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Abstract In conform hp-finite element schemes on irregular meshes, one has to
ensure the finite element functions to be continuous across edges and faces in the
presence of hanging nodes. A key approach is to constrain the appropriate shape
functions using so-called connectivity matrices. In this work the connectivity ma-
trices for hierarchical tensor product shape functions are explicitly determined.
In particular, the presented approach includes both unsymmetric subdivsions and
multlilevel hanging nodes not using hierarchical or multi-level information of sub-
divions. Moreover, the problem of edge and face orientations is considered.

1 Introduction

In adaptive finite element schemes, local refinements are typically realized by subdi-
visions of mesh elements. Using conform finite element schemes, one has to ensure
the finite element functions to be continuous across edges and faces. In the presence
of hanging or irregular nodes, this is done through contraint of the local basis func-
tions associated to them and to adjacent irregular edges and faces, which is known
as constrained approximation. A natural approach is to use connectivity matrices in
the assembly process. Let T := {T0,T1, . . . ,} be a mesh subordinate to Ω ⊂ Rk,
k ∈ {2,3}, where T i ∩T j is empty or a vertex, an edge or a face of Ti or Tj, i 6= j.
Furthermore, let ΨT : T̂ → T ∈ T be a bijective and sufficiently smooth mapping
for some reference element T̂ , e.g., T̂ := [−1,1]k for quadrangles or hexahedrons,
and let PT be a finite polynomial space on T̂ . Thus, the space of piecewise con-
tinuous polynomials is defined as S := {v ∈ C0(Ω) | ∀T ∈ T : v|T ◦ΨT ∈PT}.
We denote the global basis functions of S by {ϕi}0≤i<n and the local basis func-
tions of PT by {ηT,i}0≤i<nT . The matrices πT ∈ Rn×nT , T ∈ T , connecting the
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local and global basis functions are called connectivity matrices and are given by
ϕi|T = ∑

nT−1
j=0 πT,i jηT, j ◦Ψ

−1
T . The assembly of the stiffness matrix K and the load

vector F is thus given by K := ∑T∈T πT KT π>T and F := ∑T∈T πT FT for the local
stiffness matrices KT ∈ RnT×nT and local load vectors FT ∈ RnT , T ∈T .
A fundamental problem in finite element implementations is to provide connectiv-
ity matrices through suitable data structures as their computation is highly depen-
dent on the choice of shape functions and refinement patterns. Moreover, the edge
and face orientations have to be taken into account. If mesh elements containing
hanging nodes are subdivided, multi-level hanging nodes occur. This significantly
complicates the computation of the connectivitiy matrices and, in particular, their
implementation. Therefore, most finite element codes do not allow for more than
one hanging node per edge or face.
In the literature, connectivity matrices, their calculation and several data structures
are described. In [1], the constraints are stated for integrated Legendre shape func-
tions on quadrangles. Also, the extension to multi-level hp-refinement is discussed.
The constraints are inserted via data structures representing a sparse data format for
connectivity matrices. In [3], some data structure arrays for quadrangles storing the
constraint information are proposed which also describe connectivity matrices in
sparse data format. Similar approaches are suggested in [2, 4, 7, 11, 12]. A broad
overview on data structures and algorithms for constrained approximation in two
and three dimensions is given in the comprehensive monographs by Demkowicz
et. al. [5, 6].
The aim of this work is to compute the connectivity matrices for hierarchical tensor
product shape functions including both unsymmetric subdivisions and multi-level
hanging nodes. The basic idea is to consider an irregular face as a subset of a regular
face regardless of whether it results from a multi-level, symmetric or unsymmetric
subdivision and to compute the entries of the connectivity matrices from this infor-
mation only. Hence, no hierarchical or multi-level information of the subdivisions
is needed. This simplifies the implementation greatly. A further emphasis of this
work is on edge and face orientations and on implementation aspects based on some
simple data structures for the storage of mesh elements.

