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Abstract Continuity requirements on irregular meshes enforce a proper constraint
of the degrees of freedom that correspond to hanging nodes, edges or faces. This
is achieved by using so-called constraints coefficients which are obtained from the
appropriate coupling of shape functions.
In this note, a general framework for determining the constraints coefficients of ten-
sor product shape functions is presented and its application to shape functions using
integrated Legendre or Gauss-Lobatto polynomials. The constraints coefficients in
the one-dimensional case are determined via recurrence relations. The constraints
coefficients in the multi-dimensional case are obtained as products of these coeffi-
cients. The coefficients are available for arbitrary patterns of subdivisions.

1 Introduction

Local refinement processes arising from grid adaption are typically realized either
by remeshing or by local refinements of grid elements. In the latter case so-called
hanging nodes, edges or faces are unavoidable which result from refining a grid
element without the refinement of neighboring elements. Applying conform finite
element schemes, one has to ensure the finite element solution to be continuous. If
no further local refinements (with possibly complex refinement patterns) are per-
formed to eleminate grid irregularities, one has to constraint the degrees of freedom
associated to hanging nodes, edges or faces. This can be done, e.g., by using La-
grange multipliers or static condensation or by incorporating the constraints in the
iterative scheme that is used to determine the approximative solution. In all cases, a
representation of shape functions in terms of transformed shape functions is needed.
Such a representation is given by the so-called constraintscoefficients.
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In a very general manner, constraints coefficients are defined as follows: LetPq be
a space of polynomials of degreeq∈ N onR

k, k∈ N, andϒ : R
k → R

k be an affine
linear and bijective mapping. Furthermore, letξ = {ξi}0≤i<n ⊂ Pq be a linear in-
dependent set of polynomials. The numbersαi j ∈ R with ξi ◦ϒ = ∑n−1

j=0 αi j ξ j are
calledconstraints coefficientsof ξ for the mappingϒ .
In [3] constraints coefficients of the shape functions

ξ0(x) :=
1
2
(1−x), ξ1(x) :=

1
2
(1+x), ξi(x) :=

{

xi −1, i = 2,4,6, . . . ,q

xi −x, i = 3,5,7, . . . ,q
(1)

are determined. Since the functionalsϕ0(v) := v(−1), ϕ1(v) := v(1), ϕ j(v) :=
1/ j!d jv/dxj(0), j = 2, . . . ,q fulfill the duality relationϕ j(ξi) = δi j (whereδi j is
the Kronecker delta), one simply obtainsαi j = ϕ j(ξi ◦ϒ ).
In [2] constraints coefficients of the Lagrange shape functions

ξ0(x) := 1−x, ξ1(x) := x, ξi :=
x(1−x)
xi(1−xi)

n−1

∏
ℓ=2;ℓ 6=i

x−xℓ

xi −xℓ
, i = 2, . . . ,q

are specified withxℓ ∈ (0,1), ℓ = 2, . . .n−1. The functionalsϕ0(v) := v(0), ϕ1(v) :=
v(1), ϕ j(v) := v(x j), j = 2, . . . ,n−1, fulfill the duality relationϕ j(ξi) = δi j only for
i = 2, . . . ,n−1. We getαi0 = (ξi ◦ϒ )(0) andαi1 = (ξi ◦ϒ )(1) for i = 0, . . . ,n−1 and
α0 j = α1 j = 0 for j = 2, . . . ,n−1. Sinceϕ j(ξi ◦ϒ ) = αi0ϕ j(ξ0)+ αi1ϕ j(ξ1)+ αi j ,
the remaining coefficients are determined byαi j = (ξi ◦ϒ )(x j )−αi0(1−x j)−αi1x j .
A widely used family of shape functions are shape functions using integrated Leg-
endre or Gauss-Lobatto polynomials ([7], [8], [9]). These polynomials belong to the
family of so-called Gegenbauer polynomials{Gρ

i }i∈N0 which are defined by

(i +1)Gρ
i+1(x) = 2(i + ρ)xGρ

i (x)− (i +2ρ−1)Gρ
i−1(x) (2)

with ρ ∈ R, Gρ
0(x) := 1 andGρ

1(x) := 2ρx. Theoretical results about equivalent
definitions of Gegenbauer polynomials and their special properties can be found,
e.g., in [10]. Withρ := −1/2, we obtain integrated Legendre (βi := 1) and Gauss-
Lobatto (βi :=

√

(2i −1)/2) shape functions

ξ0(x) :=
1
2
(1−x), ξ1(x) :=

1
2
(1+x), ξi(x) := βiG

−1/2
i (x), i = 2, . . . ,q. (3)

