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KOSZUL DIVISORS ON MODULI SPACES OF CURVES

By GAVRIL FARKAS

Abstract. Given a moduli space, how can one construct the “best” (in the sense of higher dimensional
algebraic geometry) effective divisor on it? We show that, at least in the case of the moduli space
of curves, the answer is provided by the Koszul divisor defined in terms of the syzygies of the
parameterized objects. In this paper, we find a formula for the slopes of all Koszul divisors on Mg.
In particular, we obtain the first infinite series of counterexamples to the Harris-Morrison Slope
Conjecture and we prove the Maximal Rank Conjecture in the case when the Brill-Noether number
of the corresponding linear series equals 0. We also find shorter proofs for the formulas of the class
of the Brill-Noether and Gieseker-Petri divisors. Finally, we improve most of Logan’s results on the
Kodaira dimension of the moduli spaces Mg,n of pointed stable curves.

1. Introduction. In this paper we describe a general method of construct-
ing special effective divisors on various moduli spaces using the syzygies of
the parametrized objects. The method can be applied to a wide range of moduli
problems with the property that the coarse moduli space has canonical singular-
ities hence pluricanonical forms extend over any desingularization of the moduli
space. Here we treat the case of the moduli stacks M,, and we develop the
intersection theory machinery necessary to understand the compactification and
compute the class of these Koszul divisors. Our main result (Theorem 1.1) pro-
vides the first infinite sequence of actual (as opposed to virtual) counterexamples
to the Harris-Morrison Slope Conjecture and encodes in a single formula virtually
all known divisor class calculations on ﬂg.

The idea of using geometric divisors to study the geometry of a moduli
space can be traced back to Harris and Mumford (cf. [HM]) who, in the course
of their proof that M, is of general type for odd genus g = 2k — 1 > 25,

studied the Hurwitz divisor /\/l;,’k ={[C] € My 3 C &l P!} consisting of
curves with a pencil g}{. By computing the class of Mi,,k and comparing it in

to K—g, they showed that when g > 25, the canonical class is a combination

with positive coefficients of [Mg,k], the Hodge class A (which is big and nef)
and various boundary classes. Later, numerous other divisor class calculations
were carried out. Eisenbud and Harris considered the Petri divisors on Mo_»
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consisting of curves C of genus 2k — 2 having a pencil A € W/}(C) which vi-
olates the Petri Theorem, which then they used to show that M, is of general
type for even g > 24 (cf. [EH3]). Logan introduced pointed Brill-Noether divi-
sors on M, , consisting of curves [C,xi,...,x,] € M,, with the property that
hO(C, Oc(x) + - - - +Xxg)) > 2 (cf. [Log]) and used them to determine the Kodaira
type of Mg,n for various g and n.

More recently, in [FP] in our work on the Harris-Morrison Slope Conjecture,
we reinterpreted the condition that a curve [C] € My lie on a K3 surface as

saying that there exists a linear system L = KC(—gé) € sz(C) such that the
L
embedded curve C <U> P* is not projectively normal. Using this description we

computed the class of the compactification of the divisor /i of curves with this
property and showed that s(K1p) = 7, thus contradicting the Slope Conjecture.
In [F2] we generalized this construction to cover all cases g = 6i + 10 and we
obtained a (sometimes virtual) Hurwitz type divisor on Megi+10 defined in terms
of linear series g3ii1, = Kc(—g3,,,6) residual to a pencil of minimal degree. This
locus, when a divisor, always has slope < 6+ 12/(g+ 1) thus violating the Slope
Conjecture (see [HMo] and [FP] for background on the effective cone of Mg and
for the significance of the Harris-Morrison Conjecture). Around the same, Khosla
provided a different type of example of a divisor on M, having exceptionally
small slope (cf. [Kh]): on M>; the closure of the locus of curves [C] € My
possessing an embedding C < P® given by a g$, such that C lies on a quadric,
is a divisor whose slope is less than the slope of the Harris-Mumford divisor
M;Lu-

The aims of this paper are (1) to give a unified framework for doing divisor
class calculation on M, and (2) to provide (empirical) evidence that syzygy
divisors may be the answer to the riddle: Given a moduli space, what is the
most intrinsic, most natural and from the point of view of birational geometry,
most useful effective divisor on it? We prove that virtually all interesting known
divisors on ﬂg (the Harris-Mumford divisor, the Petri divisor and all known
counterexamples to the Harris-Morrison Conjecture) can be treated in a unified
way and are particular instances of a single syzygy type construction. In [F3]
we shall further illustrate this ideology by studying moduli spaces of curves with
various level structures from the point of view of syzygies.

We fix integers i > 0 and s > 1 and set r := 2s +si+1i,g := rs+ s and
d = rs+r. We denote by &, the stack parametrizing pairs [C, L] with [C] € M,
and L € W)(C) and denote by o: &), — M, the natural projection. Since
p(g,r,d) =0, by general Brill-Noether theory, the general curve of genus g will
have finitely many g);’s and there exists a unique irreducible component of &,
which maps onto M,.

We denote by K;;(C,L) the (i,j)-th Koszul cohomology group of the pair
[C,L] € & and define a stratification of &/, with strata U,; = {(C,L) €
& Kin(C,L) #0}. We then set Z,; 1= 0.(Uy,).



KOSZUL DIVISORS ON MODULI SPACES OF CURVES 821

THEOREM 1.1. If 0 L’~52 - M ¢ IS the compactification of &, given by limit
linear series on tree-like curves, then there exists a natural morphism between
torsion free sheaves of the same rank ¢. A — B over @52 such that Eg’i is the
image of the degeneracy locus of ¢. The class of the pushforward to M ¢ Of the
virtual degeneracy locus of ¢ is given by

ox(c1(B—A) =aX —bg by — b1 61 — -+ — by Og/25

where a, by, . . ., by, 3y are explicitly given coefficients such that by = 12by — a and

s(ox(c1(B — A)) = bo 6(i+ 2) s h(s, i)’

with
Fs, i) =(* + 8 + 2417 +32i + 16)s” + (i* + 48> — 16i — 16)s°
— @+ TP+ 137 — 12)s° — (P + 28 + 2 + 14i + 24)s*
+Q28 +2i% — 6i — 45> + (i + 172 + 50i + 41)s?
+(72 +18i+9)s +2i +2
and

h(s,i) = (P +62+12i+8)s® + (> +2i* — 4i — 8)s® — (* + 7> + 11i + 2)s*
—(P =50+ @2 +5i+ Ds? + (P +Ti+ 11)s + 4i + 2.

12

Furthermore, we have that 6 < bio <6+ il

whenever s > 2. If the morphism ¢ is

generically nondegenerate, then Eg’i is a divisor on Mg which gives a counterex-
ample to the Slope Conjecture for g = s(2s + si + i+ 1).

For a precise definition of the partial compactification Mvg C Mg of M,
we refer to Section 2. Since codim(M, — M ¢ My) > 2, it makes no difference
whether the computation of [Eg’i] is carried out over Mg or Mg. Despite its
complicated appearance, the slope computed in Theorem 1.1 encodes a surprising
amount of information about Mg. In particular, for suitable choices of s and i it
specializes to the divisor class calculations carried out in [HM], [EH3], [Kh], [FP]
and [F2] which were originally obtained using a variety of ad hoc techniques.
The first interesting case is s = 1, g = 2i+3 when g/, = g‘g;_lz = K¢ (the canonical

bundle is the only géz’g_lz on a curve of genus g). We can relate the locus Zy;,3;
to more classical loci in My;,3 using Green’s Conjecture which predicts that for
any smooth curve C one has the equivalence K;>(C,K¢c) = 0 & [ < CIiff(C).
Although Green’s Conjecture for arbitrary curves is still open, Voisin proved
it for generic curves of given gonality (cf. [V1], [V2]). In our case this gives
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a set-theoretic identification between Z5;3; and the locus M., 13042 Of (14 2)-
gonal curves. Thus Theorem 1.1 provides a new way of calculating the class of
the compactification of the Brill-Noether divisor first computed by Harris and
Mumford (cf. [HM]):

COROLLARY 1.2. The slope of the Harris-Mumford divisor Méi 13,42 ON Moiss
consisting of curves which cover P! with degree < i + 2 is given by the formula

6(i
Q+3):6+ 12'
i+2 g+1

—1
S(M2i+3,i+2) =

For s = 2 and g = 6i + 10 (that is, in the case h!(L) = 2 when &) is
isomorphic to a Hurwitz stack parameterizing covers of P'), we recover the main
result from [F2]:

COROLLARY 1.3. The slope of the divisorzgmo,i on Mei,10 consisting of curves
possessing a pencil gl;.c such that if L = Kc(—gl..¢) € Weith(C) denotes the

L ..
residual linear system, then C <U> P37 fails to satisfy the Green-Lazarsfeld property

(N;), is given by the formula:

3(4i + 7)(6i% + 19i + 12)
(122 +31i+ 18)(i +2)

s(Z6ir10,) =

In the case i = 0 we have complete results in the sense that (1) we show that
gg,o is an actual divisor on Mg and (2) we can compute the entire class [Z&O]
rather than the ), 89 and 6; coefficients. In particular we show that b; > by for
Jj > 1, hence the slope of gg,o is always computed by the A and §y coefficients.

THEOREM 1.4. For g = s(2s + 1),r = 2s,d = 2s(s + 1) the slope of the virtual
class of the locus of those curves [C] € ﬂg for which there exists L € W)(C) such
|L|

that the embedded curve C — P’ sits on a quadric hypersurface, is

z ) & 3(16s7 — 165° + 1257 — 24s* — 453 + 415> + 95 +2)
s -_—— = .
s@eHDOT = (856 — 855 — 254 + 52 + 115 +2)

Note that this locus has been first considered by D. Khosla who, using a
different approach, was able to compute the coefficients a and by (cf. [Kh]).
Showing that the degeneration loci Zg; are actual divisors on M, can be very
difficult in practice (for instance, the statement that Z5;,3; is a divisor on Mpj;y3
is essentially Green’s Conjecture for a generic curve of odd genus). Apart from
the case s = 1 (settled by Voisin in [V2]), the only cases where it was pre-
viously known that Z,; is an actual divisor were s = 2,i = 0 (cf. [FP], this
being the K3 divisor on Myg), s = 2,i = 1,2 (cf. [F2]) and when s = 3,i = 0
(cf. [Kh]) - these last three cases having been settled using Macaulay. Here we
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show that for i = 0 the degeneracy loci Z, are honest divisors on M,, that is, the
map ¢: A — B described in Theorem 1.1 is generically nondegenerate. This pro-
vides the first infinite sequence of actual (as opposed to virtual) counterexamples
to the Harris-Morrison Slope Conjecture [HMo]:

THEOREM 1.5. For an integer s > 2 we set r = 2s, d := 2s(s + 1) and g =
s(2s + 1). Then ¢: A — B is a generically nondegenerate map between vector

bundles over &}, having the same rank and its degeneracy locus

L
Z,0 :={[C] € Mg: 3L € W)(C) such that C <U> P’ is not projectively normal}

is a divisor on M, of slope

3(16s7 — 165° + 1257 — 245* — 453 + 4157 + 95 + 2)
5(850 — 855 — 25t + 52 + 115 +2)

S(Eg,O) =

contradicting the Slope Conjecture.

As an application of the techniques developed for proving Theorem 1.1 we
compute the class of the Gieseker-Petri divisors on Mg. Recall that Petri’s The-
orem asserts that for a general curve [C] € M, and for an arbitrary line bundle
L on C, the multiplication map

po(L): H(L) ® H'(K¢ ® L) — HY(K¢)

is injective (see [EH1] and [Laz] for two very different, relatively short proofs).
The map po(L) governs the deformation theory of sections of the line bundle
L. It is well-known that G/,(C) is smooth of expected dimension p(g,r,d) at a
point [L] € W/(C) if and only if uo(L) is injective. The locus in M, where the
Petri Theorem fails breaks up into numerous components and its geometry is still
quite mysterious (see [F1], [EH3]). For integers r,s > 1 we set again d :=rs+r
and g := rs+s, so that p(g,r,d) = 0. Like in [F1] we define the Gieseker-Petri
locus

GPya = 1{[C] € My: 3L € Wy(C) such that pig(L) is not injective}.

THEOREM 1.6. For d = rs +r and g = rs + s, the class of the Gieseker-Petri
divisor in My is given by the formula:

OGP = ol r aX — boby — by 6 [gz/?b-a
84 (r s+ D)(rs+s—2)rs+s— 1) 0%0 = F1%1 N

=2
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where c, is an explicitly given constant defined in Lemma 2.6,

a= r2s2(4s +r+rs+10) + s2(5rs +24r+2s+15)+21s +26rs + Tr2s +2r + 2,

_s(s+ D(r+ D(r+2)(rs +s+4)

by G

by=(rs+s— 1)(3rs2 +252 422+ D5 +6rs+rPs +2r + 2),

and b; > b forj > 2. In particular we have the following expression for the slope:

12 N 6(s+r+1)(rs+s—2)rs+s—1)
g+1 s(s+Dr+Dr+2)(rs+s+dDrs+s+1)

s(gTD;d) =6+

Theorem 1.6 shows that the Gieseker-Petri divisors satisfy the Slope Conjec-
ture, that is, s(gip;,d) > 6+ 12/(g + 1). This is consistent with Proposition 2.2
from [FP] stating that any effective divisor on ﬂg violating the Slope Conjecture
would have to contain the locus K, C M, of curves lying on K3 surfaces and
with Lazarsfeld’s result (cf. [Laz]) that a general [C] € Kg satisfies Petri’s The-
orem. For s = 2, Theorem 1.6 specializes to Eisenbud and Harris’s computation
originally used to show that M, is of general type for large even genus (cf.
[EH3], Theorem 2):

COROLLARY 1.7. For g = 2r + 2, the Gieseker-Petri divisor GP,,, 3, can be
interpreted as the branch locus of the generically finite map o: &5, — Mo, from
the Hurwitz stack &5, = &1, of covers of degree r + 2 and one has the following
expression for its class:

p— (67 +25r4+20 0 (r+ D)(r+2) r+l
gP2r+2,3r =Cr ( a1 A — 7t oo — Br+4)6; — 12:2: bjéj ,
where b; > 1 forj > 2.