2 Tensor product shape functions of Legendre type
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Fig. 1 Index tuple identifying nodes, edges and faces of the reference cube.
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Tensor product shape functions based on integrated Legendre or Gauss-Lobatto
polynomials are a widely used family of shape functions for higher-order FEM. Us-
ing Gegenbauer polynomials {Gρ

i }i∈N0 defined as (i+1)Gρ

i+1(x)= 2(i+ρ)xGρ

i (x)−
(i + 2ρ − 1)Gρ

i−1(x) with ρ ∈ R, Gρ

0 (x) := 1 and Gρ

1 (x) := 2ρx, we obtain in-
tegrated Legendre (βi := 1) or Gauss-Lobatto (βi :=

√
(2i−1)/2) polynomials

ξ0(x) := 1
2 (1−x), ξ1(x) := 1

2 (1+x), and ξi(x) := βiG
−1/2
i (x) for i = 2, . . . , p. Tensor

product shape functions are constructed on the unit cube [−1,1]k via

ηα(x) :=
k−1

∏
r=0

ξαr(xr), x ∈ Rk

for a k-tuple α with αr ∈ {0, . . . , pr}, 0 ≤ r < k and local polynomial degrees
p0, . . . , pk−1 ≥ 1, cf. [8, Ch.3]. Usually, the shape functions are separated into nodal,
edge, face and inner modes. For this purpose, we associate a node, an edge or a face
to a k-tuple with values in {0,1,2} as shown in Figure 1 and the unit cube itself to
the k-tuple (2, . . . ,2). In the following, let b be such a k-tuple. Typically, one also
introduces additional local polynomial degrees for edges and faces, for instance, to
ensure the minimum rule, cf. [11]. We denote these degrees by pb

r ∈ {1, . . . , pr} for
all r = 0, . . . ,k−1 with br = 2. With these preparations at hand, the modes associ-
ated to b are {ηα}α∈Ib with

Ib := {α | αr := br if br ∈ {0,1}, otherwise αr ∈ {2, . . . , pb
r}}.

Also serendipity shape functions with reduced number of face and inner modes (cf.
[8]) can be captured using this notation. Let qb be a polynomial degree which is
assigned to b and let ` be the dimension of the object associated to b. With pb

r :=
qb−2(`−1), the index set is given by Ĩb := {α ∈ Ib | ∑k−1

r=0,br=2 αr ∈ {2`, . . . ,qb}}.
In most finite element implementations, a mesh element T ∈ T is respresented by
a special data structure which enables the storage of information like coordinates,
polynomial degrees, global numbering or to generate some information about the
combinatorial structure of the mesh element. A simple data structure is given by the
representation of T through GT = (G0

T , . . . ,Gk−1
T )∈ (G0)σ0× . . .×(Gk−1)σk−1 where

σ` := σ k
` := 2k−`k!/(`!(k− `)!) denotes the number of `-dimensional adjacents ob-

jects in a k-dimensional cube. The set G0 ⊂ Rk represents the set of all nodes of T ,
G` ⊂ (G0)2`

of all edges or faces of T , 0 ≤ ` < k, respectively. For completeness,
we define Gk := {G0

T | T ∈ T }. A natural orientation of edges and faces is shown
in Figure 2(a), which is equivalently given by the matrices

I 1,2 :=
(

0 1 3 0
1 2 2 3

)
, I 1,3 :=

(
0 1 3 0 0 1 2 3 4 5
1 2 2 3 4 5 6 7 5 6

7 4
6 7

)
, I 2,3 :=


0 1 3 4 0 0
1 2 2 5 3 1
2 6 6 6 7 5
3 5 7 7 4 4

 .

Here, the entries of the j-th column denotes the node indices of the edge or face
with index j. We assume that for all 1≤ ` < k and 0≤ ν < σ`, there exists a unique



4 Andreas Schröder

0≤ i < 2` such that
(G0

T )
I `,k

0,ν
= ((G`

T )ν)i. (1)

We denote this index by g(GT , `,ν). Furthermore, we assume that for all 1≤ ` < k
and 0≤ ν < σ` there exists a unique δ ∈ {−1,1} such that

(G0
T )

