)×MpC
s (TC,H),

such that

L̃1(uh, λ1,H) = inf
vh∈Sp(Th)

sup
µ1,H∈M

pC
s (TC,H)

L̃1(vh, µ1,H). (5.7)

Again, the first component uh is the unique minimizer of

(E + j̃hH)(uh) = min
vh∈Sp(Th)

E(vh) + j̃hH(vh)

where j̃hH := supµ1,H∈M
pC
s (TC,H)(µ1,H , γC(vh))0,ΓC

. Hence, the discrete saddle point
is equivalently characterized by

∀vh ∈ Sp(Th) : (∇uh,∇vh)0 = (f, vh)0 − (λ1,H , γC(vh))0,ΓC
,

∀µ1,H ∈ MpC
s (TC,H) : (µ1,H − λ1,H , γC(uh))0,ΓC

≤ 0.
(5.8)

Theorem 5.4. There exist discrete saddle points of (5.5) and (5.7). The discrete

saddle point of (5.7) is unique if (5.4) is fulfilled.

Proof. The sets MpC

1 (TC,H) and MpC
s (TC,H) are bounded. The existence of a

discrete saddle point of (5.5) and (5.7) is guaranteed by [4, Prop IV.2.3 and Remark
IV.2.1]. Let (u, λ1,H), (u, λ∗

1,H) ∈ Sp(Th) × MpC

1 (TC,H) be discrete saddle points of

(5.5). From (5.4) we obtain ‖λ1,H − λ∗
1,H‖−1/2,ΓC

= 0. Since H−1/2(ΓC) is dense in

L2(ΓC), we have λ1,H = λ∗
1,H .

remark 5.5. The uniqueness of the discrete saddle point of (5.5) is not a direct
consequence of (5.4). We refer to the end of Section 6 for a proof of uniqueness under
further assumptions.

We call the discretization schemes (5.2), (5.6) and (5.8) stable, if there exists a
unique discrete saddle point independently of the discretization level. In other words,
to guarantee the discretization schemes (5.2) and (5.8) to be stable, the constant in
(5.4) has to be independent of h, H, p and pC . In [10], the discrete inf-sup condition
(5.4) is proven with an h- and H-independent constant α for uniform meshes and
p ≡ 1, pC ≡ 0. The essential assumption is that the quotient h/H is sufficiently
small. In the next section, we will show, that these results can be carried over to the
proposed higher-order schemes.

6. The inf-sup condition for higher-order discretizations. In this section,
we show condition (5.4) for discretization schemes of higher-order. In particular,
we show that the constant α can be chosen independently from h, H, p and pC .
Therefor, we make use of an approximation result for higher-order finite element
methods (Lemma 6.2) and for an inverse inequality for negative norms (Lemma 6.3)
which was recently pubished by Georgoulis, [5]. Furthermore, we follow the proof of
Lemma 3.1 in [9] where this condition is derived for discretization schemes of lower-
order.
The interpolation spaces H1+θ(Ω) and H−1/2+θ(ΓC) are defined via

H1+θ(Ω) := [H1(Ω),H2(Ω)]θ,2

and

H−1/2+θ(ΓC) := [H−1/2(ΓC),H1/2(ΓC))]θ,2
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with norms ‖ · ‖1+θ and ‖ · ‖−1/2+θ,ΓC
, respectively, where 0 < θ ≤ 1, [14, 16].

In this work, we focus on the two-dimensional case (k = 2) and assume that Th is a
quasi-uniform parallelogram mesh. For the mesh TC,H consisting of line segments, we
assume

∀TC ∈ TC,H : κH ≤ HTC
(6.1)

with a constant κ > 0 which is idenpendent of H. Here, HTC
denotes the length

of the line segment TC . Moreover, we assume that p and pC are constant degree
distributions.

Lemma 6.1. For µ ∈ H−1/2(ΓC), there exists a function uµ ∈ H1(Ω,ΓD) such

that

(∇uµ,∇v)0 + (uµ, v)0 = 〈µ, γC(v)〉 (6.2)

for all v ∈ H1(Ω,ΓD). Additionally, there holds C1‖µ‖−1/2,ΓC
≤ ‖uµ‖1 for a constant

C1 > 0.