Because of the orthogonality relation of the Gegenbauer polynomials (cf. [10]), the
functionalsϕ0(v) := v(−1), ϕ1(v) := v(1), ϕ j(v) := µ j

∫ 1
−1(1− x2)−1ξ j(x)v(x)dx

with µ j := j( j − 1)(2 j − 1)/(2β 2
j ), j = 2, . . . ,n− 1 fullfill the duality relation

ϕ j(ξi) = δi j for i = 2, . . . ,n−1 and j = 0, . . . ,n−1. Similar to the Lagrange shape
functions, we obtainαi0 = (ξi ◦ϒ )(−1) andαi1 = (ξi ◦ϒ )(1) for i = 0, . . . ,n−1
and α0 j = α1 j = 0 for j = 2, . . . ,n− 1. Sinceϕ j(ξ0) = (−1) j(2 j − 1)/(2β 2

j )

andϕ j(ξ1) = (2 j − 1)/(2β 2
j ), the remaining coefficients are determined byαi j =

ϕ j(ξi ◦ϒ )− (2 j −1)/(2β 2
j )(αi0(−1) j + αi1).
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In this note, we present a general framework for constraintscoefficients of tensor
product polynomials. Furthermore, we present an explicit formula of the constraints
coefficients of integrated Legendre and Gauss-Lobatto shape functions without the
integral representation given byϕ j . The formula is derived by the use of the recur-
rence relation (2). At the end of this note, the application of constraints coefficients
to irregular grids is briefly discussed. Other areas of applications arehp-multigrid
schemes (cf. [4], [5]) or grid transfer operations in timedependent problems.

2 Tensor Product Shape Functions

The space of polynomials in one variable of degreeq is defined asSq := {v : R→R |
v(x) = ∑0≤i≤qcixi , ci ∈ R}, the corresponding tensor product space is denoted by

Sq
k := ⊗k−1

i=0 Sq :=

{

v : R
k → R | v(x0, . . . ,xk−1) =

k−1

∏
i=0

vi(xi), v0, . . . ,vk−1 ∈ Sq

}

.

Let ξ̂ := {ξ̂i}0≤i<m be a subset ofSq andL be ann timesk matrix with entries in

{0, . . . ,m−1}. Then, we defineΠ(ξ̂ ,L) :=
{

∏k−1
r=0 ξ̂Lir (xr)

}

0≤i<n
⊂ Sq

k.

Forϒ (x) := diag(a)x+ b with a,b∈ R
k, it is easy to determine the constraints co-

efficients ofΠ(ξ̂ ,L): Let α̂i j (ar ,br) ∈ R be the constraints coefficients ofξ̂ for
ϒr(xr) := arxr +br . Furthermore, letL := {(Li,0, . . . ,Li,k−1) | 0≤ i < n}.

Theorem 1.Assume thatΠ(ξ̂ ,L) is linear independent and there holds

l ∈ {0, . . . ,m−1}k\L ⇒∀0≤ i < n : ∃0≤ r < k : α̂Lir ,lr = 0. (4)

Then, the constraints coefficients ofΠ(ξ̂ ,L) for ϒ areαi j = ∏k−1
r=0 α̂Lir ,L jr (ar ,br).

Proof: Let x∈ R
k. Because of (4), we obtain

Π(ξ̂ ,L)i(ϒ (x)) =
k−1

∏
r=0

ξ̂Lir (arxr +br) =
k−1

∏
r=0

m−1

∑
l=0

α̂Lir ,l (ar ,br)ξ̂l (xr)

=
m−1

∑
l0=0

· · ·
m−1

∑
lk−1=0

(

k−1

∏
r=0

α̂Lir ,lr (ar ,br)

)(

k−1

∏
r=0

ξ̂lr (xr)

)

= ∑
l∈L

(

k−1

∏
r=0

α̂Lir ,lr (ar ,br)

)(

k−1

∏
r=0

ξ̂lr (xr)

)

=
n−1

∑
j=0

(

k−1

∏
r=0

α̂Lir ,L jr (ar ,br)

)

Π(ξ̂ ,L) j(x).