In Section 4 we describe five different ways of constructing Koszul divisors
on M, ,. The direct analogue of Theorem 1.1 in the pointed case is the following
statement:

THEOREM 1.8. Fix positive integers g and i such that

28 +i+1 N V(@i+1)? +4ig+8g
n::=
2 2

is an integer. Then the locus

Syz,, = {[C,x1,...,x4] € Mgyu: Kin(C,Oc(x1 +- - +x,) #0}
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is a virtual divisor on M, and the class of its compactification is given by the
formula:

— 1 n—g-—1
G} = —
Yan n—g—i( i )

X (—(n+g— DA+@g—n+i+ D> 0 —0-8ipr— > > bjy j;s),

J=1 J1>08]=t
where bj; > 1 are explicitly determined coefficients.

Another infinite sequence of interesting divisors on M, , can be obtained by
using the Gaussian-Wahl map associated to a line bundle on a curve. Recall that
if L is a line bundle on a curve C, the Wahl map

Yr: APHY(C,L) — H%(C,K¢c @ L%?)

is defined by the formula ¥ (f A g) :=f - dg — g - df. The Gaussian 1)y measures
deformations of the cone over the curve C embedded in projective space by the
linear system |L| and it is known that if C lies on a K3 surface then the Wahl
map k. cannot be surjective (cf. [Wa]). Furthermore, the divisor ?10,0 on My
can be viewed as the global degeneracy locus corresponding to the Wahl map
for canonical curve of genus 10 (see [FP] for details and further references). If
[C.x1,...,x,] € Mgy, we set I' :=x1 +--- +x, € C, for the divisor of marked
points.

THEOREM 1.9. Fix an integer g such that

2¢+3+/24g+1
n .=
2

is an integer. Then the locus

Wabhl,, = {[C,x1,...,x,] € Mgt Yr:
A HY(Oc(D)) — HY(Ke @ Oc(2D)) is degenerate}

is a divisor on My, and its compactification has the following class:

Wabl,, = —(n—g— DA+ —g— D> U — b — Y bjx > bs,

J=1 Jit>0 |S|=t

where bj; > 1 are explicitly determined coefficients.

Note that although the divisors Syz, , and 2ahl, , live on Mg ,’s for some very
particular choices of n, using the forgetful and clutching maps M,, — Mg,—1
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and M, X My_in, — Mgy 4n, one immediately has explicit Koszul divisors
on M, for all g and n.

Among other syzygetic ways of producing divisors on M,, we single the
one using the Minimal Resolution Conjecture (cf. Theorem 4.2), which can be
thought of as a generalization of the divisor of higher Weierstrass points and
which is especially useful in the case of a large number of marked points. An
immediate application of the calculations in Section 4 is the following result
about the Kodaira type of ﬂg,n:

THEOREM 1.10. Forintegersg =4, ...,21, the moduli space Mg,n is of general
type for all n > f(g) where f(g) is described in the following table.

g ’4 5 6 7 8 910111213 14151617 18 19 20 21
f(g)‘]615]61514]311]2131110]09 9 9 7 6 4

This result represents an improvement of Logan’s Theorem 5.1 for g =4 —
6,10, 14 — 16,18 — 22, the entries for the remaining values of g being those
from [Log].

Acknowledgments. 1 am grateful to Sean Keel for many discussions over
the years on topics related to this circle of ideas.

2. Constructing divisors of small slope using syzygies. For a projective
variety X and a line bundle L on X we denote by K; j(X, L) the Koszul cohomology
group obtained from the complex

AN H(DRHY(LPY D)) — A HOL) @ H(L®)— N7 HO(L) @ HO@L®U),

where the maps are the Koszul differentials (cf. [Gr]). Assume L is globally
generated and My is the vector bundle on X defined by the exact sequence

0— M, — HYL)® Ox — L — 0.
A simple argument using the exact sequences
0 — AMp @ LE — NHU(L) @ LFP — A 'Mp @ L¥P*D — 0
for various a and b, shows that there is an identification

HO( N M, ®L®b)
Image{A“THO(L) ® HO(L®®-D)} -

) Kop(X,L) =
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From now on we fix integers i > 0 and s > 1 and set
r:=2s+si+i, g:=rs+s, andd :=rs+r.

We introduce the open substack ./\/lg of M, corresponding to curves [C] € M,
such that W_,(C) = 0 and W;*'(C) = 0. Then codim(M, — M9, M,) > 2.
We denote by Pic? the degree d Picard stack over M, (precisely, the étale
sheafification of the Picard functor). In particular if Picﬁ,[g is the coarse moduli

space associated to Bic?, then for any M ¢-scheme T — M, originating from a
family of genus g curves X — T, the fibre product 7" Xy, Picﬁ,lg is the relative
Picard algebraic space Pic‘jY - We denote by &/, C Pic? the stack parameterizing
pairs [C, L] with [C] € M, and L € W/(C) and by 0: &) — M, the natural
projection. Since p(g, r,d) = 0, by general Brill-Noether theory, the general curve
of genus g will have finitely many g/,’s and there exists a unique irreducible
component of &/, which maps onto M,. Moreover, the image of any component
of &/ having dimension > 3¢ — 2 is a substack of codimension > 2 in M, (cf.
Corollary 2.5), thus one can ignore these extraneous components of &/, when
doing divisor class calculations on M.

We shall define a determinantal substack of & consisting of those pairs
[C, L] satistfying the condition K;>(C,L) # 0. We denote by 7: Mg,l — Mg
the universal curve and by £ a universal Poincaré bundle on the fibre product
/\/lg’1 XM &/, (In the case such anL does not exist, we pass to an étale surjection

2 — & such that X is a scheme and Mg’l XM X admits a Poincar€ bundle and we

carry out the construction at this level. In the end our construction does not depend

on the choice of X, see also [Est2], Section 6.2). If py: Mg’l ng &) — /\/lg’l

and p;: Mg,l X M &7 — & are the natural projections, then £ := ps,.(L) is a
vector bundle of rank r+ 1 and there is a tautological embedding of the pullback
of the universal curve Mg’l X MY &’ into the projective bundle u: P(£) — &/,.
We define the vector bundle F on P(€) by the sequence

0 — F — u"(€) — Opeey(1) — 0,

and we further introduce two vector bundles .4 and B over &, by setting
A :=u, (/\‘.7: ® (’)p(g)(Z)) , and B = u, (/\’.7-" ® OM;lXMg@Zl(z)) .

IfC | P" is the map corresponding to a point [C,L] € &, then

A(C,L) = H'(P", N'Mpr(2)) and B(C,L) = H(C, N'M; @ L?)

and there is a vector bundle morphism ¢: A — B given by restriction. Grauert’s
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Theorem guarantees that both A and B are vector bundles over &/ and their
ranks are

rank(A) = (i + 1)(? :;) and rank(B) = <:> (—ig +2d 41— g)

(We use that M; is a stable vector bundle, see [F2], Proposition 2.1 and this
implies that H YAIM; @ L#?) = 0, hence rank(/3) can be computed from Riemann-
Roch). Because of the way we chose g, r and d we can see that rank(A) = rank(B).

While the construction of A and B clearly depends on the choice of the
Poincaré bundle £ (and of X), it is easy to check that the vector bundle
Homo,,, (A, B) on &} as well as the morphism ¢ € HO(Qig,Homo@,(A, B))

are indéjpendent of such choices. More precisely, let us denote by = the collec-
tion of pairs o := (74, Lo) Where m,: X, — & is an étale surjective morphism
from a scheme X, and £, is a Poincaré bundle on p; : Mg,l X MO Yo — Za.
Recall that if ¥ — &/ is an étale surjection from a scheme and £ and £’ are two
Poincaré bundles on p;: Mg’l X MY ¥ — X, then the sheaf N := pr,Hom(L, L")
is invertible and there is a canonical isomorphism £ ® p5N = L'. For every
a € E we construct the morphism between vector bundles of the same rank
ba: Aa — By over X, as above. Then since a straightforward cocycle condition
is met, we find that there exists a vector bundle Homo,, (A B) on & together

with a section ¢ € HO((’j’,Hom@@, (A, B)) such that for every a=(Ta, Ly) EE
we have that 7 (Hom@qs, (A,B)) = Hom@Z (Aq, Bo) and 75(¢) = ¢q.

THEOREM 2.1. The cycle Uy ; := {(C,L) € &): K;»(C,L) # 0} is the degener-
acy locus of vector bundle map ¢: A — B over ®.

Proof. Along the same lines as the proof of Proposition 2.5 in [F2]. O

Thus Z,; := 0.(Uy,;) is a virtual divisor on M, when g = s(2s +si+ i+ 1).

Remark 2.2. Using (1) it is easy to prove that for every (C,L) € &/, one
have the vanishing of Koszul cohomology groups K,o(C,L) = 0 for all a > 1
and K, ,(C,L) =0 for all » > 3. Thus the only nontrivial Koszul type conditions
one could impose on & involve the groups K, 1(C,L) and K,»(C,L). Because
M is a stable vector bundle on C, it is straightforward to show using (1) that

dim K;»(C, L) — dim K1 1(C, L) = ( )(Zd _id Q) — (i+ 1)( +§>

For our choices of g,r and d, it follows that dim K 1(C, L) = dim K;»(C, L),
hence U,; can also be defined as the locus where K;;1,1(C, L) fails to vanish.

This shows that, at least in the case of curves, there are no other Koszul divisors
except Uy ;.



KOSZUL DIVISORS ON MODULI SPACES OF CURVES 829

To prove Theorem 1.1 we shall extend the determinantal structure of Z,;
over a substack of M, whose complement has codimension > 2. We denote by

Mg = MOU (U][-f({Q]AJQ) the locally closed substack of M, obtained by adding
to M the open subsets AY C A; for 1 < j < [g/2] consisting of 1-nodal genus g
curves C Uy, D, with [C] € M,_; and [D,y] € M;; being Brill-Noether general
curves, and the locus Ag C Ao containing 1-nodal irreducible genus g curves
C' = C/q ~y, where [C,q] € M, is a Brill-Noether general pointed curve
and y € C, together with their degenerations consisting of unions of a smooth
genus g — 1 curve and a nodal rational curve. One can then extend the finite

covering 0: &), — /\/lg to a proper, generically finite map
o & — M,

by letting Q~52 be the space of limit g;’s on the curves from //\/vlg which are all
tree-like (see [EH2], Theorem 3.4 for the construction of the variety of limit
linear series and also [Oss] for a more functorial approach which in the case
p(g,r,d) = 0 leads to the Eisenbud-Harris space). Strictly speaking, Eisenbud and
Harris have only constructed the space of refined limit gj;’s. Using the observation
that when p(g,r,d) = 0 every crude nonrefined limit g/; on a curve of compact
type C Uy D, where [C] € M; and [D] € M,_; can be canonically interpreted as
a refined limit g/; on the pre-stable curve C Uy, P! Uy, D obtained from C Uy D
by inserting a single P! at the node y, their construction can be easily adapted to
cover the case of crude g/;’s as well. Note that since all limit g;’s are dimensionally
proper (cf. [EH2], Corollary 3.7), every limit linear series from @32 is smoothable.

To compute the class [§g,i], we intersect Z,,,,- with test curves in the boundary
of M, which are defined as follows: we fix a Brill-Noether general curve C of
genus g — 1, a general point g € C and a general elliptic curve E. We define two
1-parameter families

(2) C’ = {C/y~q: yeC}C A C M,and
C' = {CUyE: ye C} C A C M,

It is well known that these families intersect the generators of Pic(ﬂg) as follows:
c®A=0, " 6=—-2g—2), C°- 6 =1and C°-6,=0 fora > 2,
and
C' \=0,C"-6=0,C'-6=-2¢g—4), C'-6,=0fora>2.

Next, we fix 2 < j < [g/2], a general curve C of genus j and a general curve
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pointed curve (D,y) of genus g — j. We define the 1-parameter family ¢/ :=
{CUyD: y € C} C Aj C M,. We have that

¢ -\=0,C-6,=0fora#jand C - =—(2j —2).

We review the notation used in the theory of limit linear series (see [EH2]). If X
is a tree-like curve and / is a limit g; on X, for a component Y of X we denote
by ly = (Ly,Vy C HO(Ly)) the Y -aspect of /. For a point y € Y we denote by
the ramification sequence and by p(ly,y) = p(g,r,d) — > iy afy (y) the adjusted
Brill-Noether number with respect to y.

ProposiTION 2.3. (1) Let C; = CU, E be an element ofA(l). If(Ic, Ig) is a limit g}
on Cyl, then Ve = HY(L¢)and Le € Wi(C)hasacuspaty. Ify € Cisageneral point,
then lp = (OE(dy), d—r—1ly+|(r+1)y ) that is, lg is uniquely determined. If
y € Cis one of the finitely many points for which there exists Lc € W},(C) such that
p(Lc,y) = —1, then lg(—(d — r — 2)y) is a g, with vanishing sequence at 'y being
>(0,2,3,...,r,r+2). Moreover, at the level of 1-cycles we have the identification
oc*(CHY =X +v T, where

X :={(y,L) € C x WY(C): h°(C,L(-2y)) > r},

T=P (HO(OE((r + 2)y))/H0(OE(ry))) is the curve consisting of g...,’s on E with
vanishing > (0,2, ...,r,r+2) at the fixed point y € E and v is an explicitly known
positive integer.

(2) Let C;) = C/y ~ q be an element of A8. Then limit linear series of type
g, on Cg are in 1:1 correspondence with complete linear series L on C of type
g}, satisfying the condition h(C,L ® Oc(—y — q)) = h%(C,L) — 1. There is an
isomorphism between the cycle o*(C°) of g);’s on all curves C;) withy € C and the
smooth curve

Y :={(y,L) € C x Wy(C): R(C, L(—y — ¢q)) > r}.

Proof. Part (1) is similar to the proof of Proposition 3.3 from [F2] and we
omit the details. For part (2), we claim that for any limit g, on a curve C;)
where y € C, the underlying torsion free sheaf is actually locally free. Indeed,
otherwise the underlying sheaf would be of the form v(L), where v: C — Cj
is the normalization map and L € W)_,(C). But [C] € M,_; is assumed to be
Brill-Noether general, hence W),_,(C) = (. O

Throughout this paper we routinely use basic facts from Schubert calculus
which we briefly recall. If G(r,d) denotes the Grassmannian of r-planes in P¢
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and
CdH:V()DV]D---DVH.]:O

is a decreasing flag, then for any Schubert index 0 < ap < --- < a, <d—r, we
define the Schubert cycle

T(agar) = {A € G(r,d): dim(AN Vo) >r+1—i, fori=0,...,r}.

