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1. Introduction

In this paper, we propose an efficiently computable dual bound for block-separable

nonconvex mixed-integer all-quadratic programs (MIQQP). Since sparse prob-

lems can be reformulated to be block-separable, the proposed method can also

be applied to sparse MIQQPs.

There exist a vast number of MIQQP applications. Many hard combinato-

rial optimization problems are special cases of MIQQP, such as max-cut, max-

clique or quadratic assignment. Further applications are all bilinear problems,

for example pooling problems in petrochemistry [44], modularization of product

sub-assemblies [41] and special cases of structured stochastic games [15]. Other

applications are packing problems [9], minmax location problems [24], chance-

constrained problems in portfolio optimization [11,24,45], fuel mixture problems

[37], placement and layout problems in integrated circuit design [2,3]. Several

mixed-integer nonlinear programs (MINLP) can be reformulated as an MIQQP,

for example polynomial programs [36]. Under mild assumptions it can be shown

that every MINLP can be approximated by a MIQQP with arbitrary precision

[33].

Since MIQQP is a difficult NP-hard [17] optimization problem many re-

searchers worked on tractable relaxations of the problem. These relaxation can

be either used to define lower bounds of a branch-and-bound procedure or to

provide valuable information for generating good local solutions via a heuristic.

It is not easy to find a good relaxation of MIQQP which can be computed

in reasonable time. One possibility is to approximate/reformulate a MIQQP by
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a mixed-integer linear program (MILP) [33], which can be solved in quite high

dimensions [6]. However, the number of variables and constraints of a MILP ap-

proximation/reformulation is usually much higher than of the original problem.

For example, the traditional MILP reformulation of an unconstrained quadratic

binary program with n variables needs n2/2 variables and 3n2/2 constraints.

Relaxations based on linear programming (LP) [5,1,43,28] are fast, but often

too weak. Semidefinite programming (SDP) [31] provides stronger relaxations.

However, in large dimensions the cost for solving SDPs may be too large to be

practicable. Attempts to reduce this cost are based on exploiting sparsity [16,

21] and second-order cone programming [25].

A conceptual different approach is Lagrangian decomposition (LD). Orig-

inally utilized by Dantzig and Wolfe for exploiting block-angular structure of

LPs [10] it is now a main tool for tackling difficult optimization problems which

can be reformulated to be block-separable. LD is mainly used in mixed-integer

linear programming. It has also been applied to quadratic 0-1 programming [8].

If the overhead of a block-separable reformulation is reasonable, LD often speeds

up the method considerably. In addition LD offers the possibility of paralleliza-

tion.

In this paper, we study the application of LD to general block-separable

MIQQPs. In Section 2, we discuss splitting schemes for reformulating sparse

MIQQPs to have a block-structure, and introduce a homogenized block-separable

reformulation, whose dual is equivalent to an eigenvalue optimization problem.

Based on strong duality of the trust-region problem, we show in Section 3 that
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the optimal value of the eigenvalue optimization problem is equivalent to the

optimal value of the Lagrangian dual of the original problem. The proof is a

straight-forward generalization of a dual-equivalent result in [38] on quadratic bi-

nary programs. In [38] the problem is dualized with respect to a full-dimensional

sphere, whereas here the problem is dualized with respect to a Cartesian prod-

uct of low-dimensional balls. In Section 4 we describe a method for solving the

eigenvalue optimization problem. We report preliminary numerical results on

random MIQQPs in Section 5 showing that decomposition is able to accelerate

the computation of the dual bound considerably. We finish with conclusions in

Section 6.

1.1. Notation

The subvector (xi)i∈J of a vector x is denoted by xJ . The submatrix (ajk)j∈J,k∈K

of a symmetric matrix A ∈ IR(n,n) is denoted by AJK . We denote by Diag(x) ∈

IR(n,n) the diagonal matrix with the diagonal x ∈ IRn. The optimal value of an

optimization problem (P) is denoted by val(P ). The zero centered ball in IRn

with radius n1/2 is denoted by IB(n) = {x ∈ IRn | ‖x‖2 ≤ n}. The vector e ∈ IRn

denotes the vector of ones. The minimum eigenvalue of a matrix A is denoted

by λ1(A).

2. Block-separable reformulations

2.1. Problem statement

A general nonconvex MIQQP can be formulated as
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(Q)

min q0(x)

s.t. qE(x) = 0,

qI(x) ≤ 0,

rB(x) = 0,

rC(x) ≤ 0,

where

r(x) = Diag(x − x)(x − x), (1)

x, x ∈ IRn, B ∪ C = {1, . . . , n} with B ∩ C = ∅, I ∪ E = {1, . . . , m} with

I ∩ E = ∅, qi(x) = 〈x, Aix〉 + 2〈bi, x〉 + ci, Ai ∈ IR(n,n) is symmetric, bi ∈ IRn,

ci ∈ IR, i = 0, . . . , m. Note that the last two constraints in (Q) are equivalent to

the box and binary constraints xj ∈ [xj , xj ], j ∈ C, and xj ∈ {xj , xj}, j ∈ B,

respectively.

