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Abstract: We describe applications of Koszul cohomology to the Brill-
Noether theory of rank 2 vector bundles. Among other things, we show that
in every genus g > 10, there exist curves invalidating Mercat’s Conjecture for
rank 2 bundles. On the other hand, we prove that Mercat’s Conjecture holds
for general curves of bounded genus, and its failure locus is a Koszul divisor
in the moduli space of curves. We also formulate a conjecture concerning
the minimality of Betti diagrams of suitably general curves, and point out
its consequences to rank 2 Brill-Noether theory.
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1. Introduction

The classical Brill-Noether theory of linear series on a curve [C] ∈Mg, which
describes the cycles W r

d (C) := {L ∈ Picd(C) : h0(C,L) ≥ r + 1}, is one of the
celebrated successes in the theory of algebraic curves. There have been numerous
attempts to extend this theory to vector bundles of higher rank, and the subject
of this paper is the interplay between Koszul cohomology of line bundles and
Brill-Noether phenomena for vector bundles of rank 2 on curves. Let Us

C(2, d) be
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the moduli space of stable vector bundles on C of rank 2 and degree d. For each
integer k ≥ 0, we consider the determinantal Brill-Noether cycle

BNC(d, k) := {E ∈ Us
C(2, d) : h0(C, E) ≥ k}.

It is well-known that BNC(d, k) has the structure of a determinantal subscheme
of Us

C(2, d), and accordingly, each of its irreducible components is of dimension
at least equal to the Brill-Noether number

βg(d, k) := 4g − 3− k
(
k − d + 2g − 2

)
.

The expectation that for a general curve [C] ∈Mg, the variety BNC(d, k) is non-
empty precisely when βg(d, k) ≥ 0, is false, and there are few uniform statements
concerning the geometry of BNC(d, k). A remarkable exception to such erratic
behaviour is the highly interesting case of rank 2 vector bundles with canonical
determinant, which is clarified in [T3].

To a bundle E ∈ SUC(2, L) with det(E) = L ∈ Pic(C) and h0(C,E) = p+3 ≥
4, following a construction introduced in [V3] and developed in [AN], one asso-
ciates a non-trivial Koszul class [ζ(E)] ∈ Kp,1(C,L). In this way, one establishes
a dictionary between rank 2 Brill-Noether theory and the Koszul geometry of C.
For p = 1, this procedure specializes to a more classical construction [BV], [M2],
[GMN], that assigns to a vector bundle E ∈ SUC(2, L) with h0(C, E) = 4, a
quadric QE ∈ Sym2H0(C, L) of rank at most 6, containing the image φL(C) of
C under the map induced by |L|.

The starting point of our investigation was an attempt to translate, via this
dictionary, various syzygetic results for curves in the style of [AF], [F3], into
dimensionality problems for BNC(d, k). For k ≤ 3 and a general [C] ∈ Mg,
the Brill-Noether locus BNC(d, k) is irreducible and of the expected dimension
βg(d, k), see [T1]. The first case not governed by classical Brill-Noether theory is
k = 4, and we note that

βg(d, 4) = 4d− 4g − 11.

It is natural to ask whether in this case too, the Brill-Noether number, deter-
mines the non-emptiness of BNC(d, 4). Teixidor [T2] has provided almost opti-
mal answers to this question, and we summarize her results for a general curve
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[C] ∈Mg:

BNC(d, 4) 6= ∅, provided that d ≥




2a + 3, if g = 2a ⇔ βg(d, 4) ≥ 1;

2a + 5, if g = 2a + 1 ⇔ βg(d, 4) ≥ 5.

This leaves the case g = 2a + 1 and d = 2a + 4, as the only remaining possibility
when βg(d, 4) ≥ 0. We prove the following result:

Theorem 1.1. For a general curve [C] ∈ M2a+1, the locus BNC(2a + 4, 4) is
non-empty and has at least one component of dimension 2.

Note that since βg(d, 4) = 1, unlike in the case k ≤ 3, the Brill-Noether
number no longer predicts the dimension of BNC(d, 4). This is a phenomenon
which propagates beyond control as k grows, and appears for the first time when
k = 4. This result combined with [T2], settles the existence problem for bundles
of rank 2 with 4 sections:

Corollary 1.2. For a general curve [C] ∈ Mg, we have that BNC(d, 4) 6= ∅
whenever βg(d, 4) ≥ 0.

Using the already mentioned connection between coherent systems (E, V ),
where E ∈ UC(2, d) and V ∈ G(4,H0(C, E)) on one side, and the non-vanishing
of the cohomology group K1,1(C, det(E)) on the other, Theorem 1.1 is implied
by the following:

Theorem 1.3. For a general curve [C] ∈M2a+1, the locus of linear series

Koszul(C) :=
{
L ∈ W 4

2a+4(C) : Sym2H0(C, L) → H0(C, L⊗2) not injective
}

has at least one component of dimension 2, whose general element corresponds to
a complete base point free linear series, which cannot be written as L = A1⊗A2,
with A1, A2 ∈ W 1

a+2(C).

Assuming Theorem 1.3, the corresponding vector bundle

E ∈ BNC(2a + 4, 4)

is constructed as a twist of a Lazarsfeld bundle on C. Precisely, for L ∈ Koszul(C),
we take E := MW ⊗ L, where W ∈ G(3,H0(C, L)) is a suitably chosen subspace
such that Ker ν2(L)∩(

W ⊗H0(C, L)
) 6= 0. This method of constructing E is the

first instance of a general construction of vector bundles starting from non-trivial
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Koszul cohomology classes of small rank [vB], [AN]. We refer to Section 5 for
details.

Next we turn to Mercat’s generalization of Clifford’s inequality. For a
semistable vector bundle E of rank 2 on C and slope µ(E), Mercat [Me] made an
interesting prediction concerning its number of sections in terms of the Clifford
index of the curve:

(1) If Cliff(C) + 2 ≤ µ(E) ≤ g − 1, then h0(C, E) ≤ 2 + µ(E)− Cliff(C).

(2)

If 1 ≤ µ(E) ≤ Cliff(C) + 2, then h0(C, E) ≤ 2 +
1

Cliff(C) + 1
(
deg(E)− 2

)
.

The conjecture is inspired by the case when E can be written as an extension

0 → A → E → A′ → 0,

where both line bundles A,A′ contribute to Cliff(C), in which case, (1) is an
immediate consequence of Clifford’s inequality applied to both A and A′. For ex-
tensions of Clifford type inequalities to higher rank vector bundles and additional
background, see [LN].

We provide a counterexample to Mercat’s Conjecture when h0(C, E) = 4,
which was the simplest case when the answer was unknown:

Theorem 1.4. For each integer a ≥ 5, there exist curves [C] ∈ M2a+1 having
maximal Clifford index Cliff(C) = a, such that BNC(2a+3, 4) 6= ∅. In particular
Mercat’s Conjecture (2) fails for C.

The counterexamples to Mercat’s Conjecture (also for g = 2a, where a ≥ 6,
see Theorem 3.7), are sections of K3 surfaces lying in certain Noether-Lefschetz
loci. For the curves appearing in Theorem 1.4, we observe that βg(2, d, 4) = −3.
The possibility that Mercat’s Conjecture might fail for some curves of genus 11
was already entertained in [GMN] Remark 3.5 and [LMN] Question 5.5. In fact,
it was that particular suggestion in loc. cit. that drew our attention to this
problem.

The proof of Theorem 1.4 uses again the observation that for a curve C of
genus 2a + 1 and gonality a + 2, if L ∈ W 4

2a+3(C) is a linear series such that the
multiplication map ν2(L) : Sym2H0(C,L) → H0(C,L⊗2) is not injective, then
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BNC(2a+3, 4)∩SUs
C(2, L) 6= ∅. More precisely, the locus of curves [C] ∈M2a+1

with BNC(2a + 3, 4) 6= ∅ is set-theoretically equal to the Koszul locus

Syz4g,2a+3 := {[C] ∈M2a+1 : ∃L ∈ W 4
2a+3(C) such that K1,1(C, L) 6= ∅}.

This is a virtual divisor in M2a+1, which is not contained in the Hurwitz divisor
[HM]

M1
2a+1,a+1 := {[C] ∈M2a+1 : W 1

a+1(C) 6= ∅}
of curves with a g1

a+1. Curves [C] ∈ Syz4g,2a+3−M1
g,a+1 provide counterexamples

to (2).