(This differs slightly from the standard notation from e.g. [FuPr], but it seems
better suited for dealing with ramification sequences of linear series.) Often we
use the fact that if («p, ..., ;) is a Schubert index and g is an integer such that
rg+ > i = (r+ 1)(d — r), then there is an identity in H*(G(r,d)):

[Tg(g—d+i+a;+r)!

g _
3) O(ag,....cr) " O(0,1,....1) = 8-

PROPOSITION 2.4. Let [C] € M; be a general curve with g —2 > j > [g/2]
and C/ C A C Mg the associated test curve of type (j,g — j). Then one has the
following equality of 1-cycles in &:

)= DY NejaXiat > Mg Yo
(,...,ar)EP) (Bos----Br)EP2
+ Z Qg*j’ﬁ ’ (]jnB’
(Bo»----Br)EP;3
where we introduce the following notations: Py = {(0 < ap < -+ < o, <
8): Dimo i =}

Pr={0< By < - <B<s+1) YioBi=j+1,6-1 <s},
P; Z={(0=ﬁo<ﬁ1§'--§ﬁr§S+l)i Z{:O/Bi:r‘*'l"'j}»

.....

Nojo =051 1) Omapi—an € H*(G(r,d)) for a € Py,
Qg5 = 0801 1y - O(1 =B jri—prjon) € H'(G(r,d) for B € P,
Xjo ={(y,Lc) € C x Pic™I(C): aiLC(y) >qifori=0...1}, a € Py,
Y, js:={lp € GyD): aP(y)>j— Br_ifori=0...r}, B € Py,
Uip ={(31lc) € C x G4, (O): alc(y) > (0, B, .., 3}, for B € Ps.

Proof. Suppose that [ = (Ic,[p) is a limit gj; on C U, D. It is easy to see that
the generic point of any component of o*(C/) corresponds to a refined limit 9
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so we may assume that / is refined as well. If (ap,...,a,) is the ramification
sequence of /¢ at y, then the condition that [D,y] € M,_; carries a g/, with
ramification sequence at y being at least (d —r — a;,...,d —r — ap), is that

T01... 1) Od—r—ap..d—r—ap) # 0 € H*(G(r,d)). Using the Littlewood-Richardson
rule, we find that this implies that o, < rs+ s —j. A similar reasoning can
be used for C. Degenerating C to a stable curve consisting of a rational spine
and j elliptic tails, we obtain that if there exists a point y € C and a g, with
ramification sequence (ay, ..., ;) at y, then either y specializes to a point on
the rational spine in which case we find the condition 0J(0,1,...,1) CO(agnay) #
0 € H*(G(r,d)) which implies that oy > rs — j, or else, y specializes to a
point on one of the elliptic tails in which case we find that there must exist
two indices 0 < e < f < r with o, > a—1 +1 and oy > a1 + 1, such that
O-i(;l ,,,,, " O(aptlae—1+Laecert+1,..ap_+1ap,ap, +1,...crtl) # 0. This last condition
leads to the inequality ag > max{0,rs —j — 1}.

Suppose we are in the first case, that is, ap > rs —j and moreover p(Ic,y) =
p(lp,y) = 0, which is the situation which occurs for a generic choice of y €
C. Then Ic(—(rs — j)y) = |Lc|, where Le € Pic™(C) with afc(y) < s and

0 af‘c(y) = j, that is, (L¢,y) € Xjo. If ag > rs — j but now p(lc,y) = —1
and p(lp,y) < 1, then {aiLC(y) — (rs — j)}i=o0..» must be one of the partitions
from the set P,. Choosing such a partition, we have M; g choices for the C-

aspect while Ip € Yg el (y)—(rs—j)* Flnally let us assume that we are in the case

(y) =rs —j — 1. Then necessarily al C(y) > rs —j, plc,y) = p(lp,y) = 0 and
lc( (rs —j— 1)y) € Ujg, where (3; := aic(y) —(rs—j—1)fori=0...r. This
accounts for the third sum in o*(C). Arguing along the lines of [EH4], Lemma
34, (’32 is smooth along o*(C/) and since all limit g/, described in this proof are
smoothable, we obtain that the claimed formula holds at the level of 1-cycles
(including multiplicities). O

The next corollary shows that “ghost” components of Q~52 having dimension
> 3¢ — 3, do not matter in the calculation of [0.(Gi» — Hi2)].

_COROLLARY 2.5. In the case p(g,r,d) = 0, every irreducible component of Z
of 8/, such that dim(Z) > 3g — 2 has the property that dim o(Z) < 3g — 5.

Proof. For a general [C] € Mg, the scheme W/(C) is reduced and 0-
dimensional, thus every component of 05’ mapping dominantly onto /\/l must
have dimension 3g — 3. Suppose that Z is a component of dimension at least
3g — 2 such that o(Z) is a divisor on Mvg Then for any [C] € 0(Z) we have
that dim o~ '([C]) > 2. Since this property does not hold along any of the curves
o*(CV) for any 0 < j < [g/2] (see Proposition 2.4), it follows that o(Z2) is
disjoint from the test curves ¢/ C M, for all j > 0. This implies then that
[c(2)]=0€ Pic(/(/lvg), hence o(Z) = 0 (use that the Satake compactification of
M, has boundary of codimension 2). This is a contradiction. O
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Let C be a Brill-Noether general curve of genus g — 1 (recall that g =rs+s
and d = rs +r). Then dim W)(C) = r and it is easy to see that C carries no
g)_,’s or gff“l’s, hence every L € W)(C) corresponds to a complete and base
point free linear series. We denote by £ a Poincaré bundle on C x Pic?(C) and
by m: C x Pic%(C) — C and m: C x Pic?(C) — Pic%(C) the projections.
We define the cohomology class n = 7j([point]) € H%(C x Pic%(0)), and if
01,...,024 € HY(C,7) = Hl(Picd(C), 7) is a symplectic basis, then we set

8
7= =Y (T (0a)T5 (Bgsa) — T (Bgra) ™5 (8a)) -
a=1

We have the formula (cf. [ACGH], p. 335) ¢1(£) = dn + ~, corresponding to the
Hodge decomposition of c1(£). We also record that 4* = yn = 0, n> = 0 and
7% = —2nm3(6). On W)(C) we have the tautological rank r + 1 vector bundle
(WZ)*('C\CXWE’[(C))- The Chern numbers of £ can be computed using the

g .
Harris-Tu formula (cf. [HT]): if we write Y>.rgci(EY) = (1 +x1) -+ (1 + Xp41),
then for every class ( € H *(Pic?(C), Z) one has the formula. (Note that there is
a confusing sign error in the formula (1.4) in [HT]: the formula is correct as it

is appears in [HT], if the x;’s denote the Chern roots of the dual of the kernel
bundle.)

g— l+r—d+ij—j+l
I j

— C.
(g—1+r—d+lj—]+l)!>1£/,’l<r+1

x’i‘ xlr’;{ ¢ =det (
If we use the expression of the Vandermonde determinant, we get the formula

det ( ) _ 1z (a — a))
(@j+1—1)! 1<ji<re] I—[J’;rl1 (aj+7)!

By repeatedly applying this formula we compute all the intersection numbers on
W/(C) which we shall need:

LEMMA 2.6. If ¢; := ci(EY) we have the following identities in H*(W/(C), Z):
(1) ¢,m10 = "¢,
(2) cr26? = %ﬂﬂsﬂ)cr

(3) ¢cy_2c10 = r(s;l) (1 " (r—2)(r+2)(s+2)> c

3(s+r+1)
—1 2)(s+1
@) crorer = (1 + E2ty e,
e, = L 2Lr=D! 4! po—1
;

= G=D! D) (s+2) [ (540!

We point out that the constant ¢, equals the number of linear series gj; on a
general curve of genus g (note that p(g,r,d) = 0). In Section 3 we shall use the
following result:
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LemMma 2.7. If [C] € Mg_1, then one has the following identity in
H*(Wy(C), Z):

c1 (Rlﬂz*(£|chg(C))) =0 —c1(EY).

Proof. Let us recall how one can obtain a determinantal structure on W),(C).
Once we fix a divisor D € C, of degree e >> 0, W)(C) is the degeneracy
locus of rank d +e — g+ 1 — r of the vector bundle map (7). (£ ® O(w{D)) —
(72 (E ® O(WTD)W(D)). Consequently, we have an exact sequence of vector
bundles over W) (C):

0 — & — (m)« (L ® O(rD))
(). (,c ® O(} D) D) — R'mu(Licxwric) — 0,

from which the claim follows by using that (). (L ® O(W*D)W D) is numeri-
cally trivial while ¢; ((m2).(L ® O(7;D))) = e~? (cf. [EH3] or [ACGH]). O

For integers 0 < a <r andNb > 2 we shall define vector bundles G,; and
Hap Over O‘_l(MgUAgUA?) C &/, which over the locus corresponding to smooth
curves have fibres

Gas(C.L) = HUC, A'ML ® L®") and Hap(C, L) = H'(P", A“Mpr(b)
for each (C,L) € & giving a map C L} P’. Clearly gimz = B and Hi,z\éz, =A,
where A and B are the vector bundles introduced in Theorem 2.1. Partially

extending these bundles over the boundary of 652 will enable us to compute the
A, 60 and 6, coefficients of Z,; and determine the slope s(Z,).

PROPOSITION 2.8. For each b > 2 there exists a vector bundle Gy, over o~ !

(Mg U A8 UAd) c (’Nﬁg having rank bd + 1 — g whose fibres admit the following
description:
e For (C,L) € &', we have that Gy,(C, L) = H(C, L%?),
efort=(CUyE,L) € o_l(A(l)), where L € W(C) has a cusp aty € C, we
have that

Gop(1) = H(C,L#"(=2y)) + C - u” C H(C,L®),
where u € H(C, L) is any section such that ordy(u) = 0.
e Fort=(C/y~gq,L) € O'_I(Ag), where q,y € C and L € W}(C) is such that
ho(C, L(—y — ¢)) = h°(L) — 1, we have that
Gop(t) = HU(C,L*"(=y — ¢)) ® C - u” € H(C,L*),

where u € H°(C, L) is a section such that ordy(u) = ordg(u) = 0.
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Proof. Very similar to Proposition 3.9 in [F2]. O

Having defined the vector bundles Gy, we now define inductively all vector
bundles G, by the exact sequence

dﬂ
4) 0 — Gap — AGo1 @ Gop —2 Ga—1ps1 — O.

To define H,; is even easier. We set Hop := Symbgo,l for all » > 1 and we
define H,; inductively via the exact sequence

) 0 — Hap — ANHoy @ Sym"Ho1 — Ha—1p41 — O.

The surjectivity of the right map in (5) is obvious, whereas to prove that d,
is surjective, one argues like in [F2], Proposition 3.10. There is a natural vector
bundle morphism ¢,5: Hap — Gap. Moreover rank(H;,) = rank(G;») and the
degeneracy locus of ¢;> is the codimension one compactification of Z,; over
MU AU A,

We prove a technical result we shall use later for extending the bundles Gy,
with b > 2 over the boundary of &. It can be interpreted as saying that on a
suitably general curve, the ramification points of a linear series are distinct from
those of its higher order powers.

PropOSITION 2.9. Fix integers s > 2,r > 2s and a partition 0 < Gy < ) <

- < By < s such that Y iy Bi = 7. Let (D,y) be a general pointed curve of

genus v > 3s. Then for every line bundle Lp € Pic"*" (D) satisfying the conditions
aiLD (y) = B; for 0 < i < r, we have that

H° (D, Kp® L%(_z) ® OD(ay)> =0, foralla < 2(r+5s).

Proof. Clearly it suffices to prove the theorem in the case a = 2(r + 5). We
degenerate (D, y) to a stable curve EgU. ..UE,_1, consisting of a string of elliptic
curves such that E;_; N E; = {p;} for 1 <i <~ — 1. Moreover, we assume that
y = po specializes to a point lying on Ey and that the differences p; — pi—1 €
PicO(Ei_l) are not torsion for all 1 < i < ~ — 1. We assume by contradiction
that H° (D, KpRILE D g OD(Z(r+s)y)) # 0 for some Lp € Pic”*(D) and
denote by Lg, € Pic"*'(E;) the E;-aspect of the induced limit linear series g/ +y

_ e . . . L
on U;LOIEi satisfying the ramification conditions «, Eo(po) =o; for0 <t <r.
Fix an integer 1 <i <y — 1. By the additivity of the Brill-Noether number, we

have that p(Lg, ,pi,pi—1) = 0 and there exists an integer 0 < k < r such that

Lg, LE,‘,I . Lg, LE,;] .
a; '(pi) = (pi—1) + 1 for t # k while o, "(p;) = o "~ (pi—1). In particular,

L, L,
Lg, =0 _ (o " (pic)+k)-pii+(y+r—k—a, " (pi-1) " pi | »
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that is Lg, , corresponds to a divisor supported only at the points p; | and p;.
Our assumption implies that for all 0 < i < — 1 there exist sections

0 # pi € H' (E;, Op2(r+5+0pi+2(y = i = Dpa) @ L))
satisfying the compatibility conditions
ordy,(p;) > ordy,,  (pi—1) and ordy,(p;—1) + ordy,(p;) = 2s — 2.
We reach a contradiction once we show that
ordy, _,(py—1) > 25 — 2 = deg(Op,_,Q(r+s+v — Dpy1 ® L2

which gives that p,_; = 0. Assume now that ord,,  (pi+1) = ordy,(p;) for some
0 <i < —2. Then ordy,(p;) +ordy,,, (p;) = 2s — 2, hence the section p; vanishes
only at p; and p;y1 € E; and ord,(p;) = 2b for some integer b > 0. We must have
that Lg, = Og,((r+s+i—b)-p;j+(y—i—s—b)-piy1) (we use that p;y —p; € PicO(E,-)
is not torsion). In particular  + s+ i — b is one entry in the vanishing sequence
atEi (pi) and the vanishing sequence aFia (pi+1) is obtained from abi( pi) by raising
all entries by 1, except for r+s+i—b which remains unmodified. Obviously then,
the number r +s+i+ 1 — b cannot appear in the vanishing sequence a i (Pit1)-
But this implies that ord,, ,(pis2) > ordy,  (pi+1) + 1. This argument shows that
as we trace the nondecreasing sequence of vanishing orders {ord,, (pl-)}7=_01 along
any group of 3 consecutive components E;_1, E; and E;;;, we will find at least 2
along which ord,, (p;) jumps. Since v > 3s, we find that ordp%l(py_l) >25s—2
and this brings about a contradiction. O

Next we extend G, and H,, over the divisors o_l(AjQ) for[g/2] <j < g—2.

