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DIVISORS ONM, ,+1 AND THE MINIMAL RESOLUTION
CONJECTURE FOR POINTS ON CANONICAL CURVES

BY GAVRIL FARKAS, MIRCEA MUSTATA AND MIHNEA POPA

ABSTRACT. — We use geometrically defined divisors on moduli spaces of pointed curves to compute the
graded Betti numbers of general sets of points on any nonhyperelliptic canonically embedded curve. This
gives a positive answer to the Minimal Resolution Conjecture in the case of canonical curves. But we prove
that the conjecture fails on curves of large degree. These results are related to the existence of theta divisors
associated to certain stable vector bundles.
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RESUME. — Nous utilisons des diviseurs définis pour des conditions géométriques sur des espaces de
modules de courbes stables a points marqués pour calculer les nombres de Betti des ensembles généraux
de points sur une courbe non hyperelliptique arbitraire, canoniquement plongée. Cela donne une réponse
affirmative a la conjecture de résolution minimale dans le cas des courbes canoniques. Par ailleurs, nous
prouvons que la conjecture est fausse pour les courbes de grand degré. Ces résultats sont liés a I'existence
des diviseurs théta associés a certains fibrés vectoriels stables.
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Introduction

The Minimal Resolution Conjecture for points in projective space has attracted considerable
attention in recent years, starting with the original [24,25] and continuing most notably with [12,
4,30,20,8,9]. The purpose of this paper is to explain how a completely analogous problem can be
formulated for sets of points on arbitrary varieties embedded in projective space, and then study
in detail the case of curves. Similarly to the well-known analysis of syzygies of curves carried
out by Green and Lazarsfeld [14-16], we divide our work into a study of resolutions of points
on canonical curves and on curves of large degree. The central result of the paper states that
the Minimal Resolution Conjecture is true on any canonical curve. In contrast, it always fails
for curves embedded with large degree, although a weaker result, called the Ideal Generation
Conjecture, holds also in this case. These results turn out to have surprisingly deep connections
with the geometry of difference varieties in Jacobians, special divisors on moduli spaces of curves
with marked points, and moduli spaces of stable bundles.

Let X be a projective variety over an algebraically closed field, embedded by a (not necessarily
complete) linear series. We begin by formulating a general version of the Minimal Resolution
Conjecture (MRC), in analogy with the casel®f, predicting how the Betti numbers of a general
subset of points o in the given embedding are related to the Betti numberX dgself. More
precisely (cf. Theorem 1.2 below), for a large enough general set of goiats X, the Betti
diagram consisting of the graded Betti numbigrgI") is obtained from the Betti diagram of
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554 G. FARKAS, M. MUSTATA AND M. POPA

by adding two more nontrivial rows, at places well determined by the lendth BEcalling that
the Betti diagram has the Betti numligr; in the (j,¢)th position, and assuming that the two
extra rows are indexed by=r — 1 andi = r, for some integer, the MRC predicts that

bit1,,—1(I) - bir(I') =0,

i.e. at least one of the two Betti numbers on any “diagonal” is zero. As the difference
bi+1,-—1 — b; » can be computed exactly, this implies a precise knowledge of the Betti numbers
in these two rows. Summing up, knowing the Betti diagran efould be the same as knowing

the Betti diagram ofX. A subtle question is however to understand how the shape of the Betti
diagram ofX influences whether MRC is satisfied for points®nAn example illustrating this

is given at the end of Section 1.

The Minimal Resolution Conjecture has been extensively studied in the)tasé™. The
conjecture holds for. < 4 by results of Gaeta, Ballico and Geramita, and Walter (see [12], [4]
and [30], respectively). Moreover, Hirschowitz and Simpson proved in [20] that it holds if the
number of points is large enough with respechtaHowever, the conjecture does not hold in
general: it fails for every: > 6, n # 9 for almost./n/2 values of the number of points, by a
result of Eisenbud, Popescu, Schreyer and Walter (see [9]). We refer to [8] and [9] for a nice
introduction and an account of the present status of the problem in this case.

The main body of the paper is dedicated to a detailed study of MRC in the case of curves.
We will simply say that a curveatisfies MRGn a given embedding if MRC is satisfied by a
general set of pointB of any sufficiently large degree (for the precise numerical statements see
Section 1). We will also sometimes say that MRC holds for a line buhdfet holds for C in
the embedding given by.. Our main result says that MRC holds in the most significant case,
namely the case of canonically embedded nonhyperelliptic curves.

THEOREM. —If C'is a canonical curve, the@' satisfies MRC.

In contrast, under very mild assumptions on the genus, the MRC always fails in the case of
curves of large degree, at well-determined spots in the Betti diagram (cf. Section 2 for precise
details). The statemenf ,_; - b1 ,» =0, i.e. the case = 1, does hold though; this is precisely the
Ideal Generation Conjecture, saying that the minimal number of generathrg bf is as small
as possible.

THEOREM. — (a)If L is a very ample line bundle of degrde> 2¢, thenIGC holds forL.
(b) If g >4 and L is a line bundle of degreé > 2g + 16, then there exists a value ¢fsuch
thatC C PH(L) does not satisfy MRC far= [%J . The same holds if > 15 andd > 2g+5.

It is interesting to note that by the “periodicity” property of Betti diagrams of general points
on curves (see [26, 82]), the theorem above implies that on curves of high degree, MRC fails for
sets of points of arbitrarily large length. This provides a very different picture from the case of
projective space (cf. [20]), where asymptotically the situation is as nice as possible.

We explain the strategy involved in the proof of these results in some detail, as it appeals
to some new geometric techniques in the study of syzygy related questions. For simplicity we
assume here that' is a smooth curve embedded in projective space by means of a complete
linear series corresponding to a very ample line burddigput see Section 2 for more general
statements). A well-known geometric approach, developed by Green and Lazarsfeld in the study
of syzygies of curves (see [21] for a survey), is to find vector bundle statements equivalent to
the algebraic ones, via Koszul cohomology. This program can be carried out completely in the
case of MRC, and for curves we get a particularly clean statement. Assuni¢ tHatthe kernel
of the evaluation mapi®(L) ® Oc — L andQ, := M;. Then (cf. Corollary 1.8 below) MRC
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THE MINIMAL RESOLUTION CONJECTURE 555

holds for a collection ofy >> g general points o if and only if the following is true:
(%) h° (/\1 My ® 5) =0, foralliand¢ e Pic?~ L% (C) general

Condition(x) above is essentially the condition studied by Raynaud [29], related to the existence
of theta divisors for semistable vector bundles. In the particular situatig¢i 81, with L a line
bundle of large degree, it has been considered in [28] in order to produce base points for the
determinant linear series on the moduli spaSé&-(r) of semistable bundles of rankand
trivial determinant. A similar approach shows here the failure of conditigrfand so of MRC)
fori= [%]. On the other hand, the fact that IGC holds is a rather elementary application of the
Base Point Free Pencil Trick [3, 11l §3].

The case of canonical curves is substantially more involved, but in the end one is rewarded
with a positive answer. As above, it turns out that MRC is equivalent to the vanishing:

R (/\Z Q® 5) =0, foralliand¢ e Pic?~*~!(C) general
where( is the dual of the bundl@/ defined by the evaluation sequence:
0—>JV[—>H0(wc)®Oc—>wc—>0.

As the slope ot(\i Q is 2i € Z, this is in turn equivalent to the fact thAti Q@ has a theta divisor
6/\1-Q € Pic?”#~1(C). On a fixed curve, if indeed a divisc@/\iQ will be identified as being

precisely the difference variety, ; 1 — C; C Pic?~*~*(C) (cf. [3, Ch.V.D]), whereC,, is the

nth symmetric product of’. This is achieved via a filtration argument and a cohomology class
calculation similar to the classical Poincaré theorem (cf. Proposition 3.6). A priori though, on an
arbitrary curve the nonvanishing loc{is | 2°(\" Q ® ¢) # 0} may be the whol®ic? >~ (C),

in which case this identification is meaningless. We overcome this problem by working with
all curves at once, that is by setting up a similar universal construction on the moduli space of
curves with marked pointd1, ... Here we slightly oversimplify the exposition in order to
present the main idea, but for the precise technical details see Section 3. We essentially consider
the “universal nonvanishing locus” i g4 1:

Z:{(Caxla---axg—iayla---ayi-ﬁ-l)|h0(/\ QC®0($1+"'+$g_i—y1—---

- l/z‘+1)) 3& 0}-

The underlying idea is that the difference line bundigs(z1 + -+ zg—; —y1 — - — Yit1)
in fact cover the whol@®ic? %"~ *(C) (i.e. Cy_; — Ciy1 = Pic?”*71(()), and so for any given
curveC, Z|¢ is precisely the nonvanishing locus described above. The advantage of writing it
in this form is that we are led to performing a computation\dt . rather than on a universal
Picard, where for example one does not have a canonical choice of generators for the Picard
group. A “deformation to hyperelliptic curves” argument easily implies that MRC holds for
general canonical curves, gois certainly a divisor. We then show thatis the degeneracy locus
of a morphism of vector bundles of the same rank and compute its class using a Grothendieck—
Riemann—Roch argument (cf. Proposition 3.11).