Even though there curves of maximal Clifford index not verifying (2), the
question whether Mercat’s inequalities (1) and (2) are true for a general curve
[C] ∈Mg remains a very stimulating one, and which can be naturally connected
to the Maximal Rank Conjecture (MRC) in the form that appears in [AF].

The original version of the MRC is due to Harris [H] p. 79, and it amounts
to the following: Let C ⊂ Pr be a smooth curve of genus g and deg(C) = d,
corresponding to a general point of the unique component of the Hilbert scheme
Hilbd,g,r mapping dominantly onto Mg (that is, in the range ρ(g, r, d) ≥ 0).
Then the restriction maps

νm(C) : H0(Pr,OPr(m)) → H0(C,OC(m))

have maximal rank. In particular the Hilbert function of C is minimal. One can
generalize Harris’ Conjecture in two directions: Either (a) by requiring that [C] ∈
Mg be general in moduli rather than in the Hilbert scheme, then conjecturing
that the restriction maps to C be of maximal rank with respect to all linear
series of type gr

d, or (b) by asking for the minimality not only of the Hilbert
function but of the entire graded Betti diagram of C (see Section 5 for how such a
prediction can be correctly formulated). The generalization of Harris’ Conjecture
in direction (a) was discussed in [AF] and we briefly review it in Section 2. In
particular, it predicts the following:

Maximal Rank Conjecture (MRC)r
g,d: We fix integers g, r, d ≥ 1 such that

0 ≤ ρ(g, r, d) < 2d + 2− g −
(

r + 2
2

)
.

For a general curve [C] ∈Mg, the map ν2(l) : Sym2(V ) → H0(C, L⊗2) is injective
for every linear series l = (L, V ) ∈ Gr

d(C).
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Returning to Theorem 1.4, (MRC)4g,2a+3 predicts that the syzygy locus
Syz4g,2a+3 is a proper subvariety of Mg, and then it must be a divisor.

Conjecture 1.5. Fix a ≥ 5 and a general curve [C] ∈M2a+1. Then

K1,1(C, L) = 0 for every L ∈ W 4
2a+3(C),

and the failure locus Syz4g,2a+3 is a divisor in M2a+1. Consequently, Mercat’s
Conjecture (2) holds for all curves in the complement of Syz4g,2a+3.

Using Mukai’s work [M1], we can confirm this expectation in one interesting
case, namely that of curves of genus 11, and answer Question 5.5 in [LMN]:

Proposition 1.6. The following geometric locus

Syz411,13 := {[C] ∈M11 : ∃L ∈ W 4
13(C) with K1,1(C, L) 6= 0}

is an effective divisor in M11. In particular, BNC(13, 4) = ∅ for a general curve
[C] ∈M11.

The above mentioned relation to syzygies, enables us to prove conjecture (1)
for bounded genus:

Theorem 1.7. Mercat’s Conjecture (1) holds for a general curve of genus g ≤ 16.

The most beautiful case in the proof of Theorem 1.7 is when [C] ∈ M15 and
h0(C, E) = 5. In order to show that BNC(19, 5) = ∅, one must argue that if

φL : C
|L|−→ P6

is one of the embeddings of C by a linear series L ∈ W 6
19(C) residual to a pencil of

minimal degree, then φL(C) cannot lie on 5 independent quadric hypersurfaces
in P6. Note that 4 = dim Sym2H0(C, L) − h0(C, L⊗2) independent quadrics
containing φL(C) come automatically, and we show that the existence of a fifth
quadric is a non-trivial condition in the moduli space M15.

To recapitulate, the original prediction (2) is not true when formulated in
terms of the original Clifford index, but both (1) and (2) are still expected to
hold for general curves in moduli! It is customary to view the Koszul geometry
of a curve as second order Brill-Noether theory, in the sense that once all types of
linear series gr

d on a curve have been prescribed, syzygies provide a finer analysis,
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distinguishing among curves with the same Brill-Noether behaviour. Our anal-
ysis lends some credence to the principle that this second order BN analysis is
connected in a precise forms (formulated in Section 5) to the rank two BN theory
of the curve and the various predictions on the two sides of this correspondence
are remarkably compatible!

As a word of caution however, proving (MRC)r
g,d when ρ(g, r, d) ≥ 1 (let

alone Conjecture 5.4), seems considerably more difficult that proving the original
Harris Conjecture. When ρ(g, r, d) = 0 the two statements are equivalent, see
[F3] Theorem 1.5.

We discuss the structure of the paper. In Section 2 we review the Maximal
Rank Conjecture and some of its consequences. Section 3 contains the most im-
portant results of the paper. Using K3 surfaces, we disprove Mercat’s Conjecture
(2) (Theorems 3.6 and 3.7) and set-up a link between rank 2 vector bundles and
MRC. We also prove Mercat’s Conjecture (1) for general curves of bounded genus.
In Section 4 we complete the proof of Theorem 1.1 concerning non-emptiness of
Brill-Noether loci, while Section 5 is devoted entirely to Koszul cohomology and
its applications to rank two Brill-Noether theory. We end the introduction by
thanking Herbert Lange and Peter Newstead for pertinent comments made on
an earlier version of this paper.

2. The Maximal Rank Conjecture

In [AF] a strong version of the Maximal Rank Conjecture (MRC) for general
curves has been formulated and its various applications to the birational geometry
of Mg have been presented. Since MRC will turn out to be also connected to
rank two Brill-Noether theory, we begin by recalling, in a somewhat restricted
form, the set-up from [AF] Section 5.

We fix positive integers g, r, d such that ρ(g, r, d) ≥ 0, as well as a general curve
[C] ∈ Mg. We may assume that Gr

d(C) is smooth of dimension ρ(g, r, d). For a
linear series l = (L, V ) ∈ Gr

d(C) we denote by

ν2(l) : Sym2(V ) → H0(C, L⊗2)

the multiplication map at the level of global sections. After choosing a Poincaré
bundle on C × Picd(C), following [ACGH] Chapter VII, one can construct vec-
tor bundles E2 and F2 over Gr

d(C) with rank(E2) =
(
r+2
2

)
and rank(F2) =
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h0(C, L⊗2) = 2d + 1 − g, together with a bundle morphism ν2 : E2 → F2, such
that for l ∈ Gr

d(C) we have that

E2(l) = Sym2(V ) and F2(l) = H0(C, L⊗2),

and ν2(l) is the multiplication map considered above. Since [C] ∈ Mg satisfies
Petri’s theorem, H1(C, L⊗2) = 0, therefore by Grauert’s theorem, F2 is locally
free over Gr

d(C).

Conjecture 2.1. We fix integers g, r, d ≥ 1 as above. For a general [C] ∈ Mg,
the locus

Quadr
g,d(C) := {l ∈ Gr

d(C) : ν2(l) is not of maximal rank}
has the expected dimension as a determinantal variety, that is,

dim Quadr
g,d(C) = ρ(g, r, d)− 1−

∣∣2d + 1− g −
(

r + 2
2

)∣∣,

where by convention, negative dimension means that Quadr
g,d(C) is empty.

The most significant case of Conjecture 2.1 is when we expect that
Quadr

g,d(C) = ∅, and we restate (MRC)r
g,d from the Introduction.

Conjecture 2.2. We fix integers g, r, d ≥ 1 such that

0 ≤ ρ(g, r, d) < 2d + 2− g −
(

r + 2
2

)
.

For a general curve [C] ∈Mg, the map ν2(l) is injective for every l ∈ Gr
d(C).

As discussed in [AF], various important cases of Conjecture 2.2 are known, see
[FP], [F3], [V1]. We feel that Conjecture 2.2 should be true, while the evidence for
the stronger statement 2.1 is perhaps less compelling and should be regarded more
as an open question. It is reassuring to note that Conjecture 2.2 is compatible
with classical Brill-Noether theory.

Proposition 2.3. (MRC)3g,d holds. If d ≤ g+1 and [C] ∈Mg is a Petri general
curve, then ν2(l) is injective for every l ∈ G3

d(C). Thus Quad3
g,d(C) = ∅.

Proof. We fix l := (L, V ) ∈ G3
d(C) and use the elementary fact that if Ker ν2(l) 6=

0, then there exist pencils A1, A2 on C such that L = A1⊗A2. By Brill-Noether
theory, deg(Ai) ≥ [(g + 3)/2] for i = 1, 2, hence deg(L) ≥ g + 2, which is a
contradiction. ¤
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3. Mercat’s conjecture

We follow standard notation and denote by Us
C(n, d) (respectively UC(n, d))

the moduli space of stable (respectively semistable) vector bundles of rank n and
degree d on C. If L ∈ Picd(C) is a line bundle, we set SUC(n,L) := {E ∈
UC(n, d) : det(E) = L} and SUs

C(n,L) := SUC(n,L) ∩ Us
C(n, d).