ProposiTION 2.10. (llFor g=rs+s,d=rs+randb > 1, there exists a vector
bundle Gy, defined over &, extending the already constructed vector bundle G
over O'_](Mg U A8 U A(l)) and such that if t = (C Uy D, lc,lp) € U_I(A?), where
g(O)=j > [s(r+1)/2], (D) = g —j > 2 and (Ic, Ip) is a limit g; on C Uy D, then

Goo(t) = H'(C U, D, L),
with
L = (Lc = le(—(rs — j)y). Lp = Ip(—(j + r)y)) € Pid*(C) x Pic” (D),
inthe case s(r+1)/2 <j<s(r—1)=g—2s, and

L:=(Lc =lc(—(g —j+ 1Y), Lp = Ip(—(j — s)y)) € Pid *(C) x Pic"** 7+ (D),

in the case s(r — 1) <j<s(r+1)—2.
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(2) For each 0 < a < r,b > 1 there exists a vector bundle H, over (’32
restricting to the already defined vector bundle H,, over o~} (Mg UAJUAY), such
that Hoy, = Sym®(Go 1) for all b > 1 and which also has the property that the exact
sequences (5) remain exact over @52

(3) For each 0 < a < r,b > 1, there exists a torsion free sheaf G, over
@52 that restricts to the vector bundle G, over 0'_1(./\/12 U Ag U A(l)), which for
a = 0 agrees with the vector bundle G, defined above, and which has the property
that the vector bundle morphisms ¢, defined over 071(M2 U A8 U A(l)) extend to

morphisms ¢qp: Hap — Gap over &,

Proof. We start with an arbitrary point ¢ = (C U, D,lc,lp) € o*(C’) where
we assume first that [g/2] <j < rs —s. We set L¢ := lc(—(rs — j)y) € Pic"(C)
and Lp := Ip(—(r + j)y) € Pic™ (D). If L = (L¢,Lp) € Pic™(C Uy D), the
essential observation is that because [C] € M; and [D,y] € M,_;; are Brill-
Noether general, we always have that rs +r — 1 < af)c(y) + aZrD y) < rs+r,
hence h%(L¢) > r, h°(Lp) < 1 and h°(C Uy D,L) = r + 1 (see Proposition 2.4).
If p: /Wg,l X3, 652 — @52 is the universal curve over &', we denote by P a

Poincaré bundle of relative degree d = rs + r enjoying the following properties:

_1(0_

(1) For each [g/2] <j < g — 2, 77|p
bidegree (r +j,rs — j) on curves of type C U, D where g(C) =j and g(D) = g —j.

~1(a0)) parameterizes line bundles of
J

(2) If 7 O'_I(AJQ) — /\7&1 X M, 652 denotes the section which assigns the

single node corresponding to every curve from J_I(A]Q), then 7}*(73) = Oo.fl(A;)).

Note that since the divisors J*I(A?) and J*I(AJQ) are disjoint for [g/2] <
i < j < g — 2, the construction can be carried out over a fixed divisor AJQ at
a time. Since ho(p_l(t),ﬂpfl(,)) = n(C Uy D,L) = r+ 1 for each 1 € &, by
Grauert’s Theorem, Go 1 := p.(P) is a locally free sheaf which satisfies our first
requirement. For b > 2 we define Gy, = p+(P®P). Based on degree considerations
we have that H 1(L?b) =H I(L?b ® Oc(—y)) = 0. Using Proposition 2.9 we see
that H'(LS?) = 0, hence A%(C U D,L®") = lO(LEY) + WO(LYY) — 1 = bd + 1 — g.
Grauert’s Theorem implies that Gy, is locally free for all b.

In the remaining case when rs —s+1 <j < g—2, thatis, 2 < g(D) < s—1,
we define L¢ = lc(—(rs+s+r —j)y) € Pid~*(C) and Lp := Ip(—(j — 8)y) €
Pic"** (D). Then h°(L¢) < 1,h%(Lp) > r and hi°(CU, D, L) = r+1. Proposition
2.9 gives again that ' (LE?) = 0 for all b > 2, hence K(CUD,L®") = bd+1 —g.
This time , we denote by P the Poincaré bundle parametrizing line bundles of
bidegree (j — s,rs+s+r —j) on curves of type C Uy D and then Gy, = (PP
is locally free in this case too because of Grauert’s Theorem.

To define G, for a > 1, we introduce the sheaf M := Ker{p*(p.(P)) — P}
and then we set G, = p«( A M ® P%P). The morphism ¢g,, is simply the
natural map Symbp*(P) — p.(P®P), and to define these maps for a > 1 we use
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that the vector bundles H, fit into exact sequences of type (5) and then proceed
inductively. O

Remark 2.11. Just like in the case of the vector bundles A and B defined
initially over &, (cf. Section 2), the sheaves H,;, G4, depend on the choice of
a Poincaré bundle, whereas Hom Ogr (Hap, Gap) and

d

bup € HO (Sutom o, (Mo o))

are independent of such a choice. Moreover, since the projection p: M g1 X537

8
&), — &/, has a canonical section over each divisor U*I(AJQ) where [g/2] <j <
g—1,itis possible to choose the Poincaré bundle P, -1 ;1,0 in an unambiguous
way (which is precisely what we did in the proof of Proposition 2.10) and then
Ha’b|o.71(Aj()) and ga’bk,fl(A]Q) are unamb iguously defined as vector bundles over
O'_I(AJQ). This is of course a minor point which plays no role in the calculation

of 0.(c1(Gia — Hin)) € Al(ﬂg)'

We now determine the class of the curves X and Y defined in Proposition
2.3

PROPOSITION 2.12. Let C be a Brill-Noether general curve of genus g — 1 and
q € C a general point. We denote by m: C x W)(C) — W}(C) the projection and
set ¢; == (m2)* (¢i(EY)).

(1) The class of the curve X = {(y,L) € C x W)(C): hO(C,L(—2y)) > r} is
given by

[X] = ¢, +c,—1(2y + (2d + 2g — 4)n) — 6¢,—2 nb.
(2) The class of the curve Y = {(y,L) € C x Wj(C): (C,L(—y — q)) > r} is
given by
[Y]=c,+cr—1(y+(d—1)n) —2c,_2 nf.
Proof. We realize both X and Y as degeneracy loci over C x W)(C) and

compute their classes using the Thom-Porteous formula. For each (y,L) € C x
W} (C) we have a natural map

H'(C,Lp,)" — H'(C,L)"

which globalizes to a vector bundle map ¢: Ji(£)Y — (m)*(EY). Clearly X =
Z1(¢), hence

Ct(”;(gv)):|
X]=|—=r2—"2~ .
X] {ctul(zm ,
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From the exact sequence defining the jet bundle of £
0—7m(Ke)@L—JiI(L)y— L—0

we obtain that ¢,(J1(£Y)) ™' = 142+ +2dn+(2g — 4)n — 61, which quickly leads
to the desired expression for [X]. The calculation of [Y] is entirely similar and
we skip it. O

We also need the following intersection theoretic result:

LeEMMA 2.13. For each j > 2 we have the following formulas:
(1) 1@, 1x) = =20 — (28 — 4)m — j(dn + 7).
(2) c1(Go, |v) = —j*0 +1.

Proof. We observe that for all j > 2, H'(L®) = 0, hence (m).(L¥) is a
vector bundle over Pic?(C). Riemann-Roch applied to the map mp: C X Pic?(C) —
Pic?(C) yields c¢1 ((m2)«(L¥)) = —j26. If we denote by u, v: C x C x Pic?(C) —
C x Pic?(C) the two projections and by A C C x C x Pic?(C) the diagonal, we
have the following exact sequences

0 — w(v" (L) @ Ty — Gojx — L)y — 0
and
0— u*(y*(£®j) ®I§) _ (7.‘.2)*(£®j) _ J1(£®j) —0

(and an entirely similar situation for Gy jy) from which both claims follow
easily. O

Now we are in a position to prove Theorem 1.1:

Proof of Theorem 1.1. Since codim(M, — Mg, My) > 2, it makes no differ-

ence whether we compute the class 0.(G;» — H,2) on M, or on Mg and we can
write

(6) 04(Gia — Hiz) =AX— Bo o — By 61 — -+ — Big/a) 61421 € Pic(My),
where A, do, . .., 0 g/2] are the generators of Pic(ﬂg). We start with the following:
Claim. One has the relation A — 12By + B; = 0.
We pick a general curve [C,q] € M,_1; and at the fixed point g we attach

to C a Lefschetz pencil of plane cubics. If we denote by R C M, the resulting
curve, then R- A =1, R-6 =12, R- 6y = —1 and R - §; = O for j > 2. The
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relation A — 12By + B; = 0 follows once we show that 0*(R) - ¢1(Gi2 — Hi2) = 0.
To achieve this we check that G5+ is trivial and then use (4) and (5). We
take [CU, E] € ﬂg to be an arbitrary curve from R, where E is an elliptic curve.
The pointed curve [C, g] being Brill-Noether general, limit g;’s on CU, E are in
1 : 1 correspondence with linear series L € W)(C) having a cusp at g (This is a
statement independent of the j-invariant of E, in particular, it also holds for the
12 rational nodal curves in the pencil). Furthermore, the fibre of go,bw(A?) over
each point from o*(R) consists of the global sections of the genus g — 1 aspect
of the limit g/, and the claim now follows.

Now we determine explicitly the coefficients A, By and B;. We fix a general
curve [C,q] € Mg_11 and construct the test curves C' ¢ Ay and C° C Ap.
Using the notation from Proposition 2.3, we write that 0*(C) - ¢1(Gi2 — Hi2) =
c1(Gigy)—c1(Hipy) and 0*(CY)-c1(Gia —Hi2) = c1(Gigx) — c1(Hip)x) (the other
component T of o*(C') does not appear because Gop|r 1s trivial for all b > 1).
On the other hand

C°-0.(c1(Gia — Mi2)) = 2g —2)Bo — B and C'-0,(c1(Gia —Hi2)) = Qg —4)By,

while we already know that A — 12By + B; = 0. Next we use the relations

i . i !
c1(Gi2) = Y (=D'et(AN " Goy ® Gowa) = D (—1) (:i l) c1(Go,1+2)

1=0 =0

3D A+ D5+ +1—rs— ) (l, - lr_ 1>c1(go,1),

=0

and

ci(Hiz) = > (=D'er( N Gog ® Sym™*?Go )
=0

i ! r r+l+2 r+1\ (r+l+2
v (1) (7)) (7))

<2S +iis ' i) (s + DA +2)c1(Go,),

which when restricted to X and Y, enable us (also using Lemma 2.13), to obtain
explicit expressions for ci(Gin» — H,;z)‘x and c1(Gip — H[Q)‘Y in terms of the
classes 7,60,v and c| = 7'[';(61(5\/)). Intersecting these classes with [X] and [Y]
and using Lemma 2.6, we finally get a linear system of 3 equations in A, By and
B; which leads to the stated formulas for the first three coefficients. O



KOSZUL DIVISORS ON MODULI SPACES OF CURVES 841

Next we prove that when i = 0, we can get a formula for the slope of
§5(25+1)’0: precisely we show that if we write o.(c1(Go2 — Ho2)) = AN — Bobo —
“+—B( /2161 ¢/2)> then B; > By for all j > 1. In particular, s (o:(c1(Gop — Hop))) =
A/By which has already been computed in Theorem 1.1. We note that the proof
uses in an essential way the divisor class calculation from Theorem 4.6.

Proof of Theorem 1.4. Using the convention B,_; = B; for g/2 <j < g—1,
we show that B; > By only when s(2s + 1)/2 <j < s(2s — 1). The case 2s% <
J < s(2s+1) — 1 is dealt with in a similar fashion. To compute B; we intersect
the class 0.(c1(Gon — Hop)) with C/. Then we use that [Y, o—j,8]" cl(goz —Hop) =
[Ujy] - c1(Go2 — Hop) =0, for all 3 € P2,y € P3, to obtain that

(2j—2)Bj=0*(C)-c1(Goa—Ho2) = Y,  Neja ([Xjal - c1(Goa — Hoo)) -

(@g,...,ar)EP

We fix a Schubert index (op < --- < o) € Py and denote by m: X, — C and
T Xjo — Pic"¥(C) the two projection maps. As before, £ is the Poincaré bundle
on C x Pic™¥(C). There is an isomorphism of bundles Go. X0 = =75 ((m2)« (ﬁ))‘

obtained by globalizing the projection isomorphism at the level of spaces of
sections H(C Uy D,L) = HO(C, L¢) valid for each point (y,Lc) € Xj. (We
recall that L = (L¢,Lp) € Pic®¥(C) x Piczsz_j(D)). For b > 2, we have a

surjective morphism of vector bundles gO,b|Xj_a — T ((772)*(£®b)> X whose
.o
kernel is a trivial bundle along X;,. Thus one has that cl(go,b‘xj_ﬂ) = —]929‘)9.,6x

and ¢;(Hoayx;,) = c1(Sym*Gy | x..) = —(2s+2)0, . therefore

©) 2 =2Bi=2s—2) > Nyja (Xal-0).

The class of the curve Xj, can be computed using the generalized Giambelli
formula (cf. [FuPr], pg. 15-17) as follows: If Jo,1r—1(L) = -+ = Joq4i1(L) —

- = Joy—1(L) is the flag of jet bundles corresponding to the ramification se-
quence («p, . . ., q;), then

Xja = {(3.L) € C x Pic™(C): tk{m; (m2)«(£)) (3, L) = Jawi-1(L)(y, L)}
< i for all i}

and then [X; ] is given by the determinant of the (o, X a;)-matrix having entries

k " E
Aik = Cral—I+k—i <%> , for all a1 < i < «j, 0 < l <r
opti—

and 1 <j < qp.
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Since

* i i—1
q(M)—a— @y +a(j+Pn+ata— 1) — D)

@ ) T anta-n
i—1

( 2 ——a(a+ 1),

clearly [X; o] is a linear combination of ¢/, ¢!y and #~!~ in H¥(C x Pic"¥(C)).
The intersection number [X;,] - 6 can be 1nterpreted as the number of line bun-
dles L¢ € Pic™(C) satlsfylng the condition aic(y) > q; fori=0,...,r at an
unspecified point y € C, and which, moreover, are also ramified at a fixed point
g € C, that is, a-C(q) > r + 1.