On the other hand, one can define an (a priori different) diviSon M, ;41 which is a
global analogue of the preimage 6f_,_1 — C; in C9~% x C*! via the difference map. It is
convenient to se® as the locus of curves with marked poifits, z1,...,24—i, Y1, -, Yit1)
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556 G. FARKAS, M. MUSTATA AND M. POPA

having ag; which containszy,...,z,—; in a fiber andy,...,y;+1 in a different fiber. An
equivalent formulation of the discussion above is tha€ Z, and in order for MRC to hold

for all canonical curves one should have precisBly= Z. As we show thatD is reduced (cf.
Proposition 4.2), it suffices then to prove that the clas®afoincides with that ofZ. To this

end we consider the closure &f in the compactificationM,, ,1, where the corresponding
boundary condition is defined by means of limit linear series. The computation of the cl@ss of

via this closure is essentially independent of the rest of the paper. It relies on degeneration and
enumerative techniques in the spirit of [19] and [6].

The results of both this and the computation of the clasd afe summarized in the following
theorem. For the statement, we recall tRat(M, ,,)q is generated by the classof the Hodge
bundle and the classes, 1 < j < n, wherey; := cl(p;fw), with w the relative dualizing sheaf
on the universal curvé, — M, andp, : M, ,, — C, the projection onto thgth factor.

THEOREM. — The divisorsZ and D defined above have the same clas®in(M, 11)o.

namely
-1 -3 -2 -2
() o)) e ()
) t—1 ) t—1 ‘
whereW, = 32971 9p; and ¥, = Y97 . ;. In particular D = 2.

As mentioned above, this implies thﬁf Q always has a theta divisor, for dJlso equivalently
that MRC holds for an arbitrary canonical curve. We record the more precise identification of this
theta divisor, which now follows in general.

COROLLARY. —For any nonhyperelliptic curve’, @NQ =Cy—i—1 —Ci.

In this particular form, our result answers positively a conjecture of R. Lazarsfeld. It is worth
mentioning that it also answers negatively a question that was raised in connection with [28],
namely if \" Q provide base points for determinant linear series on appropriate moduli spaces
of vector bundles.

The paper is structured as follows. In Section 1 we give some equivalent formulations of the
Minimal Resolution Conjecture and we describe the vector bundle setup used in the rest of the
paper. In Section 2 we treat the case of curves embedded with large degree, proving IGC and
showing that MRC fails. Section 3 is devoted to the main result, namely the proof of MRC
for canonical curves, and here is where we look at the relationship with difference varieties and
moduli spaces of curves with marked points. The divisor class computatityip, 1, on which
part of the proof relies, is carried out in Section 4 by means of limit linear series.

1. Several formulations of the Minimal Resolution Conjecture
1.1. Notationsand conventions

We work over an algebraically closed field which, unless explicity mentioned other-
wise, has arbitrary characteristic. LBt be a vector space ovérwith dim;V =n + 1 and
S =Sym(V) ~ k[X,, ..., X,] the homogeneous coordinate ring of the corresponding projective
spacePV ~ P".

For a finitely generated gradédmoduleN, theBetti numbers; ;(N) of N are defined from
the minimal free resolutio, of N by

F=@s(i— ).

JEL
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THE MINIMAL RESOLUTION CONJECTURE 557

TheBetti diagramof N has in the(j, 7)th position the Betti numbel; ;(N). The regularity
reg(NN) of N # 0 can be defined as the index of the last nontrivial row in the Betti diagraiv of
(see [5, 20.5] for the connection with the cohomological definition).

We will use the computation of Betti numbers via Koszul cohomoldgy:(N) is the
dimension overk; of the cohomology of the following piece of the Koszul complex:

/\i+1 V®N;_1 — /\iV®Nj - /\i_1 V®Nj

(see [13] for detalils).

For an arbitrary subschem#& C P, we denote byl C S its saturated ideal and let
Sz = S/1z. We denote byP, and Hz the Hilbert polynomial and Hilbert function of,
respectively. The regularitseg(Z) of Z is defined to be the regularity dt;, if Z # P", and1
otherwise. Notice that with this convention, in the Betti diagrar® pivhich by definition is the
Betti diagram ofSz, the last nontrivial row is always indexed byg(Z) — 1.

For a projective varietyX, a line bundleL on X, and a linear serie¥ C H°(L) which
generated., we denote byl/y, the vector bundle which is the kernel of the evaluation map

0= My —Ve0x 3 L—0.

WhenV = HY(L) we use the notatiod/;, := My . If C is a smooth curve of genus> 1,
andwc is the canonical line bundle, thévi- denotes the vector bundl,,,,. The dual vector
bundles will be denoted b9+, @ andQ ¢, respectively. Whenever there is no risk of confusion,
we will simply write M and@), instead ofM ¢ andQ¢.

1.2. The Minimal Resolution Conjecturefor points on embedded varieties

In this sectionX C PV ~ P" is a fixed irreducible projective variety of positive dimension.
We study the Betti numbers of a general setygbointsI" C X. Since the Betti numbers are
upper semicontinuous functions, for every positive integethere is an open subsét, of
XY\ U,z {7 2p =24} such that for all andj, b; ;(I") takes its minimum value fof' € U,,.
Notice that as the regularity is bounded in terms pive are concerned with finitely many Betti
numbers. From now o, generalmeand” € U,,.

It is easy to determine the Hilbert function of a general set of pdiritsterms of the Hilbert
function of X (see [26]). We have the following:

PropPosITION 1.1. —If " C X is a general set of points, then
Hrp(t) :min{HX(t),v}.

To determine the Betti numbers of a general set of pdinisa much more subtle problem.
If v is large enough, then the Betti diagramlbfooks as follows: in the upper part we have the
Betti diagram ofX and there are two extra nontrivial rows at the bottom. Moreover, the formula
in Proposition 1.1 gives an expression for the differences of the Betti numbers in these last two
rows. We record the formal statement in the following theorem and for the proof we refer to [26].

THEOREM 1.2. —Assume thal’ C X is a general set ofy points, withPx(r — 1) < v <
Px (r) for somer > m + 1, wherem =reg X.
(i) Foreveryiandj <r—2,we havey, ;(T') =b; ;(X).
(i) b;;(I')=0, forj > r + 1 and there is an such that, ,_, (I") # 0.
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558 G. FARKAS, M. MUSTATA AND M. POPA

(iii) Foreveryj >m, we have

bij(I) =bi—1j41(Ir/Ix) =bi-1,j41 (@ H(Ir/x (U)) :

1>0
(iv) If d=dim X, then for every > 0, we haveh; 11 ,,_1(T) — b, -(I") = Qi (), where

d—1

=Y v (" e - (1) 6= pee- ).

=0 ¢

We will focus our attention on the Betti numbers in the bottom two rows in the Betti
diagram ofT". The equation in Theorem 1.2(iv) gives lower bounds for these numbers, namely

bi+1,T—1(P) P max{Qi,r(W)’ 0} andbi,r(r) > max{_Qi,r(’y)a 0}

DerFINITION 1.3.—In analogy with the casE = P™ (see [24,25]), we say that ti\dinimal
Resolution Conjecturd¢to which we refer from now on as MRC) holds for a fixed value
of v as above if for everyi and every general sét, b, ,_1(I') = max{Q;(y),0} and
b; (') = max{—Q; -(7),0}. Equivalently, it says that

bi+17,~_1(r) : bz,r(r) =0 foralli.

This conjecture has been extensively studied in the gaseP™, L = Op~(1). It is known
to hold for small values of (n = 2, 3 or 4) and for large values of, depending om, but not
in general. In fact, it has been shown that for every 6, n # 9, MRC fails for almost,/n/2
values ofy (see [9], where one can find also a detailed account of the problem).

Note that the assertion in MRC holds obviously foe 0. The first nontrivial casé =1 is
equivalent by Theorem 1.2 to saying that the minimal number of generatdrg bt is as small
as possible. This suggests the following:

DEFINITION 1.4.—We say that thieleal Generation Conjectur@GC, for short) holds fory
as above if for a general set of poifitsC X of cardinality~y, we haveb, .1 (T') - b1 (I') = 0.

Examplel1.5 [26]. - MRC holds for everyX when~ = Px(r — 1), since in this case
b; »(I') = 0 for everyi. Similarly, MRC holds for everyX when~y = Px(r) — 1, since in this
caseby 1 =1andb; ,_1(y)=0fori>2.

We derive now a cohomological interpretation of MRC. From now on we assumeXthat
is nondegenerate, so that we haveC H°(Ox(1)). Using a standard Koszul cohomology
argument, we can express the Betti numbers in the last two rows of the Betti diagfamsof
follows.

PROPOSITION 1.6. — With the above notation, we have in general for eviegy0
biv1,r—1(T) =R’ (/\ My ®IF/X(T))7

bir (D) = ' ( N My @ Tr x ).

Proof. -We compute the Betti numbers via Koszul cohomology, using the formula in
Theorem 1.2(iii).
Consider the complex:

AV e (T x () LN Ve B T x(r+ 1) 5NV e H (Tr)x (r +2)).
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THE MINIMAL RESOLUTION CONJECTURE 559
SinceH°(ZIr/x (r — 1)) =0, it follows that
dimy (Ker f) =bjt1,—1(") and dimg(Kerh/Im f) = b, ().

The exact sequence
0—-My -Ve0x —>0x(1)—0

induces long exact sequences

() 0= A'My— A\ Veox— N\ M e0x1)—o0.