We assume that problem (Q) is block-separable, i.e. there exists a partition

P = {J1, . . . , Jp} of {1, . . . , n} with
⋃p

k=1 Jk = {1, . . . , n} and Ji ∩ Jk = ∅ if

i 6= k, such that

qi(x) = ci +

p
∑

k=1

qk
i (xJk

), (2)

where qk
i (xJk

) = 〈xJk
, Ai

JkJk
xJk

〉 + 2〈bi
Jk

, xJk
〉 for i = 0, . . . , m. In other words,

the matrices Ai are block-diagonal with Ai
JkJl

= 0 for k 6= l. We denote by

nk = |Jk| the size of a block Jk.

2.2. Splitting schemes

We discuss now splitting schemes for transforming non-separable sparse MIQQPs

into block-separable MIQQPs. This technique goes back to 1956 [12] where it was
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used for partial differential equations. It is much used in stochastic programming

[40] and in combinatorial optimization [19].

2.2.1. Sparsity graph Problem (Q) has a sparse structure if most of the entries

ai
kl of the matrices Ai, i = 0, . . . , m, are zero. Let V = {1, . . . , n} be a set of

nodes, where a node i represents a variable xi. We define the sparsity pattern of

problem (Q) by

EQ = {kl ∈ V 2 | ai
kl 6= 0 for some i ∈ {0, . . . , m}}.

The graph (V, EQ) is called sparsity-graph of (Q). We define the set of nodes of

⋃p
l=k+1 Jl connected to Jk by Rk = {i ∈ ⋃p

l=k+1 Jl | ij ∈ EQ, j ∈ Jk}, for k =

1, . . . , p. The set Rk can be interpreted as the set of flows of a nonlinear network

problem connecting a component Jk with components Jl, where k < l ≤ p. If

(Q) is block-separable with respect to the blocks Jk, k = 1, . . . , p, then Rk = ∅.

2.2.2. Splitting sparse MIQQPs For a given partition P of V , the following

MIQQP is a splitting scheme of (Q)

(S)

min q̃0(x, y)

s.t. q̃E(x, y) = 0,

q̃I(x, y) ≤ 0,

rC(x) ≤ 0,

rB(x) = 0,

xRk
= yk, k = 1, . . . , p,

rC∩Jk
(yk) ≤ 0, k = 1, . . . , p,

rB∩Jk
(yk) = 0, k = 1, . . . , p,
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where

q̃i(x, y) =

p
∑

k=1

〈xJk
, Ai

JkJk
xJk

〉 + 2

p
∑

k=1

〈xJk
, Ai

JkRk
yk〉 + 2〈bi, x〉 + ci,

i = 0, . . . , m. Problem (S) is block-separable with respect to the blocks (xJk
, yk),

k = 1, . . . , p. Since

〈x, Aix〉 =

p
∑

k=1

〈xJk
, Ai

JkJk
xJk

〉 + 2

p
∑

l=k+1

〈xJk
, Ai

JkJl
xJl

〉,

it follows

〈x, Aix〉 =

p
∑

k=1

〈xJk
, Ai

JkJk
xJk

〉 + 2

p
∑

k=1

〈xJk
, Ai

JkRk
xRk

〉 (3)

for i = 0, . . . , m. From (3) it follows that q̃i(x, (xRk
)k=1,...,p) = qi(x), implying

that the optimal values of (Q) and (S) are equivalent.

Depending on the cardinalities of the sets Rk, k = 1, . . . , p, the splitting

scheme (S) will be efficient. We consider now special cases where decomposition

could be efficient.

2.2.3. Block-angular structure Problem (Q) has a block-angular structure if

the matrices are of the form

Ai =

























A1
i B1

i

. . .
...

Ap−1
i Bp−1

i

(B1
i )T . . . (Bp−1

i )T Ap
i

























.

Problems with such a structure arise, for example, in process system engineering,

telecommunication problems, network problems and stochastic programming. In

[14] it is demonstrated that many sparse optimization problems can be efficiently
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transformed into problems with block-angular structure. Automatic detection of

block-structure of sparse MILPs is dicussed in [30].

Let P = {J1, . . . , Jp} be a partition of V according to the above block-

structure. Then Rk = Jp for k 6= p. The related splitting scheme is block-

separable with respect to p blocks with block sizes n1 + np, . . . , np−1 + np, np.

It follows that the number of additional variables in the splitting scheme (S) is

(p − 1)np.

2.2.4. Band structure Problem (Q) has a band-structure if the matrices have

the form

Ai =

























A1
i B1

i

(B1
i )T . . .

. . .

. . . Ap−1
i Bp−1

i

(Bp−1
i )T Ap

i

























.

There exist many methods for transforming sparse matrices into matrices with

band-structure. A main application of these algorithms is to reduce the fill-in of

a Cholesky factorization.