Proof. The existence of uµ ∈ H1(Ω,ΓD) is guaranteed by the Lax-Milgram
Lemma. The mapping γ̂C : H1(Ω,ΓD)/ ker γC → H1/2(ΓC) with γ̂C([v]) := γC(v)
and [v] := v + ker γC is bijective and continuous. Since H1(Ω,ΓD) and H1/2(ΓC) are
Banach spaces, the inverse γ̂−1

C is continuous, too. Let

‖γ̂−1
C ‖ := sup

w∈H1/2(ΓC), ‖w‖1/2,ΓC
=1

‖γ̂−1
C (w)‖

with ‖[v]‖ := infw∈ker γC
‖v + w‖1 for [v] ∈ H1(Ω,ΓD)/ ker γC and let

V :=
{

v ∈ H1(Ω,ΓC) | ‖v‖1 ≤ ‖γ̂−1
C ‖‖γC(v)‖1/2,ΓC

}

.

In order to show that V is a non-empty set, let w ∈ H1/2(ΓC) and v ∈ H1(Ω,ΓD) with
γ̂−1

C (w) = [v]. If z̄ ∈ ker γC such that ‖v − z̄‖1 = infz∈ker γC
‖v − z‖1 and v∗ := v − z̄,

we obtain

γC(v∗) = γC(v − z̄) = γC(v) = γ̂C([v]) = w. (6.3)

Therefore, we have

‖v∗‖1 = inf
z∈ker γC

‖v − z‖1 = ‖γ̂−1
C (w)‖ ≤ ‖γ̂−1

C ‖ ‖w‖1/2,ΓC
= ‖γ̂−1

C ‖ ‖γC(v∗)‖1/2,ΓC
,

which implies that v∗ ∈ V . Moreover, there is a v∗ ∈ V for each w ∈ H1/2(ΓC) such
that (6.3) is valid, i.e., γC(V ) = H1/2(ΓC). Using these preparations, we conclude
from the definition of the dual norm and Cauchy’s inequality, that

‖µ‖−1/2,ΓC
= sup

w∈H1/2(ΓC)\{0}

〈µ,w〉

‖w‖1/2,ΓC

= sup
v∈V \{0}

〈µ, γC(v)〉

‖γC(v)‖1/2,ΓC

= sup
v∈V \{0}

(∇uµ,∇v)0 + (uµ, v)0
‖γC(v)‖1/2,ΓC

≤ sup
v∈V \{0}

‖uµ‖1‖v‖1

‖γC(v)‖1/2,ΓC

≤ ‖γ̂−1
C ‖−1‖uµ‖1.

Setting C1 := ‖γ̂−1
C ‖, we obtain the assertion.
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Lemma 6.2. Let µ ∈ L2(ΓC) and uµ ∈ H1(Ω,ΓD) ∩ H1+θ(Ω) be the solution of

(6.2), then there exists a function uµ
I ∈ Sp(Th) and a constant C2 > 0, independent

of uµ, h and p, such that

‖uµ − uµ
I ‖1 ≤ C2

hθ

pθ
‖uµ‖1+θ.

Proof. See [1, Thm. 4.6].

Lemma 6.3. There exists a constant C3 > 0 which is independent of H and pC ,

such that

‖µH‖−1/2+θ,ΓC
≤ C3

max{1, pC}
2θ

Hθ
‖µH‖−1/2,ΓC

for all µH ∈ MpC .

Proof. See [5, Thm. 3.5., Thm. 3.9] and (6.1).

We call the variational problem (6.2) regular, if uµ ∈ H1(Ω,ΓD) ∩ H1+θ(Ω) and

‖uµ‖1+θ ≤ C4‖µ‖−1/2+θ,ΓC
(6.4)

for all µ ∈ H−1/2+θ(ΓC) and a constant C4 > 0. Using Lemma 6.1, Lemma 6.2 and
Lemma 6.3 as well as the regularity assumption (6.4) on uµ, we are able to prove the
main theorem.

Theorem 6.4. Assume the variational problem (6.2) to be regular for θ ≤ 1/2
and

Π(h,H, p, pC) :=
(

hH−1 max{1, pC}
2p−1

)θ
≤ ε < C1(C2C3C4)

−1 (6.5)

for some ε > 0, then (5.4) holds for a constant α > 0 independent of h, H, p und pC .