By tensoring withZ, x () and taking global sections, we get the exact sequence

HO(/\ My @ Trx (1)) = AV H Zrc(m) SN Ve H Tk (r+1).

This proves the first assertion in the proposition.
We have a similar exact sequence:

HO(/\ifle ®IF/X(T+1))

N /\H V& H (Ir/x(r+1)) & /\H)V(gu.r—.ro(zp/x(wr 2)).

Thereforeb; ,-(T') is the dimension ovel of the cokernel of

g:/\iV®HO(Zr/X(T)) —>HO(/\i_1 My ®IF/X(T+1)).

Using again the exact sequeng, by tensoring withZr, x () and taking a suitable part of
the long exact sequence, we get:

AV & HO(Tr x (1)) — H° (/\H My @ Trx(r+1))

—>H1(/\ Mv®Ip/X ) /\V@H (IF/X( ))

Sincereg’ < r + 1, we havereg I, x <r + 1 and therefore ' (Zr,x (r)) = 0. From the
above exact sequence we see tHaker g ~ H'(A\' My ® I, x (r)), which proves the second
assertion of the proposition.o

Remark1.7. — The higher cohomology grouﬂ?(/\i My ®Ir,x(r)), p = 2, always vanish.
Indeed, using the exact sequences in the proof of the proposition, we get

hP (/\1 My ®IF/X(T‘)) =h' (/\z;zurl My ®@Irx(r+p— 1)) =bipi1rip1(T)=0.

Therefore we havé); ,.(v) = x(\' Mv ® ZIr,x (r)) and MRC can be interpreted as saying that
for general’, the cohomology of\" My ® Zr, x (r) is supported in cohomological degree either
zero or one.

In the case of a curv€', MRC can be reformulated using Proposition 1.6 in terms of general
line bundles orC'. We will denote by| x| and[z] the integers defined by | < =z < |z] + 1 and
[z] —1<z< [z].
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COROLLARY 1.8.-Suppose tha’ C PV is a nondegenerate, integral curve of arithmetic
genusg and degreel. We consider the following two statements _
(i) For everyi and for a general line bundle € Pic’ (C), wherej =g — 1 + [%1, we have
HY N\ My ®¢)=0. ‘ .
(i) For everyi and for a general line bundle € Pic’ (C), wherej =g — 1 + L%J, we have
H(\' My ®¢€)=0.
Then MRC holds fo€' for everyy > max{g, Pc(reg X)} if and only if both(i) and (ii) are
true. Moreover, ifC' is locally Gorenstein, the(i) and (ii) are equivalent.

Proof. —If + > ¢, then for a general sdt of v points, Zr /¢ is a general line bundle on
C of degree—v. Since in this cas&r,(r) is a general line bundle of degrge= dr — v
andd(r — 1) +1—g <~y <dr+1-— g, Proposition 1.6 says that MRC holds for every
~v 2 max{g, Pc(reg C)} if and only if for everyj such thaty — 1 < j <d+ ¢ — 1 and for a
general line bundl¢’ € Pic? (C), eitherHO(\' My ® &) =0 or HY(\' My ® £') = 0.

Sincedim C = 1, we have

bisnr @) =i, 0 =a(" ) = (= petr-1) (7).

It follows immediately thab; 1 ,_1(I') — b, -(T') > 0ifand only if j > g — 1 + di/n.

The first statement of the corollary follows now from the fact thakliis a vector bundle
on a curve and” is a point, thenH°(E) = 0 implies H*(E ® O(—P)) =0 and H*(E) =0
im‘pliesH1 (E® O(P)) =0. The last statement follows from Serre duality and the isomorphism
NQv=N\"My®0c(1). O

Remark1.9. — The corresponding assertion for IGC says tKatsatisfies IGC for every
v = max{g, Pc(reg C)} if and only if both (i) and (ii) are true foi = 1. Note that if X is
locally Gorenstein, then by Serre duality condition (ii) et 1 is equivalent to condition (i) for
t=mn—1.

Remark1.10. — IfC is a locally Gorenstein integral curve such thah € Z, then in order to
check MRC for ally > max{g, Pc(reg C)}, it is enough to check condition (i) in Corollary 1.8
only fori < n/2. Indeed, using Serre duality and Riemann—Roch, we see that the conditions for
i andn — ¢ are equivalent.

In light of Corollary 1.8, we make the following:

DEFINITION 1.11.—IfC C PV is a nondegenerate integral curve of arithmetic genaisd
regularitym, we say thatC satisfies MRC if a general set ofpoints onC satisfies MRC for
everyy > max{g, Po(m)}. If L is a very ample line bundle on a curgeas before, we say that
L satisfies MRC ifC ¢ P HY(L) satisfies MRC. Analogous definitions are made for IGC.

Example1.12 Rational quintics inP3). — We illustrate the above discussion in the case of
smooth rational quintic curves iR3. We consider two explicit examples, the first when the curve
lies on a (smooth) quadric and the second when it does notXLie¢ given parametrically by
(u,v) € Pt — (u®,utv,uv*,v®) € P3, so that it lies on the quadri¥, X3 = X; X». The Betti
diagram ofX is
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and ifT" C X is a set o28 points, then the Betti diagram ofis

o g A W N+ O ‘

As bz 5(I') = 1 andby 6(T") = 2, we see that

1———
—1-—

-462

-341
--22

MRC is not satisfied By for this number of points.

Let nowY be the curve given parametrically by

(u,v) € P! — (u® +uv?

4

.
,utY — u2v3,uv4,v‘)) eP3.

In this caseY” does not lie on a quadric, and in fact, its Betti diagram is given by

o]
1
2
3

If IV C Y is a set o228 points, then the Bett

1———

_43-
-121

i diagram of is

1———

43—
-121

_34-—

o o A W N+ O ‘

which shows that MRC is satisfied f&t and

These two examples show the possible
quintics inP3. The geometric condition of

--12

this number of points.

behavior with respect to the MRC for smooth rational
lying on a quadric translates into a condition on the

splitting type of My, = Qps(1)|x. More precisely, it is proved in [10] that ¥ c P?3 is a smooth
rational quintic curve, theX lies on a quadric if and only if we have

QPS (1) |X ~ Op
(the other possibility, which is satisfied by

Ops(1)|x ~ Ops

1(=3) @ Op1(—1)%2
a general such quintic, is that

(—1) @ Op1(-2)%?).

Corollary 1.8 explains therefore the behaviour with respect to MRC in the above examples.
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2. Curvesof large degreeand a counterexampleto MRC

In this section we assume th@atis a smooth projective curve of genggandL is a very ample
line bundle onC'. Our aim is to investigate whethér satisfies MRC, or at least IGC, for every
v = g, in the embedding given by the complete linear sefigsAs before,m will denote the
regularity ofC.

Example2.1. - If g =0 or 1, thenC satisfies MRC for ally > P~(m) in every embedding
given by a complete linear series (see [26, Proposition 3.1]).

In higher genus we will concentrate on the study of MRC for canonical curves and curves
embedded with high degree, in direct analogy with the syzygy questions of Green—Lazarsfeld
(cf. [14-16]). The main conclusion of this section will be that, while IGC is satisfied in both
situations, the high-degree embeddings always fail to satisfy MRC at a well-specified spot in the
Betti diagram. This is in contrast with our main result, proved in Section 3, that MRC always
holds for canonical curves, and the arguments involved here provide an introduction to that
section. The common theme of the proofs is the vector bundle interpretation of MRC described
in Section 1.

2.1. Review of filtrationsfor Qr and Q [21]

Here we recall a basic property of the vector bundlgs which will be essential for our
arguments. Lef. be a very ample line bundle aii of degreed, and recall from Section 1 that
Q1 is given by the defining sequence

0—L"'—H(L)*®0Oc— Qr — 0.

Assume first that is non-special and, ..., x4 are the points of a general hyperplane section
of C CPHY(L). One shows (see e.g. [21, Section 1.4]) that there exists an exact sequence

Q) 0— @ Oc(zi) = Qr — Oc(xg—g + -+ xq) — 0.
ie{l,...,d—g—1}

On the other hand, assuming th@tis nonhyperelliptic and. = wc, if z1,...,224—2 are the
points of a general hyperplane section, the analogous sequence reads:

2) 0~ P Oclri) > Q—0c(wg 1+ +x252) —0.
i€{l,...,g—2}

We start by looking at the case of curves embedded with large degree. The main results are
summarized in the following:

THEOREM 2.2.— (a)lif L is a very ample line bundle of degrée= 2¢g, then/GC holds forL.
(b) If g > 4 and L is a line bundle of degreé > 2¢g + 10, then there exists a value gfsuch
thatC C PH(L) does not satisfy MRC far= [ £EL |. The same holds if > 14 andd > 2g+5.

Proof. —(a) Let L be a very ample line bundle of degrée= 2g. By Corollary 1.8 and Serre
duality, it is easy to see that IGC holds fbrif:

(i) K1 (Qr ®n)=0forn e Pic??(C) general, and

(i) h°(Qr ®n)=0forn e Pic!*(C) general.
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Condition (i) is a simple consequence of the filtration (1). More precisely,,if. ., z, are the
points of a general hyperplane sectiondf- P H°(L), from the exact sequence

0— @ OC(I'L)—>QL—>OC(Idfg+"'+CCd)—>O
i€{l,...,d—g—1}
we conclude that it would be enough to prove:

W (n(z:)) =0 and B (5(zg_g+ -+ 24)) =0

for € Pic?~?(C) general. Now for everye {1,...,d — g — 1}, n(x;) is a general line bundle
of degregy — 1, soh!(n(x;)) = 0. On the other handeg n(zq_, + - - +z4) = 29— 1, So clearly
hr*(n(za—g+ - +24)) =0.