Let P = {J1, . . . , Jp} be a partition of V according to the above block-

structure. Then Rk = Jk+1 for k = 1, . . . , p − 1 and Rp = ∅. The related

splitting scheme is block-separable with respect to p blocks with block sizes

n1 + n2, . . . , np−1 + np, np. It follows that the number of additional variables in

the splitting scheme (S) is not greater than
∑p

k=2 nk = n − n1.
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2.3. Standardization and homogenization

We show that problem (Q) can be formulated in such a way, that all variables are

bounded by −1 and 1 and all linear terms 〈bi, x〉 of the functions qi in (Q) dis-

appear. This formulation allows to formulate the Lagrangian dual problem as a

block-separable eigenvalue optimization problem, which can be solved efficiently

(see next section). The transformation is carried out in two steps.

Let u = 1
2 (x+x) be the center and w = 1

2 (x−x) be the diameter vector of the

interval [x, x] respectively. The affine transformation θ(x) = Diag(w)x + u maps

the interval [−e, e] onto [x, x]. In the first step of the transformation, called

standardization, we replace the variables x of (Q) by θ(x). The transformed

quadratic forms take the form

q̂i(x) = qi(θ(x)) = 〈x, Âix〉 + 2〈b̂i, x〉 + ĉi, i = 0, . . . , m, (4)

where Âi = WAiW , b̂i = Wbi + WAiu, ĉi = uT Au + 2uT bi + ci and W =

Diag(w). In the second step of the transformation, we homogenize the problem

by replacing linear terms 〈b̂i
Jk

, xJk
〉 by quadratic terms xn+k · 〈b̂i

Jk
, xJk

〉 and

adding constraints x2
n+k − 1 = 0. This gives the problem

(Q̃)

min q̃0(x)

s.t. q̃E(x) = 0,

q̃I(x) ≤ 0,

x2
j − 1 ≤ 0, j ∈ C

x2
j − 1 = 0, j ∈ B ∪ {n + 1, . . . , n + p}
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where q̃i(x) = ĉi +

p
∑

k=1

q̃k
i (xJ̃k

), q̃k
i (xJ̃k

) = 〈xJk
, Âi

JkJk
xJk

〉 + 2xn+k〈b̂i
Jk

, xJk
〉,

and J̃k = Jk ∪ {n + k}. Obviously, q̃k
i (x) = qk

i (x̂), if x1:nk
= x̂ and xnk+1 = 1

or x1:nk
= −x̂ and xnk+1 = −1. Therefore, the optimal values of (Q̃) and (Q)

coincide. Since each additional variable can be 1 or −1, the number of solutions

of (Q̃) is 2p times larger than of (Q).

3. Duality results

In this section we formulate and analyze Lagrangian dual problems related to

the all-quadratic problems (Q) and (Q̃).

3.1. Lagrangian dual problems

Let q(x) = (q1(x), . . . , qm(x))T and r(x) be defined as in (1). By introducing the

Lagrangian function

L (x; µ) = q0(x) + 〈µq , q(x)〉 + 〈µr, r(x)〉

and the Lagrangian multiplier set

M = {µ = (µq , µr) ∈ IRm × IRn | µq
I ≥ 0, µr

C ≥ 0}

we formulate the Lagrangian dual of (Q) by

(D)
max D(µ)

s.t. µ ∈ M

where D(µ) = inf
x∈IRn

L(x; µ) is the dual function. Since (Q) is block-separable,

i.e. (2) holds, the dual function D decomposes into D(µ) = c(µ) +
∑p

k=1 Dk(µ),
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with c(µ) = c0 +
∑m

i=1 µq
i ci and Dk(µ) = min

x∈IRnk

Lk(x; µ) where

Lk(xJk
; µ) = qk

0 (xJk
) + 〈µq , qk(xJk

)〉 + 〈µr
Jk

, rJk
(x)〉

with qk(x) = (qk
1 (x), . . . , qk

m(x))T . We define a partial Lagrangian related to (Q̃)

by

L̃k(xJ̃k
; µ) = q̃k

0 (xJ̃k
) + 〈µq , q̃k(xJ̃k

)〉 + 〈µr
J̃k

, Diag(xJ̃k
)xJ̃k

− e〉.

with q̃k(x) = (q̃k
1 (x), . . . , q̃k

m(x))T . Then the related partial dual function is the

following eigenvalue function

D̃k(µ) = min
x∈IB(nk+1)

L̃k(x; µ) = (nk + 1) · min{0, λ1(Ã
k(µ))} − 〈e, µr

J̃k
〉

where

Ãk(µ) =









Âk(µ) b̂k(µ)

b̂k(µ)T µr
n+k









, (5)

Âk(µ) = Â0
JkJk

+
∑m

i=1 µq
i Â

i
JkJk

+ Diag(µr
Jk

), b̂k(µ) = b̂0
Jk

+
∑m

i=1 µq
i b̂

i
Jk

, and

Âi, b̂i are defined as in (4). A Lagrangian dual function related to (Q̃) is

D̃(µ) = ĉ(µ) +

p
∑

k=1

D̃k(µ),

where ĉ(µ) = ĉ0 +
∑m

i=1 µq
i ĉi, defining the eigenvalue optimization problem

(D̃)
max D̃(µ)

s.t. µ ∈ M̃

with

M̃ = {µ = (µq , µr) ∈ IRm × IRn+p | µq
I ≥ 0, µr

C ≥ 0}.