Proof. Let µH ∈ MpC (TC,H) and uµH

h ∈ Sp(Th) be uniquely determined by

(∇uµH

h ,∇vh)0 + (uµH

h , vh)0 = (µH , γC(vh))0,ΓC

for all vh ∈ Sp(Th). Using the Galerkin orthogonality, Lemma 6.2, the regularity
assumption and Lemma 6.3, we obtain

‖uµH − uµH

h ‖1 ≤ ‖uµH − uµH

I ‖1 ≤ C2
hθ

pθ
‖uµH‖1+θ ≤ C2C4

hθ

pθ
‖µH‖−1/2+θ,ΓC

≤ C2C3C4

(

hθ

pθ

max{1, pC}
2θ

Hθ

)

‖µH‖−1/2,ΓC

= C2C3C4Π(h,H, p, pC)‖µH‖−1/2,ΓC
.

From Lemma 6.1, we obtain

sup
vh∈Sp(Th)\{0}

(µH , γC(vh))0,ΓC

‖vh‖1
≥

(µH , γC(uµH

h ))0,ΓC

‖uµH

h ‖1
= ‖uµH

h ‖1

≥ ‖uµH‖1 − ‖uµH − uµH

h ‖1 ≥ C1‖µH‖−1/2,ΓC
− ‖uµH − uµH

h ‖1

≥ (C1 − C2C3C4Π(h,H, p, pC))‖µH‖−1/2,ΓC

≥ (C1 − C2C3C4ε)‖µH‖−1/2,ΓC
.
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Setting α := C1 − C2C3C4ε > 0 yields the assertion.

From the pratical point of view, the result of Theorem 6.4 seems to be nonsatis-
faying as it is not clear when Π(h,H, p, pC) is small enough such that (6.5) is fulfilled.
Furthermore, it is often unclear whether the regularity assumption (6.4) holds. For
convex domains, this assumption is fulfilled. Nevertheless, Theorem 6.4 justifies the
modification of the discretization scheme by coarsening the mesh TC,H or by decreas-
ing the polynomial degree pC to obtain a stable scheme. In Section 7, numerical
results confirm this theoretical observation.
It remains to show that the discrete saddle point of (5.5) is also unique. Unfortu-
nately, the inf-sup condition (5.4) does not fit to this problem. However, we can
proceed in a similar way.

Lemma 6.5. Let L̃2(ΓC) := {µ ∈ L2(ΓC) | µ = 0 on ΓC\ supp s} and C,C ′ > 0.
There exists a κ > 0, such that for h, H, p and pC satisfaying Π(h,H, p, pC) < κ
there holds

C‖sµH‖−1/2,ΓC
− C ′Π(h,H, p, pC)‖µH‖−1/2,ΓC

≥ κ‖µH‖−1/2,ΓC

for all µH ∈ MpC ∩ L̃2(ΓC).

Proof. Assume that for all κ > 0 there exist hκ, Hκ, pκ and pC,κ such that

Πκ := Π(hκ,Hκ, pκ, pC,κ) < κ

and there exists a function µκ ∈ MpC,κ(TC,Hκ
) ∩ L̃2(ΓC), such that

C‖sµκ‖−1/2,ΓC
− C ′Πκ‖µκ‖−1/2,ΓC

< κ‖µκ‖−1/2,ΓC
. (6.6)

Obviously, µκ 6= 0. Defining µ̃κ := ‖µκ‖
−1
0,ΓC

µκ ∈ L̃2(ΓC), we obtain ‖µ̃κ‖0,ΓC
= 1.

Due to the reflexivity of L2(ΓC) and the convexity as well as the closeness of L̃2(ΓC),
there exists some µ̃ ∈ L̃2(ΓC) such that µ̃κn

⇀ µ̃ for a sequence κn → 0. This also
implies µ̃κn

→ µ̃ in the norms ‖ · ‖0,ΓC
and ‖ · ‖−1/2,ΓC

. Therefore, ‖µ̃‖0,ΓC
= 1 and

µ̃ 6= 0 on supp s. From (6.6), we have C‖sµ̃κn
‖−1/2,ΓC

< (1 + C ′)κn which implies
‖sµ̃‖−1/2,ΓC

= 0 and therefore, sµ̃ = 0, which is a contradiction to µ̃ 6= 0 on supp s.

Theorem 6.6. Let the variational problem (6.2) be regular for θ ≤ 1/2 and

s ∈ L∞(ΓC). Furthermore, let Π(h,H, p, pC) be sufficiently small. Then, there exists

a constant α > 0 sucht that

α‖µH‖−1/2,ΓC
≤ sup

vh∈Sp(Th), ‖vh‖1=1

(µH , sγC(vh))0,ΓC
(6.7)

for all µH ∈ MpC (TC,H) ∩ L̃2(ΓC), where α is independent of h, H, p und pC .