For condition (ii) one needs a different argument. By twisting the defining sequeidge: of

0L 'S HY(L)*®0Oc— QL —0
by € Pic?*(C) general and taking cohomology, we see that (ii) holds if and only if the map
o :H' (L' ®n) — H(L)*® H'(n)
is injective, or dually if and only if the cup-product map
a:H(L)@ H(we®@n™') > H(Lowc®n ")

is surjective. We make the following:
CLAIM . —|we ® n~ 1| is a base point free pencil.

Assuming this for the time being, one can apply the Base Point Free Pencil Trick (see [3,
[11 83]) to conclude that

Kera:HO(L@)wEl ®77).

ButL®wg' ®7 is ageneral line bundle of degrée g— 1> g—1and soh! (L@wy' @n) = 0.
By Riemann—Roch this mean8(L @ w;' ®@7) = d — 2g. On the other hant®(L) =d — g+ 1,
h(we ®n~')=2andh’(L @ we @ n~') = d + 2, soa must be surjective.

We are only left with proving the claim. Sinegc Pic? 3(C) is generalh°(n) = 0, and so
we easily get:

W (ween™)=hl(n=g-1-(g-3)=2.
Also, for everyp € C, n(p) € Pic?~%(C) is general, hence still noneffective. Thus:
W (we@n ' (=p) =h'(np) =g-1-(9-2)=1.
This implies thafwe ® 71| is base point free.

(b) Here we follow an argument in [28] leading to the required nonvanishing statement. First
note that it is clear from (1) that for evefywith 1 <i < d — g — 1 there is an inclusion

Oc(x1 4+ +x;) ‘—>/\ZQL7
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wherexq, ..., x; are general points ofi. This immediately implies that

h? (/\Z QL ®O¢c(E; — Dz)) #0,

whereE; and D; are general effective divisors ari of degreei. On the other hand we use the
fact (see e.g. [3, Ex. V. D]) that every line bundle Pic’(C) can be written as a difference

§=0c(Blap) = Do),

which means that

41
[

: QL® 5) £0, V¢ePic’(C) general

ho(/\

Now by Serre duality:
HO(/\iQL ®§) >t (/\i]\/[L ® we ®§_1)

so that Corollary 1.8 easily implies thé&t does not satisfy MRC foi = L%lj as long as

2g—2>¢g—1+ d”fg. A simple computation gives then the stated conclusian.

Remark2.3. — Motivation for the argument in (b) above was quite surprisingly provided by
the study [28] of the base locus of the determinant linear series on the modulis$pade) of
semistable bundles of ramland trivial determinant on a curvg. In fact this argument produces
explicit base points for the determinant linear series under appropriate numerical conditions.

*
)

Remark2.4. — The technique in Theorem 2.2(b) can be extended to produce examples of
higher dimensional varieties for which appropriate choicesydbrce the failure of MRC
for general sets ofy points. More precisely, the varieties in question are projective bundles
PE — C over a curveC, associated to very ample vector bundlesn C of arbitrary rank
and large degree, containing sub-line bundles of large degree. Using the interpretation given in
Proposition 1.6, the problem is reduced to a cohomological question about the exterior powers
N\' Mg, whereMp, is defined analogously as the kernel of the evaluation map

0— Mg — H°(E)® Ox — E — 0.

This question is then treated essentially as above, and we do not enter into details. Unfortunately
once a bundlé” of higher rank is fixed, this technique does not seem to produce couterexamples
for arbitrarily large values ofy, as in the case of line bundles. Such examples would be very
interesting, in light of the asymptotically nice behavior of general poin®'ir(cf. [20]).

Finally we turn to the case of canonical curves with the goal of providing an introduction
to the main result in Section 3. Lét be a nonhyperelliptic curve of genys V = H°(w¢)
and C — PV ~ P9~! the canonical embedding. We note here that an argument similar to
Theorem 2.2(a) immediately implies IGC fé¥. This will be later subsumed in the general
Theorem 3.1.

ProPOSITION 2.5. — IGC holds for the canonical curv€.

Proof. —The argument is similar (and in fact simpler) to the proof of (ii) in Theorem 2.2(a). In
this case, again by interpreting Proposition 1.6 (see Remark 1.9) IGC holds if and only if

H(Q®&) =0 for¢ePic? 3(C) general
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This is in turn equivalent to the surjectivity of the multiplication map:
H(we)®@ H(we® &) = HO(wE? @671,

which is again a quick application of the Base Point Free Pencil Trick.
The geometric picture in the present case of canonical curves can be described a little more
precisely. In fact, fog € Pic?~3(C'), we have

MQ®E)=g-1,

whereu(E) := deg(FE)/rk(E) denotes in general theopeof the vector bundlé’. By standard
determinantal results, the subset

Oq = {¢ | (Q®¢&) #0} CPic!*(C)

is either a divisor or the whole variety. The statement of IGC is then equivalent to saying that
O is indeed a divisor iPic?3(C) (one says thaf) has a theta divisgr A simple filtration
argument based on the sequence (3) above shows that in fact

GQ:Cq—Q —-C:= {OC(pl ++pq—2_q) |p17'-'7pg—27qec}a

which has already been observed by Paranjape and Ramanan in [27]. A generalization of this
observation to the higher exterior poweks$ Q will be the starting point for our approach to
proving MRC for canonical curves in what follows.

3. MRC for canonical curves

In this sectionC will be a canonical curve, i.e. a smooth curve of gepesnbedded iP9~!
by the canonical linear serigs¢| (in particularC' is not hyperelliptic). Our goal is to prove the
following:

THEOREM 3.1. —If C is a canonical curve, the@' satisfies MRC.

Remark3.2. — In fact, sinc&” is canonically embedded, its regularityris= 4, and agy > 3
we always havePo(m) = 7(g — 1) > g. Thus the statement means that MRC holds for every
v = Pc(m).

The general condition required for a curve to satisfy MRC which was stated in Corollary 1.8
(see also Remark 1.10) takes a particularly clean form in the case of canonical embeddings. We
restate it for further use.

LEmmMA 3.3.—Let C' be a canonical curve. The@' satisfies MRC if and only if, for all
1<i < %41 we have

h° (/\Z M® 77) =ht (/\Z M ® n) =0, fornePic!T*1(C) general

or equivalently
(%) RO (/\l Q® 5) =ht (/\Z Q® 5) =0, for¢ePic?"%71(C) general
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Remark3.4. — Note thaf:(Q) = 2, sou(A\’ Q) = 2i € Z. This means that the conditigr)

in Lemma 3.3 is equivalent to saying that Q has a theta divisor (ilvic? =%~ (C)), which we
denote@NQ. In other words, the set defined by

O i = {E€PITH () [ 10 (/\i Qug)#0}

with the scheme structure of a degeneracy locus of a map of vector bundles of the same rank is
an actual divisor as expected (cf. [3, Il §4]).

3.1. Hyperédliptic curves

Note that the statemeri¥) in Lemma 3.3 makes sense even for hyperelliptic curves. Again
Q is the dual ofM, whereM is the kernel of the evaluation map for the canonical line bundle.
Therefore we will say slightly abusively that MRC is satisfied for some smooth curve of genus
g = 2if (x) is satisfied for al, 1 <i < (g — 1)/2. In fact, the hyperelliptic case is the only one
for which we can give a direct argument.

PrRopPOSITION 3.5. — MRC holds for hyperelliptic curves.

Proof. —~We show that for every, h°(\' Q @ £) =0, if € € Pic?~2~1(C) is general. Since
C is hyperelliptic, we have a degree two morphigmC — P! and if L = f*(Op1(1)), then
we = L9~1. Therefore the morphisnfi: C — P91 defined byw, is the composition of the
Veronese embeddirg! — P9~ with f. Note that we hava/ = f*(Qp,—1(1)).

Since onP! we have the exact sequence:

0— Op1 (—1)°6~Y = H*(Op1(g— 1)) ® Op1 — Op1(g— 1) =0,

we getM ~ (L~1)®=1) Therefore for every, we have
A Q= (L2,

Now if £ € Pic?~?"~1(C) is general, the ® L' is a general line bundle of degrge- 1 and so

AN Q®E=0. O
3.2. Thetadivisorsand differencevarietiesfor afixed curve

We noted above that MRC is satisfied f@iif and only if @NQ is a divisor. We now identify
precisely what the divisor should be, assuming that this happens. (At the end of the day this will
hold for all canonical curves.) Recall that by general theory, whenever a di@i§\or@ belongs

to the linear serief 9;1 )©|, where we slightly abusively denote Bya certain theta divisor on
Pic?~?""1(C) (more precisel® v, whereN is a(?; " )th root ofdet(A’ Q)).
From now on we always assume that we are in this situation. The Picard Rwiéty" ' (C)
contains alifference subvariety',_;_; — C; defined as the image of the difference map
¢:Cy_i—1 x C; — Pic?#71(0)
(14 +zgit,y1++y) = Oc(@r+ -+ Tgim1 —y1— - — Yi).