Recently, Lange and Newstead [LN] proposed a definition of the Clifford index
of a higher rank vector bundle. For E ∈ UC(n, d), the Clifford index of E is the
quantity

γ(E) := 2 + µ(E)− 2
n

h0(C,E) ≥ 0.

By Serre duality, γ(KC ⊗ E∨) = γ(E). The higher Clifford indices of C are
defined as

Cliffn(C) := min
{
γ(E) : E ∈ UC(n, d), µ(E) ≤ g − 1, h0(C, E) ≥ 2n

}
.

Note that Cliff1(C) = Cliff(C) is the classical Clifford index of C. Several foun-
dational properties of the invariants Cliffn(C) are studied in [LN]. For instance
the following inequality follows from the definition and is implicitly used in loc.
cit.

Lemma 3.1. Cliff2(C) ≤ Cliff(C).

Proof. We choose a line bundle A on C computing the Clifford index of C, that
is, satisfying deg(A) − 2h0(C,A) + 2 = Cliff(C), where h0(C, A) ≥ 2. We set
E := A⊕A and note that γ(E) = γ(A) = Cliff(C). ¤

An attempt to determine Cliff2(C) for a general curve [C] ∈Mg, can be linked
to an older conjecture of Mercat [Me]. As already mentioned in the introduction,
for a semistable vector bundle E ∈ UC(2, d) with Cliff(C) + 2 ≤ µ(E) ≤ 2g− 4−
Cliff(C), it was predicted that

h0(C, E) ≤ 2 + µ(E)− Cliff(C).

As pointed out in [LN], a consequence of (1) and (2) is the equality

Cliff2(C) = Cliff(C).

A positive answer to Mercat’s question, would show that, from the point of view
of Clifford theory, special rank 2 vector bundles are determined by special classical
linear series. Inequalities (1), (2) hold trivially when h0(C, E) ≤ 3, thus one may
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assume that h0(C,E) ≥ 4. The following observation is essentially contained in
[Me]. We choose to make it explicit in order to make the bounds in (1) and (2)
transparent to ourselves:

Lemma 3.2. Let E ∈ UC(2, d) with µ(E) ≤ g − 1. If E contains a sub-pencil,
then (1) holds.

Proof. Suppose that the vector bundle E fits into an exact sequence

0 → A → E → A′ → 0,

with A a subbundle with h0(C, A) = 2. Then h1(C, A) = 2−deg(A)+g−1 ≥ 2, if
and only if g−1 ≥ deg(A), but this last inequality is satisfied by the semistability
of E. Since 4 ≤ h0(E) ≤ h0(A) + h0(A′), we get h0(A′) ≥ 2.
If h1(C,A′) ≥ 2, then both A and A′ contribute to the Clifford index. It follows
that

h0(C, E) ≤ h0(C, A) + h0(C,A′) ≤
deg(A)− Cliff(C) + 2

2
+

deg(A′)− Cliff(C) + 2
2

= µ(E) + 2− Cliff(C),

that is, inequality (1) holds in that case.
Suppose h1(C, A′) ≤ 1. Applying the definition of Clifford index to the bundle
A, we obtain deg(A) ≥ Cliff(C) + 2, hence h1(C, A) = 2 − deg(A) + g − 1 ≤
g − Cliff(C) − 1. On the other hand, by means of the long exact sequence in
cohomology, we have

h0(C, E) = h1(C, E) + d− 2(g − 1)

≤ h1(C, A) + h1(C, A′) + d− 2(g − 1)

≤ d− Cliff(C)− g + 2

≤ d

2
− Cliff(C) + 2

where the last inequality follows by the hypothesis on d. ¤

From now on we shall assume that E ∈ UC(2, d) is globally generated and car-
ries no sub-pencil. We set L := det(E) ∈ Picd(C) and consider the determinant
map

λ :
2∧

H0(C, E) → H0(C, L)
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The evaluation map H0(C, E)⊗OC → E induces the morphism

φE : x 7→ E(x) ∈ G
(
2,H0(C, E)∨

)
.

Following [BV], [M2] we have a commutative diagram

(3) C

φL

²²

φE // G
(
2,H0(C, E)∨

)
Ä _

²²

P(H0(C,L)∨)
P(λ∨)

// P(
∧2 H0(C, E)∨)

where the vertical arrow on the right is the Plücker embedding and P(λ∨) is the
map induced at the level of projective spaces by the map dual to λ. In order
to estimate de number of sections of L we will use the following lemma, which
is a direct consequence of [PR] Lemma 3.9. We formulate it in a way that is
compatible with (3).

Lemma 3.3. Let E be a globally generated rank 2 vector bundle on C without
sub-pencils. Then

dim
(
Im λ

) ≥ 2h0(C, E)− 3.

In particular, h0(C, L) ≥ 2h0(C, E)− 3 and dim (Im P(λ∨)) ≥ 2h0(C, E)− 4.

Proof. We identify G(2,H0(C, E)) ⊂ P
(∧2 H0(C, E)

)
with the set of decom-

posable tensors s ∧ t, where s, t ∈ H0(C, E). The assumption that E carries
no sub-pencils implies that P(Ker λ) ∩ G(2,H0(C, E)) = ∅, and the claimed
inequality follows. ¤

Inside the dual projective space P
(∧2 H0(C, E)

)
, we identify P

(
Ker λ

)
with

the space of hyperplanes in P
(∧2 H0(C, E)∨

)
containing the span 〈φL(C)〉. We

set

G := G
(
2,H0(C, E)∨

)
, P := P

( 2∧
H0(C, E)∨

)
and Λ := Im P(λ∨) ⊂ P.

We assume that h0(C, E) = 4. Lemma 3.3 implies that

dim(Im P(λ∨)) ≥ 4

and
QE := P

(
λ∨

)−1(
G(2,H0(C,E)∨)

) ∈ Sym2H0(C,L)
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is a quadric of rank at most 6 containing φL(C). In particular, the multiplication
map

ν2(L) : Sym2H0(C, L) → H0(C, L⊗2)

is not injective. Equivalently K1,1(C, L) = Ker ν2(C,L) 6= 0.

More generally, diagram (3) induces a pull-back morphism at the level of quadrics

resC : H0
(
P, IG/P(2)

) → Ker ν2(C, L).

To link the geometry of E to a syzygy type statement, we estimate the rank of
resC .

Proposition 3.4. Assume E is a globally generated rank 2 vector bundle on C,
without sub-pencils and with h0(C,E) ≤ 5. Then the map resC is injective.

Proof. We begin with a Plücker quadric Q ∈ H0(P, IG/P(2)), that is, a rank
6 quadric corresponding to a 4-dimensional quotient of H0(C, E)∨. The dual
Q∨ ⊂ P

(∧2 H0(C,E)
)

is 4-dimensional and contained in the dual Grassmannian
G

(
2,H0(C, E)

)
. Since E contains no sub-pencils, it follows that P(Ker λ)∩Q∨ =

∅, that is, no hyperplane H

Λ ⊂ H ⊂ P

is tangent to Q. But this clearly implies that resC(Q) 6= 0, for otherwise it would
imply that Λ ⊂ Sing(Q). This is impossible based on dimension reasons. Since
every quadric containing G(2, 5) ⊂ P9 is a Plücker quadric this finishes the proof.

¤

We discuss how Proposition 3.4 can be applied to study Mercat’s Conjecture.
When h0(C, E) = 4, inequality (1) is vacuous for curves of maximal Clifford
index, while (2) breaks into two vanishing statements depending on the parity of
g:

Question 3.5. For [C] ∈ M2a+1 with Cliff(C) = a, is it true that BNC(2a +
3, 4) = ∅? For a curve [C] ∈M2a with Cliff(C) = a−1, is it true that BNC(2a+
1, 4) = ∅?