Using this interpretation, the quantity >_,cp, Ng—ja([Xg—jal - 0) can be ex-
pressed as the intersection number E’ EL(I) over the moduli space Mg 1. Here
Linl(1) is the divisor on M, ; consisting of pointed curves [C, ¢] such that there
exists L € W;(C) with hO(C LR Oc(—(r+1)q) > 1, while C {CUyD q}yec C
Aj1 C ./\/lg,1 is the test curve obtained by varying the point of attachment y on
the genus j component, while the marked point ¢ € C remains fixed. The class
of m:l(l) is computed in the course of the proof of Theorem 4.6 and one has

mg(]) = U ((g+3))\ zrr 26]1)

(Aw gz:( J+i>6j:1>,

_ r(r+2)
B (rs+s—Drs+s+1)

where

and

r(r+ D(r+2)(s — D+ 1D)(rs+s+4)
T 2s+r+ D(rs+s—2)(rs+s— D(rs+s+ 1)

Since E'j P =1, E’j + 6g—j1 = 1 (the only point of intersection corresponds to
y=q¢cC),Cj-6.1=—2j—1),while C;- A\ =C;- 61 =0 for i #j,g —j, we can
compute that

B _ s —1
C_r (]_l)cra;N—Ja( jOc : )—7( 1)rC Smd(l)
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4(s — 1)j (275> +js? — 2js — 2j + 45> + 45% — 35) (252 +5 — j)
(2s2+5—2)Bs+ D2s—1)(j—1)

By s(8s° — 85" — 25" + 57 + 115 +2)
¢ 302s2+s5s—2)GBs+D2s—1)

This finishes the proof and shows that s(c(Go2 — Ho2)) = A/By. O

As we have already pointed out, Theorem 1.1 produces only virtual divisors
on ﬂg of slope less than 6+ 12/(g + 1). To get actual divisors one has to show
that the vector bundle map ¢: H;» — G, is generically nondegenerate. We carry
this out in the case i = 0 and we produce for the first time an infinite sequence
of genuine counterexamples to the Slope Conjecture.

Proof of Theorem 1.5. From Brill-Noether theory one knows that there exists
a unique component of QNSQ which maps onto Mg. Moreover, if (C,L) € & is
such that L € W)(C) — Wg*l(C) corresponds to an embedding C C P’, then
a sufficient condition for the smoothness of &/ at [C,L] is that H 1(NC/Pr) =
0, and then, the differential (do);cr) is surjective if and only if the Petri map
wo(C): HY(L) ® H'(K¢c @ LY) — H(K() is injective (see e.g. [AC1]). In our
situation, it is then enough to produce a Brill-Noether-Petri general smooth curve
C C P* having degree 2s(s + 1) and genus s(2s + 1) such that C does not sit
on any quadrics, that is HO(IC /st(2)) =H 1(IC /st(2)) = 0. We carry this out
inductively: For each 0 < a < s, we construct a smooth nondegenerate curve
C, C P with deg(C,) = (**4™")+a and g(C,) = (**4™) +a—s, h'(Cs, Oc, (1)) = a
(or equivalently, hO(Ca,(’)Ca(l)) = s+a+ 1), and such that (1) C, satisfies the
Petri Theorem (in particular one has that Hl(Ca,NCa /psta) = 0), and (2) the
multiplication map p,: SymzHO(Ca, Oc, (1)) — HO(C,, Oc,(2)) is surjective (or
equivalently, an isomorphism).

To construct Cp C P* we consider the White surface S = Bly, 5}(P2) cP

obtained by blowing-up P? at general points py,...,ps € P> where § = (SJ;),
and embedding it via the linear system |sh — Zle E,,|. Here h is the class of a
line on P?. It is known that S C P* is a projectively Cohen-Macaulay surface
and its ideal is generated by the (3 x 3)-minors of a certain (3 X s)-matrix of
linear forms (see e.g. [GG] even though these surfaces have been studied in the
classical literature by T.G. Room in [R]). The Betti diagram of § C P° is the
same as that of the ideal of (3 x 3)-minors of a (3 X s)-matrix of indeterminates.
In particular, we have that Hi(Is/Ps(Z)) =0 fori=0,1. On S we consider a
generic smooth curve C = (s + 1)h — Zle E,,. We find that the embedded curve

C C S C P has deg(C) = (‘Ygl) and g(C) = (5). From the exact sequence
0 — Zg/ps(1) — Zcyps(1) — Z¢ys(1) — 0,

using also that H'(Zg ps(1)) = 0 and that H'(Z¢/s(1)) = 0 (e.g. by Riemann-Roch),
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we find that H'(Z¢ps(1)) = 0 and H'(Oc¢(1)) = 0, hence h°(O¢(1)) = s + 1. Fur-
thermore, since H(Zgps(2)) = H'(Zs/ps(2)) = 0, we obtain that H'(Z¢ /ps(2)) = 0.
Finally, since H'(O¢(1)) = 0, it follows trivially that H' (N, /ps) = 0 and po(C)
is injective, being a map with source the trivial vector space. Even though
[C] € Mg itself is not a Petri general curve, the map H¢e — M) from the
Hilbert scheme H¢ of curves C' C P* with deg(C’) = deg(C) and g(C’) = g(O),
is smooth and dominant around the point [C] € H¢, hence a generic deformation
[Co — P°] € H¢ of [C — P*] will be Petri general and still satisfy the condition
H'(Ze,pps(2)) = 0.

Assume now that we have constructed a Petri general curve C, C P with
all the desired properties. We pick general points py,...,psia+2 € C, with the
property that if A :=pj + - - + pgrasn € Sym*+4*2C,, then the variety

T = {(M,V) € Wiieh)sana(Ca): dim (VN H(Co, M @ Oc,(~A) > s+a+1}

of linear series having an (s+a+2)-fold point along A, has the expected dimension
p(g(Cp),s+a+1,d(C))+s+a+2)—(s+a+ 1)2. We identify the projective space
P+ containing C, with a hyperplane H C P****! and choose a linearly normal
elliptic curve E C P! such that EN H = {p1, ..., pstas2}. The fact that such
an E exists is an easy consequence of the vanishing H'(Ng /pstart (—1)) = 0 for
each elliptic curve E embedded by a complete linear series; the vanishing itself
is a consequence of the fact that Ng/pswar1 18 a poly-stable vector bundle (cf.
[GL], Theorem 4.1), having the property that p(Ng /Ps+a+l(—1)) > 1). We now set
X = Cy Uy, E — P! and then deg(X) = p(X) + 5. From the exact
sequence

. -,Ps+a+2}

0— OE(_PI — = Dstas2) — Ox — OCa — 0,

we can write that h°(Ox(1)) < h%(Oc,(1))+h°(Ok) = s+a+2, hence h°(Ox(1)) =
s+a+2 and h'(Ox(1)) = a+ 1. One can also write the exact sequence

0— IE/Ps+u+1(l) — Ix/Ps+a+l (2) — ICa/H(z) — 0,

from which we obtain that H 1(ZX /pstas] (2)) =0, hence by a dimension count we
also get that HO(IX /pstarl (2)) =0, that is, X and a general deformation of X inside
P*+%*! lie on no quadrics.

We now show that X < P***! can be deformed to an embedding of a smooth
curve Chyp in P! guch that H I(Nca+l spswart) = 0. We choose an (s + a + 2)-
dimensional subspace H(O¢,(1)) C V € H(Oc,(1) ® Oc,(A)) which gives a
map f: C, — P! such that f(p;) = - - - = f(Pssas2) = p. If we denote by pstatl
the blow-up of P***! at p, by choosing V suitably we may assume that f lifts to
an embedding /: C, < P****! which projected from p gives rise to the original
embedding C, — H. We consider another copy of P****! which we denote by
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Pi**+! and we denote by Z the scheme obtained by gluing P§**+! and prartl
along H, where we identify the exceptional divisor of PS*%*! with H C P5*4*! via
the projection from p. There is a natural map h: Z — P*%*! which on P§**! s
the identity while on Pstatl s the projection from p. Via this map, the inclusion
X — P! lifts to an embedding X < Z. Note that Z is a degeneration of
Ps*+! something which can be seen by blowing-up the codimension 2 subscheme
H x {0} of P***! x P!, If we denote by X the total space of the blow-up and
by e X — P! the projection onto the second component, then for ¢ # 0 we have
that e~1(f) = P****!1, whereas ¢ '(0) = P U &, where P is the strict transform of
Ps+@tl % {0} which is isomorphic to P**%*!, while £ = P(Oy @ Oy(1)) is the
exceptional divisor, which is isomorphic to P****! blown-up at a point. In the
special fibre, P and £ are joined along a divisor which is H inside P.
Next we write down the standard exact sequences of normal bundles

—0

0 o NE/pS+a+l &® OE(—A) e Nx/z — NCa/i;S"’““

(the right-hand side map is restriction to the component C, of X), and

0 — Oc,(1) ® Oc¢,(2A) — N

Ca/ii”"”l NCu/H 07

from which it easily follows that H 1 (Ny /Z) = 0 (Use the hypothesis H 1 (Ne, /Ps+a) =
0 and that H' (NE pstart @ OE(—A)) = 0 because N psia+1 18 semi-stable). Thus

the space of deformations of X in Z is unobstructed of dimension h°(Ny /z)- On
the other hand, by general theory the space T(IX,Z) of infinitesimal deformations
of the pair (X, Z) has dimension at least x(Nx,z) + 1 = hO(NX/Z) + 1. This shows
that there exists a deformation of (X,Z) in which Z deforms nontrivially. But
dim(T}) = 1, that is, the only possible deformation of Z is the smoothing to
P+ previously described, and in this deformation the map X < Z will deform
to an embedding C,; — Ps+atl of 3 smooth curve, which proves our claim. We
are left with showing that the dimension estimate

(8) dim (W& (Cart)) = p(&(Cart),s + @+ 1,d(Carn))

holds. Assuming that (8) has been proved, since the condition H ! (Ne,., /ps+art) =

0 guarantees the local smoothness of the scheme (’52?3;11), it follows that the

morphism 65(%21) — Mg, i dominant in a neighbourhood of the point
[Cur1 — P*%*1]. Therefore the curve Chyy C PS**! can be chosen to be Petri
general as well, which enables us to continue the induction.

We return to proving (8) and denote by U the versal deformation space of
[X] € Myc,,,) and by ¢: C — U the universal family such that ¢~1(0) = X,

where 0 € U. Then in a way similar to [EH2], Theorem 3.3, one can construct
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a quasi-projective variety o: @;Tg‘:j]) — U of limit linear series such that for

points u € U with C, = ¢~'(u) smooth, we have that o~'(u) = G (C,),
whereas o~!(0) consists of the following data: an underlying line bundle £ on
X together with linear series {L,,V, € G(s +a+2,H°(X,L,))} and {Lg, Vg €
G(s+a+2, H'(X, Lg))} such that the following conditions are satisfied (see also
[Est], Theorem 1):

(1) The line bundles L, and Lg on X are suitable twists of £ by multiples of the
divisor A: precisely there exists an integer / such that L,|¢c, = Lg)c, ® Oc,(I-A) and
Lye = LE‘E®OE(—I-A). Moreover deg(La‘Ca)+deg(LE‘E) =deg(Cyt1)+l(s+a+2).

(2) The restriction maps V, — H(Cq, Lyc,) and Vg — H(E, Lg;z) are both
injective.

(3) The restriction maps V, — H'(E, L) and Vg — HO(Ca,LE‘Cu) are both
nonzero.

(4) If [ is the integer defined above and (ap < -+ < ag44+1) denotes the
vanishing sequence of (Ly|c,, Va+1) With respect to the divisor A € Sym**¢*2C,
while (bg < -+ < bsig+1) denotes the vanishing sequence of (LE|E, Vi) with
respect to A € Sym”“”E, then we have the inequalities a; + byiq41—; > [ for all
indices 0 < i < s+a+ 1 (see also [Est], Proposition 6).

By construction we have the dimension estimate

dim(G) > dimU) + p(g(Cus1), s +a+1,d(Ca1)),
(see also [EH2]), thus in order to prove (8) it suffices to show that
dim(c™'(0)) = p(g(Cus1), s + a+ 1,d(Caa1)) = p(g(Ca), s + a,d(C,)) — a

(here by dimension we mean the smallest dimension of an irreducible component).
It is now easy to describe the fibre o~!(0) in a neighborhood of the point corre-
sponding to a smoothing of the embedding X — P! If {L,, V,,}, {Lg, VE} is
a limit linear series on X, then the aspect corresponding to E is just a very ample
line bundle on X giving the embedding into P**%*! | that is, Lgic, € Wy¢,)(Cq) and
Lgig = Op(A), whereas the aspect corresponding to C, is described by L,z = Of
and Ly c, = Oc,(A) ® Lg)c, (and in particular / = 1). The only possibility for the
vanishing sequences of the E and C, aspects is that (ao, . . ., ds4a+1) = (0, 1,..., 1)
and (bo, . ..,bga+1) = (0,...,0,1). This shows that locally, o~ 10) is isomor-
phic to the variety of line bundles £ € Pic?Ce+)(X) such that Lig = Og,
WX, L) > s+a+2 and hO(Ca,E‘Ca(—A)) > s+a+ 1 (Loosely speaking this
is the subscheme consisting of those L, € ;:ga)(ca) for which there exists a
section 7 € P (H(L, ® O(A))/H(L,)) which glues to the unique section of the
trivial bundle Of at the points of attachment py, . . ., psiq+2)- Thus locally o~ 1(0)
is a (C*)****'_bundle over the subvariety T of W;?g:}l) having an (s + a + 2)-
fold point along the divisor A, and by our inductive hypothesis we know that
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dim(7) = dim (W3{&*!(C,)) — (s +a+1)%. It follows that

dim(c ' (0)) = dim(T) + s +a+ 1 = p(g(Cus1), s + a+ 1,d(Cas)),

and this finishes the proof. O

Remark 2.14. Tt is natural to wonder whether (8) could not be proved more
easily by showing directly that the Petri map po(X): H(Ox(1)) @ H(wx(—1)) —
H'(wy) is injective. Indeed Theorem 1.3 from [CR] seems to imply this to be
the case based on the inductive hypothesis that uo(C,) is injective whereas
po(E) is injective for trivial reasons. That claim is incorrect: from the exact
sequence 0 — wg — wy — wc,(A) — 0, we find the isomorphism
Ho(wx(—1)) = Ho(wca(—l) ® Oc,(A)) and then a simple analysis shows that
H(Op) @ H(wc, (1)) € H(Ox(1)) ® H(wx(—1)) is an a-dimensional sub-
space lying entirely inside Ker(uo(X)).

3. The class of the Gieseker-Petri divisors. In this section we prove The-
orem 1.6. We use the same strategy as in the previous section and we intersect
Q_P;,d with the test curves C° C!' and C for [g/2] < j < g — 2. Recall that
we have constructed a rank r + 1 vector bundle Gy over the variety 652 (cf.
Proposition 2.10). As usual, we denote by E the Hodge bundle over M.