The geometry of the difference varieties has interesting links with the geometry of the curve [22]
and [3] (see below). The key observation is that our theta divisor is nothing else but the difference
variety above.
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PROPOSITION 3.6. —For every smooth curv€' of genugy, we have
Cgfifl - Ol g @AwQ

Moreover, ifC is nonhyperelliptic anGBNQ is a divisor, then the above inclusion is an equality.

We start with a few properties of the difference varieties, which for instance easily imply that
Cy—i—1 — C; is adivisor. More generally, we study the difference vari&ty- C, a > b, defined
analogously. Note that this study is suggested in a series of exercises in [3, Ch.V.D and Ch.VI.A]
in the casex = b, but the formula in V.D-3 there giving the cohomology classyf— C,, is
unfortunately incorrect, as we first learned from R. Lazarsfeld. The results we need are collected
in the following:

PROPOSITION 3.7. — (a)Assume that < b < a < ‘7%1 Then the difference map
¢:Cy x Cy — Cy — Cy C Pic®0(0O)

is birational onto its image i€ is nonhyperelliptic. Whe@' is hyperelliptic,¢ has degreé‘g)2b
onto its image.
(b) If C is nonhyperelliptic, the cohomology class;, of C, — Cj, in Pic®~*(C) is given by

Cap = <a1—b> og*a*b7

whered is the class of a theta divisor.
Assuming this, the particular cage= g — i — 1 andb = i quickly implies the main result.

Proof of Proposition 3.6. +rom Proposition 3.7(b) we see thatifis nonhyperelliptic, then
the class of”,_;,_; — C; is given by:

—1
Cg—i—1,i = <g i >9-

On the other hand, @NQ is associated to the vector bungé @, if it is a divisor, then its

cohomology class isgjl )6 (recall that@NQ has the same class a%;l )®). As in this case
both 9/\%9 andCy_,_1 — C; are divisors, in order to finish the proof of the proposition it is

enough to prove the first statement.
To this end, we follow almost verbatim the argumentin Theorem 2.2(b). Namely, the filtration
(2) in Section 2 implies that for every> 1 there is an inclusion:

Oc(z1 +"'+$z‘);’/\lQa
wherezxq, ..., x; are general points ofi. This means that
(A Q@ Oc(Eyi-1—Di)) #0

for all general effective divisorg,_;_; of degregy — ¢ — 1 andD; of degree, which gives the
desired inclusion. O
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We are left with proving Proposition 3.7. This follows by more or less standard arguments in
the study of Abel maps and Poincaré formulas for conomology classes of images of symmetric
products.

Proof of Proposition 3.7. {a) This is certainly well known (cf. [3, Ch.V.D]), and we do not
reproduce the proof here.
(b) Assume now that’ is nonhyperelliptic, so that

(b:CaXCbHCa—Cb

is birational onto its image. For simplicity we will map everything to the Jacobia®, @o fix a
pointpy € C and consider the commutative diagram:

Ca+b

/ \
—(a=b)po

CaXCbLCa_CbHJ(C)

whereC?*? is the (a + b)th cartesian product of the curve and the maps are either previously
defined or obvious. We will in general denote pY| the fundamental class of the compact
variety X. Sincey clearly has degree! - b!, and since is birational by (a), we have:

Qi [C“+b] =al!-bl-cqp.

This means that it is in fact enough to prove thafC**+*] = (a + b)! - 972, and note that
(a+0b)!-§9-2=" is the same as the clags[C**?], whereu is the usual Abel map:
u:C — J(0)
(21, Zags) = Oc(z1+ -+ + Tags — (a+b)po).

The last statement is known as Poincaré’s formula (see e.g. [3, | 85]). We are now done by
the following lemma, which essentially says that adding or subtracting points is the same when
computing cohomology classesn

LEMMA 3.8.-Letu,a:Ct* — J(C) defined by
w(x,. .. Tapy) = Oc(x1+ -+ Zayy — (a+b)po)
and
a1,y Tatd) :(’)c(x1 + Ty — Tgg1 —— Tagb — (a—b)po).

Thenu, [CoH] = o, [CoH] € H29=2=0)(J(C),Z).

Proof. —For simplicity, in this proof only, we will use additive divisor notation, although we
actually mean the associated line bundles. Consider the auxiliary maps:

ug: Ot — J(C)“+b,

(Ila---,Iaer) - (5171 —DPoy--sTa+d —po),
ap:Co — J(0)* Y,
(‘le' '7xa+b) - (xl _pOa' oy Xq _p07p0 _$a+1,.. '7p0 _xa+b)
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and the addition map:
a:J(C)*r = J(C),

(517---a§a+b)_>§1 +"'+§a+b-
Then one has:

u=aug and a=aag=apuug,
wherey is the isomorphism
12 J(C)*F = J(C)*+?,
(&5 atn) = (155 8ar —€atts o, —Eatb)-

Now the statement follows from the more general fact thainduces an isomorphism on
cohomology. This is in turn a simple consequence of the fact that the involutien-x induces
the identity onH'(J(C),Z). O

Remark3.9. — The equality in Proposition 3.6 holds set-theoretically also for hyperelliptic
curves. Indeed, we have the inclusiofp_,—1 — C; C ®NQ’ and we have seen in the proof of
Proposition 3.5 tha@NQ is irreducible (with the reduced structure, it is just a translate of the
usual theta divisor).

3.3. General canonical curves

Since we have seen that MRC holds for hyperelliptic curves, a standard argument shows that
it holds for general canonical curves. In fact, our previous result about the expected form of the
theta divisors@NQ allows us to say something more precise about the set of curvésin
which might not satisfy MRC.

PROPOSITION 3.10. —For everyi, the set of curve$[C] € My | O pi, = Pic/ 271 (0)}
is either empty or has pure codimension one. In particular, the same assertion is true for the set
of curves inM,, which do not satisfy MRC.

Proof. —As the arguments involved are standard we will just sketch the proof.

Start by considering, for a giveih> 2g + 1, the Hilbert schemé{ of curves inP?—9 with
Hilbert polynomial P(T") = dT + 1 — g andU{ C 'H the open subset corresponding to smooth
connected nondegenerate curves.

Let f: Z — U be the universal family oved, which is smooth of relative dimensidn and
wzy € Pic(Z) the relative cotangent bundle. By base change there is an exact sequence

0— Q" — f*fuwz iy —wzu — 0,

where@ is a vector bundle o such that ifu € U/ corresponds to a curvé = Z,, (in a suitable
embedding), the®) |z, ~ Q¢.

The usual deformation theory arguments show thatis smooth and has dimension
(d — g+ 1)? + 4(g — 1). Moreover, the universal familjZ defines a surjective morphism
7:U — M, whose fibers are irreducible and have dimengibag+1)2 +g — 1. Itisimmediate
to see from this tha¥ is connected.

Fix now! such thad = (g — 2i — 1) + (29 — 2) > 2g + 1. Considei{ and Z as above and let
F=N\Q® wgl/u ® p*Opa-4(1), wherep is the composition of the inclusiafi — U x P49
and the projection onto the second factor.
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We consider also the closed subsetfof
={uel|n’(Flz,)>1}.

Itis clear by definition that ' ([C]) C D, ifand only if© 1., =Pic?”*~!(C). In particular,
Proposition 3.5 implies thap, # U.

D, is the degeneracy locus of a morphism between two vector bundles of the same rank.
Indeed, ifH c P?9 is a hyperplanel = p~'H, andr > 0, thenD; is the degeneracy locus
of

F(F®Oz(rH)) — f(F® O _~(rH)).

Note that these are both vector bundles of ra:mw;l) (we use base change and the fact that
by Corollary 3.5 in [27], for every smooth curve, the bundlel - is semistable). We therefore
conclude thaf; is a divisor oriA.

On the other hand, it is easy to see that the set

Dy = {u eu | Ozu(l) ®W§i € (Zu)g—i—l - (Zu)z}

is closed. Moreover, Proposition 3.6 (see also Remark 3.9) showsDthat D;, and if
-1 ([C]) ¢ Dr, thens—! ([C]) ND, = 71 ([C]) N Ds.
LetS be the set of irreducible componentsiof which are not included if;. Using the fact
thatm has irreducible fibers, all of the same dimension, it is easy to see tHat if, thenw(Y")
is closed inM,, that it is in fact a divisor, and” = 7—!(7(Y")). Moreover, the locus of curves
in M, for which 6/\1@ is not a divisor ig Jy-. g 7(Y"), which proves the proposition.0

3.4. Theclass of the degeneracy locuson M, 441

We first fix the notation. We will denote ng the open subset o¥1, which corresponds to
curves with no nontrivial automorphisms. From now on we assumeytbat, since forg = 3
MRC is equivalent to IGC, which is the content of Proposition 2.5. T,M@ is nonempty and
its complement has codimensign- 2 > 2 (see [18, p. 37]), so working with this subset will not
affect the answers we get for divisor class computationdnor M ,,.

In this case we have a universal family omg denoted b)C0 and for everyn > 1, the
open subset oM, ,, lying over/\/l0 (which we denote by\/l ») is equal to the fiber product
(xMoCO) minus all the dlagonals We assume that g + 1.