The answer to both these questions is negative. Using the surjectivity of the
period map for K3 surfaces in the style of [F1], [K], we construct curves of
maximal gonality and prescribed degree and genus, lying on K3 surfaces in P4.
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Theorem 3.6. For each integer a ≥ 5, there exist smooth curves C ⊂ P4 with
deg(C) = 2a + 3, g(C) = 2a + 1 and maximal Clifford index Cliff(C) = a, such
that C lies on a smooth complete intersection K3 surface. As a consequence,
BNC(2a + 3, 4) 6= ∅ and Mercat’s Conjecture fails for C.

Proof. We use [K] Theorem 6.1 to construct a curve C ⊂ S ⊂ P4, lying on a
smooth complete intersection surface of type (2, 3) such that Pic(S) = Z·H⊕Z·C,
where H2 = 6, H · C = 2a + 3 and C2 = 4a. Since h1(C,OC(1)) ≥ 2, it follows
that OC(1) contributes to Cliff(C), hence Cliff(C) ≤ Cliff(OC(1)) = 2a− 5. We
aim to show that Cliff(C) = a, that is, C has maximal possible Clifford index.

Assume by contradiction that Cliff(C) < a, which means that Cliff(C) is com-
puted by a line bundle which comes from S. Note by direct calculation that S

carries no (−2) curves, in particular C has Clifford dimension 1. We reason along
the lines of [F1] Theorem 3. Using [GL2] we infer that there exists a curve D ⊂ S,
satisfying

h0(S,OS(D)) = h0(C,OC(D)) ≥ 2,

h0(S,OS(C −D)) = h0(C, KC(−D)) ≥ 2,(4)

C ·D ≤ g − 1,

such that Cliff(C) = Cliff(D⊗OC) = D ·C−D2−2. In particular, such a divisor
D ≡ mH + nC, with m,n ∈ Z must verify the inequalities:

(i) D ·H = 6m + dn > 2
(ii) md + (2n− 1)(g − 1) ≤ 0
(iii) 3m2 + mnd + n2(g − 1) ≥ 0

We claim that there exist no divisors D ⊂ S with D2 > 0, satisfying (i)-(iii).

Case n < 0. From (iii), we have that either m < −n or m > −2a
3 n. In the

first case, by using inequality (i) we get

2 < −6n + dn = n(2a− 3),

which is a contradiction since n < 0 and a ≥ 5. Suppose m > −2an/3 > 0.
Inequality (ii) implies that n(2 − d/3) < 1, that is, (−n)(2a − 3) < 3. Hence
2a− 3 < 3, which contradicts the hypothesis a ≥ 5.

Case n > 0. Again, from condition (iii), we have either m < −2a
3 n or

m > −n. In the first case, using (i) we obtain 2 < n(d− 4a), which is impossible
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since d = 2a + 3 < 4a. Suppose now that −n < m < 0. From (ii) we have
that 2a(2n − 1) ≤ −md < nd, which implies n < 2a

4a−d = 2a
2a−3 < 2. Then

n = 1 > −m > 0, therefore the case n > 0 does not occur.

Case n = 0. From (ii), m ≤ g−1
d = 2a

2a+3 < 1, but this yields a contradiction
since, m > 0. This completes the proof of the claim.

We are left with checking that Cliff(OC(D)) ≥ a, for all primitive effective
classes D ∈ Pic(S) such that D2 = 0. By direct calculation, either D ≡ C−D, in
which case Cliff(OC(D)) = D ·C −D2 − 2 = 2a− 5 ≥ a, or else, D ≡ 2aH − 3C,
hence D · C > g − 1, and D cannot compute Cliff(C). ¤

For genus g = 2a, we have an analogous result in a similar range. We skip
details:

Theorem 3.7. For a ≥ 6, there exist smooth curves C ⊂ P4 with deg(C) =
2a + 1, g(C) = 2a and maximal Clifford index Cliff(C) = a − 1, such that C

is contained in a smooth (2, 3) complete intersection K3 surface. It follows that
BNC(2a + 1, 4) 6= ∅.

It is important to realize that although (2) (and very probably prediction (1)
as well), fail for certain Brill-Noether general curves, we still expect both Mercat
conjectures to be valid for the generic curve. Theorem 3.6 should be interpreted
as stating that the failure locus of (2) is not a Brill-Noether locus in the classical
sense, but rather a Koszul subvariety on Mg in the style of [F3], [F5]. Precisely,
the locus in M2a+1 − M1

2a+1,a+1 where inequality (2) does not hold, can be
described as

Syz4g,2a+3 := {[C] ∈M2a+1 : ∃L ∈ W 4
2a+3(C) such that K1,1(C, L) 6= 0}.

This is a virtual Koszul divisor. Using the terminology of Section 2, a point [C]
lies in Syz4g,2a+3 if and only if Quad4

g,2a+3(C) 6= ∅. Noting that ρ(g, 4, 2a + 3) =
2a− 9, whereas h0(C, L⊗2) = 2a + 6, one computes that the virtual dimension of
Quad4

g,2a+3(C) as a determinantal variety, is equal to −1. Since it is not difficult
to provide examples of embedded curves C ⊂ P4 of genus g(C) = 2a + 1 and
deg(C) = 2a + 3, which lie on a single quadric such that OC(1) ∈ Quad4

g,2a+3(C)
is an isolated point, one infers that only two scenarios are possible:
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(i) Syz4g,2a+3 is a divisor inside Mg, that is, K1,1(C, L) = 0 for a general
curve [C] ∈Mg and for every L ∈ W 4

2a+3(C), or
(ii) Syz4g,2a+3 = Mg.

Conjecture (MRC)42a+1,2a+3 predicts that the second possibility does not appear.
In any event, the case of P4 ought to be one of the more manageable situations
for testing MRC in arbitrary genus. We can confirm this expectation for a = 5.

Proof of Theorem 1.6. Assume by contradiction that for a general curve [C] ∈
M11 there exists a linear series L ∈ W 4

13(C) such that C
|L|
↪→ P4 lies on a quadric

Q ⊂ P4. We claim that Q must be smooth, because otherwise, rank(Q) ≤ 4,
and then L is expressible as the sum of two pencils. This contradicts the fact
that gon(C) = 7. After counting dimensions, we observe that there exists X ∈
|IC/P4(3)|, which does not contain Q, and such that S := Q ∩ X ⊂ P4 is a
smooth K3 surface. By direct calculation, we check that h0(S,OS(H − C)) ≥ 2
and (H −C)2 = 0, that is, S is an elliptic K3 surface. This contradicts the main
result of [M1], where it has been shown that a general curve of genus 11 lies on
a single K3 surface of degree 20, which moreover is general in its moduli space,
in particular it has Picard number one. ¤

We next turn to the case of globally generated vector bundles E with
h0(C, E) = 5 having no sub-pencils. We set as usual L := det(E) and then
h0(C, L) ≥ 7.

Remark 3.8. For a general curve [C] ∈ M2a+1, Mercat’s Conjecture holds for
vector bundles with 5 sections, if and only if BNC(2a + 5, 5) = ∅. Similarly, for
even genus, Mercat’s Conjecture for h0(C, E) = 5 holds in the case of a general
curve [C] ∈M2a, if and only if BNC(2a + 3, 5) = ∅.

Via diagram (3), we use the existence of the Plücker quadrics in the ideal of
the curve φL(C) embedded by the determinant line bundle, to confirm (1) in
bounded genus:

Proof of Theorem 1.7: We fix a general curve [C] ∈Mg and a globally generated
rank 2 vector bundle E on C with Cliff(C)+2 ≤ µ(E) ≤ g−1 and L := det(E) ∈
Picd(C). Let us assume that inequality (1) does not hold, that is,

(5) d < 2
(
h0(C, E)− 2 + Cliff(C)

)
.
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Then, as pointed out, E admits no sub-pencils and h0(C,L) ≥ 2h0(C, E) − 3.
Since C satisfies the Brill-Noether theorem, one writes ρ

(
g, 2h0(C, E)−4, d

) ≥ 0.
Coupled with assumption (5), this forces h0(C,E) ≤ 5, and then, h0(C, E) =
5, g = 15 and d ≤ 19. There is no harm in assuming d = 19, because if
BNC(19, 5) = ∅, the same statement holds for lower degree by carrying out
generic elementary transformations.

Therefore E ∈ BNC(19, 5) and from Proposition 3.4, one finds that

dim Ker ν2(L) ≥ 5 = dim H0
(
P9, IG(2,5)/P9(2)

)
.