I `,k
i,ν

= ((G`
T )ν)(g(GT ,`,ν)+δ i)mod2` (2)

for all 0 ≤ i < 2`. Given h(GT , `,ν) := δ , we obtain g(GT ,1,4) = 1, h(GT ,1,4) =
−1, g(GT ,2,5) = 2 and h(GT ,2,5) =−1 in Figure 2(b). Conditions (1) and (2) en-
sure, that the edges and faces consist of the nodes given by G0

T and that they can be
transfered to the reference edge or face by rotation or reflections, respectively.
The approximation space S is defined through a degree distribution which is given
by the global polynomial degrees p(G)0, . . . , p(G)`−1. Here, G ∈ G`, 1≤ `≤ k rep-
resents a non-hanging or regular edge, face or a mesh element in T . In the case that
G represents a face, we associate p(G)0 to the direction given by the nodes G0 and
G1, and p(G)1 to the direction given by G1 and G2. In the following, let M(G,β ) be
a suitable global numbering where β is a `-tuple with βr ∈ {2, . . . , p(G)r}, 0≤ r < `
which denotes the modes associated to G.
In the following, let b(G) be the k-tuple associated to G = (G`

T )ν for some 0≤ ` < k,
0 ≤ ν < σ` or to G = G0

T with ` = k. Furthermore, let α ∈ Ib(G). To construct con-
tinuous functions, we have to adjust the edge and face modes to the orientation
of G given by the mappings g and h. This adjustment may be done switching the
entries in α or using a sign number µ(α). For this purpose, we specify the local
polynomial degrees pb(G)

r , the `-tuple β (α) and the sign number µ(α). In the case
` = 1, we set pb(G)

r := p(G)0, β (α)0 := αr and µ(α) = h(GT ,1,ν)β (α)0 for the
unique r ∈ {0, . . . ,k−1} with b(G)r = 2. In the case ` = 2, we have unique r0,r1 ∈
{0, . . . ,k−1}with b(G)r0 = b(G)r1 = 2 and r0 < r1. Here, we distinguish four cases
depending on the values of f (GT ,ν) := (g(GT ,2,ν)+(h(GT ,2,ν)−1)/2)mod4 ∈
{0, . . . ,3}. For j = 0,1, we define pb(G)

r j := p(G) j, β (α) j = αr j if f (GT ,ν)∈ {0,2},
and pb(G)

r( j+1)mod2 := p(G) j and β (α)( j+1)mod2 = αr j otherwise. Furthermore, we set

µ(α) := (λ0h(GT ,2,ν))β (α)0λ
β (α)1
1

with λi := 1, i = 0,1, if f (GT ,ν)∈ {i, i+1}, and λi :=−1 otherwise. For complete-
ness, we define pb(G)

j := p(G) j, j = 0,1,2, and β (α) = α , if ` = 3, and µ(α) := 1
if ` ∈ {0,k}. Using all these preparations, the connectivity matrices are given by

πT,M(G,β (α)),mT (α) := µ(α) (3)

where mT (α) is a suitable local numbering, cf. [8, Ch.4.1.5.1]. All entries which are
not captured by (3) are set to 0. Note that we implicitely assume that ΨT maps the
vertices of the unit cube onto the nodes G0

ν in the same order as given in Figure 1.
This is, e.g., done by ΨT := ∑0≤ν<2k ηb((G0

T )ν )(G
0
T )ν .
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Fig. 2 (a) Edge and face orientations in the reference element, (b) non matching orientations.

3 Constraints coefficients and multi-level hanging nodes

To calculate the connectivity matrices for elements with irregular nodes, edges or
faces, we introduce a further data structure GF = (G0

F , . . . ,Gk−2
F )∈ Gk−1×G σ̃1

1 . . .×
G

σ̃k−2
k−2 , σ̃` := σ

k−1
` , which respresents an edge F ⊂ R2 or a face F ⊂ R3 of T for

k = 2,3, respectively. Based on GF , we define b̃(G) as the k−1-tuple with values in
{0,1,2} which is associated to the node or edge G = (G`

F)ν as depicted in Figure 1
or to G = G0

F with b̃(G) := (2, . . . ,2). Furthermore, let F̂ ⊂R3 be the unique regular
edge or face of T with F ⊂ F̂ . We assume that there exists numbers vr,wr ∈ R,
0≤ r < k−1, such that