SinceΠ(ξ̂ ,L) is assumed to be linear independent, the proof is completed.�

Finite element shape functions are basis polynomials that are defined on a reference
element (unit square, cube or simplex). They constitute theglobal basis functions
on the grid elements. In conform approaches shape functionsare usually partitioned
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into nodal modes, edge modes, face modes and inner modes. Nodal modes have
the value 1 in exactly one vertex and vanish on the remaining vertices. Edge modes
are different from zero on exactly one edge and vanish on the remaining edges
and on all non-adjacent faces and all nodes. Face modes are different from zero on
exactly one face and vanish on the remaining faces and on all edges and nodes. Inner
modes vanish on all nodes, edges and faces, they are only different from zero in the
interior. Using the notationΠ(ξ̂ ,L), the separation is established by splitting the
matrix L into submatricesL⊤ := (L0 L1 · · · Lk)⊤. The submatrixL0 generates the
nodal modes,L1 generates the edges modes and so on.
Let ξ̂ = ξ̂ q be shape functions inSq which are partitioned into the nodal modesξ̂0,
ξ̂1 and inner modeŝξi , 2≤ i ≤ q. With α(i, j) := i(i +1)/2+ j, a proper definition
of L in the two-dimensional case is, e.g.,

(L0)⊤ :=

(

0 1 1 0
0 0 1 1

)⊤

, L1
i,1 := L1

3(q−1)+i,0 := 0, L1
q−1+i,0 := L1

2(q−1)+i,1 := 1,

L1
i,0 := L1

q−1+i,1 := L1
2(q−1)+i,0 := L1

3(q−1)+i,1 := i +2, i = 0, . . . ,q−2, (5)

L2
α(i, j),0 := j +2, L2

α(i, j),1 := i − j +2, i = 0, . . . ,q−4+ τ, j = 0, . . . , i.

This definition leads to the set of shape functionsξ = Π(ξ̂ ,L) :

ξ0(x0,x1) := ξ̂0(x0)ξ̂0(x1), ξ1(x0,x1) := ξ̂1(x0)ξ̂0(x1),

ξ2(x0,x1) := ξ̂1(x0)ξ̂1(x1), ξ3(x0,x1) := ξ̂0(x0)ξ̂1(x1),

ξ4+i(x0,x1) := ξ̂i+2(x0)ξ̂0(x1), ξ4+q−1+i(x0,x1) := ξ̂1(x0)ξ̂i+2(x1),

ξ4+2(q−1)+i(x0,x1) := ξ̂i+2(x0)ξ̂1(x1), ξ q
4+3(q−1)+i(x0,x1) := ξ̂0(x0)ξ̂i+2(x1),

ξ4q+α(i, j)(x0,x1) := ξ̂ j+2(x0)ξ̂i− j+2(x1).

For τ = 2 the setΠ(ξ̂ ,L) is a basis ofSq
2. Assuming thatξ̂ is hierarchical (which

means that̂ξ q̃
i = ξ̂ q

i for 0 ≤ i ≤ q̃ andq̃≤ q), the setΠ(ξ̂ ,L) has some important
properties: Forτ = 0, we obtain a reduced set of shape functions (also known as
Serendipity shape functions) with the same order of approximation (cf., e.g., p.175
in [1], [7]). Furthermore, the special definition ofL implies that the edge modes
(edge by edge) and the inner modes are hierarchical as well. This property can be
exploited, e.g., for the efficient management of different polynomial degree distri-
butions of neigboring grid elements. One simply omits the edge modes with polyno-
mial degreep0 > p1, wherep1 is the polynomial degree in the neighboring element.
The shape functionsΠ(ξ̂ ,L) with integrated Legendre or Gauss-Lobatto shape
functionsξ̂ corresponds to the shape functions as proposed in [7] and [9]for hp-
finite element methods. The use of the recurrence relation (2) admits a stable and
fast evaluation of the shape functions and their derivatives. Derivatives of arbitrary
order can be easily derived by the relation∂ ν Gρ

i = 2ν(ρ)ν Gρ+ν
i−ν with i,ν ∈ N0 and

(ρ)ν := ∏ν−1
j=0 (ρ + j).
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3 Constraints Coefficients of Integrated Legendre and
Gauss-Lobatto Shape Functions

As a result of Theorem 1, it is sufficient to consider the one-dimensional case to
determine the constraints coefficients in the multi-dimensional case.

Theorem 2.Let ξ̂ be a set of hierarchical shape functions and L be defined as in
(5). Then, the assumption(4) is fulfilled for τ ∈ {0,2}.
Proof. The assumption (4) is obviously fulfilled forτ = 2. Let q ≥ 2, τ = 0 and
l ∈ {0, . . . ,q}2\L , then l = ( j + 2, i − j + 2) with i ∈ {max{q−3,0},q− 2} and
0≤ j ≤ i. For the nodal mode (κ = 0) with index 0≤ s< 4 or for the edge mode
(κ = 1) with index 0≤ s< 4(q− 1), we obtain deg(ξ̂Lκ

sr
) = 1 for at least oner ∈

{0,1}. Since min{deg(ξ̂ j+2),deg(ξ̂i− j+2)} ≥ 2, we haveα̂Lκ
sr,lr = 0. Forq≥ 4, the

polynomial degree of the inner mode with index 0≤ s< (q−3)(q−2)/2 is bounded
by q−2 < max{ j +2, i − j +2} = max{deg(ξ̂ j+2),deg(ξ̂i− j+2)}. Therefore, there
existsr ∈ {0,1} such thatα̂L2

sr,lr
= 0. �

Theorem 3.Let ϒ (x) = ax+ b with a,b ∈ R and i≥ 2. For integrated Legendre
shape functions(3), there holds:

α00 =
1+a−b

2
, α10 =

1−a+b
2

, α20 =
1− (a−b)2

2
,

αi+1,0 = (b−a)
2i −1
i +1

αi,0−
i −2
i +1

αi−1,0,

α01 =
1−a−b

2
, α11 =

1+a+b
2

, α21 =
1− (a+b)2

2
,

αi+1,1 = (a+b)
2i −1
i +1

αi,1−
i −2
i +1

αi−1,1,

α22 = a2, αi+1,2 =
2i −1
i +1

(a
5

αi,3 +bαi,2 +a(αi,0−αi,1)
)

−
i −2
i +1

αi−1,2,

αi+1, j =
2i −1
i +1

(

a
j

2 j −3
αi, j−1 +a

j −1
2 j +1

αi, j+1 +bαi, j

)

−
i −2
i +1

αi−1, j ,

j = 3, . . . , i −1,

αi+1,i =
2i −1
i +1

(

a
i

2i −3
αi,i−1 +bαii

)

, i > 2,

αi+1,i+1 = aαii , αi, j = 0, j > i.

Proof. By comparing the coefficients inξi(ax+b) = αi0ξ0(x)+αi1ξ1(x), i = 0,1,2,
we obtainα00, α01, α10, α11, α20, α21 andα22. From equation (2) we have:

xξ j(x) = (2 j −1)−1(( j +1)ξ j+1(x)+ ( j −2)ξ j−1(x)), j = 2,3, . . . .

Furthermore, we have
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xξ0(x) =
1
2

x−
1
2

x2 = −
1
2
(1−x)+

1
2
(1−x2) = −ξ0(x)+ ξ2(x),

xξ1(x) =
1
2

x+
1
2

x2 =
1
2
(1+x)−

1
2
(1−x2) = ξ1(x)− ξ2(x).

This yields

(i +1)ξi+1(ax+b)

= (2i −1)(ax+b)ξi(ax+b)− (i −2)ξi−1(ax+b)

= b(2i −1)
i

∑
j=0

αi j ξ j(x)+a(2i −1)x
i

∑
j=0

αi j ξ j(x)− (i −2)
i−1

∑
j=0

αi−1, jξ j(x)

= b(2i −1)
i

∑
j=0

αi j ξ j(x)+a(2i −1)
i

∑
j=2

αi j

(

j +1
2 j −1

ξ j+1(x)+
j −2

2 j −1
ξ j−1(x)

)

+a(2i −1)(αi,0(−ξ0(x)+ ξ2(x))+ αi,1(ξ1(x)− ξ2(x)))

− (i −2)
i−1

∑
j=0

αi−1, jξ j(x)

= a(i +1)αii ξi+1(x)+

(

a(2i −1)
i

2i −3
αi,i−1 +b(2i −1)αii

)

ξi(x)

+a(2i −1)
i−1

∑
j=3

αi, j−1
j

2 j −3
ξ j(x)+a(2i −1)

i−1

∑
j=2

αi, j+1
j −1

2 j +1
ξ j(x)

+b(2i −1)
i−1

∑
j=0

αi j ξ j(x)− (i −2)
i−1

∑
j=0

αi−1, jξ j(x)+a(2i −1)(αi,0−αi,1)ξ2(x)

+a(2i −1)αi,1ξ1(x)−a(2i −1)αi,0ξ0(x)

= a(i +1)αii ξi+1(x)+

(

a(2i −1)
i

2i −3
αi.i−1 +b(2i −1)αii

)

ξi(x)

+
i−1

∑
j=3

(

a(2i −1)
j

2 j −3
αi, j−1 +a(2i −1)

j −1
2 j +1

αi, j+1 +b(2i −1)αi j

− (i −2)αi−1, j

)

ξ j(x)

+

(

a(2i −1)
1
5

αi,3 +b(2i −1)αi,2− (i −2)αi−1,2+a(2i −1)(αi,0−αi,1)

)

ξ2(x)

+ (b(2i −1)αi,1− (i −2)αi−1,1+a(2i −1)αi,1)ξ1(x)