Using again that C is Brill-Noether general, we observe that h0(C, L) = 7,
h0(C, L⊗2) = χ(C,L⊗2) = 24 and A := KC ⊗L∨ ∈ W 1

9 (C) is a pencil of minimal
degree. We infer that ν2(L) is not surjective, and there exists a vector bundle
F ∈ SUs

C(2,KC) in an extension

0 → A → F → L → 0,

such that h0(C, F ) = h0(C, A) + h0(C, L) = 2 + 7 = 9. The proof that F is
stable is standard, cf. [L] Prop. V.4. Applying [T3], one can assume that the
Mukai-Petri map

Sym2H0(C, F ) → H0(C,Sym2F )

is injective, which is absurd since 3g − 3 < h0(C,F )
(
h0(C, F ) + 1

)
/2. ¤

In the same spirit, we can link inequality (1) to a MRC statement.

Proposition 3.9. Let [C] ∈ Mg be general. Mercat’s Conjecture (1) for vector
bundles E with h0(C, E) = 5 is a consequence of the Maximal Rank Conjecture.

Proof. We sketch only the odd genus case, and write g = 2a+1. From Remark 3.8
we know that it is enough to show that BNC(2a+5, 5) = ∅. If E ∈ UC(2, 2a+5)
satisfies h0(C, E) = 5, then we know from Proposition 3.4 that the image φL(C)
induced by the determinant line bundle, lies on at least 5 quadrics coming from
the equations of the Grassmannian G(2, 5) ⊂ P9. We set r := h0(C, L) − 1 ≥
6. Over the variety Gr

2a+5(C) of linear series gr
2a+5 there exists a morphism

of vector bundles ν2 : E2 → F2 which globalizes the multiplication maps ν2(l),
for l = (L, V ) ∈ Gr

2a+5(C). The Maximal Rank Conjecture predicts that the
determinantal locus

X5(ν2) := {l ∈ Gr
2a+5(C) : dim Ker ν2(l) ≥ 5},
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has expected dimension, that is, X5(ν2) = ∅, hence no vector bundle E with
h0(C, E) = 5 can exist. ¤

To close, we record the form conjecture (1) takes for bundles with 6 sections.
Computing the appropriate degrees, one must show that BNC(2a + 7, 6) = ∅
for a general curve [C] ∈ M2a+1 and BNC(2a + 5, 6) = ∅ for a general curve
[C] ∈M2a.

4. Existence of stable vector bundles of rank 2 with 4 sections

We begin by describing all possible bundles E ∈ UC(2, 2a+4) on a Petri general
curve [C] ∈ M2a+1 having h0(C, E) = 4. There are two cases to distinguish.
Assume first that E is stable and globally generated. Then E carries no sub-
pencil and L := det(E) ∈ W 4

2a+4(C), cf. Lemma 3.3 (see also [GMN]). Using
diagram (3), as before we obtain a quadric of rank at most 6

(6) QE ∈ P Ker
{
ν2(L) : Sym2H0(C, L) → H0(C, L⊗2)

}

containing the image of φL(C) of the curve under the linear series |L|.

Assume now that E carries a sub-pencil. Since gon(C) = a+2, then necessarily,
E sits in an extension

(7) 0 → A → E → A′ → 0,

where A,A′ ∈ W 1
a+2(C), and h0(C,E) = h0(C, A) + h0(C,A′). In particular, E

is strictly semistable, h0(C, E) = 4 and the multiplication map

µ0(A′,KC ⊗A∨) : H0(C, A′)⊗H0(C, KC ⊗A∨) → H0(C,KC ⊗A′ ⊗A∨),

obtained by dualizing the boundary morphism

Ext1(A′, A) → Hom
(
H0(C, A′),H1(C, A)

)

is not surjective (One notes that if A 6= A′, then by Riemann-Roch h0(C, KC ⊗
A∨) = a and h0(C, KC ⊗A′ ⊗A∨) = 2a, that is, µ0(A′,KC ⊗A∨) is a morphism
between vector spaces of the same rank 2a).

For a general curve [C] ∈M2a+1, the Brill-Noether curve W 1
a+2(C) is smooth,

connected and of genus

g′ := 1 +
a

a + 1

(
2a + 2

a

)
.



1282 Gavril Farkas and Angela Ortega

The associated map φ : M2a+1 99K Mg′ given by φ([C]) := [W 1
a+2(C)], has

been studied in some detail in [F4]. Intriguing questions, like that of describing
geometrically the image of φ in Mg′ , or of studying the (possibly empty) non-
injectivity locus of φ, remain however. In particular, it would be interesting to
understand the geometric properties (e.g. Brill-Noether theory, automorphisms if
any) of the curve W 1

a+2(C). The previous condition, shows that W 1
a+2(C) comes

equipped with an interesting correspondence:

Theorem 4.1. Fix a ≥ 2 and a general curve [C] ∈ M2a+1. The locus of pairs
of pencils

SC := {(A,A′) ∈ W 1
a+2(C)×W 1

a+2(C) : µ0(A′,KC ⊗A∨) is not injective}

is a non-empty, symmetric correspondence on W 1
a+2(C), disjoint from the diago-

nal.

From the Base Point Free Pencil Trick it follows that (A,A′) ∈ SC if and only
if H0(C, KC − A − A′) 6= 0, which proves that SC is symmetric. Furthermore,
since the multiplication maps µ0(A,KC ⊗A∨) are injective for all A ∈ W 1

a+2(C),
it follows that SC ∩ ∆W 1

a+2(C) = ∅. The non-trivial part of Theorem 4.1 is to
show that SC 6= ∅, and we shall prove this by degeneration. In order to carry this
out, we need some preparation and recall a few basic facts about degenerations
of multiplication maps on curves.

We fix a pointed curve [C, p] ∈ Mg,1. If l = (L, V ) ∈ Gr
d(C) is a linear series,

then the vanishing sequence {al
i(p)}i=0,...,r of l at p is obtained by ordering the

positive integers {ordp(σ)}σ∈V . If L and M are line bundles on C, we denote by

µ0(L,M) : H0(C, L)⊗H0(C, M) → H0(C, L⊗M)

the usual multiplication map. For any element ρ ∈ H0(C, L) ⊗ H0(C, M), we
write that ordp(ρ) ≥ k, if ρ lies in the span of elements of the form σ ⊗ τ ,
where σ ∈ H0(C,L) and τ ∈ H0(C, M) are such that ordp(σ) + ordp(τ) ≥ k.
Suppose {σi} ⊂ H0(L) and {τj} ⊂ H0(M) are bases of global sections with the
property that ordp(σi) = aL

i (p) and ordp(τj) = aM
j (p) for all i and j. Then if

ρ ∈ Ker µ0(L,M), there exist two pairs of integers (i1, j1) 6= (i2, j2) such that

ordp(ρ) = ordp(σi1) + ordp(τj1) = ordp(σi2) + ordp(τj2).
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Let [C0 := D0∪p0 E0] ∈ ∆1 ⊂M2a+1 be a stable curve, where [D0, p0] ∈M2a,1

and [E0, p0] ∈ M1,1 are general pointed curves. Let M denote the versal defor-
mation space of C0, thus M → M2a+1 can be regarded as an étale neighbour-
hood of [C0] ∈ M2a+1. We then consider the proper Deligne-Mumford stack
σ : G1

a+2 → M of limit linear series G1
a+2, as well as the induced projection

σ′ : G1
a+2 ×M G1

a+2 → M.

The key technical tool in the proof of Theorem 4.1 is the construction of a
stack

ν : S → G1
a+2 ×M G1

a+2

such that, loosely speaking, the fibres of µ := σ′ ◦ν are the (degenerations of the)
correspondences SC , when [C] ∈ M. The construction of S goes along the lines
of [F2] Theorem 4.3, for which reason we shall be rather succint.

Definition 4.2. The stack µ : S → M has the following structure:

• For [C] ∈ M corresponding to a smooth curve, the points in the fibre µ−1[C]
are triples (A,A′, ρ), where A,A′ ∈ W 1

a+2(C) and ρ ∈ P Ker µ0(A′,KC ⊗A∨).

• For [C] ∈ M corresponding to a singular curve C := D ∪p E, where [D, p] ∈
M2a,1 and [E, p] ∈M1,1, the fibre µ−1[C] classifies elements

(
l, m, ρ1, ρ2

)
,

where m =
{
(L′D, V ′

D), (L′E , V ′
E)

} ∈ σ−1[C] is a limit g1
a+2 on C, whereas

l =
{(

KD(2p)⊗ L∨D,WD

)
,

(OE(4a · p)⊗ L∨E ,WE

)}

is a limit ga−1
3a−2 on C, which is complementary to a limit g1

a+2 on C having as
aspects the line bundles LD ∈ Pica+2(C) and LE ∈ Pica+2(E).