A similar eigenvalue problem was used in [39] for solving the trust region problem

and in [20] for unconstrained quadratic 0-1 programming.
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Remark 1. Since D(µ) > −∞ if and only if ∇2L(·; µ) is positive semidefinite,

the dual (D) contains a hidden semidefinite constraint. This implies that for all

µ̂ ∈ dom D the function L(·; µ̂) is a convex underestimator of q0 over the feasible

set of (Q).

Remark 2. Let β(S) be the optimal value of the dual problem (D) related to

an interval S = [x, x]. Consider a sequence of nested intervals {Sk}k∈IN with

Sk+1 ⊂ Sk converging to a point {x̂}. In [34] it is shown

lim
k→∞

β(Sk) =















q0(x̂) if x̂ ∈ Ω

∞ else,

where Ω is the feasible set of (Q). This shows that β(S) is a consistent lower

bounding method ensuring convergence of branch-and-bound algorithms with

exhaustive subdivision strategies [23].

3.2. Dual equivalence

Proposition 1. The dual problems (D) and (D̃) have the same optimal value.

Proof. Define the standardized partial Lagrangian L̂k(x; µ) = 〈x, Âk(µ)x〉 +

2〈b̂k(µ), x〉 − 〈µr
Jk

, e〉 according to (5), and let

D̂k(µ) = inf
x∈IB(nk)

L̂k(x; µ). (6)

We denote by eJk
∈ IRn the characteristic vector of a partition element Jk defined

by eJk,j =















1 for j ∈ Jk

0 else

. From strong duality of the trust-region problem (see
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(9) in the Appendix) it follows

D̂k(µ) = min
x∈IB(nk)

L̂k(x; µ)

= max
t∈IR+

inf
x∈IRnk

L̂k(x; µ) + t · (‖x‖2 − nk)

= max
t∈IR+

inf
x∈IRnk

L̂k(x; µq , µr + t · eJk
)

From Lemma 3 of the Appendix we have

D̂k(µ) = min
x∈IB(nk)

〈x, Âk(µ)x〉 + 2〈b̂k(µ), x〉 − 〈µr
Jk

, e〉

= max
t∈IR

inf
x∈IRnk+1

〈x, Ãk(µq , µr + ten+k)x〉 − 〈µr
J̃k

, e〉

= max
t∈IR

D̃k(µq , µr + ten+k)

Hence,

val(D) = max
µ∈M

c(µ) +

p
∑

k=1

inf
x∈IRnk

Lk(x; µ)

= max
µ∈M

ĉ(µ) +

p
∑

k=1

max
t∈IR+

inf
x∈IRnk

L̂k(x; µq , µr + t · eJk
)

= max
µ∈M

ĉ(µ) +

p
∑

k=1

D̂k(µ)

= max
µ∈M

ĉ(µ) +

p
∑

k=1

max
t∈IR

D̃k(µq , µr + ten+k)

= val(D̃).

�

3.2.1. Modifications Several simplifications of the dual problem (D̃) are possi-

ble.
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Remark 3. If all variables of a block Jk are binary, i.e. Jk ⊆ B, we can dualize

the related partial Lagrangian function with respect to the sphere ∂IB(nk). This

simplifies the dual problem (D̃) since the number of dual constraints is reduced.

We show that this modification does not change val(D̃). To see this, we consider

the modified partial dual function of D̃ defined by

D̄k(µ) = (nk + 1) · λ1(Ã
k(µ)) − 〈µr

J̃k
, e〉.

Since λ1(Ã
k(µq , µr + t · eJ̃k

)) = λ1(Ã
k(µ)) + t(nk + 1) and 〈(µr + t · eJ̃k

)J̃k
, e〉 =

〈µr
J̃k

, e〉 + t(nk + 1) for all t ∈ IR, it holds

D̄k(µ) = D̃k(µq , µr + t · eJ̃k
).

For t = min{0,−λ1(Ã
k(µ))} we have λ1(Ã

k(µq , µr + t · eJ̃k
)) ≥ 0 and therefore

D̄k(µq , µr + t · eJ̃k
) = D̃k(µq , µr + t · eJ̃k

), which implies that val(D̃) is not

changed.

Remark 4. A further simplification can be made in the case bi
Jk

= 0 for i =

0, . . . , m. In this case, the trust region problem (6) is an eigenvalue problem and

it holds

D̂k(µ) = nk · min{0, λ1(Â
k(µ))} − 〈µr

Jk
, e〉.

From Lemma 3 it follows that D̃k can be replaced by D̂k without changing

val(D̃).

Remark 5. If Ai
JkJk

is zero for i = 0, . . . , m, the related Lagrangian problem is

linear and therefore separable with respect to all variables of this block. Hence,
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we can assume Jk = {jk}, i.e. IB(nk) = [−1, 1]. Then

min
x∈[−1,1]

L̂k(x; µ) = min
x∈[−1,1]

2〈b̂k(µ), x〉−〈µr
Jk

, e〉 = 2 min{b̂jk
(µ)xjk

, b̂jk
(µ)xjk

}−〈µr
Jk

, e〉.