ConS|der the following cartezian diagram:

4q 0
X —=M,,

Pk

o_ P 0
Cg—= M,

in which all the morphisms and varieties are smooth alience als@) is proper.

Let w € Pic(CJ) be the relative canonical line bundle fpy E = p.(w) the Hodge vector
bundle andQ the rankg — 1 vector bundle orz[?0 such thatQV is the kernel of the evaluation
mapp* E — w. For every[C] € MY, we haveQ|p 1)) ~ Q-

The projection on thejth factorpj MO CO induces a section; : /\/lg_’n — X of q.

If E; =Im(q;), thenE; is a relative d|V|sor ovejz\/lO . Consider the following vector bundle
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onx’:

g+1
=Nre(Se- 3 5
Jj=g—i+1
and letZ = {ue M} | h°(&|x,) > 1}.
The algebraic seE comes equipped with a natural structure of degeneracy locus. Suppose for
example thal” is a sum ofim divisorsE; (possibly with repetitions), whene > 0. In this case,
Z is the degeneracy locus of the morphism

Fi=q(E@0x(Y)) = F =q¢(E20xY)y).

This scheme structure does not depend on the diWsave have chosen. In fact, it is the
universal subscheme over which th#éh Fitting ideal of the first higher direct image &f
becomes trivial (see e.g. [3, Ch.IV 83] for the proof of an analogous property). NoteZthat
is a divisor and not the whole space, since by Proposition 3.10 we know that for a general curve
O, there is¢ € Pic? "~ 1(C) such thatf°(\"' Q¢ ® €) = 0 (note also that the difference map
C9~1 x O = Picd 27 1(C) is surjective, cf. [3, Ch.V.D]).

We will use the notation = ¢, (h*(E)), ¢; = c1(p}(w)), and

g—1t g+1
=Y ¢ and ¥, = > ¢y
j=1 j=g—i+1

Itis well known that\ together withy;, 1 < j < n, form a basis foPic(M} ,,)g.

PrRoPOSITION 3.11. -With the above notation, for eveny > g + 1, the class ofZ in
Pic(M} ,,)q is given by

g—1 g—3 g—2

@ a=-((7) w07 ) (000

Proof. —Note that the pull-back of divisors induced by the projection to the figst 1)
components induces injective homomorphisitis (M} 1) — Pic(M),)q. From the
universality of the scheme structure 8t follows that the computation af, (£2) is independent
of n. Therefore we may assume thats large enough, so that in defining the scheme structure
of Z as above, we may také = 3~ ., F;. We introduce also the notatioh, = =7, ¥;.

As a degeneracy locus, the cIassZ)ﬁs given bycy (F') — e1(F). It is clear that we have

E;NE =0if j#1andviaE; ~ M} ., we haveOy, (—E;) ~ p}(w). SinceQ" is the kernel
of the evaluation map fav, we get

g,n?

(4) a(f Q)= f*(aa(w)) —g" (V).

Before starting the computation of () andc; (F’), we record the following well-known
formulas for Chern classes.

LEMMA 3.12. —Let R be a vector bundle of rank on a varietyX and L € Pic(X).
() aa(R®L)=c1(R) + nei(L).

(i) c2(R®L)=co(R)+ (n—Der(R)er(L) + (5)er (L)

(i) cit(A'R)=(""})er(R),ifn>2andl <i< n.
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(iv) cz(/\i R)= %(’;:11)((?:11) —1)e1(R)? + (’;jf)cz(R), ifn>3andl <i<n.
From the previous discussion and Lemma 3.12(i) and (iii), we get

c1(q.( ® O, (Y))) = - (f:f) A— (gf) b,

from which we deduce

cl(}"’)——(n—g—l)<g:12>)\— (9;2)%.

In order to compute:; (F), we apply the Grothendieck—Riemann—Roch formulag@nd
E(Y) (see [11, 15.2]). Note that the varieties are smoothg@iscsmooth and proper. Moreover,
since we assume > 0, we haveR’q. (£(Y)) =0, for j > 1. Therefore we get

ch(g.(E(Y))) =g« (ch(E(Y)) -td(frw™)).
From this we deduce

() ea(F)=as (%Cl (S(Y))2—02(5(Y)) _%f*cl(w)'cl (5(3/))4‘% (g ; 1) f*Cl(W)Q)-

We compute now each of the classes involved in the above equation. In order to do this we
need to know how to make the push-forward of the elementary class&s \ofe list these rules
in the following:

LeEmMA 3.13. -With the above notation, we have
() g« (frer(w)?) =12,
(i) gu(q"A- frer(w)) = (29 — 2)A.
(ii)) q.q*(A?)=0.
(V) g.(cL(Ej) - q"A) = A.
V) q(cr(E)) - frer(N) = ;.
(Vi) g«q*ca(h*E)=0.
(Vi) qu(c1(Ej)?) = —1b;.
Proof of Lemma 3.13. Fhe proof of (i) is analogous to that of the relatipn(c; (w)?) = 12X
(see [18, §3E]). The other formulas are straightforward.

Using Lemma 3.12(i) and (iii) and formula (4) fer (f*@), we deduce that

aem) = (927) (et -
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From the above formula far (£(Y)) and Lemma 3.13, we get

w(~5ra@-ao))=e-n (427 )a-5 (07w w e,

Lemma 3.13(i) gives
Lfg—1) . 2\ _(9—1
(T raer)- (17
From the defining exact sequence®f we compute

2(f*Q) =g c2(W"E) + frer(w) - (fer(w) — " A).

Using now Lemma 3.12(ii) and (iv) and Lemma 3.13, we deduce

2 (E(Y)) = ((8—29) (9 12> <(f:12) —1) + (14— 2g) (f:f))A
e (12) (7))
(7)o
_%<9;1> <(9;1) —1>(\Ifz+\11y+\11z).

Using these formulas and equatior), we finally obtain

o (F) = ((29—14)@:?) —(n+g—2i—3) (f:f) + (921>)A
- (9;2) (W, +0.) - (f:f)%

Since the class ofZ is equal withc¢;(F') — ¢1(F), we deduce the statement of the
proposition. O

3.5. Proof of themain result

We introduce next a divisoD on M, g+1 which is a global analogue of the preimage of
Cy—i—1 — C; under the difference ma@9—* x C**! — Pic?~*~1(C). This is motivated by
Proposition 3.6, and our goal is roughly speakmg to prove a global version of that result.

DEFINITION 3.14.—Forg > 3 and1 < i < % we define the diviso on Mg 4.1 to
be the locus of smooth pointed curv(e(é,xl, ., Xg—isY1,---,Yi+1) having a linear seriegél7
containingz; + - - - + z4—; in a fiber andy; + - - - + y;4+1 in another fiber. Note that this means
that we can in fact write the line bund@c (21 + - - - + 43— —y1 — - — ¥s+1) as an elementin

Cg—i—l — Ci.

We consider in what follows the diviscZ, the closure inM, ,1 of the divisorZ studied
above (we take now = g + 1, but as we mentioned, this does not affect the formula for its
class). In Section 4 we prove that is reduced and thab =g-;,, Z (cf. Theorem 4.1). This
being granted we are in a position to complete the proof of Theorem 3.1:

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



574 G. FARKAS, M. MUSTATA AND M. POPA

Proof of Theorem 3.1. Note that forg = 3 our assertion is just the statement of Proposition
2.5. Thus we can assume> 4. As mentioned abové® is reduced, and from Proposition 3.6
we see thatupp(D) C supp( Z ). We get thatZ — D is effective, and in fac€ — D = h*(E),
where E is an effective divisor onM, and h: M, 411 — M, is the projection. Moreover,
the maph* : Pic(My)qg — Pic(M, g+1)g IS injective (cf. [2]), henceE =g-iin 0. Since the
Satake compactification d¥1, has boundary of codimensi@n(see e.g. [18, p. 45]) this implies
E =0, thatis,Z = D. Therefore® 5, is a divisor inPic?"#~1(C) and the identification
@/\ch = Cy—;—1 — C; holds foreverynonhyperelliptic curve®. O

4. A divisor class computation on M 1

In this section we compute the class of the divigoron M, .., defined in the previous
section. We start by recalling a few facts about line bundlesfyy, . Let us fixg > 3,n > 0 and
a setN of n elements. Following [2], we identif,, ,, with the moduli spacé\1,, y of stable
curves of genug with marked points indexed byv. We denote byr, :ﬂgyNu{q} — Myn
the map forgetting the marked point indexed gpyFor each: € N we define the tautological
classy, =1 (L) € Pic(ﬂgyN)Q, wherelL, is the line bundle oveﬂg,N whose fiber over the
moduli point[C, {z; }:cn] is the cotangent spadg; (C). Note that although we are using an
apparently different definition, thegeclasses are the same as those which appear in the previous
section.

For0 <i < gandS C N, the boundary diviso\;.s corresponds to the closureHQ,N of
the locus of nodal curves; U5, with C; smooth of genug C; smooth of genug — 4, and such
that the marked points sitting drt; are precisely those labelled By Of courseA;.s = Ag_;.5e
and we setfA.s := 0 when|S| < 1. We also consider the divisd;,, consisting of irreducible
pointed curves with one node. We denotedpy € Pic(ﬂg,n)(@ the class ofA;.s and byd;,,
that ofAlrr It is well known that the Hodge class éi,., thei),’s and thed;.s’s freely generate
Pic( My.n)g (cf. [2]).