Φ(Ψ−1
F ((G0

F̂)ν)) = Ψ
−1

F ((G0
F)ν), (4)

for all 0 ≤ ν < 2` with ΨF := ∑0≤ν<2k−1 ηb̃((G0
F )ν )(G

0
F)ν and Φ(x)r = vrxr + wr,

vr ∈ (0,1]. Note that ΨF maps [−1,1]k−1 onto F and that Φ is a compression. Fur-
thermore, we assume that

g(GF , `,ν) = g(GF̂ , `,ν), h(GF , `,ν) = h(GF̂ , `,ν) (5)

for all 1≤ ` < k−1 and 0≤ ν < σ̃`. The conditions (4) and (5) ensure that GF and
GF̂ have the same orientation and Ψ

−1
F (F̂) is paraxial, cf. Figure 3(a).

Define p(G0
F)r := p(G0

F̂
)r, 0 ≤ r < k − 1, and p((G1

F)ν)0 := max{p((G1
F̂)ν)0,

p(G0
F̂
)ν mod2} if (G1

F)ν represents an irregular edge. Given assumption (4), the basic
problem is to compute the so-called constraints coefficients κγ̂,γ , which are given by

ηγ̂ ◦Φ = ∑
G∈adj(GF ), γ∈Ib̃(G)

κγ̂,γ ηγ

for γ̂ ∈ Ib̃(Ĝ), adj(GF) := {G0
F} ∪ {(G`

F)ν | 0 ≤ ` < k− 2, 0 ≤ ν < σ̃`} and Ĝ ∈
adj(GF̂). Due to the tensor product structure and the properties of Φ , the coefficients
are determined by κγ̂,γ = ∏

`−1
r=0 κ̄γ̂r ,γr(vr,wr), where the coefficients κ̄i j(v,w) solve

the problem

ξi(vx+w) =
p

∑
j=0

κ̄i j(v,w)ξ j(x), x ∈ R (6)
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for v,w ∈ R, cf. [9]. A simple method to calculate the coefficients in (6) is to
solve the linear equation ξi(vxs +w) = ∑

p
j=0 κ̄i j(v,w)ξ j(xs) with suitable test points

xs ∈ (−1,1), s = 0, . . . , p. In most finite element codes, the constraints coefficients
are calculated for v = 0.5 and w ∈ {−0.5,0.5} describing symmetric subdivions, cf.
[12]. In [9], an explicit and recursive formula for κ̄i j(v,w) and arbitrary v and w is
derived for the integrated Legendre and Gauss-Lobatto polynomials. This formula
enables us to efficiently calculate the constraints coefficents for arbitrary subdiv-
sions fulfilling condition (4).
To calculate the entries of the connectivity matrices, two preprocessing steps have
to be accomplished. The first step is to iterate through all faces F of T , all
G ∈ adj(GF) and all γ ∈ Ib̃(G). If G is associated to a regular node, edge or face,
we set B(G,β (γ)) := {(G,β (γ),1)}. Otherwise, we set

B(G,β (γ)) :=
{
(Ĝ,β (γ̂),κγ̂,γ) | Ĝ ∈ adj(GF̂), G 6= Ĝ, γ̂ ∈ Ib̃(Ĝ), κγ̂,γ 6= 0

}
.

The second step is to combine the constraints coefficients through

C (G,β ) :=
{
(Ĝ, β̂ ,κ) | (Ĝ, β̂ ,κ) ∈B(G,β ), Ĝ regular

} ⊎
(Ĝ,β̂ ,κ)∈B(G,β ),

Ĝ irregular

κC (Ĝ,β )

with κ{(G0,β0,κ0),(G1,β1,κ1), . . .} := {(G0,β0,κκ0),(G1,β1,κκ1), . . .} and

C0]C1 :={(G,β ,κ) | (G,β ,κ) ∈ C0, 6 ∃κ ′ : (G,β ,κ ′) ∈ C1}
∪{(G,β ,κ) | (G,β ,κ) ∈ C1, 6 ∃κ ′ : (G,β ,κ ′) ∈ C0}
∪{(G,β ,κ +κ

′) | (G,β ,κ) ∈ C0,∃κ ′ : (G,β ,κ ′) ∈ C1}.