If (Q) is a MILP, this yields the traditional linear relaxation.

3.2.2. Influence of decomposition on the dual function Denote by D̃0 the dual

function D̃ of (Q̃) defined with respect to the trivial partition P0 = {V } with

V = {1, . . . , n}. From Proposition 1 it follows that the optimal values related

to D̃0 and D̃ are the same. However, the dual values D̃0(µ) and D̃(µ) at a

dual point µ ∈ M̃ can be different. Let L̃(x; µ) = ĉ(µ)+
∑p

k=1 L̃k(xJ̃k
; µ) be the

Lagrangian related to (Q̃) and X = {x ∈ IRn+p | xJ̃k
∈ IB(1+nk), k = 1, . . . , p}.

Since X ⊆ IB(n), we have

D̃0(µ) = min
x∈IB(n+p)

L̃(x; µ) ≤ min
x∈X

L̃(x; µ) = D̃(µ).

The following example shows that the above inequality can be strict.

Example 1. Consider the max-cut problem

min{〈x, Ax〉 | x ∈ {−1, 1}n},

where A is a block-diagonal matrix consisting of submatrices Ak ∈ IR(nk ,nk),

k = 1, . . . , p. Assuming λ1(A
1) < λ1(A

j) for j > 1, it follows

D̃0(0) = n · λ1(A) <

p
∑

k=1

nkλ1(A
k) = D̃(0).

This demonstrates that decomposition not only facilitates the evaluation of the

dual function, but also improves the initial dual bound D̃(0) (see Section 5).

On the other hand, if a splitting scheme is used, decomposition can worsen

the dual bound D̃(0). In [29] it is shown:
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Proposition 2. Let (D) and (DS) be the Lagrangian dual of the original problem

(Q) and the splitting scheme (S), as defined in Section 2.2, respectively. Then

val(DS) ≤ val(D).

The results of Section 5 demonstrate that this inequality can be strict.

4. Solving the Lagrangian dual problem (D̃)

The dual problem (D̃) is a convex non-differentiable optimization problem and

can be solved by many methods (see [22]). We use the proximal bundle code

NOA 3.0 [27] of Kiwiel described in [26] for maximizing the dual function D̃.

Starting with a dual point µ0 = 0 the method produces at each so-called serious

step a dual point µk ∈ M̃ with D̃(µk) > D̃(µk−1).

At each trial point generated by the method the dual function D̃ and a

related supergradient is evaluated. A supergradient g ∈ IRm of a concave function

D : IRm 7→ IR at a point µ ∈ IRm satisfies D(µ) + 〈g, λ − µ〉 ≥ D(λ) for all

λ ∈ IRm. A supergradient of a dual function can be obtained by evaluating

constraint functions at a Lagrangian solution point. More precisely, it holds [22]

Lemma 1. Let L(x; µ) = f(x) + 〈h, µ〉 be a continuous Lagrangian function re-

lated to an objective function f :IRn 7→ IR and a constraint function h :IRn 7→ IRm

and let X ⊂ IRn be a compact set. Then the dual function D(µ) = min
x∈X

L(x; µ) is

concave and g(µ) = h(xµ) with xµ ∈ Argmin
x∈X

L(x; µ) is a supergradient of D(µ)

at µ ∈ dom D.

We apply this result to problem (D̃).
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Lemma 2. For a given µ ∈ M̃ let vk be a (normalized) minimum eigenvector

of Ãk(µ). Define x ∈ IRn+p by xJ̃k
=

√
nk + 1 · vk for k = 1, . . . , p. Then the

point g = (g1, g2) ∈ IRm × IRn+p defined by g1i = q̃i(x) for i = 1, . . . , m and

g2j = x2
j − 1 for j = 1, . . . , n + p is a supergradient of D̃(µ) at µ.

Proof. From the definition of x it follows xJ̃k
∈ Argmin

y∈IB(nk+1)

L̃k(y; µ). Hence, x ∈

Argmin
y∈X

L̃(y; µ), where L̃ and X are defined as in Section 3.2.2. This proves the

statement according to Lemma 1. �

We implemented the evaluation of the dual function D̃ with the modifications

of Remarks 3, 4 and 5, and the supergradient formula of Lemma 2 in C++. For

the computation of a minimum eigenvalue and minimum eigenvector we used

two algorithms. The first algorithm is an implicit symmetric QL-method from

the EISPACK-library [32], used if the dimension of the matrix is less than or

equal to 50. If the dimension is greater than 50, we used the Lanczos method

ARPACK++ [18].

We used the following parameters of proximal bundle method NOA: bundle

size = 50, linesearch decrease = 0.1, QP weight = 10.0 and feasibility tolerance

= 0.1. As a stopping criterion for the bundle method we set either the opti-

mality tolerance equal to 10−3, or we stop the method if a measure of relative

improvement is smaller than a given tolerance. In particular, we define

δj
s =

D̃(µs(j+1)) − D̃(µsj)

|D̃(µ0)| + 1
,

and stop the iteration, if

δj
s < ρ · δjmax

s (7)
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where {µj} is the sequence of dual points generated by the bundle method at

serious steps, δjmax
s = max{δ0

s , . . . , δj
s}, with ρ = 0.4 and s = 10.