Proof. Let µH ∈ MpC (TC,H) ∩ L̃2(ΓC). Furthermore, let usµH

h ∈ Sp(Th) be
uniquely determined by

∀vh ∈ Sp(Th) : (∇uµH

h ,∇vh)0 + (uµH

h , vh)0 = (sµH , γC(vh))0,ΓC
.

Thus, in analogy to the proof of Theorem 6.4, we obtain

‖usµH − usµH

h ‖1 ≤ C2C4
hθ

pθ
‖sµH‖−1/2+θ,ΓC

≤ C2C4
hθ

pθ
‖s‖∞,ΓC

‖µH‖−1/2+θ,ΓC

≤ C2C3C4‖s‖∞,ΓC
Π(h,H, p, pC)‖µH‖−1/2
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and

sup
vh∈Sp(Th)\{0}

(sµH , γC(vh))0,ΓC

‖vh‖1

≥ C1‖sµH‖−1/2,ΓC
− C2C3C4‖s‖∞,ΓC

Π(h,H, p, pC)‖µH‖−1/2.

The appliance of Lemma 6.5 completes the proof.

Corollary 6.7. The discrete saddle point of (5.5) is unique, if Π(h,H, p, pC)
is sufficiently small.

Proof. The assertion follows analogously to the proof of Theorem 5.4, using (6.7).

Fig. 7.1. Solution u of the simplified Signorini problem with obstacle function g and Lagrange

multiplier λ0 on the boundary.
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Fig. 7.2. λ0,H for (a) p ≡ 1, pC ≡ 0, h/H = 1, (b) p ≡ 1, pC ≡ 0, h/H = 0.5.

7. Numerical results. In our numerical experiments, we study the simplified
Signorini problem and the idealized frictional problem with Ω := (−1, 1)2, ΓC :=
(−1, 1) × {−1}, ΓD := [−1,−1] × {1} ∪ {1} × [0, 1] and f := −1. For the simplified
Signorini problem, we define the obstacle function as g(x0, x1) := −x2

0. In Figure
7.1, the finite element solution u of the simplified Signorini problem is depicted. In
addition, the obstacle function g and the Lagrange multiplier λ0 are sketched in.
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Fig. 7.3. λ0,H for (a) p ≡ 2, pC ≡ 1, h/H = 1, (b) p ≡ 3, pC ≡ 2, h/H = 1, (c) p ≡ 3,
pC ≡ 2, h/H = 0.5, (d) p ≡ 3, pC ≡ 1, h/H = 1.

We observe, that the condition u ≥ g is fulfilled. For u ∈ H1(Ω,ΓD) ∩ H2(Ω),
there holds λ0 ∈ L2(ΓC) and λ0 = −∂nu. Thus, we have λ0 (u − g) = 0 on ΓC . This
condition can also be seen in Figure 7.1.
In Figure 7.2, λ0,H is depicted for p ≡ 1, pC ≡ 0 and different quotients of the mesh
sizes h and H. In Figure 7.2(a) the quotient is chosen as h/H = 1. The Lagrange
multiplier seems to oscillate. This oscillation phenomena can be interpreted as an one-
dimensional checkerboard instability, which suggests that the Lagrange multiplier is
not unique. In this case λ0,H is not a reasonable approximation of −∂nu. As suggested
by Theorem 6.4, the uniqueness of the Lagrange multiplier is obtained by reducing
Π(h,H, p, pC). Indeed, for h/H = 0.5 the described patterns of instability do not
occur, see Figure 7.2(b).
It is noted that the use of meshes Th and TC,h with different mesh sizes h and H lead
to high complexity in implementation. For the edge grid TC,H which is inherited from
Th, the implementational effort is essentially smaller. However, this enforces sizes h
and H with h/H = 1. In order to keep Π(h,H, p, pC) small in this case, we can vary
p and pC . In Figure 7.3(a), λ0,H is depicted for p ≡ 2, pC ≡ 1. Obviously, there are
no instability patterns for this combination, whereas the combination p ≡ 3, pC ≡ 2
and h/H = 1 leads to a Lagrange multiplier with instability patterns, cf. Figure
7.3(b). The use of h/H = 0.5 or pC ≡ 1 avoids these patterns, see Figures 7.3(c)
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and (d). Further experiments show that the combination h/H = 1, pC ≡ p − 1 for
even polynomial degree p leads to Lagrange multipliers without instability patterns.
For odd polynomial degree p we have to choose h/H = 0.5 in order to avoid such
patterns.
It is noted that the presence or absence of instability patterns do not strictly verify
or falsify the unique existence of the Lagrange multliplier. However, such patterns
can be seen as an indication for the non-uniqueness of the Lagrange multiplier. The
effects resulting from varying Π(h,H, p, pC) confirm this observation.