Using these sets, the entries of the connectivity matrix for a mesh element T ∈ T
are computed using an extension of (3): For G = (G`

T )ν ∈ G ` and α ∈ Ib(G), we set

πT,M(Ĝ,β̂ ),mT (α) := µ(α)κ

for all (Ĝ, β̂ ,κ) ∈ C (G,β (α)).
Note that there are some (possibly artificial) cases for which the recursive definition
of C results in an infinite loop over the hanging nodes. A 2D-example for such a
situation is given in Figure 3(b) for hanging nodes A,B,C and D. For implemention
purposes, we need the data structures GT and GF to represent mesh elements and
faces. Furthermore, we need a mapping which gives us the regular face F̂ for an
irregular face F with F ⊂ F̂ . Such a mapping is easily generated during the refine-
ment process of a regular coarse mesh. The proposed approach may be extended to
higher-dimensional mesh elements (k≥ 4), given an appropriate definition of pb(G)

r ,
β (α) and µ(α).
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(a) (b)

Fig. 3 (a) Orientation of F , F̂ and their edges, (b) irregular 2D mesh for which the generation of
C results in an inifinite loop.

4 Numerical results

In this section, we give some numerical results on the application of unsymmet-
ric subdivisions and multi-level hanging nodes in 2D and 3D. The problem under
consideration is Poisson’s problem −∆u = f on a L-shaped domain and on a cube.
The right-hand side f and the boundary conditions are chosen so that u has a cor-
ner singularity in the re-entrant corner of the L-shaped domain and at one corner
of the cube, respectively. We use serendipity shape functions and adapt the finite
element mesh with symmetric (symm.) as well as unsymmetric (unsymm.) subdi-
visions at the corner and an increasing polynomial degree distribution. Figure 4(d)
shows such an unsymmetric refinement for a cube with polynomial degrees marked
by grey scales. Moreover, we use an automatic hp-adaptive scheme based on two
a posteriori error estimators ηT and η̃T which estimate the local discretization error
on T ∈ T for different degree disctributions pT ≤ p̃T . Using well-known a priori
estimates, we estimate the local regularity ρT of u with ρT ≈ log(η̃T /ηT )

log(pT /p̃T ) +1. We in-
crease the polynomial degree if ρT ≥ p̃T , and refine T otherwise. For more details,
see [10]. We use this strategy for symmetric (Figure 4(a),(b) - adaptive) as well as
unsymmetric subdivisions (Figure 4(c) - unsym.2). In Figure 4(c), only the polyno-
mial degree is adapted whereas in Figure 4(a) und (e), both the polynomial degree
and the mesh are adapted with multi-level hanging nodes. For all these hp-adaptive
refinements, we obtain exponential convergence rates (Figure 4(f) for the L-shaped
domain and (h) for the cube). Additional refinement of all mesh elements with multi-
level hanging nodes can be applied to ensure 1-irregularity of the mesh. However,
in our numerical experiments with automatic hp-adaptive schemes on the L-shaped
domain, the exponential convergence is lost, see Figure 4(g). This is due to the fact
that only mesh elements at the corner are refined in the first steps of the refinement
so that multi-level hanging nodes do not occur; but thereafter some mesh elements
are refined which are not at the re-entrant corner so that multi-level hanging nodes
are generated. The additional refinements for the elimination of multi-level hanging
nodes leads to further multi-level hanging nodes on the next layer and so on. In the
end, an almost global refinement is performed, which results in the decrease of the
convergence rate, see Figure 4(b). This underlines the benefit of schemes which are
able to handle multi-level hanging nodes.
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no name

(a)

no name

(b)

no name

(c) (d)

(e)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

er
ro

r

dof

symm.
unsymm.
adaptive
unsym.2

(f)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000

er
ro

r

dof

adaptive
reg

(g)

 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000  10000  100000

er
ro

r

dof

symm.
unsymm.
adaptive

(h)

Fig. 4 hp-adaptive meshes in 2D and 3D and convergence rates.
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