PROPOSITION 3.1. There exists a rank s vector bundle N over Q~52 together with
a morphism Go1 QN — c*(E® O Vi (81)) of vector bundles of the same rank over
8

~fl such that the fibres of N admit the following description:

e If(C,L) € &, then N(C,L) = H*(C, K¢ ® LV).

o Ift =(CUyE,Lc,lg) € o~ (A)), where L € W(C) is such that hi°(L ®
Oc(—2y)) = r, then N(t) = H(C, K¢ @ L{ @ Oc(2y)).

o [ft =(C/y ~gq,L) € O'_I(Ag), where y,q € C and L € W)(C) is a linear
series such that l°(L @ Oc(—y — q)) = h%(L) — 1, then N() = HY(C,Kc @ LY &
Oc(y +q)).

o Ift=(CU,D,lc,Ip) € o~ '(A)) where [g/2] <j < g —2,8(C) = j,8(D) =
g—j, then N'(t) = H*(CUyD, wcup®LY), where L = (Ic(—(rs—))y), Ip(—(j+7)y)) €
Pici*"(C) x Pic™ (D).

Note that over &/ the morphism Go; @ N — o*(E @ Oy, (61)) is simply
8
the Petri multiplication map. We start the proof of Theorem 1.6 by expanding

[GP, 4] in Pic(M,):
W;,d = CZA — b()é() — e — b[g/2]6[g/2]

We show that the coefficients a, by and b; as well as s(gip;,d) can be read off
from the vector bundle map Go; @ N — ¢*(E ® (9/\7 (61)). Even though this
8
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bundle map is degenerate along the boundary components contained in 0*(A}))
with j > 2, we can show that it is generically nondegenerate along o*(A9) and
o*(A) which ultimately suffices to compute s(GP, ;).

PrOPOSITION 3.2. One has the relation a — 12bg + by = 0. Moreover, one has
the identity

[g/2]
Q—P;,d =0, (m(o*(E ® Oﬂg(‘sl)) —c1(Go1 @/\/’)) + Z d;éj,

=2
where d; > 0.

Proof. It is enough to show that if [C,y] € M,_ 1 is a general pointed curve,
then for every L € W)(C) satisfying (L ® Oc(—2y)) = r, the multiplication map

po(L,y): H'(L) @ H'(Kc @ LY @ Oc(2y)) — H'(Kc @ Oc(2y))

is an isomorphism. This shows that the morphism Gy; @ N — ¢*(E® 0/\7 61))
8

is nondegenerate along each component of the divisor o~ !(A?) and the conclu-
sion follows. To show that pg(L,y) is an isomorphism, we use a variation of
the degeneration considered by Eisenbud and Harris to prove the Gieseker-Petri
Theorem (cf. [EH1]). Precisely, we consider a 1-dimensional family =: C — B
of generically smooth pointed curves of genus g — 1 with a section 7: B —
C, degenerating to a curve of compact type Cp consisting of a string of ra-
tional components and g elliptic components Ej,...,E, such that the stable
model of Cy is Ey Uy, Ex Uy, E3 U --- Upe_ Eg—1. We assume moreover that
the marked point specializes to a point po € E; and we choose our degener-
ation general enough such that p; — p;_; € Pic’(E;) is not a torsion point for
all 1 < i < g — 1. By contradiction, we assume that for a general + € B
there exists L, € Wi(r—'(t)) with h° (7=1(t),L, ® O(=27(1))) = r, such that
po(Ls, T(1)) has nontrivial kernel. For 1 < i < g we denote by L' € Pic?(Cy)
the limit line bundle of the L,’s having the property that deg(LTEj) =0 for i #,

hence deg(LfEl_) = d. Similarly, we define M’ € Pic2¢7274(Cy) to be the limit
when 1 — 0 of K, -1,y ® L ® O,-1(,4(27(1)) uniquely characterized by the
property deg(Mij) =0 for i #j and deg(MfEi) = 2g — 2 — d. We denote by
{(LfEi,V,- € G(r+1,HE;,Ljz,)))} and by {(MfEi,W,- € G(r+1,H"E;,M)))}
the limit linear series on Cy corresponding to L, and K1, ® L, respectively
as t — 0. Reasoning along the lines of [EH1] or [F1], Proposition 5.2, for each
1 <i < g we find nontrivial elements

pi € Ker{V; @ W; — H(E;, L' ® M.}
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satisfying ordy,(pi+1) > ord,,  (p;) +2 for 1 <i < g — 1. Since both V| and W,
have a cusp at pg € E}, it follows that ord,, (p1) > 2, hence ordpgfl (pg) > 28—-2=
deg(L|gEg) + deg(Mf’}Eg), which is a contradiction because p,_1 € HO(Eg,Lng) ®
HO(Eg,M‘ﬁEg) being an element in the kernel of the multiplication map must be a
tensor of rank at least 4. O

PRrOPOSITION 3.3. If ¢, is the constant defined in Lemma 2.6, then the 01 coeffi-
cient in the expression of [Q—P;’d] is given by:

r(s—1)

by =c
L s r+ Dirs+s5—2)

(3rs2 + 257+ 125> + D5+ 6rs + rPs +2r + 2).

Proof. We fix a general curve C of genus g — 1 and consider the associated
test curve C! C A;. We view the curve X C C x W} (C) defined in Proposition
2.12, as sitting inside (’32. Then the projection 71: X — C is the restriction of
o: @52 - M ¢ once we identify C with C; (Note that the degree of 7 is precisely
¢,). One can write the relation (2g—4)B; = C! ~g_73;d = cl(a*(E®OA7 (61) 1x)—
c1(Go,1 x ® N |x) and we are going to compute each term in this expfression.

The restriction E ® Oﬂg(él)lcl is identified with the vector bundle

(p2)«(p1(Kc) @ O2A)), where pi,py: C x C — C are the two projections and
A C C x C is the diagonal. Using Grothendieck-Riemann-Roch for the map p»,
we find that

et @O (0n)jc) =1 ((P):(P1(Ke) ® O24))) = —2g +4,

hence ¢ (c*(E) ® O/fwv (01)x = —(2g — 4)c, (remember that we have set ¢; =
8

c1(EV)).

The fibre Ny(y, L) is identified with H(K¢ @ LY(2y)) = H'(L @ O(—2y))".
Keeping in mind that we have introduced the vector bundle map ¢ in Proposition
2.12, we have an exact sequence over X

0 — Ker()V — Ny — 73 (R17rz*(£|ch;<C))) —0,
globalizing the cohomology exact sequence for each (y,L) € C x W}(C)
S HL) S HOLyp,) — H'(L(~2y)) — H'(L) — 0.

Hence cl(./\/"}/() =0 — c1(EY) + c1(Ker(¢)Y). Using Proposition 2.12 we can write
that

—Q2g — 4 — (r+1 —s)cp - [X]+ (r + Dey(Ker(€)Y)

—2g —Men — (r+1 —5) ((2d +2g8 — Hecicr—1n — 6¢1¢r—20n)
+(r+ 1) ((2d +2g = 4)e, 100 — 6e, 207 + (r+ Der (Ker(O)).

C' - GPhy
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To compute the Chern number c¢;(Ker(¢)") we use once more [HT] and we find
the following relation in H"P(C x W)(C)):

7r’2"(5\/)

c1(Ker(0)Y) = cpa1 (W

> =Q2d+2g —4)cm — 6nlc,—,.

Combining the last two relations and then applying Lemma 2.6 we obtain the
formula for b;. O

PROPOSITION 3.4. The 6y coefficient in the expression of [Q—P;d] is given by:

r(r+ D(r+2)(s— Ds(s+ D(rs+s+4)

bo = 6(r+s+ )(rs+s—2)rs+s—1)

Proof. We pick a general curve C of genus g — 1 and consider the test
curve C° C Ay. Similarly to the proof of Proposition 3.3 we view the projection
m1: ¥ — C as the restriction of o: &), — M, over €. Then one has the relation

(28 = Dby — by = C° - TPy = 10" E © Oz (D)) = e1(Go.py © Ny

The Hodge bundle E® Oﬁg(‘sl)lC" is identified with (p2)s (p}(Kc) @ O(A+T)),

where I'; = {¢} x C, and it is easy to compute that c;(c*(E ® Of\/T 61))y) = cr-
4

If we denote by v the vector bundle morphism over Y which globalizes the maps

HO(L|y+q)v — HO(L)V for each ( y,L) € Y, we obtain an exact sequence of vector
bundles over Y

0 — Ker(v)” — N} — 73 (R'mou(Licxwrcy) — 0,
from which we can compute cl(/\/'l\{,) if we use [HT] which in this case reads

W%‘(EV))

e1(Ker(w")) = ¢y ( il

where F is the vector bundle on C x W)(C) with fibre F(y,L) = HO(L‘erq)v.
Finally, we write

C’ - GPya=cm+((r+1)0 —ci+c1) - [Y]+ (r+ D)(cy(d — 1) — 2¢,_10)n,

which eventually leads to the stated formula. O
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To finish the proof of Theorem 1.6 it suffices to show that for [g/2] < j <
g — 2, the coefficient of §; in the expression of

7. (0" ®© O 1)~ G 9 A))

always exceeds the coefficient of &y, which equals by and was computed in
Proposition 3.4. This is a calculation along the lines of the proof of Theorem 1.4.
To keep the length of this paper under control, we skip the details.

4. Five ways of constructing Koszul divisors for pointed curves. In this
section we construct Koszul divisors on moduli spaces of pointed curves. As an
application we improve Logan’s results on which Mg,,,’s are of general type.

We start by recalling a few things about divisor classes on M,,. For 0 < i <
g and a set of indices S C {1,...,n}, the boundary divisor A;,s corresponds to the
closure of the locus of nodal curves C;UC,, with C smooth of genus i, C; smooth
of genus g — i, and such that the marked points sitting on C; are precisely those
labeled by S. We also introduce the divisor A;, consisting of irreducible pointed
curves with one node. We denote by ;.5 € Pic(mg,,,) the class of A;.s and by
Oirr that of A, For each 1 < i < n we define the tautological class ; := c(L;),
where L; is the line bundle on ﬂg,n with fibre L;([C, x1,...,x,]) = T;;(C) over
each point [C,x1,...,x,] € ﬂg’n. It is well known that when g > 3, the Hodge
class A, the boundaries 6;, and §;.5, and the tautological classes ; for 1 < i < n,
freely generate Pic(M,,).

4.1. Divisors defined in terms of the Minimal Resolution Conjecture. We
fix integers g, > 1 and 0 <i < g and set n := (2r+1)(g — 1) — 2i. We define a

divisor on M, , consisting of smooth pointed curves (C, xi, ..., x,) such that the
points xi, . ..,x, fail the Minimal Resolution Conjecture for the canonical curve
Kcl

C |<—> P¢~! (see [FMP] for background on MRC). Precisely we define the locus

Mrey; = {[C,x1,. .., X] € Mgy

W'(C, N Mk @ KETD @ Oc(—x1 — -+ = x,) > 1},

If we denote by I' := x; +--- + x, € C,, by Serre duality, the condition
appearing in the definition of Mrcy; is equivalent to

1 (CNMY. © 0 @ KET") > 1 4= OcD) @ K& € iy,

where we recall that for a stable vector bundle E on C having slope v(E) = v € Z,
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its theta divisor is the determinantal locus
O := {n € Pict* *1(C): '°(C.E@n) > 1}.

The main result from [FMP] gives an identification © ,; my = Co—i1— C;, where
C

the right-hand side is one of the difference varieties associated to C. Thus one
has an alternative description of points in Mrc, ;: a point (C, xi, . .., x,) € Mrcy;
if and only if there exists D € C; such that /° (C, Oc(T+D)® KE?(")) > 1.

r

First we equip 9rc,; with a determinantal scheme structure. We consider

g,i
the following cartesian diagram of stacks
q
X — Mg,n
b I
p

Cg E— Mg

in which all the morphisms are smooth and p (hence also gq) is proper. We denote
by w, € Pic(Cy) the relative dualizing sheaf of the universal curve p: C; — M,
and by E := p,(w,) the Hodge bundle. We define the vector bundle M over C,
having rank g —1 as the kernel of the evaluation map p*E — w),. Thus for every
[C] € M,, we have M‘pfl([c]) ~ Mk.. For each 1 < j < n we have a section
qji: Mg, — X of g given by ¢;([C,x1,...,x,]) = ([C,x1,...,%,],x;)) € X and
we set E; := Im(qg;), hence E; is a relative divisor over Mg,,.

For integers 0 < a < i,b > r+2 and (a,b) = (0,r + 1) we define the vector
bundle

Aup = g (f*( AN M wff)b) ® Ox (- ZEJ)) ,
=1

hence A, ,([C,x1,...,x,]) = HO(A® Mg, ® K?b ® Oc(-T)). To prove that A,
is locally free over M, ,, we use the fact that Mk, is a semi-stable vector bundle

over C and that (/\“MKC ® K?b(—l“)> > 2¢ — 1, hence

R'q (f*( N M@ W) @ Ox (—Z%)) =0
J=1

whenever b > r+2. To reach the same conclusion in the case of the sheaf Ag 1,
we use that H'(KS"*D(—T))Y = HY(Oc(D) @ K& ") = 0, if T € C, lies outside
a subset of codimension > 3. Furthermore there is a vector bundle map

¢: 7T*( /\i E)® AO,r+1 - ~Ai—1,r+2
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which over each point [C,x1,...,x,] € My, corresponds to the natural map

o(C.D: NH(Ke) @ H (KE™) @ Oc(-T))

— H° (AHMKC R K& g Oc(—F)) .

Note that rank(A;_142) = rank (7*(A'E) ® Ag,41) = 2i(%) and a simple ar-
gument using the exact sequence 0 — A'Myg. — AH%Kc) ® Oc —
Ai_lMKC ® K¢ — 0 shows that Mrc, ; is the degeneracy locus of the map ¢.

PROPOSITION 4.1. The vector bundle morphism ¢: W*(AiE)®AO,,+1 — Ai—142
is generically nondegenerate. It follows that Mrcy ; is a divisor on Mg .