Fig. 7.4. Solution u of the idealized frictional problem with function 1 and Lagrange multiplier

λ1 on the boundary.

For the idealized frictional problem, we set s := (1 − x0)
2. The solution u is

depicted in Figure 7.4. The constant function 1 and the Lagrange multiplier λ1 are
also sketched in. For u ∈ H1(Ω,ΓD) ∩ H2(Ω), we obtain sλ1 = −∂nu which implies
|λ1| ≤ 1. Furthermore, |λ1| < 1 yields u = 0. For |λ1| = 1, we find that u ≤ 0. These
relations can also be seen in Figure 7.4.
In Figure 7.5, the Lagrange multiplier λ1,H is depicted for various qoutients h/H and
polynomial degrees p und pC . We obtain similar results as for the simplified Signorini
problem.

In Figure 7.6, the solution u of the alternative formulation of the idealized fric-
tional problem is depicted. Moreover, the function s and the Lagrange multiplier λ1

are sketched in. We obtain λ1 = −∂nu for u ∈ H1(Ω,ΓD) ∩ H2(Ω) and, therefore,
|λ1| ≤ s. Here, |λ1| < s implies u = 0 and |λ1| = s implies u ≤ 0. These relations can
be seen in Figure 7.6.
Since the discrete inf-sup condition (5.7) has to be considered for this problem, we
obtain the same results as for the simplified Signorini problem. In Figure 7.7, the La-
grange multiplier λ1,H is depicted for various quotients h/H and polynomial degrees
p und pC .

remark 7.1. From the practical point of view, it is crucial to ensure higher-
order finite element functions to be in MpC

− (TC,H) and MpC

1 (TC,H) for pC,TC
≥ 2. For

MpC
s (TC,H) it is already cruical for pC,TC

≥ 0. It is reasonable to replace these sets
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Fig. 7.5. λ1,H for (a) p ≡ 1, pC ≡ 0, h/H = 1, (b) p ≡ 1, pC ≡ 0, h/H = 0.5, (c) p ≡ 2,
pC ≡ 1, h/H = 1, (d) p ≡ 3, pC ≡ 2, h/H = 1, (e) p ≡ 3, pC ≡ 2, h/H = 0.5, (f) p ≡ 3, pC ≡ 1,
h/H = 1.

Fig. 7.6. Solution u of the alternative formulation of the idealized frictional problem with

function s and Lagrange multiplier λ1 on the boundary.

by

M̃pC

− (TC,H) :=
{

µH ∈ MpC (TC,H) | ∀T ∈ TC,H : ∀x ∈ C : µH|T (ΨC,T (x)) ≤ 0
}

,

M̃pC

1 (TC,H) :=
{

µH ∈ MpC (TC,H) | ∀T ∈ TC,H : ∀x ∈ C : |µH|T (ΨC,T (x))| ≤ 1

on supp s, µH|T (ΨC,T (x)) = 0 on ΓC\ supp s
}

,

M̃pC
s (TC,H) :=

{

µH ∈ MpC (TC,H) | ∀T ∈ TC,H : ∀x ∈ C : |µH|T (ΨC,T (x))| ≤ s(x)
}

where C ⊂ [−1, 1]k−1 is a sufficiently large set of discrete points. We use Cheby-
cheff points to ensure the additional error to be small. We refer to [3] for a further
justification of this approach.
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Fig. 7.7. λ1,H for (a) p ≡ 1, pC ≡ 0, h/H = 1, (b) p ≡ 1, pC ≡ 0, h/H = 0.5, (c) p ≡ 2,
pC ≡ 1, h/H = 1, (d) p ≡ 3, pC ≡ 2, h/H = 1, (e) p ≡ 3, pC ≡ 2, h/H = 0.5, (f) p ≡ 3, pC ≡ 1,
h/H = 1.
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