5. Preliminary numerical results

In order to study the influence of decomposition, we made numerical experiments

with random MIQQP instances. All results were obtained on a machine that has

a 1.8 GHz-Pentium IV processor on a LINUX system.

5.1. Block structure

In the first experiment we compared decomposition-based bounds computed

by the QL-method and non-decomposition-based bounds computed by the full-

dimensional Lanczos method. We produced block-separable random MIQQPs

using the following procedure with parameters n, the number of variables, m,

the number of quadratic constraints, and l, the block size.

Procedure rand miqqp(n, m, l)

1. set p = n/l (number of blocks)

2. set B = {1, . . . , n/2}, C = {n/2 + 1, . . . , n}, x = −e and x = e

3. set I = {1, . . . , m/2} and E = {m/2 + 1, . . . , m}

4. compute symmetric dense matrices Ak
i ∈ IR(l,l) with uniformly distributed

random components in [−10, 10] for i = 0, . . . , m, k = 1, . . . , p

5. compute vectors bi ∈ IRn with uniformly distributed random components in

[−10, 10] for i = 0, . . . , m
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6. set ci = 0 for i = 0, . . . , m.

The above procedure produces a MIQQP, which is block-separable with respect

to the blocks Jk = {(k − 1)l + 1, . . . , kl}, k = 1, . . . , p. Since ci = 0 for i =

0, . . . , m, x = 0 is a feasible point. Therefore, the dual function D̃ is bounded.

For a given set of input parameters (n, m, l) we produced 5 random MIQQPs

with the procedure rand miqqp.

For each instance we generated two dual problems of the form (D̃) related to

the partitions P1 = {J1, . . . , Jp} and P2 = {V }. The first dual problem is called

(D1) and the second (D2). The corresponding dual functions are denoted by D1

and D2 respectively. From Proposition 1 we know that val(D1) = val(D2).

We first computed a dual value D1(µ̂) using the previously described bundle

method with the stopping criterion (7). Then we maximized D2, and stopped the

iteration if D2 reached the value D1(µ̂). Furthermore, we calculated the initial

relative error

κ0
i =

val(D2) − Di(0)

| val(D2)| + 1
, i ∈ {1, 2}, (8)

where the optimal value of (D2) was computed using the previously described

bundle method with an optimality tolerance 10−3. Tables 1 and 2 show

- the fraction t2/t1 where t1 and t2 is the average time in seconds for solving

(D1) and (D2) respectively,

- the time t1

- the fraction κ0
2/κ0

1 where κ0
i is the average initial relative error (8)

for different input parameters of rand miqqp.
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block-size l = 10 block-size l = 20

n t2/t1 t1 κ0

2
/κ0

1
t2/t1 t1 κ0

2
/κ0

1

200 312.526 0.392 7.22114 85.7879 0.594 5.81284

400 1544.22 0.768 10.5006 271.037 1.234 8.79377

600 3551.09 1.204 12.8053 563.391 1.818 11.3668

800 4243.39 1.656 15.5317 861.217 2.428 12.9469

1000 6546.61 2.068 17.3226 1279.55 3.226 14.7185

Table 1. number of quadratic constr. m = 0

block-size l = 10 block-size l = 20

m t2/t1 t1 κ0

2
/κ0

1
t2/t1 t1 κ0

2
/κ0

1

0 53.7087 0.206 4.63817 21.9728 0.294 3.72246

4 159.35 0.24 4.84415 38.9673 0.428 3.6699

8 135.229 0.376 4.52294 37.0607 0.626 3.41876

12 132.924 0.472 4.40023 29.1492 0.764 3.51218

16 157.272 0.766 4.33168 47.5457 1.378 3.4816

20 166.995 0.85 4.19541 56.2844 1.568 3.44

Table 2. dimension n = 200

It can be seen from the tables that the decomposition scheme accelerates

the running time by magnitudes. The acceleration is particularly large if the

number of constraints is high. This is due to the increased cost for the matrix-

vector multiplication used in the Lanczos algorithm. Moreover, the results show

that κ0
1 < κ0

2 (see also Table 1).

Decomposition also makes the dual solution method more stable. We ob-

served convergence problems of the Lanczos method if the optimality tolerance

of the dual solver is small. It is well-known that the performance of the Lanczos



Title Suppressed Due to Excessive Length 21

method depends highly on the separability of the eigenvalues, and eigenvalues

cluster in eigenvalue optimization (see also [21]). In contrast, the QL-method is

very stable.

-7000
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-3000

-2000

-1000

0 50 100 150 200 250

D1
D2

Fig. 1. Dual values of D1 and D2 at serious steps where (n, m, l) = (200, 0, 10)

5.2. Network structure

In order to study splitting schemes, we experimented with random Max-Cut

problems of the form

min{〈x, Ax〉 | x ∈ {−1, 1}n},
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where A ∈ IR(n,n) is the sparse matrix

A =

























A1 B1 0 Bp

(B1)T . . .
. . . 0

0
. . . Ap−1 Bp−1

(Bp)T 0 (Bp−1)T Ap

























.