+ (b(2i −1)αi,0− (i −2)αi−1,0−a(2i −1)αi,0)ξ0(x)

Division by i +1 completes the proof. �

It is easy to see, that the constraints coefficients of Gauss-Lobatto shape functions
are
√

(2i −1)/(2 j −1)αi j , i, j ≥ 2. Furthermore, Theorem 3 can be extended to the
case of Gegenbauer polynomials or general Jacobi polynomials.
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4 Application to Hanging Nodes

Let T be a subdivision ofΩ ⊂ R
k consisting of quadrangles (k = 2) or hexahe-

drons (k = 3) and letΨT : [−1,1]k → T ∈ T be a bijective and sufficiently smooth
mapping. In conform finite element methods, the space of admissable functions is
defined asSp(T ) := {v∈C0(Ω) | ∀T ∈ T : v|T ◦ΨT ∈ SpT

k } with the degree distri-
butionp= {pT}T∈T , pT ≤ q. By using so-called connectivity matricesπT ∈ R

ℓ×nk,
a basis{φr}0≤r<ℓ of Sp(T ) is constructed via

φr|T :=
nk−1

∑
s=0

πT,rsφ̂T,s

with φ̂T,s := Π(ξ̂ ,L)s ◦Ψ−1
T , 0 ≤ s < nk, wherenk is the number of shape func-

tions. In particular, the stiffness matrixK and the load vectorb are assembled via
K := ∑T∈T πTKTπ⊤

T andb := ∑T∈T πTbT with local stiffness matricesKT ∈R
nk×nk

and local load vectorsbT ∈ R
nk.

In the presence of hanging nodes, the definition ofπT is the crucial point. The en-
tries are±1 (or 0), if the associated shape functions are related to a non-hanging
node, edge or face. Otherwise, the entries are given by the constraints coefficients
as introduced in the previous sections. Figure 1a shows a typical situation in 3D
which is obtained by refining the neighbored grid element of the left hexahedron
(denoted byTL), for example by dividing it into eight small hexahedrons. One of
them (denoted byTR) is examplarly depicted on the right hand side ofTL. The en-
tries of the connectivity matrix ofTL related to the nodesv0 andv1, to the edgese0,
e1, e2 and to the facef are defined as follows. The entries related tov0 ande0 are
given by the constraints coefficientsαi j of the one-dimensional case: Letφr̂ be a ba-
sis function of{φr}0≤r<ℓ, that belongs toV0, V1 or E. Furthermore, let{φ̂TL,s}s∈SL

be the polynomials of{φ̂TL,s}0≤s<n3, that belong toV0, V1 andE, and let{φ̂TR,s}s∈SR

be the polynomials of{φ̂TR,s}0≤s<n3, that belong toV0, v0 ande0. SinceV0, V1 and
E are non-hanging, it holds

±φ̂TL,ŝ|e0
= φr̂ |e0

= ∑
s∈SR

πT,r̂sφ̂TR,s|e0

with ŝ∈ SL. Provided thatE is subdivided into two subedges with proportions
of division z and 1− z, z ∈ (0,1), and e0 is its first subedge, we define a map-
pingϒ by ϒ (x) := zx+ z− 1 which maps[−1,(2− z)/z] onto [−1,1]. If e0 is the
second subedge ofE, we setϒ (x) := (1− z)x+ z which maps[(z+ 1)/(z−1),1]

onto [−1,1]. Due to the tensor structure ofΠ(ξ̂ ,L), there exist bijective mappings
∆L : {0, . . . ,n1−1}→ SL, ∆R : {0, . . . ,n1−1}→ SR, andΨe0 : [−1,1]→ e0, such
thatφ̂TL,ŝ|e0

◦Ψe0 = ξ̂∆−1
L (ŝ) ◦ϒ|[−1,1] andφ̂TR,∆R( j)|e0

◦Ψe0 = ξ̂ j , 0≤ j < n1. Therefore,

we obtain

±ξ̂∆−1
L (ŝ) ◦ϒ =

n1−1

∑
j=0

πTR,r̂,∆R( j)ξ̂ j
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and, finally,πTR,r̂ ,∆R( j) = ±α∆−1
L (ŝ), j .

By analogy, the entries related tov1, e1, e2 and f are the constraints coefficients
of the two-dimensional case. We consider the polynomials of{φ̂TL,s}0≤s<n3, that
belong toF and its nodes and edges, restricted toF and those of{φ̂TR,s}0≤s<n3, that
belong tov1, e1, e2 and f , restricted tof . For more details, see [6].
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Fig. 1 a: Local refinement in 3D.b-c: hp-adaptive grids with unsymmetric divisions.
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