Proof. We show that ¢ is generically nondegenerate over the pull-back 7*(H,)
of the hyperelliptic locus. We fix a hyperelliptic curve C of genus g and we denote
by L € Wi(C) its hyperelliptic involution. By writing down the Euler sequence
on P! one shows that Mg, = (LY)®&~D, hence the condition H'( Al Mg, ®
KE"D @ Oc(~T)) = 0 is equivalent to H® (Oc() ® LE—(¢=1)) = 0. This
however is obvious because when I' € C, is a general divisor of degree n then
Oc(T) @ L8 js 4 general line bundle of degree g — 1, therefore it has no
global sections. O

The main result here is the computation of the class of i)ﬁrc;’i'

THEOREM 4.2. When n = 2r + 1)(g — 1) — 2i, the locus Smrcg’i is a divisor
on Mg, and the class of its compactification in ﬂgﬂ is given by the following
formula:

Mrc,,; = _<g; 1) (a)\+c21:1/1j—bw ir— > bszchs)
=

J»s>0, |S|=s

c=r1g+g—i—r—1,

mﬂ=—J—<C+v@—nw—mnmu+M—@—@)
g—2 2

1
a= P ((g — (g — 2)(61"2 +6r+1)+i(24r+10i+ 10 — 10g — 12rg)) ,
g—
s+ 1 : .
bos=| , (8= D+sGg—r)—si and bj.s > by forj > 1.

Remark 4.3. Fori=0,n=2r+1)(g—1), the divisor Mrc, 2.0 specializes to the
locus of points [C, X1, . .., X@2r+1)(g—1)] € Mg 2r+1)g—1) Such that Z(ZHI)(g 1)x €
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|KE"| and Theorem 4.2 gives that:

Q2r+1)(g—1) ral
Mrcyy = —(6r* +6r+ DA+ (r+1) >y +< 5 )61-,,
j=1

—Q2r+3)  Sos— -

IS|=2

By letting all the marked points coalesce and using the standard formulas for
pushing forward products of tautological classes (cf. e.g. [FMP] or [Log], Theo-
rem 2.8), Theorem 4.2 offers a quick way of computing the class of the closure
of the locus W'*! of (r + 1)-Weierstrass points in ﬂg,l which is the main result
of [CF].

First we determine the class of the locus Mrc,; over the interior Mg ,. In
order to do this, we first recall a few well-known intersection theory relations
(see e.g. [HM]):

LemmA 4.4. If g2 X — My, is the morphism defined earlier, one has the
following identities:

(i) g«(f*c1(wp)?) = 12X,

(iD) g« ("X - f*e1(wp)) = (28 — 2)A.

(iii)) g+g*(A\*) = 0.

(iv) g«(c1(Ep) - g"A) = A.

(V) g«(c1(E)) - f*c1(wp)) = ¢y

(Vi) g+ q* c2(m*(E)) = 0.

(vii) g« (c1(E))?) = =9,

PROPOSITION 4.5. Ifaand b are the numbers defined in the statement of Theorem
4.2, we have the following relation in Pic(Mg,):

1 —1 "
mrcg’izgj<gi > (a)\+bz¢j>.

J=1

Proof. Since ¢ is generically nondegenerate (cf. Proposition 4.1), we have the
identity imrcgj = c1(Ai_1,12) — c1(m*(AN'E) ® Ag,+1). To compute these Chern
classes we use Grothendieck-Riemann-Roch applied to the proper map g. For
simplicity we set ® := ZJ’LI E; and F = f* (/\i_lM ®w[‘?(r+2)) ® (’)X(—@)).
Then we have that

-1 HF) — 2e2(F
c1(Aim142) = g« K(‘f_ 1) +Cl(‘7:)+w+w->

_ (1 _fraty) | frei), )] '

2 12
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Using that ¢i(M) = p*(\) — c1(wp), one obtains that

—2
ci(F) = (gf )q*(A)
i—2

-1 -2 -1
el 2o

We also use the identity

o(F) = ea(f* NI M)+ ((i_’: 11> — 1) a(f Nt M)

((r+2)f*ci(wp) — c1(D))

1(g—1 -1 *
+§<§—1> <<f_1> _1> ((r+2)e1(wp) = a1 @)’,

which together with the formula c;(M) = c%(wp) — c1(wp) - p*(N) and Lemma
4.4, enable us to compute c1(A;_1,4+2). In a similar fashion, we obtain from
Grothendieck-Riemann-Roch applied to the map ¢, that

c1(Aope1) = (677 +6r+ DA — (r+ 1> 1)
j=1

and finally
* Al — 8 &~ !
ci(m* N'E® Agpe1) = ; c1(Aor) +(2r+ (g —1) — 1) i1 A,

which quickly leads to the stated formula. O

To compute the remaining coefficients in [W;’i] we extend the vector bun-
dles A, to sheaves over Mg,n as follows. We denote by g¢: Mg,,,ﬂ — Mg’n
the projection dropping the (n + 1)-st marked point and by 7: ﬂg,n — ﬂg the
forgetful map. We introduce the following twist of the Hodge bundle on M,

H =g, (wq ® 0%, ( o> - j)Aj;S)) :

[¢/21<j<g—1[S|<n

(In other words, the fibre of H over a pointed curve from 7*(A;) where [g /2] <
Jj < g, is the space of global sections of the genus j-aspect of the limit g‘gg__lz
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corresponding to the canonical linear series.) We then define

M = Ker{q*(H) — Oﬂg,nﬂ ( Z Z (g _j)Aj:x) }

[¢/21<j<g—1|S|<n

Furthermore, for each pair of integers 0 < a < i,b > r+2 or (a,b) = (0,r+ 1),
we define

Aup = g« (A“M Rwd’® O g ( S @b—1)(g—))— b)As

[g/21<j<g—1]S|<n

n
= > Agjnst | |-
j=1

(Obviously, this is an extension of the definition of A,; over M, ,.) The twists
were chosen in such a way that we have exact sequences of the type

0— Aup — NH® Aoy — Aa—ipr1 — 0,

at least in a dense open subset inside W*I(Mg U Ag U Ay). Also, there exists a
morphism ¢: A"H ® Ag 41 — Ai—1,+2 Which over M, , restricts to the vector
bundle map defined in Proposition 4.1.

Proof of Theorem 4.2. We expand the class of E)ﬁrc;’i in Pic(M,g,):

W;:i =A\N+B Z wj - Birréirr - Z Bj:x Z 6j:S-

j=1 js>0 |S|5j

We have already determined the values of A and B. One can write down the
following relation in Pic(mg’,,):

) ci(Aicir = NH® Agper) = [Mreg 1+ > dis Y bjss,

J.s>0 |S|=s

where d; is the multiplicity of the divisor A;.s in the degeneracy locus of ¢. By
intersecting both sides of (9) with test curves in Mg,n, sometimes we are able
to show that ¢ is generically nondegenerate along A;s (that is, d;.; = 0), and
then we explicitly determine the value of Bj.s in Theorem 4.2, otherwise we only
get lower bounds on Bj.s. We are only going to explain in detail the case of the
coefficient Bj the remaining ones being somewhat similar.
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We define a test curve in the boundary of ﬂg,n as follows. If [C, ¢, x1, . . ., X,]
€ M_1 41 1s a general pointed curve, then we define the 1-dimensional family

C®={[C/y ~q.x1,... Xl byec C A C M.

The fibre of this family when the variable point y € C hits the fixed marked
point x; for 1 < i < n is the pointed curve (C‘xl. = CUy 4 P, %, x0,...,%),
where % € P! (here we regard x,%;,q € P! as three distinct points). One has
the identities

.6y = —2g+2,

Cg'(Sl:@ L,
COypy=1for1<i<nm CO-A=C 6.5=0for (i,S) #(1,0).

n

By intersecting both sides of (9) with C? one can write down the identity CV -
DJZrc;,i = (2g — 2)B;;+ + nB — By.p. On the other hand one also has the relation

A —12Bjy,+ By =0,

reflecting the fact that Mrcy; is physically disjoint from the curve {[C U, R,x1,
X2,...,Xy]}gr obtained by attaching to a fixed Brill-Noether general curve
[C.q,x1,...,X,] € Mg_1,41 a pencil of plane cubics in which R denotes a
generic member. Thus determining B; and B.g boils down to (i) showing that ¢
is generically nondegenerate along C? and (ii) estimating the intersection number
CY-c1(Ai_1 42— NH®Agr+1). By local analysis one can see that for 1 < [ < i—1
there are exact sequences of bundles over C?

il
0— At — NTH® Ag a0 — Aimi— 1 o)t — 05

therefore we can write the identities

i
Cy - c1(Aimi2) = (=1 ey (/\Z_ZH|c9l ® Ao,r+z+1\c3)
=1

d —1
= z:(—l)l_1 <<l f I 1) (@r+21+1)(g =1 —n)ci(H o)
I=1

8
+ (l _ l>cl(Ao,r+l+l|C2)> .

Next we describe the vector bundle A, jlco- We identify CY with C via the map

Coy—|[Cly~q,x1,....x%,] € Mg,n
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and denote by p,p2: C x C — C the two projections, by A C C x C the diagonal
and set 'y := {g} x C C C x C. Then for every j > r we have the following
exact sequence of vector bundles on C:

0 — (p2)« (pT(K?’) ® Ocxc ((j — DA+ = Dl =) {x} x C))

=1

— Agjic

— (p2)« (pT(K?j) ® Ocxc (JA +jTg — Z{xj} X C) ® Ol"q)

=
®ROc(—x1 — -+ —x,) — 0,

which quickly leads to the formula
c1(Agjico) = 1+2j — 2jrg — 2j¢ — 2+ % +2jr + 2ji.

Since one also has that Cl(H\cg) =1 (use that H(y) = H' (K¢ ® Oc(y + q)) for

each y € CY under the identification described above), we obtain a formula for
Y. imrc;i and ultimately a formula for B;,. Dealing with the other coefficients
Bj.s is similar in general. O

4.2. Divisors defined by imposing linear conditions on marked points.
Here we present another general construction that produces families of effective
divisors on ﬂg,n. Like in Section 2, we pick integers g,r,d > 1 such that
p(g,r,d) = 0, therefore we can write d = rs +r and g = rs + s for some integer
s > 1. We set n:=r+1 and define the following divisor on Mg ,:

ginly = {[C,x1,...,x41]: IL € W)(C)
such that (L @ O¢(—x1 — -+ — x,41)) > 1}

‘We recall that we have introduced the number

1020 pl
(g—d+n'---(g—d+2r!

N:=c =g!

which counts linear series g; on a general curve of genus g (cf. [ACGH]). Our
main result is the computation of the class [ﬁg]:

THEOREM 4.6. Fix integers r,s > 1 and setd :=rs+vr, g :=rs+s. Then Qing
is an effective divisor on M, , and we have the following formula for its class in
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r+l

. _ rCr
£1nd = m (a)\ + C; wj — birr(sm - Z bj;t Z 6]5) s

J>0 |2t

where

(r +2)(r?s> — r2s + 2rs> + 6rs*> — 2rs — 8r+ 5> + 65% + 35 — 8)
a=
26 +r+1D)(rs+s—2)

bl

_s+1 b _(s—1)(s+1)(r+1)(r+2)(rs+s+4)
€=y Uim= 12(s+7+ D(rs+s—2) .

Jr+2)(rs(s? — D(r +2) + s(s> — 2j — 3)
+(r+ D(Bs* —js? +2j —2)
2r+s+ D(rs+s—2)

bj.o = forj>1

t
b():,:2—(trs+ts—t+r—s+1)f0r2§t§r+1,
r

by <z— 1>rs+s— L, G- 1)(s+1)(r+1)(r3s+3r2s—2s+4)f0ralltZ |

2 r 2r(r+s+ D(rs+s —2)
and
bj., > by for all j > 2.
Remark 4.7. For s = 1 and r = g — 1, Theorem 4.6 specializes to Logan’s

formula for the class of the divisor m‘i:z of points [C,x1,...,X,] € M, with
H(Oc(x) + - - - +Xg)) > 2. We have the formula (cf. [Log], Theorem 5.4):

E—— 8 . (t+1 g ([t
£ln2g_2:—)\+zwj—0~5[rr—z 2 25055_2 ’ 261;5—---.

Jj=1 =2 |S|=t =1 |S]|=t

In the next case, s =2,¢ =2r+2 and d = 3r we get a new divisor on ﬂzrﬂﬁl
and our formula reads

S 1 ad r+2
(10) Sln:;r = m ((3}" + 5)(1" + 2)A + 3r Z ¢J — < ) )6{;«;«
j=1

_ Z%:s—'”)-

IS|=2
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Proof of Theorem 4.6. Proving that £in/; is a divisor on Mg ,,; follows im-
mediately from Brill-Noether theory: a general [C] € M, has precisely N linear
series L € W),(C) and each of them is base point free and satisfies (L) = r+1 and
£Lin/; consists of those (r+1)-tuples of points on C which are not in general linear
position with respect to some L € W)(C). We start the calculation of the class
of m; by determining the coefficients of A, 0;,» and 1);. To do this we use the
observation that if ,: Mg,n — ﬂg,n, 1 is the projection forgetting the marked
point labeled by n and D is any divisor class on M, ,, then for distinct labels
i,j #n,the A, 6, and 1); coefficients of the divisors D on Mg,n and (7,,)«(D-0.in)
on ﬂg,n_l are the same (see [FMP], Prop. 4.4). The divisor (7,,)«(D - dp:in) can
be thought of as the locus of those points [C, xy,...,x,] € D where the points
x; and x, are allowed to come together. Using this observation repeatedly, we
obtain that the divisor ﬁ;(l) on Mg,l obtained by letting all points xi,...,x,
come together, has the same A\ and é;,, coefficients as £in/,. But clearly

Liny(1) = {[C,x] € Mz 3L € W(C) such that K%L ® Oc(—(r + 1)x)) > 1},

that is, £in/,(1) is generically the locus of ramification points in one of the finitely
many linear series g/; on a given curve of genus g. By applying Theorem 4.1
from [EH4], we obtain that the class of %Z(l) can be written as a combination
Lin;(1) = - BN +v - W, where

+1 sl _
BN :=(g+3)\ — gTém — 3 (g — )
1

Jj=

is the pull-back from M, of the class of the Brill-Noether divisor and

g—1 .
W = —)\+ <g;1>w—z (g _é+1>6]]

J=1

is the class of the Weierstrass divisor. To determine the coefficients 1 and v we
use two test curves inside Hg,l. First we fix a genus g curve C and we let the
marked point vary along C. If we denote this curve by C C Mg, 1, then the only
generator of Pic(ﬂg,l) which has nonzero intersection number with C is v, and
C -4 =2g — 2. On the other hand C - £in/,(1) is the total number of ramification
points on all g;’s on C. This number is N(r+1)(d+r(g — 1)) (see e.g. [EH2], pg.
345), which shows that v = N(r+ 1)(d+r(g — 1))/((g — 1)g(g + 1)). To compute
1+ we use a second test curve constructed as follows: we fix a 2-pointed elliptic
curve [E,x,y] € M, such that the class x —y € PicO(E) is not torsion, and a
fixed general curve [C] € M,_;. We define the family C| := {(C Uy E,x)}yec
(that is, the point of attachment varies on C). The only generator of Pic(mg,l)
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meeting C) nontrivially is ;.1 = 6,19, in which case C; - 61,1 = —2g +4. The
calculation of C; -%;(1) is a standard exercise in the theory of limit linear
series. Suppose [ = {lc,[g} is a limit g; on C U, E such that aE(x) > r+ 1. Then
because the class x —y € Pic’(E) is not torsion, we must have that p(lg,x,y)=0
and p(lc,y) = —1. An easy calculation shows that we must also have d'E(x) =
0,1,...,r—1,r+1) and a’c(y) =(0,2,3,...,r,r+2), and moreover the aspect
g is uniquely determined. Thus we have to count the number of points y € C
such that there exists L € W}(C) with the property that hO(L(—Zy)) > r and
HO(L(—(r +2)y)) > 1.