The submatrices Ak ∈ IR(l,l), k = 1, . . . , p, are dense with a block-size l =

n/p. The submatrices Bk ∈ IR(l,l) are sparse with nonzero entries at (l − i, i),

i = 1, . . . , s, where s ∈ {0, . . . , l} is a given flow size. The resulting sparsity

graph has a ring topology with p components which are each connected by s

arcs. All nonzero components of A are uniformly distributed random numbers

in [−10, 10]. For a given Max-Cut problem we generated a splitting scheme (S),

as described in the previous section using the partition P = {J1, . . . , Jp} with

Jk = {(k − 1)l + 1, . . . , k · l}, k = 1, . . . p.

For the splitting scheme as well as for the original Max-Cut problem we con-

structed a dual problem of the form (D̃), which we call (D1) and (D2) respec-

tively. As in the previous experiment, we produced 5 random Max-Cut problems

for a given set of input parameters (n, p, s) and computed first a dual value of

D1(µ̂) and then a dual value D2(µ̃) ' D1(µ̂) using the bundle method NOA

with the parameters previously described. Tables 3 and 4 show

- the fraction t2/t1 where t1 and t2 is the average time in seconds for solving

(D1) and (D2) respectively,

- the time t1

- the fraction κ0
2/κ0

1 where κ0
i is the average initial relative error (8)
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- the average percentage relative difference of the optimal dual values of (D1)

and (D2)

κd =
val(D2) − val(D1)

| val(D2)| + 1
.

The results demonstrate that the splitting scheme accelerates the evaluation

of the dual in most cases considerably. However, in the last experiment the

computation without decomposition was faster. It can also be seen that for

these instances the relative difference of the optimal dual values κd is not zero

(see Section 3.2.2). Moreover, the fraction κ0
2/κ0

1 was for s = 2 in most cases

greater one, and for s = 4 smaller than one (see also Table 2).

block-size l = 10 block-size l = 20

n t2/t1 t1 κ0

2
/κ0

1
100 · κd t2/t1 t1 κ0

2
/κ0

1
100 · κd

200 8.21244 2.702 0.969418 0.468361 2.7542 2.026 1.30485 6.36203

400 7.18263 6.264 1.00836 0.953826 4.39145 5.288 1.48307 6.71984

600 6.98609 12.506 1.22847 0.827309 3.53643 8.426 1.64889 7.52866

800 6.96305 20.246 1.23818 0.627922 4.74037 12.826 1.69921 7.20949

1000 9.21404 29.322 1.19733 0.601579 5.22766 16.876 1.6948 7.33724

Table 3. flow size s = 2

6. Concluding Remarks

We presented a Lagrangian decomposition method for solving the dual of a

block-separable MIQQP via eigenvalue computation. Preliminary numerical ex-

periments on general block-separable MIQQPs and on non-separable network-

MaxCut problems demonstrate that a decomposition-based evaluation of the
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block-size l = 10 block-size l = 20

n t2/t1 t1 κ0

2
/κ0

1
100 · κd t2/t1 t1 κ0

2
/κ0

1
100 · κd

200 1.92812 3.756 0.634217 2.18598 0.256369 7.38 0.485861 0.801154

400 1.97711 11.532 0.711109 3.39876 0.463195 18.394 0.434094 2.24296

600 1.98623 22.364 0.755965 3.72389 0.441957 34.216 0.57898 1.94131

800 2.26108 36.732 0.892395 3.60844 0.51311 52.098 0.614649 3.39037

1000 2.10734 56.102 0.72452 3.69923 0.376503 73.864 0.539808 2.22469

Table 4. flow-size s = 4
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Fig. 2. Dual values of D1 and D2 at serious steps where (n, s, l) = (100, 2, 10)

dual function of a splitting-scheme using the symmetric QL-algorithm may be

much faster and more stable than evaluating the dual function of the original

problem using the full-dimensional Lanczos algorithm.

If the given problem is non-separable, a splitting-scheme usually increases

the duality gap. However, it is possible that nevertheless the initial value of

the dual function of the splitting scheme can be greater than the initial value of



Title Suppressed Due to Excessive Length 25

the orginal dual function. This was demonstrated for network-MaxCut problems

with a small flow size.

The artificial MIQQP instances in our experiments are designed to study

the effect of decomposition-based bounds. It would be interesting to test the

performance of the presented eigenvalue bound using real-world MIQQPs. For

example, the MINLPLib [7] contains many block-separable MIQQPs.

It is well-known that the duality gap of eigenvalue bounds can be quite large.

The proposed approach offers the possibility to improve a dual bound by shifting

(strongly) violated binary constraints into a Lagrangian sub-problem. Provided

that the dimension of the sub-problem is small, the resulting unconstrained

binary problem can be solved quickly using a branch-and-bound method.