Furthermore, we have elements

ρ1 ∈ PKer{V ′
D ⊗WD → H0

(
D, KD(2p)⊗ L′D ⊗ L∨D

)},
ρ2 ∈ PKer{V ′

E ⊗WE → H0
(
E,OE(4a · p)⊗ L′E ⊗ L∨E

)}
satisfying the compatibility relation ordp(ρ1) + ordp(ρ2) ≥ 4a.

The morphism S
µ→ M factors through σ′ : G1

a+2×M G1
a+2 → M by forgetting

the elements ρ1 and ρ2. Moreover, S has a determinantal structure over M
and each fibre µ−1([C]) has dimension at least 1. We are in a position to prove
Theorem 4.1:
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Proof of Theorem 4.1. Keeping the notation above, it suffices to show that
for C := D ∪p E, the fibre µ−1([C]) has at least one irreducible component of
dimension 1. This implies that µ(S) maps dominantly onto M. Since for a
smooth curve [C ′] ∈ M, the fibre µ−1([C ′]) is isomorphic to SC′ , the conclusion
follows.

We choose [D, p] ∈ M2a,1 sufficiently general such that (i) D satisfies Petri’s
Theorem, in particular, W 1

a+1(D) is finite and reduced, (ii) h0(D, A⊗A′) = 4 for
all pencils A 6= A′ on C of degree a + 1 (cf. [V1] 3.1), and (iii) p /∈ supp(A), for
any A ∈ W 1

a+1(D). We construct piece by piece an element (l, m, ρ1, ρ2) ∈ µ−1[C]
as follows: We set

m :=
{(

A′(p), |V ′
D| = p + |A′|), (

A′E(a · p), |V ′
E | = a · p + |A′E |

)}
,

where A′ ∈ W 1
a+1(D) and A′E ∈ Pic2(E) are chosen arbitrarily. Then we take the

element

l :=
{(

LD := KD(p)⊗A∨, |LD|
)
,

(OE(3a · p)⊗A∨E , (2a− 2) · p + |OE((a + 2) · p)⊗A∨E)|)
}

,

where A ∈ W 1
a+1(C) − {A′}, and AE ∈ Pic2(E) is again arbitrary. Thus l is a

refined limit ga−1
3a−2 on C having vanishing sequence with respect to C equal to

alD(p) = (1, 2, . . . , a). By varying A,A′ ∈ W 1
a+1(D) and AE , A′E ∈ Pic2(E), we

fill-up an entire component of the fibre (σ′)−1[C].

We now describe all possibilities of choosing ρ1, ρ2 compatible with l and m.
First, the element

ρ1 ∈ PKer
{

H0(D, A′(p))⊗H0
(
D, KD(p)⊗A∨

) → H0
(
D, KD(2p)⊗A′ ⊗A∨

)}

is uniquely determined corresponding to the non-zero section from H0(D, KD −
A − A′). Clearly ordp(ρ1) = 3, hence by compatibility ordp(ρ2) ≥ 4a − 3. After
subtracting the base point p ∈ E, we find that ρ2 must correspond to the unique
non-zero element in the kernel of the multiplication map

µ0(A′E ,OE(4p)⊗AE) : H0(A′E)⊗H0(OE(4p)⊗A∨E) → H0
(OE(4p)⊗A′E ⊗A∨E

)
.

This implies that AE ⊗A′E = OE(4p), hence AE ∈ Pic2(E) can be freely chosen,
and then A′E and ρ2 are uniquely determined. All in all, µ−1([C]) has a 1-
dimensional component, which completes the proof.
¤
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Theorem 4.3. For a ≥ 4 and a general curve [C] ∈ M2a+1, the determinantal
variety

Koszul(C) := {L ∈ W 4
2a+4(C) : ν2(L) is not injective}

is non-empty and has a component of dimension 2, corresponding to complete
linear series L ∈ W 4

2a+4(C) which cannot be written as sums L = A1 +A2, where
A1, A2 ∈ W 1

a+2(C).

Proof. Over the smooth (2a − 4)-dimensional variety G4
2a+4(C) of linear series

g4
2a+4 on C, we construct vector bundles A and B having fibres

A(L, V ) := Sym2(V ) and B(L, V ) := H0(C, L⊗2)

over each point (L, V ) ∈ G4
2a+4(C), where L ∈ W 4

2a+4(C) and V ⊂ H0(C, L) is
the corresponding 5-dimensional space of sections. Clearly rank(A) = 15 and
rank(B) = 2a + 8. There exists a morphism of vector bundles

ν2 : A → B

such that

ν2(L, V ) : Sym2(V ) → H0(C, L⊗2)

is the multiplication map of sections. Every irreducible component of the de-
generacy locus Quad(ν2) := {(L, V ) ∈ G4

2a+4(C) : ν2(L, V ) is not injective} has
dimension at least 2 = dim G4

2a+4(C)− (2a + 8− 14).

To show that Quad(ν2) 6= ∅, we use that the correspondence SC is non-empty,
and choose a pair (A,A′) ∈ SC , such that h0(C, A ⊗ A′) = 5. The pencils
A and A′ are complete and base point free, and we pick {σ0, σ1} ⊂ H0(C, A)
(respectively {σ′0, σ′1} ⊂ H0(C, A′)) bases for the respective spaces of sections.
Then the element

(σ0 · σ′1) · (σ1 · σ′0)− (σ0 · σ′0) · (σ1 · σ′1) ∈ Sym2H0(C,A⊗A′)

lies obviously in Ker ν2(A ⊗ A′), that is, A ⊗ A′ ∈ X(ν2). Let Z ⊂ X(ν2)
be an irreducible component such that A ⊗ A′ ∈ Z. Since dim(Z) ≥ 2 and
SC $ W 1

a+2(C)×W 1
a+2(C), necessarily, the general point of Z corresponds to a

complete linear series L ∈ W 4
2a+4(C), which cannot be expressed as a sum of two

pencils. ¤
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To each L ∈ Koszul(C) as above, with an element 0 6= qL ∈ Ker ν2(L), we
assign a vector bundle E ∈ SUC(2, L) as follows, see also [GMN], [vB]. Since
rank(qL) ≤ 5, there exists a subspace W ∈ G(3,H0(C,L)) such that

qL ∈ Sym2H0(C,L) ∩ (
W ⊗H0(C, L)

)
.

We define E to be the kernel of the following evaluation map:

0 → E → W ⊗ L → L⊗2 → 0.

Clearly, det(E) = L and H0(C, E) ⊃ ∧2W ⊕C · qL, thus h0(C, E) ≥ 4. Moreover
E is globally generated.

The proof that E is stable follows closely [GMN] Theorem 3.2: An arbitrary
quotient line bundle A′ of E has h0(C, A′) ≥ 2. Either deg(A′) > a + 2, which
implies that E is stable, or else, deg(A′) = a + 2 and h0(C, A′) = 2. In the latter
case, E sits in an extension of type (7), in particular L is expressible as a sum of
two elements from W 1

a+2(C), a contradiction. Therefore E ∈ BNC(2a + 4, 4).

5. Applications of Koszul cohomology to rank 2 vector bundles

There is an interesting connection between vector bundles E ∈ UC(2, d) and
syzygies of low rank in the Koszul cohomology group Kh0(E)−3,1

(
C, det(E)

)
. The

first instance of this equivalence, when h0(C, E) = 4, is classical and has been used
in [BV], [M2], [GMN], as well as in this paper. We review a general construction
which can be traced back to Voisin [V3], and has been explicitly worked out in
[AN].

For a curve C and a globally generated line bundle L on C, the Koszul coho-
mology group Kp,1(C, L) can be defined as the cohomology of the complex:

p+1∧
H0(C, L)

dp+1,0−→
p∧

H0(C, L)⊗H0(C, L)
dp,1−→

p−1∧
H0(C, L)⊗H0(C, L⊗2).

If ML is the Lazarsfeld bundle defined as the kernel of the evaluation map

0 → ML → H0(C, L)⊗OC
ev→ L → 0,

a simple argument using the exact sequences

0 −→
a∧

ML ⊗ L⊗b →
a∧

H0(C, L)⊗ L⊗b −→
a−1∧

ML ⊗ L⊗(b+1) −→ 0
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for various a and b, leads to an identification [PR] p.506,

(8) Kp,1(C, L) =
H0

(
C,

∧p ML ⊗ L
)

∧p+1 H0
(
C, L

) .