To compute this number we further degenerate the curve C to a transverse
union RUy, EyU---Uy, | E; consisting of a smooth rational spine R and g — 1
elliptic tails Ey,...,E, 1. Using Proposition 1.1 from [EH2] we see that the
point y has to specialize to one of the tails E;, and without loss of generality we
assume that y € E; (all the intersection numbers we compute will be multiplied
by g — 1 to account for y lying on a different elliptic tail). Suppose now that
I ={lg.Ig,.....lg,_,} is a limit gj on RUE; U+ U E,_ such that a1 (y) =
0,2,3,...,r,r+2). Then p(lg,y1,...,y¢-1) = O,p(lEj,xj) =0for2<j<g-—1
and p(lg,,y1,y) = —1. A close inspection shows that there are three numerical
possibilities:

(@) a®(y1) = (0,2,4,5,...,r,r +1,r +3) and then y; — y € Pic®(E))[2].
This contribution will be equal to 3(g — 1) multiplied by the number of g;’s on R
having ordinary cusps at g—2 general points and vanishing (0,2,4,...,r+1,r+3)
at another fixed point. By Schubert calculus this number equals the product of

.....

.....

H*(G(r,d)).
(V) d"(y)=(,2,4,...,r+1,r+2) and then y—y; € Pic’(E;)[r]. We obtain a

.....

all these together and using (3), we obtain that the total intersection number is

N rr+ D)(r+2)(rs + 25> — 4 + )

Cl'ﬁ;(l)z s+r+1

B

which leads to

_ Nrr+ D(r+2)(s — D)(s+ D(rs+s+4)
T 2s+r+ D(rs+s—2)(rs+s— D(rs+s+ 1)

and then the stated formulas for the A and 6;,, coefficients. We also note that the
b;.p coefficient of %{1 equals the 6.9 = 6.1 coefficient of mg(l) and this is
equal to j(g —j)u+j(j+1)r/2 and we obtain the desired expression for bj.o. Next
we determine the coefficient ¢ of the 1); classes. We introduce the divisor ﬁ;(Z)



862 GAVRIL FARKAS

on ﬂg,z obtained by letting xy, . .., x,+1 coincide while keeping x; apart. Then
Linj(2) = {[C,x1,x2]1€ Mg,: IL € Wj(C) such that WL ® Oc(—x1 — rxa)) > 1}

and we can write mj,(z) = N(ad+cy1+crvn—erndo. 12— - +) (that is, the A and 1),
coefficients coincide with those of %;). We intersect %;(2) with two curves in
My,: consider a curve C of genus g and define Cy = {[C,x1,%21} {1, moves on C}
and 62 = {[C,xl,xz]}{xl moves on C}+ Then sz;(Z) = N(c2+(2g— Dec—epn) =
N(d—r) and C; - €inj(2) = N((2g — 1)ca+c—e12) = N(r+1)(d — 1+(r—1)(g—1)).
(The first identity is obvious, for the second, use that what we are counting is
the total number of ramification points on all linear series L ® O¢(—x;), where
L € W)(C) and x; € C is a fixed general point.) We thus have a system of two
equations in the unknowns c,cy and ejp, but we can also use that e, equals
the ¢ coefficient of mZ,(l) = (m)*(mj,(z) - b0:12), where m5: Mg,z — ng
is the map forgetting the second point. Thus ej; = vg(g + 1)/2, which gives us
enough relations to determine c. We note that in this way we also determine
bop=Qrs+r+s—1)/(rs+s—1).

To compute the coefficient b;,; for 1 < ¢ < r+ 1 we consider another test
curve defined as follows: we fix integers 1 <j < g—1and 1 <t < r+1, together
with general pointed curves [C,y,x2,...,x] € M;; and [Y,y,Xp1,...,%41] €
Me_j r—142. We define the test curve Cj; := {CU,Y, X1, .., X, Xe1, Xr41 bx,ec (thus
x1 is the moving point on the genus j component). Then we have the relation

(11) Ciu - By = (242t — 3)c — (t — Dbowa + by — byt

which can be used to compute b;; provided we know b;;_1 (note that we have
already computed b;; for all j).

We now describe directly the intersection cycle C},m; Since [C,y] € M;;
and [Y,y] € M,_; are general, on the stable Y U, C there will be precisely
N limit g/;’s which can be described as follows: We first choose a Schubert
(ramification) sequence max{0,;j — ¢} < ap < ---a, < j such that Y/, a; = rj.
Then we choose Iy € GJ(Y) having vanishing sequence @Y (y) = a; + Do<i<rs
in fact there will be Ufo?ii,...,l) “ O(ag,...ar) € H*(G(r,d)) such linear series. On C

,,,,,,,,,,

choices. Every limit linear series on CU, Y appears in this way and the intersection
Cis- Sin; is everywhere transverse (cf. [EH3]). We also have the identity

(12) N = > (o61.1) - TC@van)

jt<a0<<ar<), o1 e

X (0{0,1,._,’1) : U(rs—ar,..‘,rs—ao)> .
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If I = {lc,ly} is one of these N limit g};’s corresponding to a sequence (cp <
.-+ < @) as above, the condition that there exists x; € C such that the divisor
X1 + -+ + x4 1s the specialization of a linear divisor with respect to a gJ; on
a nearby smooth curve, can be translated as follows: there exist sections oy €
lly|,oc € |lc| such that div(oy) > xp1 + -+ - + xp41 and div(oe) > x1 + ... + X5
the sections o¢ and oy being the limit linear series specializations of a single
section on a nearby smooth curve, they must also satisfy the compatibility relation
ordy(oy) + ordy(o¢c) = rs + r. Because the fixed points xi1,...,%41 € Y are
general, they impose independent conditions on /y which quickly leads to the
equalities ord,(cy) = aﬁY_ 1(y) = ay—1 +t — 1, hence ord,(c¢) = alrc_m(y). Thus
div(oc) > aic_t (M +x2+...+x, and up to multiplication by scalars, the sections
oc and oy are unique with this property. For each o¢ we have precisely d —
aic_m(y) — (t—1) = ay_ choices for x; € C. Therefore

(13) G- Sing = Y a1 (057 ) Otapan)

ap<-<ar

: (O‘éo,l,...,l) * O(rs—ap,..., rsfao)) .

For j = 0 the only sequence (oy)o<;<, allowed is the sequence (0,...,0) which
shows that Cy,; - %; =0 for all 3 < ¢t < r+ 1. Since by, has already been
determined, applying (11) we obtain the stated formulas for bg.,. Similarly, for
j =1 the only sequence allowed is (0, 1, ..., 1) and then Ciy -%; =N fort>2,
while C;- -m; = 0; this allows us to determine b;., for all . When j > 2 for each
sequence (aq)o</<, appearing in this sum, we have the inequalities rj = > /o oy <
toy—1 + (r+ 1 — 1)j, therefore o,y > (¢t — 1)j/t and then Cj, - m; > N(t— 1)j/t.
To obtain the desired bound on b;; we use repeatedly (11) and we can write

t

t 2 r

bi — by = <2> boa — (2bj+b* — 2b)c+ Y Gy - Siny.
=1

Using the previous inequality we can now check that b, > bj.. O

4.3. The divisor of n-fold points. We describe another way of constructing
effective divisors on M. Instead of looking at loci of points [C,x1,...,x,] €
My, for which the points xi,...,x, become linearly dependent in a suitable
embedding of C, we can consider the loci where the marked points give rise to
an n-fold point on a suitable model of C. Given [C] € M, and a linear series
l=(L,V) € G)(C), we say that the divisor I' := x1 + - -- + x,, is an n-fold point
for C and [ if dim (V N H(L ® Oc(-T))) > r.
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Definition 4.8. Fix integers g,r,d,n > 1 such that p(g,r,d)—r(n—1) = —1.
We define the locus of n-fold points in M, ,
‘ﬁfo[bg’d = {[C,x1,...,x,] € Mg, AL € Wi(C)
with dim HO(L(—x; — - -- — x,)) = r}.

We have computed the class of 9tfoldy, , in the case r = 1. The calculation is

along the same lines as that of the class of £in,; in Theorem 4.6:

THEOREM 4.9. Fix integers g > 1 and n > 0 such that d := (g +n)/2 € Z.
The class of the compactification of the divisor ‘ﬁfo[b;,’d of n-fold points on M, ,
is given by the formula:

—_—1 10n (g—2 nfg
o), = (g_2 (d_ 1) - g<d>> A
n—1[g—1\ < n [(g—2
i — T A5 6irr
+g—1<d—1>]§wj g—2<d—1>

tn*> —g+tgn—m) (g—1
-3 Ty ( J )Zéo:s_....

1>2 |S|=t

Proof. The coefficients of A, 0;, and ¢; (1 < j < n) in the expansion of

‘)’tfo[bi,’d equal the coefficients of A, ¢ and ) respectively in the expansion of

the divisor ‘J‘(folbz,’d(l) on ﬂg’l obtained from 91fol0

X1,...,X, € C coalesce. Clearly,

;’d by letting the points

Nfoldg 4(1) := {[C.x] € Myy: L € Wj(C) with h%(C,L(—n - x)) > 1},

and this is a “pointed” Brill-Noether divisor on M, in the sense of [EH4].

To compute the class of its compactification in M, ; once again we use [EH4],

Theorem 4.1 and write ‘tho[D;d(l) = p-BN+v- W, where the divisor classes BN

and W have the same significance as in the proof of Theorem 4.6. By applying
[Log], Theorem 4.5, we find that

3 6n g—2 and V_n(n—l)(n+1) g
H= G+ ig—\a—1 “gg—Dg+h\d)

The remaining coefficients of [J1fo [0;,51] are determined by intersecting the locus

‘)Tfo[bi,’d with the fibral test curves lying entirely in the boundary divisors of
Mg .. The calculation is straightforward and relies on Section 3 from [Log]. We
skip these details. O
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5. The Kodaira dimension of ﬂg,n. In this section we prove Theorem
1.10. We treat each case individually but for each g we only work out the case of
the minimal n = n(g) for which our methods show that ﬂg,n( ¢ 1s of general type.
From this it follows automatically that M, is of general type for all g > g(n)
(see [Log], Theorem 2.4).

Proof of Theorem 1.10. [MAL 16] and [Mmé]. We consider the divisor E)ﬁrcio
on My,s introduced in Theorem 4.2. We have seen that Wﬁ,o = 372+
3 j1=1 5¢j+30i—7 Z\s\:z 0.5 — - - - . We consider the maps 7;: MM, — ﬂ4,15
obtained by forgetting the marked point labeled by 1 < j < 16. Then there exists
a constant a > 0 such that

O 45 13
,Zl ()" Mreg) = o | =37\ + ,Zl 61+ 361 — - ;Z Sois — | -

The class of the Petri divisor on My being (up to a > 0 constant) 17A—26;,—- - -,
we obtain that me is big, being a positive combination of Z}fl (Wj)*(%io),
the pull-back of the Petri class, an ample class and boundary divisors. The same
argument works in the case of Mg 6 except that we start with the divisor Wé’o
on MQIS which is pulled back to Mm@ in all possible ways.

[MS,IS]- On MS,]Z we have the identity of divisor classes

1
Mrcsg = —13A+23 20+ 61, =53 bos— -
j=1 |S]=2

Pulling this class back to M5 in all possible ways by forgetting sets of three
marked points, we obtain that the class —66A+ % Y% ) +58;, — - - - is effective
on Ms 5. Using the Brill-Noether class 8\ — ;- — - - - on M, we get that K+ 1
is a big class.

[Mlg,g]. ‘We use our divisor m;: there is a positive constant « such that

9
afiny, = 290\ +24 " ¢ — 4568, —
=1

On the other hand the class of the multiple of the Petri divisor ﬁ?s,z4 on Mg
is equal to %)\ — 6y — 2]9:1 b;j6;, where b; > 1 for j > 1. It follows that we
can write K7 as a positive combination of multiples of Cinj,., w*(gipffw),

boundary divisors and an ample class on Mlg,g.
[ﬂ19,7] and [ﬂm,w]. In these cases we use the divisors of n-fold points,

Nfo [019,13 on Mig7 and Nfo [014’12 on M 4,19 respectively. Using Theorem 4.9
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we see that the canonical bundle of ﬂg,n can be written as a positive combination
of these divisors, the pull-back of the Brill-Noether divisor from Mg and M4
respectively, a suitable ample class and boundary divisors.

[MIS,IO]- We use a slightly different technique. On Mls,n we have the
divisor W{S,w of points [C,xi,...,x;1] such that x; + - - - +xy; appears in a
fibre of a g}3 on C. We push this divisor down to Mmo by letting two of the
points x; € C coalesce, that is, we define

| Jo o
E = T > (@) (Nfoldys 43 - boyinn),
=1

where 7;: M, 511 — M, s.10 forgets the marked point labeled by j. It is easy to
check using Theorem 4.9 that

396 2
E = 33\+ 116,
+ ;%

— -+ (‘use that (7m7)«(¢); - 60;.11) = (M)« (11 - Soj11) = 0) .

It turns out that Kﬂ.g,n is in the span of E, ﬂ*(ﬂiim), an ample class and
boundaries.

[Mzo,(,]. From [Log] Theorem 5.4, one knows that the class —/\+% f:l pi—
0 6iyr — -+ - is effective on Mpge. Next, if x;;: Maoe — Mz denotes the map
which associates to a 6-pointed curve of genus 20 a nodal curve of genus 21
obtained by identifying the marked points labeled i and j, we also get that the

class
. = 2459 1 &
D XEan0) = | T At 2 D U= G |
= 3777 34

with ¢ > 0, is also effective on Mzo,(,. The conclusion now follows easily.
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