Fora smooth curvé€’ and for a pencil} on C, we say that an effective divisd? on C'is in
a fiber of the pencil if there exists’ € g}, such thatF’ — E is an effective divisor.

Recall that fory > 3 and0 < i < 5+ we have defined the divis@ on.M, 4, to be the locus
of curves(C, z1,...,24—i,¥1,...,Yi+1) having a linear serie@é containingzy + - - -+ x4—; in
afiber andy; + - - - + y;11 in another fiber. We denote by the closure ofD in M, 1.

The divisor D comes equipped with a scheme structure induced by the forgetful map
G — My 441. HeregG is the variety parametrizing objediS, z, 7, 1], wherez = (z1,...,24—;)
andg— (yl, ..., Yi+1) are such thalC, ¥, i/] € M, 441 andl is alinear serieg; on C such that
I(— 1z;) #0andi(— szll y;) # 0. Itis well-known thatg is smooth of pure dimension
4g — 3 (see e.g. [1, p. 346]). Note also that there is a natural actidfy of x S;;1 on Mg ¢11
(and hence o) by permuting the components @fandy separately.

The main result of the section is the following:

THEOREM 4.1. —The divisorD is reduced and its class iRic( M, 441)g is

_ ((9—1) _ g—3 g—2
pi==((771) -0 (V) e (777wt (827 w0
whereV,, = g;g v, and W, = Z”l by, -

We begin by proving the first part of Theorem 4.1
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PROPOSITION 4.2. —The divisorD is reduced.

Proof. —Since the variety introduced above is smooth, it suffices to show that the projection
m:G — M, o1 given byn([C,Z,y,1]) = [C,Z,¥], is generically injective.

We pick a component’ of G x 4, ,,, G whose general point corresponds to a marked curve
[C, Z,7] € M, 441 together with twcdifferentbase—point-fregé’s onC, both containing? and
¥ in different fibers. Clearlydim(X) > 4¢g — 4 and if we show thatlim(X’) < 4¢ — 4, then
we are done. For a general point. ¥ we denote byf,, f»: C — P! the inducedg-sheeted
maps. We may assume that(z) = f2(Z) = 0 and f1(y) = f2(y) = co. The product map
f=(f1,f2):C — P! x P! is birational onto its image anBl = f(C) will have points of
multiplicity at leastg — ¢ and: + 1 ata = (0,0) andb = (o0, 00) respectively.

If S =Bl (P! xP') we sety = gl + gm — (g—i)E,— (i+ 1) E, € Pic(S), wherel andm
are pullbacks of the rulings d&' x P!, andE,, E, are the exceptional divisors. We denote by
V(S,~) the Severi variety of curves C S homologous tey. The discussion above shows that
X lies in the closure of the image of the rational mMags, v) --» (G X, .., G)/Sg—i X Sit1
obtained by projecting onto the two factors. Thudim(X) < dim V' (.S,+) — dim Aut(S).

On the other hand an argument identical to that in [1], Proposition 2.4, shows thatSince
is a regular surface, every irreducible componkhtof V (S,~) having dimensior= g + 1 is
of the expected dimension provided by deformation theory, thafis(M) =g — 1 — v - K.
Thereforedim(X) <g—1—v-Kg—dimAut(S)=4¢g—4. O

We will prove the second part of Theorem 4.1 using degeneration techniques and enumerative
geometry.

4.1. Recap on limit linear series

(Cf. [6].) We recall that for a smooth curég, a pointp € C and a linear serigls= (L, V') with
L € Pic*(C) andV € G(r + 1, H(L)), thevanishing sequenaf  at p is obtained by ordering
the set{ord, (¢)},cv, and it is denoted by

a'(p): 0< ab(p) <---<dl(p) <d.

Theweightof  atp is defined asv' (p) := 3" (al(p) — 4).
Given a curveC of compact type, dimit g, on C is a collection of honest linear series
ly = (Ly,Wy) € G(Y) for each componerit” of C, satisfying the compatibility condition

thatif Y andZ are components af' meeting afp then

a (p)+alZ (p)=d fori=0,...,r.
We note that limit linear series appear as limits of ordinary linear seriegslimensional families
of curves and there is a useful sufficient criterion for a ligfjit to be smoothable(cf. [6,
Theorem 3.4]).

We will need the following enumerative result (cf. [17, Theorem 2.1]):

PROPOSITION 4.3. —Let C be a general curve of genus d > %2 andp € C a general
point.
e The number ofj;’s on C containing(2d — g)q in a fiber, whereg € C is an unspecified
point, is

g

b(d,g)=(2d—g—1)(2d—g)(2d — g+ 1)m
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o If 3>1,~ > 1 areintegers such that + v = 2d — ¢, the number of;'s on C containing
Bp + ~vq in a fiber for some poing € C'is

o(dg,7) = (v*(2d - g) - V)ﬁ'

The following simple observation will be used repeatedly:

PROPOSITION 4.4. —Fix y, z € N and denote by, : M, v — ﬂg,N_{z} the map forgetting

the marked point labelled by. If E is any divisor class onM, x, then the)\ and the,
coefficients o2 are the same as those @f. ). (E - do.y-) forall x € {y, z}°.

Proof. —We write E' uniquely as a combination of, tautological classe,, v, and, with
z € {y,z}° and boundary divisors. To expre&s.).(E - 8o.y.) in Pic(My n_(.1)o We use
that (7. )« (A - do:y2) = A, (T2) 4 (Y - S0:y2) = Y TOr « € {y, 2}° and that(rr. )« (¢ - 60.y-) =0
for x € {y,2}. Moreover we have thatr,).(d:.s - do.y») iS boundary in all cases except
that (7). (83.,,.) = —ty, (cf. [2, Lemma 1.2] and [23, Theorem 2.3]). The conclusion follows

immediately. O

By a succession of push-forwards, using Proposition 4.4 we will reduce the problem of
computing the class ab to two divisor class computations iv, 3. The main idea is to let
all the pointsz; and then all the pointg; come together and understand how the geometric
condition definingD changes under degeneration. Recall thaDowe denote the closure @
in Mg.,ngl- .

We define the following sequence of divisors: starting wWitk= D,,
inductively the divisorsD,, on Mg ,_;; by

10 forl < j <iwe define

Dyj = (Tryj+1)*(A0:yjyj+l 'Dyj+1)'

Loosely speakingD,,; is obtained fromD,,, , by letting the marked pointg; andy;,, come
together. Then we define,,_, := D,, and we letthe marked points, ..., z, ; come together:
for 2 < j < g — i — 1 we define inductively the divisor®,, on M, ;1 by

Dy i= (ma;00)5(Bowwjair - Dajys)-

Proposition 4.4 ensures that thhg, and the\ coefficients of D] are the same as those[df,.,].

PROPOSITION 4.5. —The divisorD,, is reduced and it is the closure ng of the locus of
those smooth pointed curves, 1, z2,y) for which there exists g; with (i + 1)y in a fiber and
x1 + (g — i — 1)z2 in another fiber.

Proof. —For simplicity we will only prove thatD,,, is reduced and that it is the closure of the
locus of those smooth pointed curvgs z1,...,z4—;, y1,...,y;) forwhichz, +---4+z,_, and
y1+ - +yi—1+ 2y; arein different fibers of the sangg. Then by iteration we will get a similar
statement foD,, .

Let (X =C U, PLay, ..., 29—i, Y1, -, ¥it1) With y;,y;01 € P be a general point in a
component ofD,, , N Ag.y,y,.,- A standard dimension count shows tiiatmust be smooth.
There exists a Iimiy}] on X, sayl = (l¢,lp1), together with sectionsp: € Vp: andoc,7¢ €
Ve, suchthatliv(re) 2 21 + - - - + T4, div(oe) Zy1+ -+ yi-1,diviep1) = y; + yi+1 and
moreoverrd,(op:) + ord,(o¢) = ¢ (apply [6, Proposition 2.2]).

Clearlyord,(op:) < g — 2, henceliv(o¢) > 2g+y1 +- - -+ yi—1. The contraction map,, ., ,
collapseP® and identifies; andy;, so the second part of the claim follows.
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To conclude thaDD,, is also reduced we use that bath,,, andAy.,,,,., are reduced and
that they meet transversally. This is because the hujmve found onX is smoothable in such a
way that all ramification is kept away from the nodes (cf. [6, Proposition 3.1]), hence the tangent
spaces td),, andA,.,,,,,, atthe intersection pou(tX,x,y) cannot be equal. O

In a similar way, by letting first alle; with 1 < j < g — ¢ and then ally; with 2 <
i + 1 coalesce, we obtain a reduced d|V|sif)52 on /\/lg“o, which is the closure of the Iocus
of smooth curveqC,z,y1,y2) having ag, with (g — i)z and y;, + iy, in different fibers.
Moreover, theX and thev,, coefficients of[ D] coincide with those ofD,,]. Once more
applying Proposition 4.4 it follows that the and they,, coefficients of{D,,] are the same
as those of 7, ). ([Dy,] - do:.2y,). Similarly, the,, coefficient of[D,,] is the same as that of
()« ([Dzs] - 00:2y)-

PROPOSITION 4.6. —We have that

%

(72 ) (Dy, - Doizy,) = Zij

J=0

where forj < 4 the reduced divisot’; is the closure in/\_/lg_g of the locus of curve&C, y1, y2)
having ag}]_j with (g — 25 — 1)y2 + y1 in a fiber, while the reduced divisdf; consists of curves
(C,y1,y2) with ag;ﬂ- having(g — 2i)y- in a fiber (and no condition ony;).