Lagrangian decomposition provides dual bounds on the optimal value, which

can be used in a branch-and-bound (B&B) algorithm. Under mild assumptions,

it can be shown that B&B-algorithms using dual bounds are convergent (see [13]

for continuous optimization problems with compact feasible sets and [34] for all-

quadratic problems). Furthermore, Lagrangian decomposition provides a convex

underestimator of the objective function over the feasible set, which can be used

to compute primal solutions via a relaxation-based heuristic (see[4],[35]).
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Appendix

We describe some results on the trust-region problem needed for the proof of

Proposition 1. A trust-region problem is defined by

(T1)
min q(x)

s.t. x ∈ IB(n)

where q(x) = 〈x, Bx〉 + 2〈b, x〉, B ∈ IR(n,n) and b ∈ IRn. The dual of (T1) is

(DT1) max
σ∈IR+

inf
x∈IRn

q(x) + σ(‖x‖2 − n).

Problem (T1) is one of the few nonconvex all-quadratic optimization problems

having a zero duality gap, i.e.

val(T1) = val(DT1) (9)

where val(T1) and val(DT1) are the optimal values of (T1) and (DT1) respec-

tively (see [42]). If b = 0, then (T1) is an eigenvalue problem and it holds

val(T1) = n ·min{0, λ1(B)}. We consider now the case b 6= 0. By replacing 〈b, x〉

by xn+1 · 〈b, x〉, where x2
n+1 = 1, we get the following homogenized formulation

of (T1) with n + 1 variables and an additional equality constraint

(T2)

min 〈x1:n, Bx1:n〉 + 2xn+1〈x1:n, b〉

s.t. ‖x‖2 ≤ n + 1

x2
n+1 = 1.

Clearly, we have val(T1) = val(T2). Dualization of (T2) with respect to the ball

IB(n + 1) gives the dual problem

(DT2) max
µ∈IR+

(n + 1) · min{0, λ1(C(µ))} − µ,
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where C(µ) =









B b

bT µ









.

Lemma 3. It holds val(T2) = val(T1) = val(DT2).

Proof. This was proved in [39]. We repeat the proof in oder to keep the paper

self-contained.

min
‖x‖2≤n

q(x) = max
µ∈IR

min
‖x‖2≤n

y2=1

〈x, Bx〉 + 2y〈b, x〉 + µ(y2 − 1)

≥ max
µ∈IR

min
‖x‖2+y2≤n+1

〈x, Bx〉 + 2y〈b, x〉 + µ(y2 − 1)

≥ max
µ∈IR

σ∈IR+

inf
x∈IRn

y∈IR

〈x, Bx〉 + 2y〈b, x〉 + µ(y2 − 1) + σ(‖x‖2 + y2 − n − 1)

= max
σ∈IR+

inf
x∈IRn

y2=1

〈x, Bx〉 + 2y〈b, x〉 + σ(‖x‖2 − n)

= min
‖x‖2≤n

〈x, Bx〉 + 2〈b, x〉.

�
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28. M. Kojima and L. Tunçel. Discretization and localization in successive convex relaxation

methods for nonconvex quadratic optimization problems. Math. Programming, 89:97–111,

2000.

29. C. Lemaréchal and A. Renaud. A geometric study of duality gaps, with applications.

Mathematical Programming, 90:399–427, 2001.

30. A. Martin. Integer programs with block structure. Technical report, ZIB–Report 99–03,

Habilitationsschrift, 1999.

31. Yuri Nesterov, Henry Wolkowicz, and Yinyu Ye. Semidefinite programming relaxaxations

of nonconvex quadratic optimization. In H. Wolkowicz, R. Saigal, and L. Vandenberghe,



30 Ivo Nowak

editors, Handbook of Semidefinite Programming, pages 361–419. Kluwer Academic Pub-

lishers, 2000.

32. NETLIB. EISPACK. http://www.netlib.org/eispack/, 1972-1973.

33. A. Neumaier. Constrained Global Optimization. In COCONUT Deliverable D1, Al-

gorithms for Solving Nonlinear Constrained and Optimization Problems: The State of

The Art, pages 55–111. http://www.mat.univie.ac.at/∼neum/glopt/coconut/StArt.html,

2001.

34. I. Nowak. Dual bounds and optimality cuts for all-quadratic programs with convex con-

straints. J. Glob. Opt., 18:337–356, 2000.

35. I. Nowak, H. Alperin, and S. Vigerske. LaGO - an object oriented library for solv-

ing MINLPs. to appear in Lecture Notes on Computer Science, 2003. available at

http://www.mathematik.hu-berlin.de/∼eopt/papers/LaGO.pdf.

36. P. Parrilo and B. Sturmfels. Minimizing polynomial functions. to appear in DIMACS

volume of the Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Ge-

ometry in Mathematics and Computer Science, 2001.

37. Thai Quynh Phing, Pham Dinh Tao, and Le Thi Hoai An. A method for solving D.C.

programming problems, Application to fuel mixture nonconvex optimization problems. J.

Global Opt., 6:87–105, 1994.

38. S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation for (0,1)-

quadratic programming. J. Global Optim., 7(1):51–73, 1995.

39. F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems with

applications to large scale minimization. Math. Progr., 77 (2):273–299, 1997.
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