Definition 5.1. We say that a Koszul class [ζ] ∈ Kp,1(C, L) has rank ≤ n, if
there exists a subspace W ⊂ H0(C,L) with dim(W ) = n and a representative
ζ ∈ ∧pW ⊗H0(C, L).

Let E be a rank 2 bundle on C with h0(C, E) = p+3 ≥ 4 and set L := det(E).
We assume that the determinant map

λ : ∧2H0(C, E) → H0(C, L)

does not vanish on decomposable tensors, or equivalently, E carries no sub-
pencils. Choosing a basis (e1, . . . , ep+3) of H0(C, E), we introduce the subspace

W :=
〈
s2 := λ(e1 ∧ e2), . . . , sp+3 := λ(e1 ∧ ep+3)

〉 ⊂ H0(C, L).

By assumption, dim(W ) = p + 2. Following [AN] (2.1) and [V3] formula (2.22),
we define the syzygy

ζ(E) :=
∑

i<j

(−1)i+j s2∧ . . .∧ ŝi∧. . .∧ ŝj∧ . . .∧sp+3⊗λ(ei∧ej) ∈ ∧pW⊗H0(C, L).

It is shown in [V3] Lemma 5, that dp,1(ζ(E)) = 0, hence [ζ(E)] ∈ Kp,1(C, L) gives
rise to a non-trivial Koszul class of rank p + 2.

Remark 5.2. When h0(C, E) = 4, thus p = 1, using that K1,1(C, L) =
Ker ν2(L), as well as the quadric equation of G(2, 4) ⊂ P5, we observe that
[ζ(E)] = QE , that is, the classical construction (6) can be recovered in this
Koszul-theoretic setting.

Remark 5.3. The construction of [ζ(E)] appears to be insensitive to the stability
of E. If E = A1 ⊕ A2, where A1, A2 are base point free line bundles on C

contributing to Cliff(C), if we set ri := h0(C, Ai)− 1 ≥ 1, then

0 6= [ζ(A1 ⊕A2)] ∈ Kr1+r2−1(C, A1 ⊗A2)

is the Green-Lazarsfeld syzygy [GL1]. It is the content of Green’s Conjecture that
in the case of the canonical bundle KC , in some sense, all non-trivial syzygies
appear in such a way. We refer to [V2], [V3] for a solution of Green’s Conjecture
for general curves and to [AF] for a survey.
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Mercat’s Conjecture can be rewritten as

h0(E) ≤ sup
{

h0(A1) + h0(A2) : A1 ⊗A2 = det(E),

hi(A1), hi(A2) ≥ 2, i = 0, 1
}

.

We conclude that the assignment

BNC(d, p + 3) 3 E 7→ [ζ(E)] ∈ Kp,1(C, det(E))

is not expected to produce non-trivial syzygies other than in the range where
Green-Lazarsfeld syzygies are already known to appear.

This last observation, prompts us to formulate a Minimal Resolution Conjec-
ture for the syzygies of curves embedded in projective space by complete lin-
ear series. We fix a curve [C] ∈ Mg, a complete base point free linear series
L ∈ W r

d (C), and an integer 1 ≤ p ≤ d− g + 1. Let φL : C → Pr be the induced
morphism. Using (8), the condition Kp,1(C, L) = 0 is equivalent to the injectivity
of the restriction map, cf. [PR] or [F5] Proposition 2.3,

(9) u(C, L) : H0
(
Pr,

p−1∧
MPr(2)

) |C−→ H0
(
C,

p−1∧
ML ⊗ L⊗2

)
.

Note that MPr = ΩPr(1) and by definition ML = φ∗LMPr . The dimensions of
both vector spaces appearing in the map (9) are independent of C and L:

h0(Pr,∧p−1MPr(2)) =
(

r

p− 1

)
(r + 1)(r + 2)

p + 1

and

h0(C,∧p−1ML ⊗ L⊗2) =
(

r

p− 1

)(
−d

r
(p− 1) + 2d + 1− g

)
,

where for the second calculation we have used a filtration argument due to Lazars-
feld to show that H1(C,∧p−1ML ⊗ L⊗2) = 0. We refer to [F5] Proposition 2.1
for details.

If σ : Gr
d →Mg is the space of pairs [C, L], where [C] ∈Mg and L ∈ W r

d (C)−
W r+1

d (C) is base point free, there exist vector bundles A and B over Gr
d such that,

A[C,L] = H0
(
Pr,

p−1∧
MPr(2)

)
and B[C, L] = H0

(
C,

p−1∧
ML ⊗ L⊗2

)
,

as well as a vector bundle morphism u : A → B which globalizes the maps u(C, L).
We raise the following logical possibility, which is a wide-range generalization of
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both the Maximal Rank Conjecture (MRC)r
g,d and Green’s Conjecture for general

curves:

Conjecture 5.4. (Minimal Resolution Conjecture)

We fix integers g, r, d, p ≥ 1 such that g − d + r ≥ 0, and assume that

(10) r − 1− [g − 1
2

] ≤ p ≤ d− g + 1

and

(11)
(

r

p− 1

)(
−d

r
(p− 1) + 2d + 1− g − (r + 1)(r + 2)

p + 1

)
+ 1 > ρ(g, r, d).

Then for a general curve [C] ∈ Mg, we have that Kp,1(C, L) = 0, for all L ∈
W r

d (C).

The quantity [(g − 1)/2] is the Clifford index of the general curve of genus g.
Condition (10) ensures (via Mercat’s Conjecture), that non-trivial syzygies of the
form [ζ(E)] ∈ Kp,1(C, det(E)) do not appear in the predicted range. Note that
certainly, syzygies of Green-Lazarsfeld type do not appear in Kp,1(C, L), for they
would correspond to a pencil A ∈ W 1

r−p(C) and a decomposition L = A⊗(L⊗A∨)
where r(A) + r(L⊗A∨) = p. But r − p > gon(C), thus W 1

r−p(C) = ∅.

Condition (11) which implies in particular that rank(A) ≤ rank(B), expresses
the belief/hope that the first degeneracy locus of the morphism u : A → B has
the expected dimension and maps to a proper subvariety of Mg. Conjecture
5.4 implies Mercat’s Conjecture. Of course, we regard the Minimal Resolution
Conjecture as being vastly more difficult than Mercat’s Conjecture, but would
still like to point out a remarkable compatibility between two predictions which
have been formulated independently.

Remark 5.5. When d = 2g− 2, r = g− 1, hence W g−1
2g−2(C) = {KC}, Conjecture

5.4 specializes to Green’s Conjecture for general curves. This has been established
by Voisin [V2], [V3]. The case p = 1 of the Minimal Resolution Conjecture is
simply the statement (MRC)r

g,d formulated in Section 2. Various other cases
have been proved when ρ(g, r, d) = 0 and rank(A) = rank(B), that is, when the
failure locus

Syzr
g,d := {[C] ∈Mg : Kp,1(C, L) 6= 0 for a certain L ∈ W r

d (C)}
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is a divisor. We mention the case (g, r, d) = (10, 4, 12) cf. [FP], when
the locus Syz12

10,4 is the K3 divisor on M10, as well as the cases (g, r, d) =
(16, 7, 21), (22, 10, 30) see [F5].

Remark 5.6. When p = 1 condition (10) is superfluous, being a consequence
of (11). For higher values of p it can happen that (11) holds but (10) fails. An
instructive example is that of 2-canonically embedded curves

C
|K⊗2

C |−→ P3g−4,

when d = 4g − 4, r = 3g − 4. Assume g = 4a, where a ∈ Z. For p = 9a− 5, one
notices by direct calculation that rank(A) = rank(B), and one would expect the
degeneracy locus of u : A → B to be a divisor. However inequality (10) is not
satisfied since p ≤ h0(C,K⊗2

C )− 1− Cliff(C), and indeed by [GL1] we have that
Kp,1(C, K⊗2

C ) 6= 0, for every curve [C] ∈Mg. Therefore u : A → B is everywhere
degenerate.