Proof. —Once again, letX = C U, P!, z,y1,y2) be a point inD,, N Ag.y,, With y; € C
and z,y» € PL. Then there exists a |Im@1 say! = (l¢,lp1) on X together with sections
op1,Tp1 € Vp1 andoc € Ve such thatle(O'Pl) 1yo,div(rp1) = (g — i)z, div(cc) = ¥
and moreoveord,(op1) + ordy(o¢) = g.

The Hurwitz formula onP1 and the condition defining a limit linear series give that
wl¢(q) = w'et (z) +w'e? (y2) = g — 2. On the other hand, sin¢&X, x, y1,y2) moves in a family
of dimension> 3¢ — 2 it follows that (C, ¢) also moves in a family of dimension 3g — 3
in M, 1 (i.e. codimensior 1). Since according to [7, Theorem 1.2], the locus of pointed curves
[C,q] € My, carrying ag; havingw(q) > g has codimensior: 2, we getw'c(q) < g — 1.
There are two possibilities

(i) w'e (q) = g — 2. Let us denotg = af (), hence

a¢(g)=g—-1—; and aécc(q) + allp_]k(q) =g fork=0,1.
Thereforej + 1= aépl (q) < ordy(7p1) < 4. Moreover, since
ordg(op1) <g—i<g—j—1,

we obtain thabrd, (o) > j + 1, hencediv(oc) > y1 + (9 — 1 — j)g, thatis,lc(—jq) is ag,_;
onC with (g — 2j — 1)g + y1 in afiber, or equivalentyC, y1,q] € Y;, where0 < j <i— 1.

To see that converselwz;th C (73)«(Dy, - Ao.zy,) We pick a general pointed curve
(C,y1,q) having agéfj with (¢ — 2j — 1)g + y1 in a fiber and we construct a Harris—Mumford
admissible covering : X’ — B of degreeg, where X'’ is a curve semistably equivalent 6
defined as above, and = (P'); |J,(P?). is the transversal union of two lines (see Fig. 1): we
take fic: C' — (P'); to be the degreg — j covering such thatg — 2j — 1)+ y1 C fl*c(t),
while fip:: P! — (P'); is the degreg) — j — 1 map containingg — )= andiys in different
fibers and with(g — 25 — 1)q in the fiber ovet. Itis clear that there is a unique sug.p_j_1 on
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(g-2j-1) q

P, , ®,

Fig. 1.

PL. Furthermore, af;; we insert a rational curv& mapping isomorphically ontGP'), and at
the remaining points inf‘*cl(t) —{y1, ¢} we insert rational curves mapping with degiieento
(P1), while at theg — j points inf‘;}1 (t) — {q} we insert copies aP! mapping isomorphically
onto (P');. We denote the resulting curve by'. If y| = f‘;zl(f(yQ)), then (X', z,y},y2) is
stably equivalent td X, z,y1,y2) andiys + y; and(g — i) appear in distinct fibers of the-
sheeted may : X’ — B. Thus we get thaltX, =, y1, y2] € Dy, N Ap:ay,

(i) w'e (q) = g — 1. We denoten'c (q) = a'r* (q) = (j,g — j). Sinceord,(rp1) < i we get
thatj <. Noww'c (¢) = g — 1 is already a codimensioncondition onM, 1, so it follows that
ordg(oc) = j, henceliv(op1) > (g—j)g+iys. Thisyieldsi = j anddiv(op:) = (g—1)g+iya.
We thus get thalt”, y1, 4] € Y.

Conversely, givenC,yi,q) € M, o together with ag;,i on C with (g — 2i)q in a fiber,
we construct a degreg admissible coveringf: X’ — (P!); U, (P!)2, which will prove
that [C,q,y2] € (m2)«(Dy, - Aoiy,): We first take fic:C — (P'); of degreeg — i with
(9 —2i)q C fio(t). Then fip :P! — (P'), is of degreey — i, completely ramified at and
with f‘;ll (t) = (g — 2i)q + iy2. At yo € P! we insert a rational curv& which we mapi: 1 to
(P'); such that we have total ramification bothyatand at the poiny}, € R characterized by
fic(w1) = fir(ys). Finally, at each of the points iyj‘c1 (t) — {q} we insert aP! which we map
isomorphically ontqP!),.

Thus we have proved thatpp (7).« (Dy, - Aoay,) = U;:o supp(Y;). The conclusion now
follows if we notice thatD,, is reduced and all admissible coverings we constructed are
smoothable, hencB,, - A..,, is reduced too. O

We have thus reduced the problem of computifg to that of computing the class of all
divisorsY; on M, for 0 < j <.

PROPOSITION 4.7. —For 0 < j < ¢ we have the following relations iRic(M, 2)q:

}/j =lin aj)\ —+ bljwyl + b2jwy25 where

—29 10(g — 29 —
aj__u<?)+(972j)<g f) forall 0 < j <1,
g g— -

21 (g— 203 — (g — 2
bl.:u 9 .1 Whenjgi—l, bli:O, b2i:(g Z) (g Z) g ’
J
29 —2 i
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(9—2j—1)(g° — 9> —49%) + 4529 + 2jg — 2j)(g — 2)!
2j51(g —1)!

Proof. —We will compute the class df; when; < i— 1. The class ot is computed similarly.

Let us write the following relation iPic( M, 2)q:

baj = forj<i-—1.

Y; =tin aj A + b9y, + b2y, — ¢jd0:4,4, + (Other boundary terms

We use the method of test curves to determine the coefficients; and b,;, that is, we

intersect the classes appearing on both sides of the previous relation with curvegifisid&y

computing intersection numbers we obtain linear relations between the coefficjehts bs;.
By Proposition 4.5 we have that

(5) Zj = (myy )« (Y5 - Doiyrys) =tin @5 A + ¢j2by, + (boundary.

Using the same reasoning as in Proposition 4.5, we obtainZthit the closure inM,, ; of the
locus of curve4C, y; ) carrying ag; ; with (g — 2;)y in afiber.

In order to determine the coefficient we intersect both sides d¢f) with a general fiber
F of the mapM,; — M,: we get thate; = Z; - F/¢,, - F =b(g — j,g)/(29 — 2) (cf.
Proposition 4.3).

To determiné);; andby; we use two test curves ng: first, we fix a general curvé' of
genusg and we obtain a family’i;; = {(C,y1,2) }y,ec, by fixing a general poing, € C' and
letting y, vary onC. From(5), clearlyCyy) - Z; = (29 — 1)by; + ba; — ¢;. On the other hand,
according to Proposition 43,y - Z; = c(g — 7,9, 1).

For a new relation betweeln; andb,; we use the test curv€(y = {(C,y1,¥2)}y,ec in
M, 2, where this timey; is a fixed general point whilg, varies onC. We have the equation
(29 — 1)baj +b1; —c; =Cly - Zj = c(g — j,9,9 — 2j — 1), and since; is already known we
get in this way bottb,; andb,;.

We are only left with the computation af. From [7, Theorem 4.1] we know that the class of
Z; is a linear combination of the Brill-Noether class and of the class of the divisor of Weierstrass
points, thatisZ; =i, pBN + vW, where

g+1 =
Téirr - Z i(g—1)diy, and

i=1

BN :=(g+3)\ —

—1
_ glg+1) —(9-i+1
W= —A+ Sy, — ; o ) i

We already know that = 2¢;/(g(g + 1)). To determinex we use the following test curve

in M, 1: we take a general curv8 of genusg — 1 and a genera®-pointed elliptic curve
(E,0,y1). We consider the familyB = {X, = BU o0 £:y1}4ep obtained by identifying
the variable pointy € B with the fixed point0 € E. We easily getB - ¢, = B- A =0,

B- 01y, = —deg Kp =4 —2g, while B vanishes on all the other boundaries. On the other hand
B - Z; is the number of Iimig;,j’s on the curves, having vanishingy — 2; at the fixed point

1 € E.Ifl=(IB,lg) is such alinear series, then using again the additivity of the Brill-Noether
numbers (cf. [6, Proposition 4.6]) and the assumption ghat 0 € Pic’(E) is not torsion, we
obtain thatw'z (q) = g — 24, so eithera'? (q) = (1,9 — 2j) or a'2(q) = (0,9 — 2§ + 1). Thus
B-Zj=blg—j—1,9—1)+b(g—j,g — 1) and we can write a new relation enabling us to
computer;. O
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We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. ket us writeD =, AA+ BV, + BV, wherel, := ;’;i =, and
U, = Z;J:l y,- As noticed before, théA, ¥, }-part of[D] and the{ A, v, }-part onLO Y]]
coincide, hence using Proposition 4.7 '

: —1 —3
A‘Zaﬂ'__(gi >+10(g_1> and
§=0
: —9
Bgzz:blj:(g_l).
=0

Finally, to determineB; one has to compute the,, coefficient of the divisoD,,, on ﬂg,g.
Arguing in a way that is entirely similar to Proposition 4.6 we obtain tBat= (-‘1;2 ). O
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