Remark 5.7. The name Minimal Resolution Conjecture already appears in lit-
erature and refers to a statement predicting that if X ⊂ Pr is an embedded
projective variety, the resolution of general sets of points Γ ⊂ X is ”minimal”,
being determined by the Hilbert function of X and the cardinality |Γ|. We refer to
[FMP] for a formulation of the most general form of the conjecture and to [EPSW]

for the most studied case, that of X = Pr. In the case when X = C
|L|→ Pr is

a smooth curve of genus g embedded by a very ample linear series L ∈ W r
d (C),

MRC for points as formulated in [FMP] Corollary 1.8 is equivalent to a collection
of vanishing statements for every integer 0 ≤ i ≤ r:

H1(C,∧iML ⊗ ξ) = 0, for a general ξ ∈ Picj(C), where j = g − 1 + ddi

r
e,

and

H0(C,∧iML ⊗ ξ) = 0, for a general ξ ∈ Picj(C), where j = g − 1 + bdi

r
c.

We do not see an obvious connection between Conjecture 5.4 which predicts the
minimality of the resolution of C itself, and MRC for general points on C. This
discrepancy is vividly illustrated when L = KC : Conjecture 5.4 specializes to
Green’s Conjecture for general curves, whereas the Minimal Resolution Conjec-
ture for points boils down to the following equality of cycles in the Jacobian, see
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[FMP] Theorem 3.1:

Θ∧i M∨
KC

= Cg−i−1 − Ci ⊂ Picg−2i−1(C).

This is a statement of a different flavour, for instance it is insensitive to Cliff(C).

We record various applications of the Conjecture 5.4:

Proposition 5.8. We fix integers 1 ≤ r ≤ g−2, a general curve [C] ∈Mg and a
general line bundle L ∈ Picg+r(C). Assuming the Minimal Resolution Conjecture
for C, for any vector bundle E ∈ SUC(2, L), the following inequality holds:

h0(C, E) < 3 +
r2 − g

r + g
.

Proof. We assume that E is a semistable vector bundle on C with det(E) = L

and write

h0(C, E) = p + 3 ≥ 3 +
r2 − g

r + g
.

First we note that E carries no sub-pencils. Indeed, a general L ∈ Picg+r(C)
cannot be expressed as a sum L = A⊗A′, where h0(C, A)+h0(C, A′) ≥ p+3. It
follows that 0 6= [ζ(E)] ∈ Kp,1(C, L). The numerical assumption on p is equivalent
to the condition rank(A) ≤ rank(B), in particular Conjecture 5.4 implies that
Kp,1(C, L) = 0, which is a contradiction. ¤

Remark 5.9. To derive Proposition 5.8 we have used a much weakened version
of Conjecture 5.4. Precisely, for a general [C] ∈ Mg and p ≥ r2−g

r+g , it suffices to
produce a single example of a line bundle L ∈ Picg+r(C) such that Kp,1(C, L) = 0,
for Theorem 5.8 to hold true.

Example 5.10. The assumptions of Theorem 5.8 can be fulfilled for bounded
genus. A nice illustration is the case g = 8, r = 6. The Minimal Resolution
Conjecture predicts that K2,1(C, L) = 0 for a general line bundle L ∈ Pic14(C).

Equivalently, the ideal of the curve C
|L|−→ P6 is cut out by quadrics. This

has been verified by Verra [Ve] Theorem 5.16, in the course of his proof of the
unirationality of M14. Then from Proposition 5.8 we deduce that h0(C,E) ≤ 4,
for any E ∈ SUC(2, L). If we drop the genericity assumption on the determinant
bundle L, we can find vector bundles having more sections. For instance, there
exists a unique vector bundle E ∈ SUC(2,KC) with h0(C, E) = 6, see [M2]
Theorem A.
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An important particular case of Theorem 5.8 is when r = g − 2. In this
situation, the predicted vanishing for Koszul cohomology is equivalent to the
Prym-Green Conjecture, already formulated in [AF] 1.4: If L ∈ Pic2g−2(C) is a
general line bundle,

(12) Kp,1(C, L) = 0 ⇔ p ≥ g − 4
2

.

The Prym-Green Conjecture predicts in particular, that for g = 2i+6, the general
paracanonical curve C ⊂ Pg−2 embedded by a g

g−2
2g−2, enjoys property (Ni). This

statement has important applications to the birational geometry of the moduli
spaces Rg,l parametrizing pairs [C, ξ] where [C] ∈ Mg and ξ⊗l = OC . The
Prym-Green Conjecture has been verified for all g ≤ 16 and details will appear
in [EFS].

Proposition 5.11. For a general curve [C] ∈Mg with g ≤ 16, and a general line
bundle L ∈ Pic2g−2(C), one has the following inequality for all E ∈ SUC(2, L):

h0(C, E) ≤ g + 1
2

.

It is worth pointing out that when L = KC , the conclusion of Theorem
5.11 no longer holds. If [C] ∈ M2a lies on a K3 surface, Mukai and Voisin
[V1] have showed that there exists a (unique!) vector bundle E ∈ SUC(2,KC)
with h0(C, E) = a + 2. On the other hand, the Brill-Noether subvarieties of
SUC(2,KC) have a Lagrangian structure and are governed by different numeri-
cal invariants [BF], [T3].

We close, by pointing out that each time a form of the Minimal Resolution
Conjecture is known, one can derive a corresponding non-existence result for
rank 2 vector bundles. The following result, is just one example of a statement
of this type:

Proposition 5.12. We fix a general curve [C] ∈ M16 and L ∈ W 7
21(C) one of

the finitely many linear series residual to a minimal pencil. Then there exist no
semistable bundles E ∈ SUC(2, L) with h0(C, E) = 5.

Proof. We observe that Cliff(C) = Cliff(L) = 7. Let E be a semistable bundle
with det(E) = L and h0(C,E) ≥ 5. First we claim that E cannot have sub-
pencils. Indeed, if

0 → A → E → A′ → 0
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is an extension with h0(C, A) ≥ 2, then deg(A) ≥ 9 = gon(C), hence deg(A′) ≤ 12
and h0(C, A′) ≤ 2 by Brill-Noether theory. In particular h0(C, E) ≤ h0(C, A) +
h0(C, A′) ≤ 4, a contradiction. Thus the bundle E is free of sub-pencils, and
then 0 6= [ζ(E)] ∈ K2,1(C, L). This implies that K1,2(C, L) 6= 0, in particular
using [F5] Theorem 1.1, [C] ∈M16 belongs to the Koszul divisor Syz716,21, which
contradicts the generality of C. ¤
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[LMN] H. Lange, V. Mercat and P. E. Newstead, On an example of Mukai, arXiv:1003.4007.

[Me] V. Mercat, Clifford’s theorem and higher rank vector bundles, International Journal of

Math. 13 (2002), 785-796.

[M1] S. Mukai, Curves and K3 surfaces of genus eleven, in: Moduli of vector bundles, Lecture

Notes in Pure and Appl. Math. 179 Dekker (1996), 189-197.

[M2] S. Mukai, Curves and Grassmannians, in: Algebraic Geometry and Related Topics,

Inchon 1992, (J.-H. Yang, Y. Namikawa, K. Ueno editors), 19-40, International Press

1993.

[PR] K. Paranjape and S. Ramanan, On the canonical ring of a curve , in: Algebraic Geometry

and commutative Algebra (1987), 503-516.

[T1] M. Teixidor i Bigas, On the Gieseker-Petri map for rank two vector bundles, Manuscripta

Math., 75 (1992), 375-382.

[T2] M. Teixidor i Bigas, Existence of coherent systems of rank two and dimension four,

Collectanea Math. 58 (2007), 193-198.

[T3] M. Teixidor i Bigas, Petri map for rank two bundles with canonical determinant, Com-

positio Math. 144 (2008), 705-720.

[Ve] A. Verra, The unirationality of the moduli space of curves of genus 14 or lower, Compo-

sitio Math. 141 (2005), 1425-1444.

[V1] C. Voisin, Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-

Petri, Acta Math. 168 (1992), 249-272.

[V2] C. Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a K3

surface J. European Math. Society, 4, (2002), 364-404.

[V3] C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus, Compo-

sitio Math. 141 (2005), 1163-1190.



The Maximal Rank Conjecture and Rank 2 Brill-Noether Theory 1295

Gavril Farkas
Humboldt-Universität zu Berlin,
Institut Für Mathematik,
Unter den Linden 6
10099 Berlin, Germany
E-mail: farkas@math.hu-berlin.de

Angela Ortega
Humboldt-Universität zu Berlin,
Institut Für Mathematik,
Unter den Linden 6
10099 Berlin, Germany
E-mail: ortega@math.hu-berlin.de


